
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/207946

Jinquan Zhang; Li, X.; Long Chen; Ruiz García, R. (2024). Scheduling Workflows With
Limited Budget to Cloud Server and Serverless Resources. IEEE Transactions on Services
Computing. 17(4):1766-1779. https://doi.org/10.1109/TSC.2023.3332697

https://doi.org/10.1109/TSC.2023.3332697

Institute of Electrical and Electronics Engineers



Scheduling Workflows with Limited Budget to

Cloud Server and Serverless Resources

Jinquan Zhang, Xiaoping Li, Senior Member, IEEE, Long Chen, and Rubén Ruiz

Abstract

Serverless functions (SFs) and on-demand virtual machines (VMs) are common cloud resources

for scientific workflow applications, which are widespread in many fields (e.g., biology, astronomy,

and agricultural sciences). SFs are paid by actual running time with higher unit costs and higher

resource utilization, whereas VMs are paid by billing time units with lower unit costs and lower resource

utilization. Generally, each application is executed on a limited budget. Since there are a large number

of task topological orders in each application, it is challenging to schedule a budget-limited workflow

application to SFs and VMs in a hybrid cloud environment. In this paper, we study the cloud workflow

scheduling problem with limited budgets to minimize makespan in a hybridization of SFs and on-demand

VMs for which the BCWS (Budget Constrained Workflow Scheduling) algorithm is proposed. Methods

are developed to determine the task execution order, rent cloud resources and map tasks to resources

respectively. Along with initial schedule construction and schedule improvement policies, these methods

are repeatedly conducted in BCWS. The proposed algorithm is evaluated by comparing it to existing

algorithms for similar problems over a comprehensive set of workflow instances. Experimental results

show that the proposed algorithm significantly reduces the makespan with a hybrid configuration of VMs

and SFs compared to the only server case or the only serverless configuration one and outperforms the

compared algorithms which are the best existing ones for similar problems.
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de València, Camino de Vera s/n, 46021, Valėncia, Spain.
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Scheduling Workflows with Limited Budget to

Cloud Server and Serverless Resources
I. INTRODUCTION

Scientific workflow applications are widespread in analyzing the data of scientific experiments,

each of which consists of hundreds or even thousands of precedence-constrained tasks [1]. These

tasks are commonly executed by rented cloud resources whereas customers have a limited budget

for each application. Makespan is one of the most concerned objectives which is significantly

effected by task execution orders, available resources, and task-resource mapping policies as

well as the budget constraint [2]–[6]. Therefore, it is important to minimize the makespan of

budget-limited scientific workflow applications.

In cloud computing, VMs (Virtual machines) and SFs (serverless functions) are common

provisioned resources. SFs are charged by their actual running time with a higher unit cost and

higher resource-utilization whereas VMs are paid by BTUs (billing time units, e.g. hours for the

on-demand manner) with lower unit costs and lower resource-utilization. Because of the complex

task precedence constraints (tasks could be executed in either parallel or serial), the resource

requirements for executing a scientific workflow application are uneven. It is desirable to use a

hybridization of SFs and VMs for such uneven resource requirements. An illustrative example is

shown in Figure 1. Suppose that the speeds of SFs and VMs are the same. In terms of Amazon

AWS EC21 and AWS Fargate2, the unit costs of VMs and SFs are 0.102$/h and 0.19748$/h,

respectively. For the computation-intensive workflow containing 3 tasks as shown in Figure 1(a),

the computation time of tasks t1 ∼ t3 is 10, 20 and 30 minutes, respectively. Data transmission

time among tasks is ignored. The budget B is 0.170$. By enumerating all possible schedules, the

minimal makespans for the server, the serverless, and the hybrid configurations are 60, 40, and 40

minutes, respectively. Corresponding rental costs are 0.102$, 0.197$, and 0.168$, respectively,

which implies no feasible solution is obtained in the serverless configuration. Results shows

that the optimal schedule is obtained by the hybrid configuration. Therefore, it is necessary to

schedule budget limited workflow applications using a hybridization of VMs and SFs rather than

by a single server configuration or a single serverless configuration.

1https://aws.amazon.com/cn/ec2/pricing/
2https://aws.amazon.com/cn/fargate/pricing/
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Fig. 1. The optimal schedules of the workflow instance (a) in different configurations: (b) server configuration, (c) serverless

configuration, and (d) the hybrid configuration.

In this paper, we consider the scientific workflow scheduling problem (WSP) with a limited

budget to minimize the makespan in a hybridization of on-demand VMs and SFs. SFs are

assumed to be heterogeneous while VMs are homogeneous for simplifying the complex problem

under study. A central shared storage is adopted for data exchange among different tasks. It is

much difficult to schedule complex precedence-constrained tasks of a budget-limited workflow

to heterogeneous SFs and on-demand VMs. Since WSPs with only server configurations are

NP-hard [7], it is natural that the considered problem with a hybridization configuration is also

NP-hard with the following challenges: i) For each application, the complicated precedence

constraints among tasks result in a large number of topological orders. Different topological

orders could lead to different makespans. It is challenging to determine the most appropriate

task topological order for makespan minimization. ii) SFs and VMs have different executing

and pricing manners. Each application has a limited budget and uneven resource requirements.

It is great challenging to rent the most appropriate number of SFs and VMs for a budget-limited

workflow application with makespan minimization. iii) The heterogeneity of SFs and different

executing manners of SFs and VMs result in multiple executing durations for the same task.

There are a large number of allocation candidates for all the tasks of an application to the rented

SFs and VMs. It is challenging to determine the optimal task-resource allocation scheme to

minimize makespan.

For the challenges mentioned above, we propose a heuristic scheduling algorithm BCWS

(Budget Constrained Workflow Scheduling) for the problem under study. The main contributions
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are as follows:

1) Considering a hybrid configuration of VMs and SFs as well as the limited budget constraint

of a workflow application, the problem under study is mathematically modeled.

2) A resource configuration strategy is developed for renting an appropriate number of SFs

and VMs for the uneven resource requirements by workflow tasks.

3) Since makespan is closely related to the critical path of the workflow application, we present

the BCWS algorithm which shortens the length of the critical path by iteratively changing

its task-resource allocation.

