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Chapter 1

Semantics of programming languages

1.1 Introduction

A programming language is a system of notation for writing computer programs. It is built
from a formal grammar to which semantic rules are associated. In other words, a programming
language is defined on the basis of two components :

Syntax

It lays down the rules that determine which combinations of symbols are correct expressions in
the language. As Slonneger and Kurtz assert [24, Chapter 1], « syntax solely deals with the form
and structure of symbols in a language without any consideration given to their meaning ». The
syntax of a programming language is often defined using the BNF metalanguage introduced by
John Backus in 1959, during the development of Algol 58, and later improved by Peter Naur [5].

Semantics

It assigns computational meaning to valid (that is, syntactically correct) phrases by establishing
a systematic relationship between the inputs and the outputs of the programs written in the
language.

Although both the above aspects are fundamental for a deep understanding of a programming
language, in this work, our main interest is semantics.

Assigning meaning to expressions written in a programming language is fundamental for its
design. In most programming languages, the meaning of commands is quite self-explanatory
as we borrow words from natural language. For example, the command

if A then B else C

means : « if expression A is true, then execute B and if A is false, then execute C » as one would
naturally expect. Unfortunately, this "natural translation" is not always accurate, as it may en-
counter certain ambiguities. One may also want to explain how the programs written in a given
programming language behave in concrete terms, prove their correctness, compare languages
with each other, etc. However, this can’t be done without a theory explaining how the language
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CHAPTER 1. SEMANTICS OF PROGRAMMING LANGUAGES

is interpreted by the computer. For all the reasons above, having at hand a formal definition
of all the expressions in a programming language is essential. It provides an unambiguous de-
scription of their effects, a tool for design and analysis, and a guide to a program that produces
the desired results. Such formal definition is brought by semantic models, i.e., descriptions of
the semantics of the language using standardized, formal, and abstract terminology.

One could think that the semantics of a programming language depends on a particular com-
piler (which unequivocally translates programs into source code, itself converted into a series
of physical operations). But, as Scott asserts [22], « this idea is wrong since the same language
can have many different compilers » and they must always produce the same results (see also
[13]).

The intent to come up with mathematical models for the semantics of a programming language,
i.e., mathematical objects that « serve as a basis for understanding and reasoning about how
programs behave [...] and useful for various kinds of analysis and verification » [29], is known
as formal semantics, which has its roots in Floyd’s work [11]. There are several approaches
to formal semantics in the literature. We describe the most important ones in the following
section.

1.2 Formal Semantics

In an article entitled Assigning meanings to programs [11] published in 1967, Robert W. Floyd
defines the role of semantic models as being precisely to offer « a rigorous standard for proofs
about computer programs, including proofs of correctness, equivalence, and termination ».
Floyd’s article gave rise to the now called axiomatic semantics, one of the main three approaches
to formal semantics that flourished in the 1970s, the other two being operational and denota-
tional semantics. These three visions are complementary : each of them has a different purpose.
Quoting Winskel [29] :

A clear operational semantics is very helpful in implementation. Axiomatic seman-
tics for special kinds of languages can give strikingly elegant proof systems, useful
in developing as well as verifying programs. Denotational semantics provides the
deepest and most widely applicable techniques, underpinned by a rich mathemat-
ical theory. Indeed, the different styles of semantics are highly dependent on each
other.

For example, showing that the proof rules of an axiomatic semantics are correct re-
lies on an underlying denotational or operational semantics. To show an implemen-
tation correct, as judged against a denotational semantics, requires a proof that the
operational and denotational semantics agree. And, in arguing about an operational
semantics it can be an enormous help to use a denotational semantics, which often
has the advantage of abstracting away from unimportant, implementation details,
as well as providing higher-level concepts with which to understand computational
behaviour.

We now briefly describe these three different approaches to formal semantics ([13, 24, 29]).
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CHAPTER 1. SEMANTICS OF PROGRAMMING LANGUAGES

1.2.1 Axiomatic semantics

Axiomatic semantics is a slight improvement on Hoare’s logic. Just like it, it is a formal system
with a set of logical rules for studying the correctness of computer programs. It was proposed
by Tony Hoare in 1969 [15] and based on Floyd’s work on flowcharts [11]. Its fundamental idea
is to interpret program executions as partial correction assertion triples (also known as Hoare
triples) of the form :

{A}c {B}

where A and B are predicate logic assertions, respectively called precondition and postcondi-
tion, and c is a program. This notation means that if A is true before the execution of c, and c
terminates, then B is true. In order to be able to prove program properties, Hoare established
several axioms about how programs modify logical predicates. To illustrate his method, we
consider the example he himslef provided (cf. [15]) of an easy program that uses the method of
successive subtraction for finding the quotient q and remainder r obtained by dividing x by y ,
which, in pseudo-code, can be written :

r := x;
q := 0;
while y <= r do:

r := r-y;
q := q+1;

Let A = {r = x ∧q = 0} and B = {(x = y ·q+r )∧ (r < y)} be our pre and postcondition. A necessary
condition for the correctness of this program is that whenever A is true, B is true. The curious
reader can see how to prove this using the axioms and rules proposed by Hoare, in his article An
axiomatic basis for computer programming [15].

Some limitations of this technique are mentioned by Hoare himself : a formal proof can be
excessively tedious to write, the axioms and rules quoted above give no basis for a proof that a
program actually terminates, etc.

We don’t give more details about this aspect of semantics, but more information can be found
in [3, 24, 29].

1.2.2 Operational semantics

Operational semantics can be seen as a mathematical interpreter of programs written in a given
language, describing how a computation is actually performed, that is, converted into physical
operations. This is particularly important when writing compilers and language interpreters.

We only briefly describe the so-called structural operational semantics introduced by Plotkin
[18], in which evaluation and execution relations are specified by rules in a syntax-oriented
way.

It is based on the following idea. When a program is executed, the memory changes from an
initial state to a final state, passing through several intermediate states. We can abstract a state
of the machine as a function σ that provides the content of the locations of the memory. So if

4



CHAPTER 1. SEMANTICS OF PROGRAMMING LANGUAGES

x is a location, σ(x) is the value of x in the σ state. Consider also the pairs of the form 〈c,σ〉
(called configurations) where c is a command and σ is a state. Operational semantics consists
in defining relations 〈c,σ〉→σ′ between a configuration 〈c,σ〉 and the state they induceσ′, that
is, the state obtained after the execution of c in stateσ. In operational semantics, definitions are
given in the form of inference rules, written as a series of premises (written from configurations)
above a horizontal line and a conclusion below it :

premise1 premise2 premise3 . . . premisen

conclusion

Once again, we won’t go into further detail, but the curious reader can find more information
in [24, 18].

1.2.3 Denotational semantics

Denotational semantics was introduced by Dana Scott [22] in 1970. It aims to represent pro-
grams’ behavior by constructing mathematical objects called denotations. To be more precise,
it assigns an element (a denotation) in a mathematical structure called semantic domain to each
expression of the programming language. In other words, it is entirely determined by a seman-
tic domain and a semantic function from the syntactic elements of the programming language
to the semantic domain :

J·K : abstract syntax → semantic domain.

For example, the denotation of a boolean expression is a boolean value, the denotation of an
arithmetic expression is an integer, etc. Of course, meanings are often more complex, but we
always represent them as mathematical objects. A few properties of denotational semantics
that are important are compositionality (the meaning of a program is the composition of the
meaning of all its sentences), completeness (the semantic function is surjective : every element
in the semantic domain corresponds to at least one syntactic expression) and soundness (two
programs make the same thing if and only if they have the same denotation).

Let’s give an example. We consider a programming language A containing arithmetic expres-
sions only. The abstract syntax of the language can be defined as follows :

< n > ::= 0 | 1 | 2 | 3 | . . .
< op > ::= sum | mul | sub
< e > ::= n | op e e

Let the ring of integers (Z,+, ·) be our semantic domain and the semantic function

J·K : A → (Z,+, ·)
be defined by :

JnK= n

Jadd e1 e2K= Je1K+ Je2K
Jmul e1 e2K= Je1K · Je2K
Jsub e1 e2K= Je1K− Je2K
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CHAPTER 1. SEMANTICS OF PROGRAMMING LANGUAGES

This representation allows us to tell how a program written in the language A behaves and
possibly prove that it converges, gives the expected results, etc.

One of the most important challenges at the origin of denotational semantics was to identify
which types of mathematical structures are suitable as semantic domains. At first sight, alge-
braic structures come to mind. However, although they can be used as domains, theoretical
aspects of computation lead to consider other mathematical objects. The first to notice it was
Scott, in the early 1970s, as he was trying to formulate a mathematical theory of computation,
that is, trying to find a mathematical structure that can imitate, in some sense, what programs
can do.

Concretely, he was searching a semantic domain for λ-calculus, which is a model of compu-
tation that can be used to simulate any Turing machine. It was introduced by Church in the
1930s to provide a foundation for the mathematical theory of functions, in particular for study-
ing functions of higher order, that is, functions that can be applied to other functions. Note that
this is very common to do in programming but not in mathematics. Indeed, if X is a set of func-
tions, and elements of X can be applied to themselves, this means that a function x ∈ X should
also be considered a function from X to X . Therefore, we should have a bijection between X
and the family of self functions on X , which is not possible unless X has cardinal at most 1.

This was not the only issue awaiting resolution. Another important problem was that of recur-
sive definitions (i.e. definitions of the elements in a set in terms of other elements in the set).
The semantic domains must handle these definitions guaranteeing that at least one solution
exists. All this lead Scott to consider ordered structures rather than algebraic structures as the
prototypical semantic domains. The particular structure he invented is nowadays known as a
domain [12] and has become the main structure for the mathematical modeling of notions like
approximation and computation.

C

The main objective of this master’s final project is to develop the basic theory of domains and
explicitly show their usefulness as semantic domains for denotational semantics. To achieve
this, we have organized this work as follows :

In chapter 2, we introduce some basic concepts about ordered sets, trying to indicate the mo-
tivation behind them from a computational perspective. We insist on Scott topology’s funda-
mental role to model the notion of computability of an element through limits of nets.

In chapter 3, we give an introduction to λ-calculus, which is a formal system created by Alonzo
Church in the 1930s to describe computations and study their properties. Scott’s first objective
was precisely to build semantic domains for the λ-calculus. We then construct a certain type of
domains called D∞, which provides an answer to the problem of the mathematical interpreta-
tion of programs that can "call" themselves.
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Chapter 2

Domain theory

2.1 Introduction

Domains are the ordered structures most used for denotational semantics of programming lan-
guages. Their origins go back to Scott’s work on the semantics of high-level computer languages
[22]. Originally, he advocated the use of continuous lattices but it was soon noticed that the
completeness condition of lattices was too strong from a theoretical and practical point of view.
Thus, he changed it to a weaker one, i.e. directed completeness, giving rise to the concept of
domain (a continuous directed complete partially ordered set) [12]. But how did Scott come to
see these ordered structures as appropriate for denotational semantics ? Who better than Scott
himself to explain it ? We will therefore follow the train of thought expressed in his article

[22] D. Scott, Outline of a mathematical theory of computation, Technical Mono-
graph PRG-2, Oxford University Computing Laboratory, 1970.

Recall that a function is computable if and only if it can be reproduced by an algorithm, that is,
there exists an algorithm that takes any element in the function domain as input and returns
the image of the element by the function. The Church-Turing thesis asserts that computable
functions are those computable by a Turing machine, a theoretical model of computers. We
recall its definition, originally given in [27] :

Definition 2.1.1 (Turing machine)

A Turing machine is a model describing a machine handling a theoretically infinite sequence
of symbols given a set of rules. Formally, it is a quintuplet (Q,Σ,δ, q0,F ) that consists of :

∗ a finite set of states Q

∗ a finite set of symbols Σ containing a special blank symbol ⊔∈Σ
∗ an initial state q0 ∈Q

∗ a transition function
δ : Q ×Σ =⇒Q ×Σ× {−1,0,1}

(qi , x) 7−→ δ(qi , x) = (q j , y, ?)

7



CHAPTER 2. DOMAIN THEORY

∗ a set of accepting states F ⊆Q

Informally, a Turing machine can be seen as an infinite memory tape divided into cells con-
taining symbols from Σ and having a read/write head moving to the left or to the right. Cells
yet "untouched" are written with the blank symbol. In the state qi , if the head reads x (at the
current cell), then δ(qi , x) = (q j , y, i ) determines what the machine does next : replace x by y ,
move the head according to i (-1 stands for moving to the left, 0 for halting and 1 for moving to
the right), and change the state to q j .

Let’s see a Turing machine that increments binary numbers by 1. Let T = (Q,Σ,δ, q0,F ) where
Q = (q0, q1, q2, q3), Σ= {0,1,⊔}, F = q3 and the transition function δ is defined by the following
table :

Current State Current Symbol New State New Symbol Move Direction

q0 0 q0 0 right

q0 1 q0 1 right

q0 ⊔ q1 ⊔ left

q1 0 q3 1 halt

q1 1 q2 0 left

q1 ⊔ q3 1 halt

q2 0 q2 1 left

q2 1 q2 0 left

q2 ⊔ q3 ⊔ halt

Table 2.1 : Transition table of a Turing machine incrementing binary
numbers by 1

In figure 2.2, we describe the execution steps if the input is the binary number 101.

C

With all of this in mind, if the objective is to give mathematical meaning to programs imple-
menting algorithms, we can be more precise by saying that our goal is to define a mathematical
framework for computable functions. Moreover, although we may know that a function is cal-
culable, it could be unclear how to calculate it. So an « adequate theory of computation not
only provides the abstractions (what is computable) but also their "physical" realizations (how
to compute them) » [22]. Taking into account that « the mathematical meaning of a procedure
ought to be a function from elements of the data type of the input variables to elements of the
data type of the output », it is necessary to determine a flexible mathematical structure allowing
to represent the wide variety of data types.
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CHAPTER 2. DOMAIN THEORY

Current state Tape Action

q0 ⊔1
↑

01⊔ δ(q0,1) = (q0,1,right) : move right

q0 ⊔10
↑

1⊔ δ(q0,0) = (q0,0,right) : move right

q0 ⊔101
↑
⊔ δ(q0,1) = (q0,1,right) : move right

q0 ⊔101⊔
↑

δ(q0,⊔) = (q1,⊔, left) : move left and change the state to q1

q1 ⊔101
↑
⊔ δ(q1,1) = (q2,0, left) : write 0, move left and change the state to q2

q2 ⊔10
↑

0⊔ δ(q2,0) = (q2,1, left) : write 1 and move left

q2 ⊔1
↑

10⊔ δ(q2,1) = (q2,1, left) : move left

q2 ⊔
↑

110⊔ δ(q2,⊔) = (q3,⊔,halt) : change the state to q3, i.e. end the process

Table 2.2 : Execution steps of a Turing machine incrementing 101 by 1

A first simple idea is that a data type is only a set D . Nevertheless, data types, being based on
the idea of approximation, have « more structure » than sets. For instance, consider the float
data type, which represents the set of real numbers R. Given two variables x, y of data type
float, they can be considered completely different from each other, or as approximating the
same number r ∈ R. Then, it is natural to demand a relation order ⊑ such that x ⊑ y means
that y is a better approximation than x to r . This inevitably leads to consider a data type as an
ordered structure (a partially ordered set), and that, in a data type D , we have elements with
incomplete information (partially defined elements) and maximal elements whose information
contained cannot be improved by other elements (totally defined elements). To clarify this, let’s
take the following example.