The rest of this paper is organized as follows: Section II reviews the related works of the

problem under study. The problem is described and formulated in Section III. Section IV

introduces the proposed BCWS algorithm. Experimental results are shown in Section V, followed

by conclusions and future works in Section VI.

II. RELATED WORKS

WSPs with various objectives, constraints, and resource configurations have been extensively

studied. A brief review of related works on makespan minimization of workflow applications

with a server configuration is presented in Section II-A. Details on WSPs with a serverless

configuration and with a hybrid configuration are further discussed in Section II-B and Section

II-C, respectively, which are closely related to our work.

A. Makespan Minimization of Workflow Applications with Servers

Makespan minimization seems to be the most concerning objective in the existing works

on WSPs. Classic methods have been proposed for makespan minimization of workflows in

multiprocessor systems, grids, and clusters, e.g., DLS (Dynamic Level Scheduling) [8], MH

(Scheduling Heuristic) [9], and HEFT (Heterogeneous Earliest Finish Time) [10], HBMCT

(Hybrid Balanced Minimum Completion Time) [11]. Kwok et al. [23] summarised and compared

27 static scheduling algorithms for minimizing the makespan of workflows in multiprocessor

systems with limited resources. However, these algorithms are not suitable for cloud computing,

where the resources are provided geographically and elastically. Since cloud workflow tasks are

executed on resources rented from cloud providers, a trade-off between the rental cost and the

makespan is necessary. Wu et al. [5] proposed a CG (Critical-Greedy) algorithm for WSPs with

limited budgets. An initial schedule is generated by allocating the budget to each task fairly. The
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TABLE I

COMPARISON OF RELATED LITERATURE.

Related

works

Objective Constraint Resource BTU

Makespan Cost
Success

rate

Resource

consumption
Deadline Budget

Limited

VMs
VM SF

Fine-

grained

Coarse-

grained

[8]–[11] X X X

[5], [12] X X X

[4], [13] X X X X

[6], [14], [15] X X X X

[16] X X X

[17] X X X X X

[18] X X X X

[19], [20] X X X

[21] X X X X

[22] X X X X X

This work X X X X X

remaining budget is utilized to speed up the execution of the tasks with the maximal ratio of the

time difference to the cost difference on the critical paths. By transferring the budget constraints

of workflow applications into budget constraints of tasks, Chen et al. [12] developed a method

to generate feasible schedules in which each task is allocated to the processor with the earliest

finish time. In both [5] and [12], the rental cost is calculated without considering the BTU of

VMs. In terms of the relative size of BTUs to the average execution time of tasks, VM BTUs

can be divided into fine-grained BTUs (such as one minute) [4], [13] and coarse-grained BTUs

(such as one hour) [6], [14], [15]. A task might need several BTUs for execution in a fine-grained

BTU manner, whereas several tasks might be executed within only one BTU in the case of the

coarse-grained manner. Arabnejad et al. [4] investigated WSPs constrained by deadlines and

budgets with fine-grained BTUs. The budget and deadline constraints of workflow applications

are divided into levels to promote the success rate of finding feasible schedules. Faragardi et al.

[6] developed the GRP-HEFT (Greedy Resource Provisioning and modified HEFT) algorithm

for minimizing makespan of budget-limited workflow applications with coarse-grained BTUs.

The number and type of VM instances are specified and adjusted iteratively. Tasks are allocated

to available VM instances with a modified HEFT algorithm. Zhou et al. [24] studied a multi-

objective WSP to minimize the rental cost and makespan without specific billing models and
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BTU manners.

B. Workflow Scheduling with Serverless Configurations

SF selection and SF deployment are two main factors that significantly influence the makespan

of workflows in serverless computing. The heterogeneity of SFs with different prices, CPU cores,

and memory sizes always results in different tradeoffs [16]–[18], [25], [26] between the rental

cost and makespan by selecting different SFs for tasks of a workflow application. Wen et al.

[16] analyzed the main factors (memory size, inter and intra-function parallelism) impacting

makespan and cost of a workflow. A workflow scheduling algorithm was proposed based on

critical paths to reduce the rental cost while satisfying the deadline constraint. Jarachanthan et

al. [17] also explored the factors impacting on SFs which further influence the cost and makespan

of a workflow. Two subproblems were considered: i) minimizing makespan with a given budget

constraint, ii) minimizing the rental cost with a given deadline constraint. Majewski et al. [18]

developed the SMOHEFT (Multi-Objective Heterogeneous Earliest Finish Time for Serverless

Architectures) algorithm for maximizing the success rate of executing scientific workflows with

budget and deadline constraints in a serverless configuration. A Pareto set is generated by

adopting the crowding distance measure [27] to explore different tradeoffs between makespan

and the rental cost. However, the above works did not consider the influence of SF deployments

on the makespan of workflows. Generally, SFs are deployed on containers. Cold starts of SFs

cannot be neglected if most tasks can be finished within several seconds. Though cold starts can

be avoided effectively by maintaining containers warm, resource consumption would be incurred.

It is important to get a tradeoff between the resource consumption and makespan for workflow

applications [19], [20]. Xu et al. [19] mitigated cold starts of SFs by a pre-warm policy and

a container pool policy. Since an SF could be invoked many times in a workflow, a pre-warm

policy can improve its scheduling performances, e.g., reducing the average latency of workflows

[20], reducing the energy consumption by packing workflow tasks to fewer containers as many

as possible [20].

C. Workflow Scheduling with Hybrid Configurations

It is natural to execute workflow applications with hybridization of SFs and servers (e.g.,

private clusters, on-demand VMs) [21], [22]. Jiang et al. [21] implemented a workflow man-

agement system in which the available resources include SFs in a public cloud and VMs in
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a private cluster. Short tasks are executed by SFs, while long tasks are executed by a local

cluster. Roy et al. [22] combined on-demand VMs and SFs to minimize makespan and the rental

cost of scientific workflows. However, the number of rented VMs is fixed without meeting the

unbalanced resource requirement of workflows. Raza et al. [28] adopted SFs and on-demand VMs

to reduce SLA (Service Level Agreement) violations and save rental costs only for scheduling

independent tasks rather than workflow scheduling.

The above existing studies are summarized in Table I. Most workflow scheduling problems

with budget constraints were studied in the server configuration case. Little attention has been

paid to the serverless configuration case. No existing work considers scheduling workflow

applications with limited budgets in hybridizing servers and serverless functions. Different from

existing studies, we study a budget-limited workflow scheduling problem in the hybridization

of SFs and on-demand VMs in this paper. To the best of our knowledge, this problem has not

been studied yet, although it is crucial for minimizing the makespan of workflow applications.

In addition, the number of rented VMs is dynamically determined by the resource requirement

of workflows rather than a fixed number as in [21] and [22].

III. PROBLEM FORMULATION

For the complex problem under study, we make the following assumptions:

• VMs are homogeneous whereas SFs are heterogeneous, which means only one type of VM

and multiple types of SFs can be selected for each task.

• Each task is assigned to only one resource instance, and each resource instance executes

only one task at a time.

• The instances of SFs and VMs can be set up and released quickly with 0 time.

• Instructions of each workflow task and the size of intermediate data are known in advance.

Notations to be used are listed in Table II.

A. Problem Description

A workflow application can be described as a directed acyclic graph (DAG) G = (T,E).

T = {t1, . . . , tN} is the task set, and E is the edge set. Task ti has wi instructions. t1 and tN are

the source task and the sink task which are dummy tasks with 0 instructions. Edge eij = (ti, tj)

indicates that task tj cannot start until the data dij from ti has been received. In addition, the

workflow application G is constrained by a budget B.
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TABLE II

NOTATIONS TO BE USED.

Notation Definition

G Workflow application

T Task set, T = {t1, . . . , tN}

N Number of tasks in workflow application G

wi Instructions of task ti

E Edge set, E = {(ti, tj) |∃ti → tj}

dij Data transferred from ti to tj

B Budget of the considered workflow application

K Number of SF types

M Number of rented VMs

fik kth function of ti

pk Speed of fik

ck Unit cost of fik

pvm Speed of VM

cvm Unit cost of VM

BTU Length of VM billing time unit

b Bandwidth between the COS and resource instances

vm mth rented VM

xik Whether ti is executed on fik

yim Whether ti is executed on vm

CT (ti) Computation time of ti

pr(ti) Predecessors of ti

su(ti) Successors of ti

In(ti) Data input time of ti

IP (ti) Input data of ti (not intermediate data)

Out(ti) Data output time of ti

ET (ti) Execution time of ti

Av(vm) Earliest available time of vm

ST (ti) Start time of ti

FT (ti) Finish time of ti

ST (vm) Start time of vm

FT (vm) Finish time of vm

MS Makespan of the considered workflow application

CF Cost of renting SFs

CV Cost of renting VMs



8

In this paper, the provided computing resources include heterogeneous SFs and homogeneous

VMs. K types of SFs with different speeds and unit costs can be selected for each task ti. fik

is the kth function to be selected of which the processing speed is pk and the unit cost is ck.

For simplicity, we assume that p1 < p2 < . . . < pK and c1 < c2 < . . . < cK . Only one type of

on-demand VM is considered with speed pvm and the unit cost cvm. VMs are paid by time units

BTU . In addition, a shared COS (cloud object storage) is adopted for data exchange among

resource instances. The network bandwidth between the COS and any resource instance is b.

Each task reads its input data from the COS and writes its output data back. However, if two

tasks are deployed on the same VM instance, the intermediate data can be utilized directly, i.e.,

the communication time is 0.

Suppose that the number of rented VMs is M , vm is the mth rented VM. The binary variable

yim takes 1 if and only if task ti is executed on VM vm and takes 0 otherwise. Similarly, the

binary variable xik takes 1 if and only if task ti is executed on SF fik and takes 0 otherwise.

yim =


1, if ti is executed on vm, i ∈ {1, . . . , N},

m ∈ {1, . . . ,M},

0, otherwise.

(1)

xik =


1, if ti is executed on fik, i ∈ {1, . . . , N},

k ∈ {1, . . . , K},

0, otherwise.

(2)

For any task ti, the computation time CT (ti) can be calculated by

CT (ti) = wi/pk × xik + wi/pvm × yim. (3)

The time of reading input data In(ti) can be calculated by

In(ti) =IP (ti)/b+
∑

tj∈pr(ti)

dji/b

M∏
m=1

(1− yimyjm) (4)

where IP (ti) is the input data of task ti stored into the COS before workflow execution, and

pr(ti) is the predecessor set of ti. 1 − yimyjm = 0 if and only if yim = 1 and yjm = 1, i.e., ti

and tj are allocated to the same VM instance vm. Suppose that Output(ti) is the size of total

output data of ti. Since all intermediate data is stored into the shared COS, the time of writing

output data back Out(ti) can be calculated by

Out(ti) = Output(ti)/b. (5)
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The total execution time ET (ti) of task ti is the sum of computation time and data transmission

time, i.e.,

ET (ti) = CT (ti) + In(ti) +Out(ti). (6)

Let Av(vm) be the earliest available time of vm. The start time ST (ti) and the finish time FT (ti)

of task ti satisfy

ST (ti) ≥ max
{

max
tj∈pr(ti)

{FT (tj)},
M∑

m=1

Av(vm)yim

}
, (7)

FT (ti) = ST (ti) + ET (ti). (8)

The objective of the considered problem is to minimize the makespan MS

min MS = max
ti∈T
{FT (ti)}. (9)

As the workflow is constrained by budget B, the following inequality should be satisfied, i.e.,

CF + CV ≤ B. (10)

where CF is the rental cost of SFs, and CV is the rental cost of VMs.