Example 2.1.1 ([17])

Let I (R) be the set of all nonempty closed and bounded real intervals with the binary relation
given by

[a,b] ⊑ [c,d ] if and only if [c,d ] ⊆ [a,b]

where [a,b], [c,d ] ∈ I (R). We can interpret an interval [a,b] ∈ I (R) as an approximation of all
the real numbers it contains. If a < b, ∃a < a′ < b′ < b. So, [a′,b′] ⊆ [a,b] =⇒ [a,b] ⊑ [a′,b′]
and thus [a,b] is not a maximal element but a partially defined element. Totally defined
elements are degenerate intervals of the form [a, a], a ∈ R. Moreover, if [a,b] and [c,d ] both
approximate r , that is, r ∈ [a,b]∩[c,d ], and [a,b] ⊑ [c,d ], then [c,d ] is a better approximation
of r than [a,b].

So far, we have defined data types as ordered structures and nothing more. It is still too general
for our purposes and we must refine it. Suppose we have an algorithm that works iteratively
producing a chain of better approximations to some result. In other words, we have a sequence

9



CHAPTER 2. DOMAIN THEORY

(xn)n∈N such that
x1 ⊑ x2 ⊑ . . . ⊑ xn ⊑ . . .

In this context, it is logical to expect this sequence of approximations to converge towards the
desired result which should be supn∈N xn , the supremum of the sequence. We will see that
domains, that are directed complete partially ordered sets endowed in a natural way with a
topology, meet these criteria and will therefore be our main objects of study. Before presenting
them, let’s give a brief example of an algorithm that could use such mathematical description.

A concrete example : the bisection method

The bisection method is an algorithm for finding the zeros of a continuous function

f : R −→R

x 7−→ f (x)

in an interval [a,b] ⊂ R such that f (a) · f (b) < 0, that is f (a) and f (b) have opposite signs.
Indeed, by the intermediate value theorem, the continuous function f must have at least one
root in the interval ]a,b[. Here is the description of the algorithm, written in pseudo-code.

if fa * fb > 0:
print("f(a) and f(b) should have opposite signs!")
return;

while abs(fc) > epsilon and abs(fa - fb) > delta do:
c := (a+b)/2;
fc := f(c);
if fa * fc < 0:

b := c;
fb := fc;

else:
a := c;
fa := fc;

In other words, as long as we are not sufficiently close to the solution and the interval is not
too narrow (this condition prevents the algorithm from running too long, for example if the
function becomes flatter near its roots), we iterate through the following steps : calculate the
midpoint ci of the current interval (ai ,bi ) (step 1), compute its image by f : f (ci ) (step 2) and
ultimately examine the sign of f (ci ) and set the values of ai+1 and bi+1 accordingly) (step 3).

The key point here is that, as the algorithm progresses, the interval in which we know there is
a zero crossing becomes narrower, i.e. the amount of information we have about its position
increases. If we were to equip P ([a,b]) with a partial order ⪯ that reflects this idea that the
narrower the interval, the greater the approximation, we would define it as :

∀X ,Y ⊆ [a,b], Y ⪯ X if X ⊆ Y . (2.1)

It would remain to be seen how to relate a topology to this relation order.

10



CHAPTER 2. DOMAIN THEORY

Figure 2.1 : An illustration of the bisection method (mi indicates the interval
in which we know the solution is at the i -th iteration)

2.2 Directed complete partial orders

In this section, we present some definitions related to ordered sets and the functions between
them. The main notion is that of directed complete partially ordered sets. Adding an extra
ingredient, we obtain the domains which turn out to be the prototypes for semantic domains.
We mainly follow the monographs [2, 12].

Definition 2.2.1 (proset, [[12, Definition O-1.1.])

] Let P be a nonempty set. A binary relation ≤ on P which is :

∗ reflexive : ∀x ∈ P, x ≤ x

∗ transitive : ∀x, y, z ∈ P, x ≤ y and y ≤ z =⇒ x ≤ z

is called a preorder. A set P equipped with a partial order ≤ is called preordered set, or proset
for short.

If {(Pi ,≤i ) : i ∈ I } is a family of prosets, then we can endow the cartesian product
∏

i∈I Pi with
the poinwise preorder ⊑ given by

x ⊑ y iff xi ≤i yi

where x = (xi )i∈I , y = (yi )i∈I ∈∏
i∈I Pi . We will always consider this preorder in a cartesian pro-

duct of prosets.

Here’s another definition, the one we’re really interested in.

Definition 2.2.2 (poset, [[12, Definition O-1.6.])

] Let P be a nonempty set and ≤ be a preorder on P . If ≤ satisfies :

∀x, y ∈ P, x ≤ y and y ≤ x =⇒ x = y

(we say that ≤ is anti-symmetric), then it is called a partial order. A set P equipped with a
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CHAPTER 2. DOMAIN THEORY

partial order is called partially ordered set, or poset for short.

Example 2.2.1

∗ (R,≤) is a poset.

∗ The set of natural numbers equipped with the relation of divisibility is a poset.

∗ Let A = {a,b} be a set. The relation {(a, a), (a,b), (b, a), (b,b)} is a preorder on A, but it’s not
a partial order.

Recall that in his seminal paper [22], Scott considers a data type as a partially ordered set (D,≤)
in which the relation x ≤ y means that y can be considered a better version than x of what x
is trying to approximate. So this means that y is consistent with x and possibly more accurate
than x.

Definition 2.2.3 (upper bound)

Let (P,≤) be a poset and let X ⊆ P . If ∀x ∈ X , x ≤ u (resp. ∀x ∈ X , l ≤ x), we say that u is an
upper bound (resp. l is a lower bound) of X .

Definition 2.2.4 (supremum, [[12, Definition O-1.6.])

] Let (P,≤) be a poset and let X ⊆ P . If the set of upper bounds of X has a unique smallest
element u (resp. the set of lower bounds of X has a unique largest element l ), we call this
element the supremum (resp. infimum) of X and we note u = sup X (resp. l = inf X ).

Note that a subset X of a poset (P,≤), although upper bounded, does not necessarily have a
supremum. For instance, let’s consider R∗ =R\ {0} (the set of all non-zero real numbers). Then,
the interval I− = (−∞,0) = {x ∈ R∗ | x < 0} is upper bounded but its set of upper bounds I+ =
(0,+∞) = {x ∈R∗ | x > 0} does not have a (unique) smallest element.

Definition 2.2.5 (directed subset, [[12, Definition O-1.1.])

] Let (P,≤) be a poset and let ; ̸= ∆ ⊆ P . If every subset of two elements in ∆ has an upper
bound (resp. lower bound) in ∆, i.e. if ∀x, y ∈ ∆,∃z ∈ ∆ such that x ≤ z and y ≤ z, then ∆ is
said to be directed (resp. filtered).

Also notice that we obtain an equivalent definition to the above if we replace the two-element
subsets with finite subsets.

Directed subsets model the process of computation as it progresses through successive appro-
ximations. Each element in a directed set represents a stage of computation, i.e. a partial piece
of information about the desired result. The directed property guarantees that any two stages
of computation can be jointly extended to a more defined stage. This is crucial for ensuring that
the computation converges towards a final result.

The main idea is that every computation has a purpose (it’s always a computation of some-
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thing). Essentially, there should always be a largest element that surpasses all the elements in
the directed set representing the computation. This largest element is an upper bound of ∆.
However, what we’re really looking for is not any upper bound, but the supremum. This is the
most accurate approximation we can make without superfluous information. This motivates
the following definition.

Definition 2.2.6 (dcpo, cpo, [[12, Definition O-2.1.])

] Let (P,≤) be a poset. If every directed subset of P has a supremum, (P,≤) is called a directed
complete partially ordered set (dcpo for short). If moreover (P,≤) has a least element (usually
written ⊥), then it’s called a complete partial ordered set (cpo) or pointed dcpo.

Example 2.2.2

∗ Let X be a nonempty set. The family P (X ) of all subsets of X , endowed with the partial
order induced by the inclusion, is a dcpo. Notice that, in this case, the supremum (resp.
infimum) of a family of elements always exists and is their union (resp. intersection).

∗ Given a topological space (X ,T ), (T ,⊆) is a dcpo, where the supremum of a family of
elements is, as above, their union.

∗ Let us consider the family I (R) of all nonempty closed and bounded real intervals and
the binary relation ⊑ as defined in the example 2.1.1. It is easy to check that (I (R),⊑) is
a poset. Moreover, if ∆ = {[xi , yi ] : i ∈ J } ⊆ I (R) is a directed subset, if [xi , yi ], [x j , yi ] ∈ ∆
then we can find [xk , yk ] ∈ ∆ such that [xi , yi ] ⊑ [xk , yk ] and [x j , y j ] ⊑ [xk , yk ], that is,
[xk , yk ] ⊆ [xi , yi ]∩ [x j , y j ]. Hence, the intersection of two intervals of ∆ is nonempty. More-
over, a straightforward calculation shows that sup∆ = [supi∈i xi , infi∈I yi ] so (I (R),⊑) is a
dcpo.

∗ Let X * Y be the set of partial functions between two sets X ,Y , endowed with the following
partial order

f ≤ g ⇐⇒ (dom( f ) ⊆ dom(g ) and ∀x ∈ dom( f ), f (x) = g (x))

where dom( f ) denotes the domain of f . (X * Y ,≤) has a least element ⊥ which is the
everywhere undefined function. Indeed, ∀h ∈ X * Y ,dom(⊥) = ; ⊆ dom(h) ⊆ X and
∀x ∈ ;, f (x) = g (x). Moreover, if ∆ ⊆ X * Y is directed, that is ∀ f , g ∈ ∆,∃h ∈ ∆ such that
f ≤ h and g ≤ h, which is only possible if ∀ f , g ∈∆,∀x ∈ dom( f )∩dom(g ), f (x) = g (x), ∆ has
a supremum defined as sup∆ = ⋃

f ∈∆{(x, y) | x ∈ dom( f ) and f (x) = y}. Hence, X * Y is a
cpo. In particular, it’s a dcpo.

Example 2.2.3 ([2, Example 1.1.6])

Every arbitrary nonempty set M can be easily converted into a cpo by considering M⊥ =
M ∪ {⊥} and endowing it with the partial order ⪯ given by

a ⪯ b if and only if (a = b or a =⊥)

13
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Figure 2.2 : An illustration of the cpoN⊥ (straight lines represent the
relation order onN⊥)

for all a,b ∈ M⊥. Indeed :

⪯ is a partial order

1. By definition, ⪯ is reflexive.
2. Let a,b ∈ M⊥. If a ⪯ b and b ⪯ a, then (a =⊥ and b ∈ M and b =⊥ and a ∈ M) or a = b =⇒
a = b.
3. Let a,b,c ∈ M⊥ such that a ⪯ b and b ⪯ c. If a = ⊥, then a ⪯ c. Otherwise a ∈ M . Thus,
a ⪯ b =⇒ a = b ̸= ⊥. Thus, b ⪯ c =⇒ b = c =⇒ a = c =⇒ a ⪯ c.

every directed subset of M⊥ has a supremum

The only directed subsets of M⊥ are one-member sets and pairs {⊥,n} with n ∈ M and both
of these have obvious suprema.

The cpos constructed in this way are called flat. When M =Nwe obtain the flat cpoN⊥ which
will be useful in section 3.2.

A well-known and stronger notion than dcpo is the following.

Definition 2.2.7 ([12, Definition O-2.1.])

Let (P,≤) be a poset. If every subset of P (and not just every directed subset) has a supremum
and an infimum, P is called a complete lattice.

Example 2.2.4

∗ Let X be a set. (P (X ),⊆), the power set of X ordered by inclusion, is a complete lattice. The
supremum is given by the union and the infimum by the intersection of subsets.

∗ The ideals of a ring ordered by inclusion form a complete lattice. The supremum is given
by the sum of ideals and the infimum by the intersection.

14
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2.2.1 Functions between posets and dcpos

We next define the natural functions between posets, that is, the functions that preserve the
order structure.

Definition 2.2.8 (monotony, [2, Definition 1.1.12])

Let (P,≤) and (P ′,É) be posets. A function f : P → P ′ is called monotone or order preserving if

∀x, y ∈ P, x ≤ y =⇒ f (x) É f (y).

We can interpret the previous definition from a computational point of view. Suppose that (P,≤)
and (P ′,É) are two data types, that is, two partially ordered sets as Scott interprets them [22]. If
f : P → P ′ is a function determined by a program, it is natural to expect that whenever x, y ∈ P
and y is more accurate than x, i.e. x ≤ y , then f (y) is more accurate than f (x), i.e. f (x) É f (y).
So monotone functions are also natural from this perspective.

Notice that a monotone function maps directed sets to directed sets. Indeed, if∆⊆ P is directed
and f : P → P ′ is monotone, then ∀u, v ∈ f (∆) ,∃x, y ∈∆ such that f (x) = u and f (y) = v . Since
∆ is directed ∃z ∈ ∆ such that x ≤ z and y ≤ z. Thus w = f (z) ∈ f (∆), and since f is monotone
we deduce that u = f (x) É f (z) = w and v = f (y) É f (z) = w , that is, f (∆) is directed.

When we consider dcpos instead of posets, we are guaranteeing the existence of suprema for
directed sets. So it is natural to require that functions preserving the structure of dcpos addi-
tionally satisfy the following property.

Definition 2.2.9 (function preserving directed suprema, [2, Definition 1.1.12])

Let (D,≤) and (D ′,É) be dcpos. A function f : D → D ′ is said to preserve directed suprema if

∀∆⊆ D directed, f
(
sup∆

)= sup f (∆).