CF =
∑
ti∈T

K∑
k=1

xikck × ET (ti), (11)

CV =
M∑

m=1

cvm ×BTU × d
FT (vm)− ST (vm)

BTU
e, (12)

FT (vm) is the finish time of vm, and ST (vm) is the start time of vm. They can be determined

by

FT (vm) = max{FT (ti)|ti ∈ T, yim = 1}, (13)

ST (vm) = min{ST (ti)|ti ∈ T, yim = 1}. (14)

IV. PROPOSED ALGORITHM

In this section, a heuristic scheduling algorithm Budget Constrained Workflow Scheduling

(BCWS) is proposed for workflow application G with a limited budget B in a hybrid config-

uration of on-demand VMs and SFs to minimize makespan. Suppose that the minimum rental

cost of executing G with only serverless functions is Cmin
SF and that with only VMs is Cmin

VM .
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The budget B is reasonable if and only if B ≥ min{Cmin
SF , Cmin

VM }. However, this condition is

too general to grantee to find a feasible solution for the considered problem [6], [14], [15]. In

this paper, we just consider the case B ≥ max{Cmin
SF , Cmin

VM }. Cmin
SF can be calculated by

Cmin
SF =

∑
ti∈T

min
k

{
ck × (

wi

pk
+MDTT (ti))

}
, (15)

where MDTT (ti) is the maximal data transmission time of task ti which is determined by

MDTT (ti) = IP (ti)/b+
∑

tj∈pr(ti)

dji/b+Out(ti). (16)

Cmin
VM is calculated by

Cmin
VM =

⌈∑
ti∈T

wi

pvm
+ IP (ti)/b+Out(ti)

BTU

⌉
× cvm. (17)

There are three algorithmic components in BCWS: ISC (Initial Schedule Construction), RR

(Resource Replacement) and BR (Budget Reallocation). The framework of BCWS is shown as

Algorithm 1. Makespan is determined by the length of the critical path. Different SF or VM

allocations to a task result in different processing times which could further change the critical

path. The numbers and types of rented SFs and VMs are dynamically adjusted in the three

components of BCWS. ISC allocates the cheapest SFs to all the tasks in a workflow application

from which an initial critical path is constructed. If the remaining budget RB = B−CF−CV > 0

(here CV = 0), it is desirable to allocate a faster function to a task on the critical path to reduce

the makespan (a new critical path could be generated). ISC iteratively selects and speeds up the

execution of a task on the critical path and further updates the critical path unless RB > 0 is no

longer met. RR tries to replace the rented SFs with one non-slower VM each time to guarantee

makespan not increase. Decrease of CF while increase of CV increase could lead to an increase

of the remaining budget RB since VMs are much cheaper than SFs. The replacement process is

conducted if the remaining budget RB increases and repeated until no increase on RB. Since a

much bigger RB could be obtained by RR, BR tries to select faster SFs using the similar way

as that in ISC.

A. Initial Schedule Construction (ISC)

An initial schedule is constructed by selecting the cheapest and slowest functions for all tasks

satisfying the budget constraint with the total rental cost of Cmin
SF . The remaining budget RB is

utilized to speed up the execution of the tasks on the critical path. The ISC procedure speeds up



11

Algorithm 1: Budget Constrained Workflow Scheduling Algorithm (BCWS)
Input: Graph G=(T, E); Budget B

Output: Makespan MS

1 begin

2 Initial Schedule Construction (ISC) ;

3 Resource Replacement (RR) ;

4 Budget Reallocation (BR) ;

5 return.

one task ti each time by moving it to a slightly more expensive and faster function (from fik to

fi(k+1)), followed by a recalculation of the critical path CP . The above process repeats until no

more adjustment is possible, i.e., the remaining budget RB cannot support any SF replacement.

In this paper, several strategies are proposed to select the next task to be adjusted.

• METF (Maximal Execution Time First): Since the length of the critical path is the

summarization of the execution times of the tasks on it, METF selects the task with maximal

execution time, i.e., t? = argmaxti∈CP{ET (ti)}.

• MTDCIRF (Maximal Time Decrease to Cost Increase Ratio First): Suppose that ti is

a task on the critical path CP . The time decrease 4ET (ti) of adjusting task ti is

4ET (ti) = ET (ti, fik)− ET (ti, fi(k+1))

= wi/pk − wi/pk+1, (18)

where ET (ti, fik) is the execution time of ti on fik. Similarly, the cost increase 4C(ti) of

adjusting task ti is

4C(ti) = C(ti, fi(k+1))− C(ti, fik), (19)

where C(ti, fik) is the cost of ti on fik. rtc(ti) is the ratio of the time decrease 4ET (ti)

to the cost increase 4C(ti), i.e.,

rtc(ti) = 4ET (ti)/4C(ti). (20)

The task t? = argmaxti∈CP{rtc(ti)} is selected.
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• MCETRF (Maximal Computation to Execution Time Ratio First) : Suppose that ti is

a task on the critical path CP . The ratio of computation to execution time for task ti is

calculated by

rce(ti) = CT (ti)/ET (ti), (21)

A larger rce(ti) implies that the execution time of ti could be more reduced if fik is replaced

by fi(k+1). Therefore, the task t? = argmaxti∈CP{rce(ti)} is selected.

Details of ISC with the MTDCIRF strategy are shown in Algorithm 2.

B. Resource Replacement (RR)

RR tries to replace the rented SFs with non-slower VMs one-by-one to increase the remaining

budget RB as much as possible while not increasing makespan, i.e., the replacement process is

conducted if it leads to an increase in the remaining budget. The replacement process is repeated

until RB cannot be increased.

In each replacement, a task queue Q is constructed by collecting all tasks allocated to SFs with

speeds slower than or equal to pvm. Obviously, the task execution times in Q do not increase

if the replacements are conducted only on these tasks. Moreover, makespan does not increase

without delaying the start times of these tasks during the process of replacing SFs with VMs in

terms of Theorem 1. Assume the SF allocated to ∀ti ∈ Q is replaced by a rented VM instance

v. MS and MS
′ are the makespans and ST (ti) and ST (ti)

′ are the start times of ti before and

after the replacement.

Theorem 1. MS
′ ≤MS if ST

′
(ti) ≤ ST (ti).

Proof. If ∀ti ∈ Q is allocated to v, CT ′
(ti) ≤ CT (ti) according to Eqn. (3) and In′

(ti) ≤ In(ti)

according to Eqn. (4). In addition, Out′(ti) = Out(ti). ET
′
(ti) = CT

′
(ti)+In

′
(ti)+Out

′
(ti) ≤

CT (ti)+In(ti)+Out(ti) = ET (ti). FT
′
(ti) = ST

′
(ti)+ET

′
(ti) ≤ ST (ti)+ET (ti) = FT (ti).