Observe that if f : (D,≤) → (D ′,É) preserves directed suprema, then it is monotone. Indeed,
given x, y ∈ D , with x ≤ y then ∆ = {x, y} is directed and sup∆ = y. Since f preserves directed
sups then sup f (∆) = sup f ({x, y}) = f (sup∆) = f (y). Hence f (x) É f (y).

We present a theorem that is the key to the interpretation of recursively defined programs and
will help us understand the order theoretical limit construction of D∞ spaces in chapter 3, sec-
tion 3.2.

Theorem 2.2.1 (Kleene fixed-point, [2, Proposition 1.1.7])

Let (D,≤) be a cpo and f : D → D be a function preserving directed suprema. Then f has a
fixed point.

Proof. It is clear that ⊥≤ f (⊥). Consider the monotone sequence ( f n(⊥))n∈N. Since∆= { f n(⊥) :
n ∈N} is directed it has a supremum x = sup∆= sup{ f n(⊥) : n ∈N}. Moreover,

f (x) = f (sup∆) = sup f (∆) = sup{ f n+1(⊥) : n ∈N} = sup{ f n(⊥) : n ∈N} = sup∆= x,
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so x is a fixed point.

2.3 Scott topology

In the beginning of the chapter, we introduced an iterative algorithm producing a sequence
(xn)n∈N of partial elements approximating a final result x, which should naturally be the supre-
mum of the sequence. This gives the intuition that topology should come into play. More pre-
cisely, it would be good to equip the dcpo with a topology that allows to express elements as
limits of its approximate elements and to say "how far from the result we are". Such a topology
was introduced by Scott (see [22, 12]) and this is the main topic of this section.

We start with a definition that will be used right after.

Definition 2.3.1 (upper set)

Let (P,≤) be a poset and let A ⊆ P . Define

↑ A = {x ∈ P : a ≤ x for some a ∈ A};

↓ A = {x ∈ P : x ≤ a for some a ∈ A}.

We say that A is an upper set (resp. lower set) if A = ↑A (resp. A = ↓A ).

Lemma 2.3.1

Any union or intersection of upper sets (resp. lower sets) is an upper set (resp. lower set).

Proof. Let’s prove the two assertions one by one.

A union of upper sets is an upper set.

Let (P,≤) be a poset and (Ai )i∈I be a family of upper sets in P . Let y ∈ P such that ∃x ∈ ⋃
i∈I Ai

and x ≤ y . Therefore, there exists i ∈ I such that x ∈ Ai which is an upper set. Hence, y ∈ Ai ⊆⋃
i∈I Ai . Thus

⋃
i∈I Ai is an upper set.

An intersection of upper sets is an upper set.

Let (P,≤) be a poset and (Ai )i∈I be a family of upper sets in P . Let y ∈ P such that ∃x ∈ ⋂
i∈I Ai

and x ≤ y . Therefore, ∀i ∈ I , x ∈ Ai and Ai is an upper set. Hence, ∀i ∈ I , y ∈ Ai =⇒ y ∈⋂
i∈I Ai .

Thus
⋂

i∈I Ai is an upper set.

Any poset (P,≤) can be "topologized" in a natural way using upper sets as open sets. Such topol-
ogy is called the Alexandrov topology. It is, indeed, a topology since ; and P are upper sets and,
by 2.3.1, the infinite union and the (in)finite intersection of upper sets is an upper set. Hence,
this topology satisfies an extra condition : arbitrary intersection of open sets is open. This type
of topology was introduced by Alexandrov in 1937 [1] under the name of discrete spaces. These
topological spaces have been well studied in the literature (see [4, 20, 26]) and are very related
to preordered sets.
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Notice that, in a poset (P,≤), if ∆⊆ P is directed, then (d)d∈∆ is a net on P (see definition 2.5.1).
Moreover, suppose that (d)d∈∆ converges to an upper bound s of∆, in the Alexandrov topology.
Then s must be the supremum of ∆. Let’s show this. Let u be an upper bound of ∆. Since ↑ {s} is
an open set containing the limit s, there exists d ∈∆ such that d ∈↑ {s}, that is, s ≤ d . Since u is
an upper bound of ∆ then d ≤ u so s ≤ u, showing that s is the supremum.

In general, we cannot assure that an arbitrary net (d)d∈∆ converges to its supremum in the
Alexandrov topology, but it seems a natural requisite for the topology we’re looking for, since, in
a dcpo, the supremum of a directed set always exists. The Scott topology was introduced to fill
this gap and does this by imposing an additional condition on open sets (besides being upper
sets).

Definition 2.3.2 (Scott topology,[12, 22, 23])

Let D be a dcpo. A subset A ⊆ D is called Scott open if :

1. A = ↑A

2. if x ∈ A, ∆⊆ D is directed and x = sup∆, then ∆∩ A ̸= ;
The collectionΩS(D) of Scott open sets is a topology over D called the Scott topology.

Let’s verify thatΩS(D) is a topology.

1. D and ; trivially check the two conditions.

2. Given n ∈ N, if the sets A1, A2, . . . , An are Scott open, then, by 2.3.1,
⋂

i≤n Ai is an upper set.
Moreover, if ∆ is a directed set, x = sup∆ and x ∈ ⋂

i≤n Ai , then ∀i ≤ n,∃yi ∈ ∆∩ Ai . But ∆
is directed, therefore, by induction, ∃y ∈ ∆ such that yi ≤ y but Ai is an upper set =⇒ y ∈ Ai .
Hence, y ∈∆∩⋂

i≤n Ai .

3. For any infinite set I , if ∀i ∈ I , Ai is Scott open, then, by 2.3.1,
⋃

i∈I Ai is an upper set. What’s
more, if ∆ is a directed set, x = sup∆ and x ∈ ⋃

i∈I Ai , then ∃i ∈ I such that x ∈ Ai =⇒ ∃y ∈
∆∩ Ai ⊆∆∩⋃

i∈I Ai .

Example 2.3.1

∗ Let us consider the dcpo (R,≤). Then

ΩS(R) =
{

(a,+∞) : a ∈R
}
∪ {R,∅}.

∗ Let us consider the dcpo (P (X ),⊆). Then a nonempty family O of subsets of X is open in
the Scott topology ΩS(P (X )) if and only if for every O ∈ O there exists a finite subset F of O
such that F ∈O .

We’ve just shown that a poset can be endowed, in general, with two different topologies : the
Alexandrov topology and the Scott topology. Of course, these are not the only topologies that
can be defined (think of discrete or trivial topologies), but the former have the particularity of
being defined using the order structure of the set. Now, let’s see how to retrieve the initial order
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from one of these two topologies, using a particular construction.

Definition 2.3.3 (specialization preorder)

Let (X ,ΩX ) be a topological space. The binary relation ≤X ⊆ X ×X , defined as

x ≤X y ⇐⇒∀A ∈ΩX , x ∈ A =⇒ y ∈ A

is a preorder on X called the specialization preorder associated with ΩX .

Example 2.3.2

Let X be a nonempty set.

∗ Let us consider the topological space (X ,ΩI ) where ΩI is the indiscrete topology. Its
specialization preorder is given by x ≤X I y if and only if x, y ∈ X , i. e. ≤X I = X ×X .

∗ Let us consider the topological space (X ,ΩD ) where ΩD is the discrete topology. Its
specialization preorder is given by x ≤XD y if and only if x = y , i. e. ≤XD=∆X = {(x, x) : x ∈ X }.

∗ Let us consider a T1 topology ΩX on X . Then, as above, the specialization preorder of
(X ,ΩX ) is equality. In fact, given two different points x, y ∈ X , since ΩX is T1, we can find an
open set A such that x ∈ A, y ̸∈ A. Hence x ̸≤X y.

Lemma 2.3.2

A topology is T0 if and only if its specialization preorder is a partial order.

Proof. Let (X ,ΩX ) be a topological space.

X is T0 ⇐⇒∀x, y ∈ X , x ̸= y =⇒∃A ∈ΩX such that (x ∈ A∧ y ∉ A)∨ (x ∉ A∧ y ∈ A)

⇐⇒(x ∉ A∨ y ∈ A)∧ (x ∈ A∨ y ∉ A),∀x, y ∈ X , A ∈ΩX =⇒ x = y

⇐⇒(x ∈ A =⇒ y ∈ A)∧ (y ∈ A =⇒ x ∈ A),∀x, y ∈ X , A ∈ΩX =⇒ x = y

⇐⇒x ≤X y and y ≤X x,∀x, y ∈ X , A ∈ΩX =⇒ x = y

⇐⇒≤X is a partial order

Lemma 2.3.3

Let f : (X ,ΩX ) → (Y ,ΩY ) be a continuous function between two topological spaces. Then f :
(X ,≤X ) → (Y ,≤Y ) is monotone, where ≤X and ≤Y are the respective specialization preorders.

Proof. Let x, y ∈ X such that x ≤X y . Let f (x) ∈ B ∈ΩY . Since f is continuous, the antecedent of
an open set by f is an open set. Hence, x ∈ f −1( f (x)) ⊆ f −1(B) ∈ΩX but x ≤X y ⇐⇒∀A ∈ΩX , x ∈
A =⇒ y ∈ A. Therefore, y ∈ f −1(B) =⇒ f (y) ∈ B . This remains true for any other x, y ∈ X ,B ∈ΩY

so f (x) ≤Y f (y).
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Observe that, in the previous lemma, ifΩX ,Ωy are Alexandrov, that is, are the Alexandrov topolo-
gies induced by the preorders ≤X , ≤y , then the implication becomes an equivalence [20, Theo-
rem 8.3.6].

Lemma 2.3.4 ([2, Proposition 1.2.3])

Let (D,≤) be a dcpo equipped with the Scott topology ΩS(D). The specialization preorder
associated with ΩS(D) is ≤. In particular, it’s a partial order. Hence, ΩS(D) is T0.

Proof. Let (D,≤) be a dcpo equipped with the Scott topology ΩS(D) and let ≤D be the speciali-
zation order associated with ΩS(D). ∀x, y ∈ D, x ≤ y =⇒ (∀A ∈ΩS(D), x ∈ A =⇒ y ∈ ↑A = A) ⇐⇒
x ≤D y . Conversely, if ∀A ∈ΩS(D), x ∈ A =⇒ y ∈ ↑A = A, in particular, x ∈ D\ ↓ {y} =⇒ y ∈ D\ ↓
{y}. Suppose now that D\ ↓ {y} ∈ΩS(D) and x ̸≤ y , then x ∈ D\ ↓ {y} but y ̸∈ D\ ↓ {y} so x ̸≤D y .
We only need to prove that D\ ↓ {y} ∈ΩS(D). If x ∈ D\ ↓ {y} and x ≤ z, then x ̸≤ y =⇒ z ̸≤ y so z ∈
D\ ↓ {y}. Moreover, if ∆⊆ D is directed and sup∆ ∈ D\ ↓ {y}, then sup∆ ̸≤ y so not all elements
in ∆ are less than y , i.e. ∃d ∈∆ such that d ̸≤ y =⇒ d ∈ D\ ↓ {y}. Hence, D\ ↓ {y} ∈ΩS(D).

The above lemma is also true if we consider the Alexandrov topology instead of the Scott topo-
logy [20, Theorem 8.3.3]. In fact, it is possible to enclose all the topologies on a poset whose
specialization order is equal to the partial order. These topologies are coarser than the Alexan-
drov topology and finer than the upper topology [12, Definition 0-5.4].

In our search for an adequate topology to model computational properties using dcpos, we
considered Scott topology because not only does the specialization preorder coincide with the
original partial order, but also the suprema of directed sets are limits in the topology. It is also
natural to ask that Scott topology makes functions preserving directed suprema (2.2.9) coincide
with continuous functions. We’ll see that it does indeed satisfy this property.

Proposition 2.3.1 ([2, Proposition 1.2.4])

Let (D,≤) and (D ′,É) be dcpos. A function f : (D,≤) → (D ′,É) preserves directed suprema
if and only if f : (D,ΩS(D)) → (D ′,ΩS(D ′)) is continuous, where ΩS(D),ΩS(D ′) are the Scott
topologies of (D,≤), (D ′,É) respectively.

Proof. Let f be continuous with respect to the Scott topologies. Let’s show that f preserves
directed suprema. By lemmas 2.3.3 and 2.3.4, f is monotone. Let ∆ ⊆ D be a directed set. Su-
ppose that f (sup∆) ̸É sup f (∆). It is easy to check that B = D ′\ ↓ {sup f (∆)} is open inΩ(D ′) and
f (sup∆) ∈ B but sup f (∆) ∉ B . Hence, sup∆ ∈ f −1(B) which is an open set since f is continuous.
By definition of Scott open sets, ∃d ∈ ∆ such that d ∈ f −1(B) =⇒ f (d) ∈ B =⇒ f (d) ̸É sup f (∆)
which is a contradiction. To see the other inequality, note that ∀y ∈ f (∆),∃x ∈ ∆ such that
y = f (x) ≤ f (sup∆) by monotony of f . Thus, sup f (∆) ≤ f (sup∆).

Conversely, let f : (D,≤) → (D ′,É) preserves directed suprema. Let A ∈ΩS(D ′). Let’s show that
f −1(A) ∈ ΩS(D). If x ∈↑ f −1(A) there exists y ∈ f −1(A) with y ≤ x. Since f is monotone then
f (y) É f (x). Hence f (x) ∈↑ f (y) ⊆↑ A = A since A is Scott open. Therefore, ↑ f −1(A) = f −1(A).
In addition, let ∆ ⊆ D be directed such that sup∆ ∈ f −1(A). Since f preserves directed sups
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then f (sup∆) = sup f (∆) ∈ A, so there exists d ∈ ∆ such that f (d) ∈ A, that is, d ∈ f −1(A). This
completes the proof.

Definition 2.3.4 ([12, Definition II-2.2.])

A function f : (D,≤) → (D ′,É) between two dcpos is called Scott continuous if it satisfies the
equivalent conditions of the previous lemma. We will denote by D → D ′ the family of all Scott
continuous functions.

Lemma 2.3.5 ([2, Proposition 1.4.4])

Let (D,≤) and (D ′,É) be two dcpos. Let f , g ∈ D → D ′. We say that f is less than g point-wise,
and we write f É g , if f (x) É g (x),∀x ∈ D . In this way, (D → D ′,É) is a dcpo and if D ′ is a cpo,
then D → D ′ is a cpo.