If ∀tj /∈ Q or ti ∈ Q is not allocated to v, ET ′
(tj) = ET (tj). ST

′
(tj) ≤ ST (tj) according

to Eqn. (7). FT ′
(tj) = ST

′
(tj) + ET

′
(tj) ≤ ST (tj) + ET (tj) ≤ FT (tj). Therefore, MS

′
=

maxti∈T{FT
′
(ti)} ≤ maxti∈T{FT (ti)} =MS.
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Algorithm 2: Initial Schedule Construction (ISC)

1 begin

2 CostLeft← B;

3 while CostLeft > 0 do

4 Calculate the critical path CP ;

5 CPTask ← ∅;

6 foreach ti ∈ CP do

7 k ← Current function type of ti;

8 if k + 1 ≤ K then

9 4ET (ti)← Calculate time decrease;

10 4C(ti)← Calculate cost increase;

11 rtc(ti)←4ET (ti)/4C(ti) ;

12 if 4C(ti) ≤ CostLeft then

13 CPTask ← CPTask
⋃
{ti};

14 if CPTask = ∅ then

15 break;

16 else

17 t? ← argmaxti∈CPTask rtc(ti) ;

18 k ← Current function type of t?;

19 Move t? to the function with type k + 1;

20 CostLeft← CostLeft−4C(t?) ;

21 RB ← CostLeft ;

22 return.

Since the price of an SF is usually much higher than that of a VM, a new VM instance v is

rented to some tasks belonging to Q to maximize the remaining budget RB. The binary variable

zi takes 1 if and only if ti is allocated to VM v and takes 0 otherwise.

zi =

1, if ti is allocated to v, ti ∈ Q,

0, otherwise.
(22)
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The objective of the replacement is to maximize the increment of the remaining budget 4RB,

max 4RB = CF + CV − C
′

F − C
′

V , (23)

where C ′
F and C

′
V are the rental costs of SFs and VMs after the replacement, respectively. To

increase the remaining budget, 4RB should be not less than 0, i.e.,

4RB ≥ 0. (24)

According to Theorem 1, for ∀ti ∈ Q allocated to v, the start time of ti after the replacement

ST
′
(ti) should be no later than that before the replacement ST (ti) to keep makespan non-

increased, i.e.,

zi ·
{
ST

′
(ti)− ST (ti)

}
≤ 0. (25)

For VM instance v, the start time ST (v), the release time REL(v) and the number of rented

BTUs n meet the following conditions:

REL(v) = ST (v) + n ·BTU, (26)

zi ·
[
ST

′
(ti)− ST (v)

]
≥ 0, (27)

zi ·
[
ST

′
(ti) + ET

′
(ti)−REL(v)

]
≤ 0. (28)

The task order in Q and the number of rented BTUs are crucial for the performance of the

replacement. Three strategies are proposed to determine Q.

• ESTF (Earliest Start Time First): The tasks in queue Q are sorted in a non-decreasing

order of their start times before the replacement. If multiple tasks have the same start time,

the tie is broken by a random order.

• MRBIF (Maximal Remaining Budget Increment First): The asks in Q are sorted by

a non-decreasing order of their start times. If multiple tasks have the same start time,

they are sorted by a non-increasing order of their estimated remaining budget increments

ERBI(tj) = ck · ET (tj)− cvm · ET
′
(tj) if the function fjk allocated to tj is replaced.

• EFTF (Earliest Finish Time First): The tasks in queue Q are sorted in a non-decreasing

order of their finish times before the replacement. Since different tasks commonly have

different numbers of instructions, it almost impossible to finish them simultaneously.

To determine the rented number of BTUs, three strategies are developed:
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• MRN (Minimal Renting Number): Let t? be the first task in Q. The number of rented

BTUs n is determined by the execution time of t? on v, i.e.,

n = dET ′
(t?)/BTUe. (29)

• FRN (Fixed Renting Number): To guarantee the first task in Q can be allocated to

v, n should not be too small. Let g is a given number in advance. n is determined by

max
{
dET ′

(t?)/BTUe, g
}

. Obviously, MRN is a special case of FRN (g = 1).

• URN (Unlimited Renting Number): The rented number of BTUs n is assumed to be

non-limited (n = +∞) and the release time of VM v is infinite (REL(v) = +∞)

correspondingly. The actual number of rented BTUs can be obtained after the replacement

is conducted. The URN strategy can be regarded as a special case of FRN (g = +∞).

Once Q and n are determined, the start time of v is determined, i.e., ST (v) = ST (t?). Let

ti be the last task which can be allocated to v before tj . The RR procedure sequentially checks

whether the following conditions are true or not for each task tj in Q:
ST (tj) ≥ max

{
ST (v), ST (ti) + ET

′
(ti)

}
,

ST (tj) + ET
′
(tj) ≤ REL(v).

(30)

If Eqn. (30) is satisfied, tj is selected, and not otherwise . Eqn. (24) is checked after all the

selected tasks are determined. If Eqn. (24) is satisfied, the replacement is performed. Otherwise,

no task is allocated to v, v is released, Q is updated by removing its first task, and a new VM is

rented for the next replacement. The RR procedure is repeated until Q = ∅. RR with the ESTF

and MRN strategies is formally described in Algorithm 3.

C. Budget Reallocation (BR)

The remaining budget RB is reallocated by BR to speed up the tasks on the critical path

CP . Though BR allocates the remaining budget using a strategy similar to ISC, they have the

following differences:

• Critical path: The critical path CP in ISC contains only tasks allocated to SFs and is

calculated based on task execution time, and the edge set E. However, CP in BR contains

tasks allocated to both SFs and VMs, and the tasks in the same VM are also precedence

constrained according to their execution orders when calculating CP .
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• Rental cost increment: In ISC, the cost increment of C is the same as the selected task ti.

Therefore, ti can be adjusted if 4C(ti) ≤ RB. However, the budget constraint may still be

violated when adjusting ti in BR since the number of rented BTUs might be changed.

• Makespan: In ISC, if task ti is moved from a slower SF to a faster one, the makespan does

not increase. However, if task ti is reallocated to a faster SF from a VM in BR, makespan

may increase because the data transmission time of ti and its successors could increase.