Proof. It is easy to check that (D → D ′,É) is a poset. Moreover, let D = { fi : i ∈ I } be a directed
subset of D → D ′. Given x ∈ D , then { fi (x) : i ∈ I } is directed so supi∈I fi (x) exists. Define f : D →
D ′ as

f (x) = sup
i∈I

fi (x)

for all x ∈ X . Let’s check that f is Scott continuous. If x ≤ y then fi (x) É fi (y) for all i ∈ I , since
fi is Scott continuous so monotone. Hence f (x) É f (y) so f is also monotone.

Furthermore, let ∆ be a directed subset of D. Since d ≤ sup∆∀d ∈ ∆ and f is monotone then
f (d) É f (sup∆). Hence supd∈∆ f (d) = sup f (∆) É f (sup∆).

Moreover,
f (sup∆) = sup

i∈I
fi (sup∆) = sup

i∈I
(sup fi (∆)) É sup f (∆).

Consequently, sup f (∆) = f (sup∆) so f preserves directed suprema. By proposition 2.3.1, f is
Scott continuous. Besides, it is clear that f = supi∈I fi so (D → D ′,É) is a dcpo.

If D ′ is a cpo and ⊥′ is its bottom element, then the constant function with value ⊥′ is clearly
Scott continuous and it is the bottom of D → D ′.

The following results concerning Scott continuity will be very important in the next chapter for
constructing a model of the λ-calculus.

Proposition 2.3.2 ([12, Lemma II-2.8],[2, Proposition 1.4.3])

Let (D,≤), (D ′,É), (E ,⪯) be dcpos. A function f : D ×D ′ → E is Scott continuous if and only if
f is separately continuous, that is, the functions fx : D → E , fy : D ′ → E given by

fx(d) = f (d , x) fy (d ′) = f (y,d ′)

for all d ∈ D,d ′ ∈ D ′ are continuous for every x ∈ D ′, y ∈ D .
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Proof. Suppose that f is continuous and let x ∈ D ′ be fixed but arbitrary and ∆ be a directed
subset of D. Then

fx(sup∆) = f (sup∆, x) = f (sup∆x) = sup f (∆x) = sup fx(∆)

where we have used that f is Scott continuous and where∆x = {(d , x) : d ∈∆} is a directed subset
of D ×D ′. Hence fx is Scott continuous. A similar argument shows that fy is Scott continuous
for every y ∈ D.

Conversely, suppose that fx , fy are Scott continuous for every x ∈ D ′, y ∈ D. Let ∆ be a directed
subset of D×D ′. Defining∆D = {

d ∈ D : (d ,d ′) ∈∆ for some d ′ ∈ D ′} and∆D ′ = {
d ′ ∈ D ′ : (d ,d ′) ∈

∆ for some d ∈ D
}
, it is obvious that sup∆= (sup∆D , sup∆D ′). Then

f (sup∆) = f (sup∆D , sup∆D ′) = sup
d∈∆D

f (d , sup∆D ′)

= sup
d∈∆D

sup
d ′∈∆d ′

f (d ,d ′) ⪯ sup f (∆).

Moreover, since fx , fy are Scott continuous for every x ∈ D ′, y ∈ D it is clear that f is monotone.
This obviously implies that sup f (∆) ⪯ f (sup∆) which proves that f is Scott continuous.

Proposition 2.3.3 ([2, Exercise 1.4.7],[12, Theorem II-2.10])

Let (D,≤), (D ′,É), (E ,⪯) be dcpos. If f : D ×D ′ → E is Scott continuous then Λ( f ) : D → (D ′ →
E) is Scott continuous where

(Λ( f )(y))(x) = f (y, x)

for all y ∈ D, x ∈ D ′.

Proof. Let ∆ be a directed subset of D. Then given x ∈ D ′

Λ( f )(sup∆)(x) = f (sup∆, x) = fx(sup∆) = sup f (∆, x) = supΛ( f )(∆)

where we have used Scott continuity of fx as assured by Proposition 2.3.2. Consequently, Λ( f )
is Scott continuous.

Proposition 2.3.4

Let (D,≤), (E ,É), (E ′,⪯) be dcpos. Then f : D → E , g : D → E ′ are Scott continuous if and only
if f × g : D → E ×E ′ is Scott continuous where

( f × g )(d) = ( f (d), g (d)) ∀d ∈ D.

Proof. We first suppose that f , g are Scott continuous. Let ∆ be a directed subset of D. Then

( f × g )(sup∆) = ( f (sup∆), g (sup∆)) = (sup f (∆),sup g (∆)) = sup( f × g )(∆).

Therefore, f × g is continuous.

The converse is obvious since projections are Scott continuous functions so f =πE ◦( f ×g ), g =
πE ′ ◦ ( f × g ) are continuous.
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Proposition 2.3.5 ([12, Lemma II-2.9])

Let (D,≤), (E ,É) be dcpos. Then the evaluation map ev : (D → E)×D → E given by

ev( f ,d) = f (d) ∀ f ∈ D → E ,d ∈ D

is Scott continuous.

Proof. Let f ∈ D → E be fixed and ∆ be a directed subset of D . Since f is Scott continuous then

ev f (sup∆) = f (sup∆) = sup f (∆) = supev f (∆)

so ev f is Scott continuous.

On the other hand, for a fixed d ∈ D , given a directed subset F of D → E then

evd (supF ) = (sup
f ∈F

f )(d) = sup
f ∈F

f (d) = sup
f ∈F

evd ( f )

so evd is Scott continuous. We conclude by Proposition 2.3.2 that ev is Scott continuous.

In short, we’ve seen how important Scott topology is, mostly because it allows us to talk properly
about limits and continuity. We’ve also seen how this topology is "the most natural" for building
semantic models. However, there are still a few structural properties to be added to achieve
spaces that perfectly meet our expectations.

2.4 Scott domains

In this section, we present Scott domains, which are the main semantic domains for denota-
tional semantics. First, we need the following definition.

Definition 2.4.1 (way-below relation, [12, Definition I-1.1.])

Let (P,≤) be a poset. We say that x is way below y , and we write x ≪ y , if and only if for
all directed subsets ∆ ⊆ P for which sup∆ exists, the relation y ≤ sup∆ always implies the
existence of a d ∈∆ with x ≤ d .

In simpler terms, x ≪ y means that x is not only below y in the partial order, but also that x
can be "reached" from any directed set that has y as its supremum. In other words, any com-
putation of y involves an element d greater than x. If x ≪ y , we also say that "x approximates
y".

Note that the way-below relation is not necessarily a preorder. Indeed, although it is transitive
(if x ≪ y , y ≪ z, ∆ is directed and s = sup∆, z ≤ s =⇒∃d ∈∆ such that y ≤ d ≤ s =⇒∃d ′ ∈∆ such
that x ≤ d ′), it is not always reflexive since x ≤ sup∆ does not necessarily imply the existence of
d ∈ ∆ with x ≤ d . For example, if x = sup∆ ∉ ∆, x ≤ sup∆ but Øx ≤ d ∈ ∆ since otherwise x ≤ d
and d ≤ x =⇒ x = d ∈∆ which contradicts our hypothesis.
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Definition 2.4.2 (compacity, [2, Definition 1.1.10])

Let (D,≤) be a dcpo. An element d ∈ D is called compact if d ≪ d , that is, for every directed
subset ∆⊆ D , the following implication holds :

d ≤ sup∆=⇒∃x ∈∆, d ≤ x.

We denote K (D) the collection of compact elements of D .

Example 2.4.1

∗ In R with the usual order ≤, there are no compact elements. Indeed, if x ∈ R,

∆ =
{

x − 1
n : n ∈ N

}
is a directed set such that x = sup∆, but x ̸≤ x − 1

n for all n ∈ N, so
x is not compact.

∗ Let M be a nonempty set and consider the flat cpo M⊥ defined in Example 2.2.3. Then
K (M⊥) = M⊥. It is obvious that ⊥≪⊥. On the other hand, let x ∈ M and ∆ be a directed set
such that x ⪯ sup∆. The only directed sets verifying this condition are {x} and {⊥, x}. In any
case, x ∈∆ so x is also compact.

Let P be a poset. In analogy with the notation we used for upper sets, we write :

↠ x = {u ∈ P | x ≪ u} and ↞ x = {v ∈ P | v ≪ x}

Now let’s look at two important definitions that use this relation.

Definition 2.4.3 (continuity, [12, Definition I-1.6])

A poset (P,≤) is said to be continuous if

∗ ↞ x is directed

∗ x = sup ↞ x

for all x ∈ P.

Definition 2.4.4 (algebraicity, [2, Definition 1.1.12])

A dcpo (D,≤) is called algebraic, if for all x ∈ D the set

{d ∈K (D) | d ≤ x}

is directed and has a supremum x.

The following proposition establishes that algebraicity is a stronger property than continuity.

Proposition 2.4.1 ([12, Proposition I-4.3.])

A poset (P,≤) is algebraic if and only if it is continuous and

x ≪ y if and only if there is a compact elementk ∈ P such that x ≤ k ≤ y.
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With all this in hand, we can finally define Scott domains.

Definition 2.4.5 (Scott domain, [2, Definition 1.4.9])

A dcpo (D,≤) is called bounded complete, if every upper bounded subset S ⊆ D has a supre-
mum. Bounded complete and algebraic cpos are called Scott domains (or simply domains).

Example 2.4.2

If M is a nonempty set then (M⊥,⪯) is a domain. Notice that the only upper bounded subsets
of M⊥ are of the form {⊥, x} where x ∈ M⊥ so (M⊥,⪯) is bounded complete. Given x ∈ M⊥
then {d ∈ K (M⊥) | d ⪯ x} = {⊥, x}, by Example 2.4.1. Obviously, this set is directed and its
supremum is x. Hence (M⊥,⪯) is algebraic.

We would like to draw the reader’s attention to the use of the word domain. Its meaning de-
pends on the paper or monograph. In the first version of the book [12], domains were contin-
uous lattices, but domains in the previous sense are continuous lattices without a top (see [12,
Proposition I-1.25]). In the new version of the book, domains are "just" continuos dcpos [12,
Definition I-1.6].

The following theorem tells us that, under certain conditions, the structural properties of do-
mains extend to the set of continuous functions between them. Its demonstration can be found
in [12].

Theorem 2.4.1 ([12, Theorem II-2.12])

If (D,≤) is a continuous dcpo (resp. an algebraic dcpo) and (D ′,É) is a continuous lattice
(resp. an algebraic lattice) then D → D ′ is a continuous lattice (resp. an algebraic lattice).

As we will see, domains provide the appropriate framework for denotational semantics.

2.5 Scott convergence

It is well-known that every topology has an associated notion of convergence, and the knowl-
edge of this convergence helps deal with several aspects of the topology. However, obtaining a
concise characterization of the topological convergence is not always possible. In this section,
we analyze the convergence in the Scott topology. Our development is based on [12, Chapter
II]. We first recall some basic notions that can be consulted in topological monographs like [10].

Definition 2.5.1 (net)

A net on a nonempty set X is a function x : (I ,É) → X whose domain (I ,É) is a directed
proset. We will denote x(i ) by xi and the net x by (xi )i∈I .

Moreover, given A ⊆ X we say that xi ∈ A eventually if there exists i0 ∈ I such that xi ∈ A for
all i Ê i0.
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We next recall how to define a convergence of nets in a topological space.

Definition 2.5.2 (convergence of nets in topological spaces)

Let (X ,ΩX ) be a topological space. A net (xi )i∈I on X is aid to be convergent to x ∈ X if

∀A ∈ΩX such that x ∈ A, xi ∈ A eventually.

Equivalently,
∀U ∈Nx , xi ∈U eventually

where Nx is the neighborhood system at x.

Let’s recover a characterization of a particular class of continuous dcpos to motivate the subse-
quent definition of Scott convergence.

Proposition 2.5.1 ([12, Theorem II-1.14.])

Let (D,≤) be a complete semilattice, that is, a dcpo such that every nonempty subset has
infimum. Then (D,≤) is continuous if and only if

x = sup
{

inf A | x ∈ A ∈ΩS(D)
}

for every x ∈ D.

We have already mentioned that, in a dcpo, suprema of directed sets are limits in the Scott
topology. The above result shows that, in a continuous complete semilattice, every element is a
supremum of elements below it. This is one of the most important ideas behind the definition
of continuity (see 2.4.3) and it leads naturally to the question of whether, in the Scott topology,
each element is the limit of elements below it. We discuss this in the following.

Suppose that (xi )i∈I is a net converging to x in the Scott topology of a continuous complete
semillatice (D,≤). If A is a Scott open set with x ∈ A, then we can find i0 ∈ I such that xi ∈ A for
all i Ê i0. Then

inf A ≤ inf{xi | i0 É i }

so by Proposition 2.5.1

x = sup
{

inf A | x ∈ A ∈ΩS(D)
}
≤ sup

{
inf{xi | j É i } | j ∈ I

}
.

This leads to the following definition.

Definition 2.5.3 ([12, Definition II-1.1])

Let (D,≤) be a complete semilattice. Given a net (xi )i∈I its lower limit is defined as

liminf
i∈I

xi = sup
j∈I

inf
iÊ j

xi .
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Then we say that (xi )i∈I is Scott convergent to x if

x ≤ liminf
i∈I

xi .

The following result establishes a relationship between the Scott convergence and the conver-
gence in the Scott topology.

Proposition 2.5.2

Let (D,≤) be a complete semilattice. If (xi )i∈I is a Scott convergent net on D then it is also
convergent in the Scott topology.

Proof. Suppose that (xi )i∈I is Scott convergent to x ∈ D, that is, x ≤ liminfi∈I xi . Let A be a Scott
open set such that x ∈ A. Since x ≤ liminfi∈I xi and A is an upper set then

liminf
i∈I

xi = sup
j∈I

inf
iÊ j

xi ∈ A.

Notice that ∆ =
{

inf jÉi xi | j ∈ I
}

is directed. In fact, for all pair of elements inf j1Éi xi and

inf j2Éi xi in ∆, ∃ j3 ∈ I such that j1 É j3 and j2 É j3 which implies inf j1Éi xi ≤ inf j3Éi xi and
inf j2Éi xi ≤ inf j3Éi xi .

Since sup∆= liminfi∈I xi ∈ A, which is Scott open, we can find j0 ∈ I such that infiÊ j0 xi ∈ A. Us-
ing again that A is an upper set, we deduce that xi ∈ A for all i Ê j0. Therefore, (xi )i∈I converges
to x in the Scott topology.

It would be nice if the above proposition provided a characterization of the convergence in the
Scott topology, that is, if the converse of the above statement was true. However, it does not
hold in general. Equivalence is only true when D is continuous.

Theorem 2.5.1 ([12, Theorem II-1.9])

A dcpo (D,≤) is continuous if and only if the Scott convergence is equal to convergence in
the Scott topology.

Proof. The proof of this theorem can be found in [12].
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Chapter 3

Models of the untyped λ-calculus

In mathematics, it is usual to interpret a function f between two sets A and B as a graph, i.e.
a subset G f of the cartesian product A × B such that, if (a,b), (a,c) ∈ G f , then b = c, where
a ∈ A,b,c ∈ B.

However, we can also interpret a function f as a rule for transforming elements of A into ele-
ments of B. This approach is nearer to the computational interpretation of procedures and pro-
grams. In this way, λ-calculus can be seen as an appropriate framework for the study of func-
tions as rules rather than graphs. This theory is attributed to Alonzo Church, who designed it in
the 1930s [7, 8], although other researchers like Schönfinkel and Curry also participated in its
development.

The motivation for this theory was to provide a formulation for the theory of types introduced
by Russell to avoid the contradictions encountered in the beginnings of set theory [8], like the
famous Russell’s paradox, which can be stated as follows.

Let S be the set of all sets that are not members of themselves, that is, S = {x|x ̸∈ x}. From this,
we deduce that

S ∈ S ⇐⇒ S ̸∈ S,

which is a contradiction. This paradox comes from the original naive set theory and the axiom
of unrestricted comprehension assumed in its origins, which asserts that, given a predicate P ,
there exists a set A containing all the objects satisfying P (if P (x) = "x ̸∈ x", we obtain the set S
that appears in Russell’s paradox).

How to prevent this paradox? We see that the reason for it is that, in the definition of S, we
are not specifying the universe to which x belongs, so x can be arbitrary. Zermelo proposed a
solution by replacing the axiom schema of unrestricted comprehension with the axiom schema
of specification (also known as the axiom schema of separation). This axiom asserts that any
definable subclass of a set is a set. In this case, this means that you cannot define a set as all
objects satisfying a property. Rather, you can always construct the subset of a set satisfying
certain properties. With this axiom, we cannot construct S. In fact, we can construct S′ = {x ∈
A|A is a set, x ̸∈ x}, but this does not lead to a paradox. If S′ ∈ S′ since, we have that S′ ∈ A and
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S′ ̸∈ S′, from which we conclude that S′ ∉ A. Conversely, if S′ ∈ A and S′ ̸∈ S′ leads to S′ ∈ S′ which
is a contradiction so S′ can not belong to A. This avoids the paradox.

Different solutions to this paradox were provided by other researchers. If we analyze Russell’s
paradox, the difficulty comes from the fact that we are applying a predicate to itself. Concretely,
if S is the set of objects x that make P (x) true, P (S) violates the principle of non-contradiction.
This is not a particularity of this paradox. Others, like the Burali-Forti paradox, have similar
characteristics. As Russell asserted in [21]

In all the above contradictions there is a common characteristic, which we may de-
scribe as self-reference or reflexiveness. [ ... ] In each contradiction something is said
about all cases of some kind, and from what is said a new case seems to be generated,
which both is and is not of the same kind as the cases of which all were concerned in
what was said.

The solution proposed by Russell in the paper Mathematical logic as bases of the theory of types
[21] published in 1908 and in the Principia Mathematica [28] was completely different from the
axiomatic view of Zermelo. He introduced the ramified theory of types by establishing concrete
domains (ranges of significance) for the variables appearing in predicates, removing the possi-
bility of applying a predicate (function) to itself. These ranges of significance form a hierarchy
of types. The focus of type theory is the concept of function, but not from a set-theoretic per-
spective, where functions are graphs, but from more procedural point of view, where functions
are rules with domains over which they act. This theory was informally explained by Russell and
we can summarize it as follows. There are objects called individuals, forming the lowest type
of objects (say of type 0) which are neither propositions nor functions. Propositions and func-
tions taking individuals as input are of type 1, propositions and functions taking propositions
and functions of type 1 as input are of type 2, and so on... In this way, a propositional function
P (x) is valid if and only if takes an object of a lower type than itself. In this way, P (x) must have a
type. Notice that the previous discussion is closely related to the usual concept of function and
arguments of functions : a function is different from a standard object and functions whose
arguments are functions are different from functions acting on standard objects.

However, Russell’s theory encountered several objections and difficulties. The ramified theory
of types was refined by Chwistek and Ramsey in the 1920s resulting in the simple type theory.
We will not deal with type theory in this work, but the interested reader can consult [28, 21, 19,
9, 16].

Later, as previously mentioned, Church [8] gave a formulation of the simple type theory by
introducing the now-called λ-calculus, that can be considered a formal system for modeling
functions as rules. It fills the gap left by Zermelo-Fraenkel’s set-theoretic concepts of function
and application, which are unable to describe processes such as recursive functions, which are
very common in computer science. Originally, λ-calculus was typed. This mimics type theory
where functions can only be applied to certain types of data. However, there also exists the
untyped λ-calculus that can express more things than the typed one. This is the one we will
consider. To see exactly how λ-calculus is related to type theory, one can consult [16, 9].

Church also introduced the concept of a λ-computable function (λ-definability), based on λ-
calculus. In his famous paper On computable numbers, with an application to the Entschei-
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dungsproblem [27], Alan Turing noticed that theseλ-computable functions are exactly the com-
putable functions by a Turing machine (Church was Turing’s doctoral advisor). This allows us
to claim that λ-calculus is a powerful model of computation, which can be viewed as an ab-
stract paradigmatic programming language. In fact, programming languages such as Algol’60,
Pascal or LISP have properties similar to λ-calculus (procedures can be arguments of proce-
dures) [6]. This is why establishing a denotational semantics for λ-calculus is crucial and gives
a denotational semantics for other programming languages.

Models ofλ-calculus are mathematical structures that interpret the terms and operations of the
λ-calculus (notions which have yet to be defined) in a way that satisfies its axioms and rules.
It is Scott’s original goal [23] to find these mathematical structures and this is precisely what
motivated the entire development of Domain theory.

In this chapter, we will give some elements of λ-calculus, try to understand the originality of
this theory, and then, we will construct Scott’s D∞ model [23, 14] which underpins the concept
of "function" belonging to its own domain. Our basic references are [14, 6, 2].

3.1 Introduction to λ-calculus

Consider the everyday mathematical expression "x − y". This can be thought of as a function
f of the variable x defined as f (x) = x − y or as a function g of y defined as g (y) = x − y which
can also be written as f : x → x − y and g : y → x − y . The major drawbacks are that we have to
name each new function differently, and that the way we name the function is not systematic
(we can call a function anything we like). This can get very messy when dealing with higher-
order functions (functions that act on other functions). This was one of Church’s motivations
for creating the λ-notation, i.e. the syntax of the λ-calculus. Although it seems clumsier at first,
it has the advantage of being systematic.

We mentioned the syntax of the λ-calculus. Indeed, like any programming language, the λ-
calculus is defined on the basis of two components : syntax and semantics.

3.1.1 Syntax of the λ-calculus

The syntax of the untyped λ-calculus is given by the following grammar:

M ::= x | (M1 M2) | (λx.M1)

where x is called a variable, (M1M2) is called an application and (λx.M1) is called an abstraction.
In other words, whether or not a λ-calculus expression is valid or not is determined by the
inductive definition above. A valid λ-calculus expression is called a "λ-term" and the set of all
λ-terms is denoted by Λ.

Parentheses are very often omitted according to the rule of association to the left. For example,
M N PQ denotes the λ-term (((M N )P )Q). Other abbreviations very frequently used are: λx.PQ
for (λx.(PQ)) and λx1x2 . . . xn .M for (λx1.(λx2.(. . . (λxn .M) . . . ))).
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Syntactic identity of λ-terms

If M and N are λ-terms, M ≡ N means that M is exactly the same term as N . By identification,
if M N ≡ PQ then M ≡ P and N ≡ Q, and if λx.M ≡ λy.P then x ≡ y and M ≡ P . Note also that
variables are distinct from constants, applications are distinct from abstractions, etc.

3.1.2 Semantics of the λ-calculus

Let’s now look at the meaning of λ-terms. Before diving into more complex material, let’s ex-
plain what their three main components are, namely variables, applications and abstractions.

Variables

Variables here correspond to both mathematical and computer variables. If we think of the λ-
calculus as a formal system, it’s clear that its variables are symbols representing a mathematical
object. But if we seeλ-calculus as a programming language, a variable can be considered an ab-
stract storage location (we say abstract because the physical location is not necessarily known
until the variable is actually used) associated with a symbolic name. It can be seen as a con-
tainer for a particular set of bits referred to as the variable’s value. Recall that the set of possible
values a variable can hold is precisely its data type. Moreover, t he set of variables in λ-calculus
is countable.

Applications

An application can be thought of as a function call. It is then clear what M1 and M2 mentioned
above correspond to: the former is the function called and the latter is its argument, i.e. what is
“passed” into the function. So, for example, f x is the application of the λ-term f to the λ-term
x, which happens to be a variable but could have been a "composite" λ-term.

Abstractions

Abstractions (or function abstractions) correspond to function definitions. They are made up
of two elements: a formal parameter (located between the λ and . symbols) and a body (what
appears next). Note that all function abstractions are anonymous.

C

Let’s look at some examples of λ-terms, the functions to which they correspond and their im-
plementation in pseudo-code.

Bound and free variables

In the λ-calculus, like in other programming languages, there are two kinds of variable occur-
rences: variable declaration and variable use. This can easily be seen in the following piece of
pseudo-code.

def f(x): return x + y;
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λ-expression corresponding function pseudo-code implementation

λx.x
the identity function:

f (x) = x
def f(x): return x;

λy.y
once again, the identity

function
def f(y): return y;

λx.y
the function of x constantly

equal to y : f (x) = y
def f(x): return y;

λx.λy.y
the function of x that

returns the identity function
def g(y): return y; def

f(x): return g;

Figure 3.1 : Comparison of λ-terms, their corresponding functions, and
their implementation in pseudo-code

which is written λx.x + y using the λ-notation. In this function, there are two occurrences of
the variable x. The first occurrence, enclosed within parentheses, serves as the declaration of
the parameter x, introducing the variable into the program. The second occurrence of x serves
as a use, specifically as an operand for an addition operation.

In most programming languages, a variable declaration establishes a scope for that variable,
defining where it can be used within the program. In the provided example, the scope of the
variable x is limited to the body of the function. This concept naturally extends to λ-calculus.

Definition 3.1.1 (scope, [14, Definition 1.9])

For a particular occurrence of λx.M in a term, the occurrence of M is called the scope of the
occurrence of λx on the left.

Definition 3.1.2 (bound, binding, free occurrences, [14, Definition 1.9])

Let x be a variable in a λ-term P . If an occurrence of x is in the scope of some λx, it is said to
be bound. The occurrence of x in λx is called a binding occurrence (which is also considered
as bound). Otherwise, x is a free occurrence in P .

Definition 3.1.3 (bound, free variables, [14, Definition 1.9])

If x occurs bound at least once in P (if and only if there is at least once binding occurrence of
x), it is called a bound variable in P . If x occurs free at least once, it is called a free variable.
The set of free variables in P is denoted by FV (P ).

In the short program above, the declaration of x within parentheses is its binding occurrence.
Consequently, any use of x within the scope of this declaration is bound to it. However, the
occurrence of y remains free in the body of the function, as there is no corresponding binding
occurrence of y within this scope.

To avoid ambiguity in programming, each occurrence of a variable must be bound to a spe-
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cific declaration. This is typically governed by a binding scheme defined by the programming
language. The λ-calculus, like many modern programming languages, employs static binding
wherein each variable use is bound to the declaration of the same name in the nearest enclosing
abstraction. Let’s give an example.

Consider the λ-expression: λy.(λx.x(y x)) ≡ λy x.x(y x). This λ-expression is a λ-abstraction
(i.e. a function definition) with parameter y and body the application of the identity function to
the application (y x). In this expression, the leftmost occurrence of y is the binding occurrence
of the variable y : its scope encompasses the entire expression (λx.x(y x)). In particular, the
rightmost occurrence of y is bound to this leftmost declaration. However, if the first occurrence
of x is a declaration and the second occurrence is bound to the first, the third occurrence is free
because it lies outside the scope of the declaration (which is only the λ-abstraction λx.x). So
if we mark binding occurrences in yellow-green, bound variables in blue and free variables in
red, we obtain: λy x.x(y x). This illustrates the possibility of variables being both free and bound
within the same expression.

α-conversion

When a variable x occurs bound in a λ-term, it means that x appears within the body of the
corresponding function and refers to a parameter of the function. Therefore, the value of x
is completely determined by and is equal to the argument which is passed into the function
when it’s called. This is why, although the variable x is different from the variable y , the λ-
abstractionsλx.x andλy.y are exactly the same. The process of systematically renaming bound
variables within λ-expressions while preserving their meaning, which allows us to rename λy.y
into λx.x, is called the α-conversion. In particular, all free variables must remain free after an
α-conversion.

Consider the following expression: λx.y x, i.e. the application of the λ-abstraction that always
return y to the variable x. In this expression, the first occurrence of x is a binding occurrence
but the occurrence of y and the second occurrence of x are free. We can perfectlyα-convert this
expression to λz.y x: both expressions "return" the value y and the free variables remain free.
However, we can’t substitute the variable y for the first occurrence of x, as this would change
the meaning of the expression (it would return x instead of y) and the variable y in the body of
the abstraction would go from being free to bound (when this happens we say that the variable
is captured). This naturally leads to the following definition.

Definition 3.1.4 (congruence, [14, Definition 1.17])

Let P and Q be two λ-terms. We say that P is congruent to Q, and we write P ≡α Q, if and
only if P α-converts to Q, that is P can be changed to Q by a finite (or empty) series of α-
conversions.
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For example,

λx y.x(x y) ≡λx.(λy.x(x y))

≡α λx.(λv.x(xv))

≡α λu.(λv.u(uv))

≡λuv.u(uv)

Lemma 3.1.1

The binary relation ≡α is a relation of equivalence. That is, for all λ-terms P , Q, R, we have:

∗ P ≡α P : reflexivity

∗ P ≡α Q,Q ≡α R =⇒ P ≡α R: transitivity

∗ P ≡α Q =⇒Q ≡α P : symmetry

Proof.

reflexivity

P can trivially be changed to itself by an empty series of α-conversions.

transitivity

If P ≡α Q and Q ≡α R, then there is a finite (or empty) series of α-conversions which transforms
P into Q and another series which converts Q into R so the concatenation of these two series is
a finite or empty series which transforms P into R, i.e. P ≡α R.

symmetry

If P goes to Q by a change of bound variables, further changes can be found that bring Q back
to P . Indeed, any α-conversion αi can easily be reversed (say we substituted the variable y for
the variable x, we just need to substitute x for y). Let’s write this procedure α−1

i . If we denote
by (α1,α1, . . . ,αn) the (finite) series of α-conversions transforming P into Q, then its common
sense that (α−1

n ,α−1
n−1, . . . ,α−1

1 ) takes Q back to P .