Since tasks in the critical path CP are allocated to two kinds of resources (SFs and VMs), two

strategies are proposed for reallocating RB:

• PTA (Partial Task Adjustment): Only tasks allocated to SFs on the critical path CP can

be reassigned to faster functions from slower ones.

• GTA (Global Task Adjustment): All tasks on CP can be allocated to faster functions, no

matter whether they are currently executed on VMs or SFs. In addition, if task ti allocated

to a faster SF fi(k+1) from a VM, the increment of C(ti) is calculated by 4C(ti) =

C(ti, fi(k+1))− cvm · ET (ti, v).

The budget constraint is checked in the above two strategies when adjusting the selected task ti.

GTA also keeps makespan non-increased. Details of RR with the GTA strategy are described in

Algorithm 4.

D. Computational Time Complexity Analysis

Each task in RR is adjusted at most K − 1 times. The computational time complexity of

calculating the critical path is O(N2). The computational time complexity of selecting tasks

is O(N). Therefore, the overall computational time complexity of ISC is O(N3K), which is

the same as BR. For the RR procedure, the computational time complexity of sorting tasks

is O(N log(N)). The computational time complexity of each replacement is O(N2). Since the

replacement process may be conducted at most N times, the computational time complexity of

RR is O(N(N log(N) + N2)) = O(N3). Therefore, the computational time complexity of the

BCWS algorithm is O(N3) +O(N3K) = O(N3K).

V. EXPERIMENTAL RESULTS

To the best of our knowledge, the considered WSP with budget constraints in the hybridization

of on-demand VMs and SFs has not been studied yet. To obtain the best algorithm for the

considered problem, all algorithmic component candidates of the BCWS algorithm framework
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are calibrated over a large number of random instances. To test the performance of the calibrated

BCWS algorithm, several existing methods for similar problems are compared. All concerned

algorithms are coded in Python and run on an Intel Core i7-7500U CPU @ 2.70GHZ with 12

GBytes of RAM.

All algorithms are compared by RPD (Relative Percentage Deviation):

RPD(%) =
MS(A)−MS?

MS?
× 100% (31)

MS(A) is the makespan obtained by algorithm A, while MS? is the minimal makespan obtained

among all compared algorithms on the same workflow instance.

The ANOVA (multi-factor analysis of variance) technique is adopted to analyze results. The

three main hypotheses (normality, homoscedasticity, and independence of the residuals) are

checked from the residuals of the experiments. All three hypotheses are acceptable from the

analysis.

In terms of AWS EC2 and AWS Fargate, we conduct experiments by setting one type of

on-demand VM and multiple types of SF. Details of these resources are listed in Table III.

A. Parameter & Component Calibration

There are three components (ISC, RR, and BR) and a parameter (g) in the proposed BCWS

algorithm framework which need calibration. In ISC, three candidate strategies (METF, MTD-

CIRF, MCETRF) are used for task selection on the critical path. In RR, three candidate strategies

(ESTF, MRBIF, EFTF) are adopted to sort tasks in the queue Q. FRNg denotes the FRN strategy

with parameter g. Five strategies (MRN, FRN2, FRN3, FRN4, URN) are proposed to determine

the number of rented BTUs. In addition, two strategies (PTA, GTA) are considered in BR to

reallocate the remaining budget. Therefore, there are 3 × 3 × 5 × 2 = 90 combinations for the

proposed BCWS algorithm framework.

A large number of workflow instances are randomly generated to calibrate all the combinations

with different configurations. The number of tasks N of each workflow application takes values

from {100, 200, 300, 400}. The link density LD is the ratio of the number of edges to the number

of tasks which takes value from {2, 3, 4, 5}. The computation time (measured in seconds) of each

task executed with an average SF speed is subject to a uniform distribution of U(1, 1800). The

CCR (communication computation ratio) takes values from {0.5, 0.67, 1.0, 1.5, 2.0}. The budget

of the workflow instances is defined by B = (1 + α)×max{Cmin
SF , Cmin

VM }, where α is a budget



18

MCETRF METF MTDCIRF
(a) Task selection

7

14

21

28

35

R
e
la

ti
v

e 
P

e
rc

e
n

ta
g
e
 D

e
v

ia
ti

o
n

(%
)

EFTF ESTF MRBIF
(b) Task sorting

15

15.3

15.6

15.9

16.2

16.5

R
e
la

ti
v

e 
P

e
rc

e
n

ta
g
e
 D

e
v

ia
ti

o
n

(%
)

MRN URN
(c) Number of billing time units 

14

14.6

15.2

15.8

16.4

17

R
e
la

ti
v

e 
P

e
rc

e
n

ta
g
e
 D

e
v

ia
ti

o
n

(%
)

GTA PTA
(d) Budget reallocation

15.4

15.5

15.6

15.7

15.8

15.9

R
e
la

ti
v

e 
P

e
rc

e
n

ta
g
e
 D

e
v

ia
ti

o
n

(%
)

Component combination

R
e
la

ti
v

e 
P

e
rc

e
n

ta
g
e
 D

e
v

ia
ti

o
n

(%
)

FRN 2FRN 2 FRN 3FRN 3 FRN 4FRN 4

Fig. 2. Mean plots of the different components and parameters of the BCWS algorithm framework with 95.0% Tukey HSD

confidence level intervals.

factor with five candidates {0.1, 0.2, 0.3, 0.4, 0.5} which demonstrates how tight the budget is.

Three instances are generated for each combination of N , LD, CCR, and α. In addition, there

are four types of virtual machines. Therefore, 4×4×5×5×3×4 = 4800 instances are generated

in total. The total number of tests conducted is 4800× 90 = 432000. All the resulting p-values

are less than 0.05, meaning that all the studied factors significantly affect the RPD response

variable at the 95.0% confidence level.

The mean plots of the components and parameters with 95.0% Tukey honest significant

difference (HSD) intervals are shown in Figure 2. Figure 2(a) shows that MCETRF statistically

outperforms the other two strategies, MTDCIRF and MCETRF. MCETRF has the lowest RPD.