In a sense, we can say that ≡α extends the syntactic identity ≡. Most times, it proves to be more
relevant than it.

Substitution-based model of evaluation

So far, we have seen the syntax of λ-calculus and the meaning of λ-expressions. We also ex-
plained the process of renaming the parameter in a function abstraction, called α- conversion.
We now have all the tools we need to calculate with λ-terms, i.e. substitute values for variables,
which reminds us of executing function calls. Let’s give a formal procedure for doing so.

Definition 3.1.5 (substitution, [14, Definition 1.12])

For any variable x and λ-terms M and N , define [N /x]M to be the result of substituting N
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for every free occurrence of x in M and performing the proper α-conversions (i.e. changing
bound variables) to avoid clashes. Formally, this means:

a. [N /x]x ≡ N

b. [N /x]a ≡ a for all variables a ̸≡ x

c. [N /x](P Q) ≡ ([N /x]P [N /x]Q)

d. [N /x](λx.P ) ≡λx.P

e. [N /x](λy.P ) ≡λy.P if x doesn’t occur free in P

f. [N /x](λy.P ) ≡λy.[N /x]P if x occurs free in P and y doesn’t occur free in N

g. [N /x](λy.P ) ≡λz.[N /x][z/y]P if x occurs free in P and y occurs free in N

Let’s take a closer look at the last clause. Informally, this means that if x occurs free in P and
y occurs free in N , to avoid the free occurrences of y in N from depending on the binding
occurrence of y in λy.P , we must first α-convert y to z in this abstraction.

As an example, let us evaluate the following substitutions:

[(uv)/x](λy.x(λw.v w x)) ≡ [(uv)/x]λy.x [(uv)/x](λw.v w x) by c.

≡λy.[(uv)/x]x (λw.[(uv)/x]v w x) by f.

≡λy.uv (λw.v w(uv)) by a. and c.

[(λy.x y)/x](λy.x(λx.x)) ≡ [(λy.x y)/x]λy.x [(λy.x y)/x](λx.x) by c.

≡λy.[(λy.x y)/x]x (λx.x) by f. and d.

≡λy.(λy.x y) (λx.x) by a.

[(λy.v y)/x](y(λv.xv)) ≡ [(λy.v y)/x]y [(λy.v y)/x](λv.xv) by c.

≡ y (λz.[(λy.v y)/x][z/v](xv)) by b. and g.

≡ y (λz.((λy.v y)z)) by c. and a.

In the substitution above, if [(λy.v y)/x](λv.xv) was evaluated by f, we would get λv.((λy.v y)v)
and the second occurrence of v would be bound when it shouldn’t be. Also note that the act of
replacing λx.M by λy.[y/x]M (assuming that y doesn’t occur free in M) is what we previously
defined as an α-conversion.

Lemma 3.1.2 ([14, Lemma 1.21])

M ≡α M ′ and N ≡α N ′ =⇒ [N /x]M ≡α [N ′/x]M ′

Proof. We won’t give the proof here but it can be found in [14] on page 279.
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This lemma tells us that the operation of substitution is well-behaved with respect to congru-
ence: if the λ-terms involved in a substitution are congruent to others then the output of the
substitution is congruent to the substitution involving these other terms. So from now on, when
a bound variable in a term P threatens to make a particular substitution complicated, we will
consider it perfectly fine to replace it with a new "harmless" variable.

Now that we have introduced the substitution, we can give the proof of the following result,
which we’ll need later.

Lemma 3.1.3 ([14, Lemma 1.19])

Let P and Q be two λ-terms. If P ≡α Q then FV (P ) = FV (Q).

Proof. α-converting P to Q means replacing a term of the form λx.M in P by λy.[y/x]M , where
y ̸≡ x, y ∉ FV (xM) and x and y are not bound in M . In this case, [y/x]M is obtained by simply
changing x to y throughout M . Indeed, looking at definition 3.1.5, we can see that we find
ourselves in one of the three cases a, b and c (eventually leading to a and/or b) which boil down
to simply substituting y for x throughout M . Hence, if P ≡α Q, there exists a finite (perhaps
empty) series ofα-conversions changing P to Q, and each of these conversions only involve the
replacement of some bound occurrences of a variable xi by another variable xi+1. Therefore,
any free variable in P remains free in Q and conversely.

β-reduction

Now that we know how to perform a substitution, we can define a rule for evaluating applica-
tions, which is at the heart of λ-calculus. This rule is called β-reduction and an expression to
which the rule can be applied, a β-redex (which is short for β-reduction expression). We will
see that a β-redex is a λ-expression of a specific form, namely, an application in which the first
term is an abstraction.

Recall that a λ-term of form (λx.M)N , which we previously called an application, represents
the action of an operator λx.M on an argument N . We also know that λx.M reads "the function
of x that returns M". So, we would like (λx.M)N to be calculated by substituting N for x in M ,
that is evaluating [N /x]M . This process is captured in the following definitions.

Definition 3.1.6 (β-redex, β-contraction, β-reduction, [14, Definition 1.24])

Any λ-term of the form (λx.M)N is called a β-redex and the term [N /x]M is called its con-
tractum. We say that a term P β-contracts to P ′, and we note P▷1βP ′, if and only if P contains
an occurrence of (λx.M)N , we replace that occurrence by its contractum [N /x]M and the re-
sult is P ′. We say that a term P β-reduces to Q and we note P ▷β Q if and only if it can be
changed to Q by a finite (or empty) series of β-contractions.

Definition 3.1.7 (β-normal form, [14, Definition 1.26])

A λ-term Q which contains no β-redexes is called a β-normal form (or β-nf for short). If P
β-reduces to a β-nf Q, we say that Q is a β-normal form of P .
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For example, let us reduce the following λ-terms.

(λx.x y)(λu.vuu)▷1β [(λu.vuu)/x](x y)

≡ (λu.vuu)y

▷1β [y/u](vuu)

≡ v y y

(λx y.y x)uv ≡ (λx.(λy.y x)u)v

▷1β ([u/x](λy.y x))v

≡ (λy.[u/x](y x))v

≡ (λy.yu)v

▷1β [v/y](yu)

≡ vu

(λx.x(x(y z))x)(λu.uv)▷1β [(λu.uv)/x](x(x(y z))x)

≡ (λu.uv)((λu.uv)(y z))(λu.uv)

▷1β (λu.uv)([y z/u](uv))(λu.uv)

≡ (λu.uv)((y z)v)(λu.uv)

▷1β [((y z)v)/u](uv)(λu.uv)

≡ ((y z)v)v(λu.uv)

≡ y zv v(λu.uv)

(λx.xx y)(λy.y z)▷1β [(λy.y z)/x](xx y)

≡ (λy.y z)(λy.y z)y

≡ ((λy.y z)(λy.y z))y

▷1β ([(λy.y z)/y](y z))y

≡ ((λy.y z)z)y

▷1β ([z/y](y z))y

≡ zz y

Note that, each time, we stopped when we reached aβ-normal form. In particular, y zv v(λu.uv)
is a β-nf since it contains no β-redex which is of the form (λx.M)N but not N (λx.M). We would
also like to point out that some β-reductions require α-conversions during their process, as in
the following.

(λx y.x y y)(λu.uy x) ≡ (λx.(λy.x y y))(λu.uy x)

▷1β [(λu.uy x)/x](λy.x y y)

≡λz.[(λu.uy x)/x][z/y](x y y)

≡λz.[(λu.uy x)/x](xzz)

≡λz.(λu.uy x)zz

▷1βλz.[z/u](uy x)z

≡λz.z y xz
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Sometimes, a λ-term has several β-redexes in it. It is legitimate to ask if we obtain the same
λ-nf depending on the order in which we perform the β-contractions. As we expect, the an-
swer is yes. Indeed, an application is meant to represent a computation and how we evaluate a
computation does not change its result.

The Church-Rosser theorem, presented below, demonstrates that the normal form of a term is
indeed unique, as long as we disregard changes in bound variables. This theorem is arguably
the most frequently cited theorem in λ-calculus.

3.1.3 Church–Rosser theorem

Note : In the follwing section, not all proofs have been given. They can be found in [14] at the
location indicated in the heading of the lemmas/theorems concerned.

Let’s start by giving two lemmas. The first one says that no free variable can appear through
β-reduction and the second one that the reducibility relation ▷β is preserved by substitution.

Lemma 3.1.4 ([14, Lemma 1.30])

Let P and Q be λ-terms. If P ▷βQ, then FV (Q) ⊆ FV (P ).

Proof. For this proof, we’ll need two intermediate results (step 1 and 2) which have their own
interest.

Step 1: x ∉ FV (M) =⇒ [N /x]M ≡ M

The only two possibilities for x to not be free in M is for x to not occur in M outside the scope
of some λx or for x to not occur in M at all. Looking at the corresponding cases in definition
3.1.5, namely cases b, d and c (eventually leading to b or d), we see that [N /x]M ≡ M .

Step 2: x ∈ FV (M) =⇒ FV ([N /x]M) = (FV (N )∪ (FV (M)− {x}))

Let x be a free variable in M .

Let y be a free variable in [N /x]M . Therefore, either y occurs free in M and is different from x
(in which case it will be replaced by N ), or y occurs free in N and somehow remains free after
the substitution. Hence, FV ([N /x]M) ⊆ (FV (N )∪ (FV (M)− {x})).

Conversely, if y occurs free in M and is different from x, then looking at the only two possible
cases (a and c eventually leading to a) in 3.1.5, we see that y remains a free variable after the
substitution. In the same way, if y occurs free in N , since x occurs free in M , looking at the only
two possible cases (a and g) in 3.1.5, we see that y remains a free variable after the substitution.
Thus, FV ([N /x]M) ⊇ (FV (N )∪ (FV (M)− {x})).

Which is why x ∈ FV (M) =⇒ FV ([N /x]M) = (FV (N )∪ (FV (M)− {x})).

Step 3: P ▷1βQ =⇒ FV (Q) ⊆ FV (P )

P ▷1β P ′ =⇒ P contains an occurrence of the form (λx.M)N (and we replace that occurrence
by [N /x]M). But if x ∉ FV (M), then, by step 1, [N /x]M ≡ M =⇒ FV ([N /x]M) = FV (M) ⊆
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FV ((λx.M)N ) (in general we would have FV (M) ⊆ FV ((λx.M)N ) ∪ {x} but in this case x ∉
FV (M)). And if x ∈ FV (M), then, by step 2, FV ([N /x]M) = (FV (N )∪(FV (M)−{x})) ⊆ FV ((λx.M)N ).
Since α-conversions do not change the set of free variables by lemma 3.1.3, if P ▷βQ and we
note P,P1,P2, . . . ,Q the finite (or empty) series of β-contractions reducing P to Q, then we have
FV (P ) ⊃ FV (P1) ⊃ FV (P2) . . .FV (Q).

Lemma 3.1.5 ([14, Lemma 1.40])

If P ▷β P ′ and Q ▷βQ ′, then [P/x]Q ▷β [P ′/x]Q ′.

Definition 3.1.8 (confluent relation)

A binary relation ◁ between λ-terms is said to be confluent if and only if, for all terms P , M ,
and N , it holds that P ◁M and P ◁N =⇒ there exists a λ-term T such that M ◁T and N ◁T .

One way to visualize it is in figure 3.2 (where the straight lines represent the◁ relations assumed
to exist, and the dotted lines the inferred relations of same nature):

P

M N

T

Figure 3.2 : Diagram illustrating the fundamental property of a confluent
relation

That being said, we can formulate the Church–Rosser theorem.

Theorem 3.1.1 (Church–Rosser theorem, [14, Theorem 1.41])

The reducibility relation ◁β between λ-terms is confluent.

3.2 D∞ spaces

Let’s recall a few ideas already mentioned in the introduction, but which deserve to be empha-
sized.

In the 1920s when λ-calculus was invented by Church, logicians did not automatically think
of a function as a subset of a cartesian product. In fact, there are other ways of representing
functions. One such representation is that of a function as an operation-process which can
be defined by giving a set of rules describing how it acts on an input object (it may not pro-
duce an output for certain inputs). In reality, every time we define a function by a formula, e.g.
f (x) = 2x +3, rather than by extension (i.e. by giving all the ordered pairs {(0,3), ( 1

2 ,4), (1,5), . . . }
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belonging to f ), we refer to this concept of function as an operator-process.

This representation is particularly evident in computer programs, although it was not originally
intended to have the finiteness and effectiveness limitations that are involved with computa-
tion. To avoid confusion, let’s call « operator » the function-as-operation-process concept, and
« function » or « map » the set-of-ordered-pairs concept.

One of the key distinctions between operators and functions is that an operator can be defined
solely by its action, without specifying the set of inputs for which this action is valid (that is,
without defining its domain). In this way, operators can be seen as « partial functions ». An-
other significant difference is that some operators have no domain restrictions: they can accept
themselves as input, a property that is inherently impossible for functions.

In the previous chapter, we saw how operators can be formally defined using the untyped λ-
calculus. A natural question to ask is whether this can also be done within the framework of
standard ZF set theory, despite the obvious restrictions encountered with functions. The first
answer to this question was provided by Dana Scott in 1969, when he proposed to interpret ope-
rators as infinite sequences of functions. This gave rise to the D∞ spaces we shall now discuss.

3.2.1 Intuition

We mentioned the main limitation of functions in the ZF set theory, i.e. the impossibility of
belonging to their own domain. This entails that classical mathematical spaces of functions are
not useful for modeling the operator theory provided by the λ-calculus. More formally, what
we seek to define models of the untyped λ-calculus is a cpo D isomorphic to the set D → D
of functions from D to itself, that is, D ∼= D → D (this equation is one of the most important
domain equations [12, Chapter IV-7], [2, Chapter 7]). Obviously, D = {⊥} is a trivial solution
since there is exactly one function f : {⊥} → {⊥} but we are interested in a non-trivial solution D
with more than just one element (otherwise, all λ-terms would be identified).