It can be observed from Figure 2(b) that ESTF and MRBIF perform similarly with almost the

same RPDs though ESTF is a little better than MRBIF. Both of them statistically outperform the

EFTF strategy. In Figure 2(c), the RPD of FRNg firstly decreases with the increase of parameter

g and increases with the increase of g afterwards since the MRN and URN strategies can be

regarded as special cases of the FRN strategy (FRN1 and FRN∞). The lowest RPD is obtained
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Fig. 3. Mean plots of different step combinations with 95.0% Tukey HSD confidence level intervals: C12 (ISC, RR), C13 (ISC,

BR), C23 (RR, BR), C123 (ISC, RR, BR).

when g = 4. For the two remaining budget reallocating strategies shown in Figure 2(d), GTA

statistically outperforms PTA. Therefore, MCETRF, ESTF, FRN4, and GTA are chosen for the

BCWS algorithm in the following comparisons.

Makespan of workflow applications is optimized by the combination of the three steps (ISC,

RR, BR) (which is called C123 (ISC, RR, BR) for convenience here). To further verify the

effectiveness of each step, three new algorithms C12 (ISC, RR), C13 (IC, BR), C12 (ISC, RR),

are constructed by removing one step each time. The mean plots of the step combinations with

95.0% Tukey honest significant difference (HSD) intervals are shown in Figure 3. It can be

observed that the RPD of C123 is the lowest, which indicates that the combination of ISC,

RR, and BR obtains the best performance. Therefore, all three steps are necessary for effectively

reducing the makespan of workflow applications. Removing any of them results in a performance

decrease. C23 is statistically outperformed by the other three combinations, which demonstrates

ISC has the most significant effect on the performance of BCWS. In addition, the RPD of C12

slightly outperforms that of C13, which means RR can slightly improve the schedule generated

by ISC. The main reason lies in that RR increases the remaining budget rather than directly

decreases makespan.

B. Algorithm evaluation

To the best of our knowledge, there is no existing algorithm for the problem under study.

To evaluate the performance of the calibrated BCWS algorithm, several algorithms for similar

problems are compared. The baselines include CG [5], SMOHEFT [18], and GRP-HEFT [6].
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Fig. 4. The structures of four workflow applications: a) BWA, b) Cycles, c) Epigenomics, d) SoyKB.

• Baseline1 (CG): Though CG is designed for renting VMs, the rented VMs are charged by

actual usage of time. Therefore, CG is compared in the serverless configuration.

• Baseline2 (SMOHEFT): Both deadline and budget are considered in SMOHEFT. Since no

deadline is considered in the problem under study, the deadline is set as infinite for fair

comparison. The schedule with the minimal makespan in the Pareto solution set is adopted.

• Baseline3 (GRP-HEFT): GRP-HEFT is developed to minimize the makespan of budget-

limited workflow applications by renting heterogeneous VMs charged by a coarse-grained

BTU. In this paper, any type of VM can be rented to generate a schedule.

In addition, the calibrated BCWS algorithm attempts to rent one type of VM and multiple types

of SF at a time to generate a set of schedules. The minimum makespan of all schedules in the

set is selected for comparing to other algorithms.

Four workflow applications: BWA, Cycles, Epigenomics, and SoyKB, are used to evaluate the

performance of the calibrated BCWS. BWA is a software package for mapping low-divergent

sequences against a large reference genome, such as the human genome. Cycles is a user-friend,

multi-crop, multi-year, process-based Agroecosystem model with daily time-step simulations of

crop production and the water, carbon, and nitrogen cycles in a soil-plant-atmosphere continuum.
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Fig. 5. Interaction plots of the compared algorithms and instance parameters on BWA applications with 95.0% Tukey HSD

confidence level intervals.

The Epigenomics workflow is a data processing pipeline for executing various genome sequenc-

ing operations. SoyKB is a genomic pipeline that re-sequences soybean germplasm lines selected

for desirable traits such as oil, protein, soybean cyst nematode resistance, stress resistance, and

the root system architecture. Different workflow applications have different structures, which are

shown in Figure 4. The nodes with different colors in each subgraph mean different types of

tasks.

WfGen3 [29] is adopted to generate a lot of synthetic realistic workflow instances by analyzing

actual workflow executions. The number of tasks N of each workflow application takes values

from {100, 200, 300, 400}. The budget factor α is selected from {0.1, 0.2, 0.3, 0.4, 0.5}. The

computation communication ratio CCR takes value from {0.5, 0.67, 1.0, 1.5, 2.0}. For each

combination of N , α and CCR in every workflow application, 10 workflow instances are

generated. Therefore, 4 × 4 × 5 × 5 × 10 = 4000 instances are generated in total. The total

number of conducted tests is 4× 4000 = 16000.

To demonstrate the effectiveness of the compared four algorithms in detail, the influence

of three factors (N , α, CCR) is evaluated over the four workflow applications, respectively.

Interactions between each factor and the compared algorithms on different scientific workflow

instances with 95% Tukey HSD intervals are shown in Figures 5 to 8.

In Figures 5 to 8, BCWS statistically outperforms the other three algorithms in almost all

cases of all the four workflow applications. This implies that that the hybridization of SFs and

VMs is helpful for reducing the makespan within a given budget. CG statistically outperforms

3https://wfcommons.org/generator
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Fig. 6. Interaction plots of the compared algorithms and instance parameters on Cycles applications with 95.0% Tukey HSD

confidence level intervals.
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Fig. 7. Interaction plots of the compared algorithms and instance parameters on Epigenomics applications with 95.0% Tukey

HSD confidence level intervals.
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Fig. 8. Interaction plots of the compared algorithms and instance parameters on SoyKB applications with 95.0% Tukey HSD

confidence level intervals.
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SMOHEFT in all cases since the RPD of CG is always lower than SMOHEFT. The reason lies in

that SMOHEFT aims to increase the diversity of schedules instead of minimizing the makespan.

GRP-HEFT outperforms CG and SMOHEFT in some cases it is outperformed by CG and

SMOHEFT in the other ones. The above results suggest that renting VMs is not always better

than renting severless functions and vice visa. In addition, it can be observed that all algorithms

have similar RPD tendencies on different workflow applications. Therefore, the structure of the

workflow application has slight influence on the performance of the compared algorithms.

Figures 5 to 8 show that the RPDs of CG, SMOHEFT approach to that of BCWS with the

increase of the budget factor α of which the reason lies in that more and more tasks are allocated

to the fastest SFs. In an extreme case, the RPDs of CG, SMOHEFT, and BCWS are identical

if all tasks are allocated to the fastest functions. When the budget factor is small, the RPD of

GRP-HEFT is lower than those of CG and SMOHEFT and even lower than that of BCWS.

This phenomenon is resulted by two reasons: i) When the budget factor α is too small, most

tasks are allocated to the slowest functions and a big makespan is resulted. However, the price

of VMs is much lower than that of SFs, some tasks may be allocated to high speed VMs. ii)

GRP-HEFT attempts to schedule workflows with a given budget. However, the budget constraint

is not strictly guaranteed. The total rental cost in GRP-HEFT may be larger than the budget B

when the budget factor α is small.

Figure 5 shows that BCWS outperforms the other three compared algorithms when the

communication computation ratio CCR is larger than 0.67 on BWA applications and it is

outperformed by GRP-HEFT otherwise. The data transmission time among tasks is a bottleneck

for minimizing makespan when CCR is small. However, the data transmission time becomes 0

if two tasks are allocated to the same VM. In such case, the data transmission time is saved in

GRP-HEFT and a short makespan is resulted. With the increase of CCR, the performance of

GRP-HEFT becomes worse and it is outperformed by the other three algorithms finally. Similar

phenomena can be observed in the Cycles, Epigenomics, and SoyKB applications as shown in

Figures 6 to 8. In these applications, GRP-HEFT never outperforms BCWS.

RPDs of all the compared algorithms keep robust with the increase in the number of tasks on

all applications. That means the performance of the compared algorithms is not closely related

to the number of tasks. BCWS always performs the best for cases with any number of tasks.

GRP-HEFT performs a little better than CG on BWA applications and performs worse on the

others, which indicates that the performance of the compared algorithms is influenced by the
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structure of workflow applications to some extent.

VI. CONCLUSIONS

In this paper, the WSP problem with budget constraints in a hybrid configuration of servers

and serverless functions is studied for which an algorithm framework BCWS is proposed to

allocate tasks with the appropriate numbers of SFs and VMs. After calibrating the components

and parameters of BCWS over a comprehensive set of random instances, the calibrated algorithm

is compared to three existing effective algorithms for only server or serverless configurations over

a set of instances generated by realistic workflow patterns. According to the experimental results,

we can conclude that the hybridization of VMs and SFs is helpful for reducing the makespan

of budget-limited workflows, while neither VM renting nor SF renting is always better than the

other. The proposed algorithm minimizes makespan effectively by integrating the advantage of

SFs in resource utilization with that of VMs in price. The budget factor and the communication

computation ratio significantly influence the effectiveness of the compared algorithms, while

the number of tasks and the structure of workflow applications have slight influences on the

effectiveness.

There are still many topics worth studying in the future. For example, homogeneous VMs are

considered in this paper whereas heterogeneous VMs are more common in actual cloud clusters.

In addition, there are many uncertainties during workflow executing.
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Algorithm 3: Resource Replacement (RR)
Input: Schedule S

Output: Adjusted schedule S

1 begin

2 Flag ← True;

3 CP ← Calculate the critical path;

4 while Flag do

5 Flag ← False; TS ← ∅;

6 foreach ti ∈ T do

7 if ti is allocated to a SF then

8 k ← Function type of ti;

9 if pk ≤ pvm then

10 TS ← TS
⋃
{ti}

11 Q← Sort TS according the start time of tasks;

12 while Q 6= ∅ do

13 t? ← Get the first task in Q ;

14 v ← Rent a new VM instance ;

15 Rented BTUs n← dET (t?)/BTUe ;

16 ST (v)← ST (t?) ;

17 REL(v)← ST (t?) + n ∗BTU ;

18 foreach ti ∈ Q do

19 if Eqn. (30) is satisfied then

20 Allocate ti to v;

21 C old← Rental cost before replacement;

22 C new ← Rental cost after replacement;

23 if C old > C new then

24 Flag ← True;

25 RB ← RB + C old− C new ;

26 break;

27 else

28 Release v;

29 Q← Q− {t?};

30 return.
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Algorithm 4: Budget Reallocation (BR)

1 begin

2 CostLeft← RB; Flag ← True ;

3 while CostLeft > 0 and Flag = True do

4 Calculate the critical path CP ;

5 CPTask ← ∅;

6 MS ← Makespan of the current schedule;

7 foreach ti ∈ CP do

8 if ti is executed by a SF then

9 k ← Current function type of ti;

10 else

11 k ← max{s|pis ≤ pvm};

12 if k + 1 ≤ K then

13 4ET (ti)← Calculate time decrease;

14 4C(ti)← Calculate cost increase;

15 rtc(ti)←4ET (ti)/4C(ti) ;

16 CPTask ← CPTask
⋃
{ti};

17 if CPTask = ∅ then

18 break;

19 else

20 t? ← argmaxti∈CPTask rtc(ti) ;

21 if ti is executed by a SF then

22 k ← Current function type of ti;

23 else

24 k ← max{s|pis ≤ pvm};

25 Move t? to the function with type k + 1;

26 C
′ ← Recalculate the total rental cost ;

27 MS
′ ← Recalculate the makespan ;

28 if C ′
> B or MS

′
> MS then

29 Move t? back to the resource it allocated to before adjusting ;

30 Flag ← False ;

31 else

32 CostLeft← B − C ′ ;

33 RB ← CostLeft;

34 return.
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TABLE III

RESOURCES CAN BE RENTED IN THIS PAPER.

Number Type CPU cores Memory size (GB) Price ($/h)

0 VM 1 2 0.0255

1 VM 2 4 0.051

2 VM 4 8 0.102

3 VM 8 16 0.204

4 SF 0.25 0.5 0.01234

5 SF 0.5 1 0.02469

6 SF 1 2 0.04937

7 SF 2 4 0.09874

8 SF 4 8 0.19748

9 SF 8 16 0.39496

10 SF 16 32 0.78992