This problem was one of Scott’s original motivations for developing the theory of domains
[22, 23]. He brought a solution which can be illustrated using the Kleene fixed-point theorem
(cf. 2.2.1). Let (D,≤) be a cpo and a continuous function f : D → D . Since continuity implies
monotony (cf. proposition 2.3.1), the following holds :

⊥≤ f (⊥) ≤ f 2(⊥) ≤ f 3(⊥) ≤ . . .

Then sup{ f n(⊥) : n ∈N} = limn→+∞ f n(⊥) = x is a fixed point of f , i. e. f (x) = x.

Now consider a function F : CPO → CPO, where CPO denotes all the cpos, such that F (D) =
D → D , i.e. the image of D by F is the family of self-functions on D. If we found a fixed-point
D0 ∈ CPO of f such that F (D0) = D0, then we would have a candidate for a solution to the
previous equation. This immediately recalls the Kleene fixed-point theorem. Notice that F can
be considered monotone since we can think of D as being included in D → D by assigning, to
every element d ∈ D , the constant function equal to D. For this candidate to be a solution, it still
needs to preserve directed suprema (which merits further comment in this context). To achieve
it, a concept of limit of cpos is required.
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To tackle these challenges, Scott considered F (D) = D → D as the family of all (Scott) continu-
ous functions and the limit as an inverse limit (or projective limit) of cpos. With all these tools,
he constructed the first non-trivial solution D∞ to the domain equation D ∼= D → D to serve as
a model for the λ-calculus.

We develop this theory in the next sections based on [2, 14, 12, 23].

3.2.2 Projective limit

Taking into account the above comments, it is natural to construct a solution to the equation
D ∼= D → D as the limit of a sequence of cpos. But to do this, we need a concept of limit of
cpos. This role will be played by the projective limit, which is usual in category theory and has
several applications [12, Chapter IV-4]. A lot of constructions like terminal objects, products,
equalizers, etc. are examples of such limits. However, we don’t need this level of generality here
so we give a simple definition of projective limit where the category of the domain is a directed
set I and the codomain is the category of dcpos with Scott continuous functions.

Proposition 3.2.1 ([12, Proposition IV-4.3])

Let I be a directed set and D = {Di , pi j : i , j ∈ I , j ≥ i } be a family where Di is a dcpo for all
i ∈ I and pi j : D j → Di is a (Scott) continuous function, for every i , j ∈ I , j ≥ i . Let

D∞ := lim←−−D :=
{

(xi )i∈I ∈
∏
i∈I

Di : pi j
(
x j

)= xi whenever i ≤ j in I

}
.

Then D∞ is a dcpo called the projective limit (or the inverse limit) of D.

Proof. D∞ is endowed with the poitwise partial order ⊑ inherited from
∏

i∈I Di .

Let ∆ be a directed set in D∞. Given i ∈ I , the set {di : d ∈∆} is directed in Di so it has a supre-
mum that we denote by si . Let s = (si )i∈I . Notice that

pi j (s j ) = pi j (sup{d j : d ∈∆}) = sup{pi j (d j ) : d ∈∆} = sup{di : d ∈∆} = si

whenever i , j ∈ I , i ≤ j . Consequently, s ∈ D∞. It is clear that s = sup∆ so D∞ is a dcpo.

The above definition of projective limit also exists for other spaces than dcpos. The only dif-
ference relies on the property that the functions pi j must satisfy. For example, in topological
spaces, continuity is required.

Example 3.2.1 ([10, Examples 2.5.3, 2.5.4])

∗ Let {Dn |n ∈ N} be a family of dcpos. For each n ∈ N define En = D1 × . . .×Dn . Moreover,
if n ≤ m consider pnm : Em → En as pnm(d1, . . . ,dm) = (d1, . . . ,dn) for all (d1, . . . ,dm) ∈ Em . If
E = {En , pnm : n,m ∈N,n ≤ m} then

E∞ = lim←−−E = ∏
n∈N

Dn .

∗ Let {Dn |n ∈N} be a family of dcpos such that Dn+1 ⊆ Dn for all n ∈N. Given n ≤ m consider
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pnm : Dm → Dn as the inclusion. If D = {Dn , pnm : n,m ∈N,n ≤ m} then

D∞ = lim←−−D =
{

(x1, x2, . . .) ∈ ∏
n∈N

Dn : xn = xn+1∀n ∈N
}
=

{
(x, x, . . .) ∈ ∏

n∈N
Dn : x ∈ ⋂

n∈N
Dn

}
.

Hence D∞ is isomorphic to
⋂

n∈NDn .

3.2.3 Construction of D∞
The first concept we need for constructing a solution to the equation D ∼= D → D as a projective
limit of cpos is that of injection-projection pair.

Definition 3.2.1 (retraction, injection-projection pair, [14, Definition 3.1.2])

Let (D,≤) and (E ,É) be two cpos. A retraction pair between D and E is a pair (φ : D → E ,ψ :
E → D), usually written (φ,ψ) : D →r E such that ψ◦φ= idD . If also φ◦ψ≤ idE , then the pair
(φ : D → E ,ψ : E → D) is called an injection-projection pair and we write (φ,ψ) : D →ip E .
Retraction and injection-projection pairs are composed component-wise: (i1, j1) ◦ (i2, j2) =
(i1 ◦ i2, j1 ◦ j2).

Example 3.2.2

∗ Let (E ,≤) be a cpo and D ⊆ E . Consider i : D → E the inclusion and p : E → D given by

p(e) =
{

e if e ∈ D,

⊥ if e ̸∈ D,

for every e ∈ E . Then (i , p) is an injection-projection pair.

∗ Let f : X → Y be a surjective function. Define F : P (X ) →P (Y ) and F−1 : P (Y ) →P (X ) as

F (A) = {
f (a) : a ∈ A

}
, F−1(B) = {

x ∈ X : f (x) ∈ B
}

for every A ∈ P (X ) and B ∈ P (Y ). Then (F−1,F ) is an injection-projection pair between the
cpos (P (Y ),⊆) and (P (X ),⊇).

We can also show that if D and E are cpos, the injection φ from D to D +c E (+c denotes the
coalesced sum, the definition of which is given below 3.2.2), defined by φ(⊥D ) =⊥ and φ(x) =
(1, x) if x ̸= ⊥, is the first component of an injection-projection pair.

Definition 3.2.2 (coalesced sum)

Let (D,≤) and (E ,É) be two cpos. Their coalesced sum D +c E is the set defined by:

D +c E = {(1, x) | x ∈ D \ {⊥D }}∪ {(2, y) | y ∈ E \ {⊥E }}∪ {⊥},

ordered as follows: z1 ⪯ z2 if
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∗ z1 =⊥,

∗ z1 = (1, x1) and z2 = (1, x2) with x1 ≤ x2,

∗ z1 = (2, y1) and z2 = (2, y2) with y1 É y2.

Let ψ : D +c E → D be defined as follows: ψ(⊥) = ⊥D , ψ(1, x) = x and ψ(2, y) = ⊥D . Now let’s
prove that φ and ψ form an injection-projection pair, that is ψ◦φ= idD and φ◦ψ⪯ idD+c E .

ψ◦φ= idD

(ψ◦φ)(x) =
{
ψ(φ(⊥D )) =ψ(⊥) =⊥D if x =⊥D

ψ(φ(x)) =ψ((1, x)) = x otherwise
= idD (x)

φ◦ψ⪯ idD+c E

Let’s examine three cases.

∗ if z =⊥∈ D +c E , then (φ◦ψ)(⊥) =φ(⊥D ) =⊥ ⪯ ⊥= I dD+c E (⊥)

∗ if z = (1, x) ∈ D +c E , then (φ◦ψ)(z) =φ(ψ(z)) =φ(x) = (1, x) ⪯ (1, x) since x ≤ x

∗ if z = (2, y) ∈ D +c E , then (φ◦ψ)(z) =φ(ψ(z)) =φ(⊥D ) =⊥⪯ (2, y)

So (φ◦ψ)(z) ⪯ z,∀z ∈ D +c E ⇐⇒φ◦ψ⪯ idD+c E .

Definition 3.2.3 (isomorphism, [14, Definition 16.20])

Let (D,≤) and (E ,É) be cpos. We say D is isomorphic to E , and write D ∼= E , if and only if there
exist φ ∈ (D → E) and ψ ∈ (E → D) such that ψ◦φ= idD and φ◦ψ= idE .

In our context, the main interest of an injection-projection pair (φ,ψ) : D →ip E is that it makes
D isomorphic to the set φ(D) ⊆ E and it makes the bottom members of D and E correspond :
φ(⊥D ) =⊥E and ψ(⊥E ) =⊥D . Let’s prove this.

We already know that ψ ◦φ = idD . If y ∈ φ(D) ⊆ E , ∃x ∈ D such that φ(x) = y =⇒ (φ ◦ψ)(y) =
(φ◦ψ◦φ)(x) =φ(x) = y soφ◦ψ= idφ(D). ∀x ∈ D,φ(⊥D ) ≤φ(x) sinceφ is monotone. In particular,
φ(⊥D ) É φ(ψ(⊥E )) = (φ ◦ψ)(⊥E ) = ⊥E =⇒ φ(⊥D ) É ⊥E . Conversely, ∀y ∈ E ,ψ(⊥E ) ≤ ψ(y). In
particular, ψ(⊥E ) ≤ψ(φ(⊥D )) = (ψ◦φ)(⊥D ) =⊥D =⇒ψ(⊥E ) =⊥D .

Lemma 3.2.1 ([14, Proposition 3.1.5])

Let (D,≤) and (E ,É) be cpos. If (φ,ψ) : D →ip E , then φ determines ψ as follows:

ψ(x) = sup{y ∈ D |φ(y) É x} ∀x ∈ D.

Proof. We first show that, in an injection projection pair, (φ,ψ), φ determines ψ. Let’s suppose
that (φ,ψ′) is another injection-projection pair. Then ψ′ = idD ◦ψ′ =ψ◦φ◦ψ′ Éψ◦ idE =ψ and
symmetrically ψÉψ′. Since É is a partial order, ψ=ψ′.
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Figure 3.3 : An illustration of the action of an injection-projection pair [14]

We next check that (φ,ψ) is an injection-projection pair, whereψ is defined as in the statement.
Well obviously, (ψ ◦φ)(x) = ψ(φ(x)) = ∨

{y ∈ D | φ(y) É φ(x)} = x and (φ ◦ψ)(y) = φ(
∨

{z ∈ D |
φ(z) É y}) É y .

Lemma 3.2.2 ([14, Definition 3.1.8, Definition 3.1.10])

Let (D,≤) and (E ,É) be cpos. Let (φ,ψ) : D →ip E be an injection-projection pair.
1. We can define a new injection-projection pair (m,n) = (φ,ψ) → (φ,ψ) : (D → D) →ip (E →
E) by: {

m(u) =φ◦u ◦ψ
n(v) =ψ◦ v ◦φ

for every u ∈ (D → D), v ∈ (E → E).
2. The pair (is , js) : D →ip (D → D) defined by:{

is(x) = x

js( f ) = f (⊥)

is also an injection-projection pair called the standard injection-projection pair.

Proof. 1. Let D be a directed subset of (D → D), which, by Lemma 2.3.5, is a cpo so supD = s
exists. For each e ∈ E we have

(m(s))(e) = (φ◦ s ◦ψ)(e) =φ(supD(ψ(e))) =φ(sup
d∈D

d(ψ(e))) = sup
d∈D

φ(d(ψ(e))) = (sup
d∈D

φ◦d ◦ψ)(e).

where we have used Scott continuity of φ. Hence m preserves directed suprema so it is Scott
continuous by 2.3.1. A similar argument shows that n is also Scott continuous.
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Moreover,
(n ◦m)(u) = n(φ◦u ◦ψ) =ψ◦φ◦u ◦ψ◦φ= idD ◦u ◦ idD = u

for all u ∈ (D → D) and

(m ◦n)(v) = m(ψ◦ v ◦φ) =φ◦ψ◦ v ◦φ◦ψÉ v ◦φ◦ψÉ v,

the last inequality being deduced fromφ◦ψÉ idE and v ’s monotony. Therefore, (m,n) is indeed
an injection-projection pair between D → D and E → E .

2. ( js ◦ is)(x) = js(is(x)) = (is(x))(⊥) = x and (is ◦ js)( f ) = is( js( f )) = is( f (⊥)) = 1 · f (⊥) which is of
course point-wise less than f since f is continuous, in particular monotone.

Definition 3.2.4 (D∞ space, [14, Definition 3.1.10])

Let (D,≤) be a cpo and let (Dn)n∈ω and ((in , jn))n∈ω be the sequences given respectively by:{
Dn+1 = Dn → Dn , D0 = D

(in+1, jn+1) = (in , jn) → (in , jn), (i0, j0) = (is , js)

so that (in , jn) : Dn →ip Dn+1 for all n. We define the D∞ space as the inverse limit of {Dn , jn :
n ∈ω}, that is

D∞ =
{

(x0, . . . , xn , . . . ) ∈ ∏
n∈ω

Dn | xn = jn(xn+1)∀n ∈ω
}

.

Since (D∞,⊑) is a projective limit of cpos, then it is a cpo. It is usual to consider in this construc-
tion the cpo D0 as the flat cpoN⊥ considered in Example 2.2.3 (see, for example, [14, Definition
16.22]).

We will see in the next section that D∞ is indeed a solution to the domain equation, i.e. that we
can write D∞ ∼= D∞ → D∞.

3.2.4 Properties of D∞
From now on, we write yn for the n-th component of y ∈ D∞.

Proposition 3.2.2 ([2, Lemma 3.1.12])

Let x ∈ Dn . There is a natural way to define an injection-projection pair (in∞, jn∞) : Dn →ip

D∞ as : {
in∞(x) = (kn0(x),kn1(x),kn2(x), . . . )

jn∞(y) = yn

where knm : Dn → Dm is defined by :

knm =


jm ◦ . . .◦ jn−2 ◦ jn−1 if n > m

idDn if n = m

im−1 ◦ . . .◦ in+1 ◦ in if n < m
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Proof. The mappings knm are continuous (as compositions of continuous mappings). More-
over,

jn∞ ◦ in∞(x) = jn∞
(
(kn0(x),kn2(x),kn2(x), . . . )

)= knn(x) = idDn (x) = x

and
in∞ ◦ jn∞(y) = in∞(yn) = (. . . , jn−1(yn), yn , in(yn), . . . ) ⊑ y

since ∀m ≥ 0,knm(yn) ≤n yn (either n ≤ m and knm(yn) = ym or n > m and we can show
by recurrence that knm(yn) ≤m ym). Hence, (in∞, jn∞) : Dn →ip D∞ is, indeed, an injection-
projection pair.

In this way, given n ∈ω, we can embed Dn into D∞ using in∞. So x ∈ Dn can be identified to its
image in∞(x) and we can consider that x belongs to D∞. Then we shall freely write x for in∞(x).
Under this abuse of notation, the following holds x ∈ Dn =⇒ x = xn (the first x refers to x as a
member of Dn and the second to x as a member of D∞).

That being said, given x ∈ D∞ we have that

x0 ⊑ x1 ⊑ x2 ⊑ . . . and x = sup
n∈ω

xn .

This matches Scott’s idea of the computation of an element x as a sequence of successive ap-
proximations.

Lemma 3.2.3 ([2, Lemma 3.1.13])

The following properties hold:

1. ∀n ≤ p, x ∈ Dn+1, y ∈ Dp x(yn) = xp+1(y)

2. ∀n ≤ p, x ∈ Dp+1, y ∈ Dn xn+1(y) = x(yp )n

Proof. The case p = n is trivial according to what we’ve just said. We prove the other cases by
recurrence over p. Suppose the equalities true for n ≤ p.

1. Let x ∈ Dn+1, y ∈ Dp+1. Then xp+2(y) = (ip+1(xp+1))(y) = ip ◦ xp+1 ◦ jp (y) = ip (xp+1(yp )).
Identifying ip (xp+1(yp )) ∈ Dp+1 to

i(p+1)∞(ip (xp+1(yp ))) = (k(p+1)0(ip (xp+1(yp ))), . . . ,k(p+1)(p+1)(ip (xp+1(yp ))), . . . ,k(p+1)m(ip (xp+1(yp ))), . . . )

= (kp0(xp+1(yp )), . . . ,kpp+1(xp+1(yp )), . . . ,kpm(xp+1(yp )), . . . ),

that is, xp+1(yp ). So we have :

xp+2(y) = ip (xp+1(yp )) = x((yp )n) = x( jn∞((kp0(yp ), . . . ,kpn(yp ), . . . ,kpp (yp ), . . . )))

= x(kpn(yp ))

= x(( jn ◦ · · · ◦ jp−1)(yp ))

= x(( jn ◦ · · · ◦ jp−1 ◦ jp )(y))

= x(k(p+1)n(y))

= x(yn)

2. We proceed in the same way.
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Lemma 3.2.4 ([14, Definition 3.1.15, Lemma 3.1.16])

Let
• : D∞×D∞ −→ D∞

(x, y) 7−→ x • y = supn≥0 xn+1(yn)

Then the following properties hold :

1. If x ∈ Dn+1, then x • y = x(yn), so x • y = (x • y)n .

2. If y ∈ Dn , then (x • y)n = xn+1(y).

Proof.

1. Using lemma 3.2.3 (1), we have :

x • y = sup
p>n

xp+1(yp ) = sup
p>n

x((yp )n) = x(yn)

Hence, (x • y)n = (x(yn))n = x(yn) = x • y .

2. By continuity of jn∞ and by lemma 3.2.3 (2), we have :

(x • y)n = sup
p>n

(xp+1(yp ))n = sup
p>n

xn+1(y) = xn+1(y).

Theorem 3.2.1 ([14, Theorem 3.1.17])

Let
F : D∞ −→ (D∞ → D∞)

x 7−→ Fx : y 7→ x • y
and

G : (D∞ → D∞) −→ D∞
f 7−→G( f ) = supn≥0 Gn( f )

for all x, y ∈ D∞, where Gn ∈ Dn+1 is defined by Gn( f )(y) = f (y)n . Then F and G are inverse
isomorphisms between D∞ and D∞ → D∞, that is, D∞ ∼= D∞ → D∞.

Proof. By lemma 3.2.4, we have Gn(F (x)) = xn+1. Hence G(F (x)) = supn>0 xn+1 = x. Now let’s
see that F (G( f )) = f , that is, G( f )•x = f (x) for any f : D∞ → D∞ and x ∈ D∞. It is easy to check
that • is jointly continuous so we have G( f )•x = supn>0(Gn( f )•x). Since Gn( f )•x =Gn( f )(xn) by
lemma 3.2.4, we have G( f )•x = supn>0 f (xn)n . On the other hand, we have f (x) = supn>0 f (xn)
by continuity, hence f (x) = supn>0,p>n f (xn)p . Finally, observing that f (xn)p < f (xp )p , we have
: G( f )•x = supn>0 f (xn)n = supn>0,p>n f (xp )p = f (x).

We have thus obtained a solution to the equation D ∼= D → D .

3.2.5 Models of the λ-calculus

In the introduction, we said that a model of theλ-calculus, orλ-model, is a mathematical struc-
ture that serves to interpret the formalism of the λ-calculus. A model must imitate the behavior
of λ-terms in such a way that objects can act not only as arguments of functions but also as
functions. One more time, this is why the model D should be isomorphic to the family of self-
functions on D , which is usually not possible in classical set theory (unless D contains only
one element) and lead Scott to consider D∞ as a solution to this problem. But the concept
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of λ-model has yet to be formally defined. There exist different but equivalent ways to define
it : via syntactic λ-models [14, Definition 15.3], [25, Definition 2.3], syntax free λ-models [14,
Definition 15.19], [25, Definition 2.6], Scott-Meyer λ-models [14, Definition 15.22], functional
λ-models [2, Definition 3.2.2][14, Discussion 15.26][6, Section 5.4], and many more.

Of all these models, we have chosen to focus on functional λ-models which, as their name
suggest, emphasize the functional aspect of λ-calculus. We begin with a few preliminary defi-
nitions.

Definition 3.2.5 (applicative structure, set of representable functions)

An applicative structure (or magma) (X ,⋆) is a nonempty set X equipped with a closed
binary operation ⋆, i.e. such that a,b ∈ X =⇒ a⋆b ∈ X .

The set of representable functions X →rep X on (X ,⋆) is the set of functions from X to X
defined by :

X →rep X = {
f ∈ X → X | ∃y ∈ X ,∀x ∈ X , f (x) = y ⋆x

}
.

The element y will be called a representative of f .

Definition 3.2.6 (pre-reflexive, reflexive domain, [2, Definitions 3.2.1, 3.2.4])

Let (D,⋆) be an applicative structure and let F : D → (D →rep D) and G : (D →rep D) → D be
two functions such that F ◦G = idD→repD and F (D) = (D →rep D). Then (D , F , G) is called a
pre-reflexive domain.

If D is a cpo, F and G are continuous and (D →rep D) = (D →cont D) (the representable func-
tions are exactly the continuous functions), then (D , F , G), is called a reflexive domain.

Observe that, in a reflexive domain (D , F , G), F is a left inverse of G . In category theory termi-
nology, we say that D →cont D is a retraction of D (see [6, Definition 5.4.1]).

Moreover, if (D , F , G) is a pre-reflexive domain, given d ∈ D there exists Fd ∈ D such that
F (d)(x) = Fd ⋆ x for all x ∈ D. Of course, the element Fd could be not unique. This naturally
leads to consider an equivalence relation ∼ given by a ∼ b if and only if a⋆x = b⋆x for all x ∈ D ,
called extensional equivalence [14, Discussion 15.8]. Hence, we can interpret the function F as
an assignment to an extensional equivalence class.

Reciprocally, given a representable function f with representative a, we have that G( f ) ∈ D and
F (G( f )) = f . This means that the extensional equivalence class associated with G( f ) is exactly
the extensional equivalence class of a. Moreover, since F ◦G = idD→repD , G is injective so G( f )
can be considered as a selection of an element in D determining the extensional equivalence
class of f .

Proposition 3.2.3

(D∞, F , G) is a reflexive domain.
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Proof. We have already seen that D∞ is a cpo (see Proposition 3.2.1). Moreover, (D∞,•) is an
applicative structure and F,G are inverse isomorphisms between D∞ and D∞ → D∞ (see Theo-
rem 3.2.1). For all x ∈ D∞, F (x) is a representable function on (D∞,•), so (D∞, F , G) is a reflexive
domain.

Definition 3.2.7 ([14, Notation 14.1], [6, Definition 5.1.2])

A mapping ρ from Vars, the set of all variables in the λ-calculus to a nonempty set D is called
a valuation (of variables) or an environment. Given d ∈ D and x ∈ Vars, ρ[d/x] denotes the
valuation which is equal to ρ except in x where it is equal to d .

We next give the definition of a (functional) λ-model.

Definition 3.2.8 (λ-model, [2, Definition 3.2.2])

A λ-model, is a pre-reflexive domain (D , F , G), such that for any valuation ρ, the mapping
J·Kρ that assign to each λ-term M an element JMKρ of D given by the following semantic
equations is correctly defined.

a. JxKρ = ρ(x)

b. JPQKρ = F
(
JPKρ

)(
JQKρ

)
c. Jλx.PKρ =G

(
λd .JPKρ[d/x]

)
The idea of the previous definition is that every λ-term P has an interpretation JPKρ in the pre-
reflexive domain D , that can be seen as an applicative structure, for every valuation ρ. More-
over, the three main components of λ-calculus (variables, applications and abstractions) must
be interpreted in the model. In this way, the conditions of the above definition are natural re-
quirements to model these components. Requirement (a) establishes that the interpretation
of variables is given by the valuation. Condition (b) asserts that the interpretation of the ap-
plication of a λ-term P to a λ-term Q is given by the traditional application of the function
F (JPKρ) to the interpretation JQKρ of the λ-term Q in the model. Therefore condition (b) means
JPQKρ = FJPKρ ⋆ JQKρ : an application of the λ-calculus is interpreted as a multiplication in the
model.

Finally, property (c) gives the interpretation of an abstraction in λ-calculus. We can motivate
it as follows. The interpretation of λx.P should be the interpretation of a function depending
on the meaning of the term P . Then Jλx.PKρ ∈ D should determine a representable function f
which is naturally given by Jλx.PKρ⋆d = JPKρ[d/x] for every d ∈ D. This last equality means that
Jλx.PKρ acts like a function whose value is calculated by interpreting x as d . Consequently, we
have a function f : D → D given by

f (d) = JPKρ[d/x] ∀d ∈ D.

If we denote this function in λ-calculus terminology as λd .JPKρ[d/X ] we have that

f (d) =λd .JPKρ[d/X ] ∀d ∈ D.
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Since Jλx.PKρ is the representative of this function we arrive at

Jλx.PKρ =G(λd .JPKρ[d/x])

which is precisely property (c). This discussion assumes that f (d) is a representable function.

We next prove that main result of this section showing that reflexive domains are λ-models.

Theorem 3.2.2 ([2, Proposition 3.2.5])

A reflexive domain is a λ-model.

Proof. Let (D , F , G) be a reflexive domain. To ensure that the semantic equations of a λ-model
given in Definition 3.2.8 are correct, we only have to check that λd .JPKρ[d/x] is continuous.

Suppose that P does not contain any abstraction, that is, we cannot find a variable x and a λ-
term M such that λx.M occurs in P. Therefore, M is a « sequence » of variables. Let’s check that
λd .JPKρ[d/x] is continuous by induction on the length of P . Suppose that the length is 1, that is,
P contains only one variable. If this variable y is different from x then

JPKρ[d/x] = JyKρ[d/x] = ρ[d/x](y) = ρ(y)

for every d ∈ D. Hence λd .JPKρ[d/x] is constant, so continuous.

Moreover, if P = x then
JPKρ[d/x] = JxKρ[d/x] = ρ[d/x](x) = d

for every d ∈ D. Hence λd .JPKρ[d/x] is the identity, so continuous. Consequently, if the length of
P is 1 we have the continuity of the function.

Suppose that λd .JPKρ[d/x] is continuous when the length of P is n. If P has length n+1 then we
can find a variable z and a λ-term P ′ such that P = P ′x. Then

JP ′zKρ[d/x] = F (JP ′Kρ[d/x])(JzKρ[d/x]).

Since z has length 1, we have already proven that f (d) = λd .JzKρ[d/x] is Scott continuous. Fur-
thermore, P ′ has length n so g (d) = JP ′Kρ[d/x] is also Scott continuous. Since

(JP ′Kρ[d/x]) = F (g (d))

and F is Scott continuous, (JP ′Kρ[d/x]) also is.

Then we have the following diagram :

D F // (D → D)
i

''
D

g
??

f
))

(D → D)×D ev // D

D
i

77
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where i denotes inclusion. In this way,

JP ′zKρ[d/x] = ev(F ◦ g , f (d))

for all d ∈ D. Since F ◦ g , f ,ev are Scott continuous (see Proposition 2.3.5) we deduce that
λd .JPKρ[d/x] is Scott continuous.

Suppose now that P =λx1 . . . xn .M . We make induction on the set of variables {x1, . . . , xn}. When
it has length 1 then fixing d ∈ D we have that

JPKρ[d/x] = Jλx1.MKρ[d/x] =G(λe.JMKρ[d/x,e/x1]).

As above, we can check that λe.JMKρ[d/x,e/y] is Scott continuous so G(λe.JMKρ[d/x,e/x1]) is well
defined. Since G is also continuous we have Scott continuity of JPKρ[d/x].

Suppose that, if P = λx⃗.M , then λd .Jλx⃗.MKρ[d/x] is Scott continuous, where x⃗ = x1 . . . xn is a
vector of n variables. Then, if P =λx⃗.M and x⃗ = x1 . . . xn+1 has n +1 variables, then

JPKρ[d/x] = Jλx1 . . . xn xn+1.MKρ[d/x] = Jλx1.(λx2 . . . xn xn+1.M)Kρ[d/x]

=G
(
λe.Jλx2 . . . xn+1.MK(ρ[d/x])[e/x1]

)
=G

(
λe. f (d ,e)

)
where f : D ×D → D is given by f (d ,e) = Jλx2 . . . xn+1.MK(ρ[d/x])[e/x1] for every d ,e ∈ D. By in-
duction hypothesis, f is separately continuous so continuous by Proposition 2.3.2. Moreover,
Λ( f ) is continuous (see Proposition 2.3.3). Since

JPKρ[d/x] =G
(
(Λ( f ))(d)

)
and G is continuous, we can conclude that λd .JPKρ[d/x] is continuous, which finishes the proof.

This last demonstration convinces us once and for all that D∞ models, being reflexive, serve as
a λ-model.
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