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Resum
El camp de l’aprenentatge profund destaca com una de les àrees més dinàmiques i

prometedores dins de la intel·ligència artificial. La pràctica més comuna per a construir
sistemes d’aprenentatge profund implica l’ús de grans models prèviament entrenats, que
després s’adapten a dominis o tasques particulars. Esta adaptació es realitza ajustant els
paràmetres del model amb la finalitat d’optimitzar alguna mesura de rendiment adequa-
da. Un exemple notable és la tècnica d’adaptació coneguda com Low Rank Adaptation
(LoRA), que està demostrant oferir resultats prometedors en tasques relacionades amb la
visió per computadora i el processament del llenguatge natural. En el marc d’este treball,
ens proposem analitzar i contrastar diverses tècniques per a l’ajust eficient de paràmetres
en el context de l’aprenentatge profund. Per això, es durà a terme una exploració exhaus-
tiva de les diferents variants de LoRA aplicades a diverses tasques i models preentrenats.
L’objectiu fonamental radica a identificar les tècniques més efectives per a millorar el
rendiment després d’adaptar aquestos models.

Paraules clau: Intel·ligència artifical, aprenentatge profund, model preentrenat, adapta-
ció de models, ajust eficient de paràmetres, LoRA
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Resumen
El campo del aprendizaje profundo destaca como una de las áreas más dinámicas y

prometedoras dentro de la inteligencia artificial. La práctica más común para construir
sistemas de aprendizaje profundo implica el uso de grandes modelos previamente entre-
nados, que luego se adaptan a dominios o tareas particulares. Esta adaptación se realiza
ajustando los parámetros del modelo con el fin de optimizar alguna medida de rendi-
miento adecuada. Un ejemplo notable es la técnica de adaptación conocida como Low
Rank Adaptation (LoRA), que está demostrando ofrecer resultados prometedores en ta-
reas relacionadas con la visión por computadora y el procesamiento del lenguaje natural.
En el marco de este trabajo, nos proponemos analizar y contrastar diversas técnicas pa-
ra el ajuste eficiente de parámetros en el contexto del aprendizaje profundo. Para ello se
llevará a cabo una exploración exhaustiva de las diferentes variantes de LoRA aplicadas
a diversas tareas y modelos preentrenados. El objetivo fundamental radica en identificar
las técnicas más efectivas para mejorar el rendimiento tras adaptar estos modelos.

Palabras clave: Inteligencia artifical, aprendizaje profundo, modelo preentrenado, adap-
tación de modelos, ajuste eficiente de parámetros, LoRA
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Abstract
The field of deep learning stands out as one of the most dynamic and promising ar-

eas within artificial intelligence. The most common practice for building deep learning
systems involves the use of large pre-trained models, which are then adapted to partic-
ular domains or tasks. This adaptation is done by adjusting the model parameters with
the purpose of optimizing some appropriate performance measure. A notable example
is the adaptation technique known as low-rank adaptation (LoRA), which is proving to
offer promising results in tasks related to computer vision and natural language process-
ing. Within the framework of this work, we propose to analyze and contrast various
techniques for efficient parameter fine-tuning in the context of deep learning. To this
end, a comprehensive exploration of the different variants of LoRA applied to a variety
of tasks and pre-trained models will be carried out. The fundamental objective lies in
identifying the most effective techniques to improve performance after adapting these
models.

Key words: Artificial intelligence, deep learning, pre-trained model, model adaptation,
efficient parameter tuning, LoRA
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CHAPTER 1

Introduction

1.1 Motivation

Parameter-efficient fine-tuning (PEFT) techniques aim to reduce the amount of param-
eters demanded in order to fine-tune machine learning models without loosing perfor-
mance. These techniques are highly needed nowadays with models with billions of pa-
rameters which require computational power in order to perform full fine-tuning.

PEFT enable scalable solutions for large models, facilitate multi-task learning, and sup-
port real-time applications. They also offer economic benefits by lowering costs and in-
creasing accessibility to advanced AI technology. Additionally, efficient fine-tuning can
lead to improved generalization, robustness, and interpretability of models.

This project is developed under the framework of a collaboration scholarship with the
Machine Learning and Language Processing (MLLP) research group1 of the Valencia Research
Institute on Artificial Intelligence2 (VRAIN). In addition, this project is also enriched with
the background gained from being currently taking a degree in Mathematics in parallel
with this degree.

1.2 Objectives

The main objectives of this work are the following:

1. To gather and apply all the concepts studied during this degree alongside with
state-of-the-art PEFT techniques.

2. To interpret the underlying mathematical properties of state-of-the-art PEFT tech-
niques.

3. To design a PEFT technique from a theoretical perspective.

4. To evaluate the performance of the designed technique alongside with other PEFT
techniques.

1https://mllp.upv.es
2https://vrain.upv.es

1
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2 Introduction

1.3 Document structure

This document is divided into eight chapters. This first chapter introduces the moti-
vation of this project, describes the objectives and explains the structure of this work.
Next, Chapter 2 contains an introduction to machine learning, starting from the general
landscape to the state-of-the-art model structures and techniques. Then, Chapter 3 enu-
merates and describes the datasets and tasks that are used for training and evaluating the
PEFT techniques.

The following four chapters are devoted to describe and compare different PEFT tech-
niques. Chapter 4 presents LoRA with some of its variants, and performs experiments
to compare them. Then, Chapter 5 mainly describes orthogonal fine-tuning (OFT) and
evaluates it with other PEFT techniques.

After that, Chapters 6 and 7 show the designed PEFT techniques. Chapter 6 explains
and evaluates the designed method inspired by those commented in previous chapters.
Chapter 7 improves the proposed method by deriving a generalization. Finally, Chapter
8 summarizes the work done, gives some concluding remarks, and outlines possible fu-
tures lines of work and investigation.

The reader is recommended to read the document sequentially after Chapter 3, since
each chapter introduces and explains concepts that will be used and mentioned in the
following ones.



CHAPTER 2

Background

2.1 Machine learning

Machine learning is a field that focuses on creating computer algorithms that can learn
to solve tasks on their own by recognizing patterns in data. Firstly, it is compulsory to
define what we refer when we say that a machine program is ’learning’ [8]:

Definition 1 A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.

The first decision we need to make is to pick the kind of training our system will use to
learn. The type of training experience we choose can greatly affect how well the system
learns. An important factor is whether the training gives direct feedback or indirect feed-
back on the choices the system makes.

In this context, the general way of ’learning’ is supervised learning. Supervised learn-
ing is a fundamental approach in the field of machine learning where a model is trained
using labeled data. In this context, ’labeled data’ means that each training example is
paired with the expected output label. The goal of the model is to learn a mapping from
inputs to outputs that can be used to make predictions on new, unseen data.

3



4 Background

2.2 Neural networks

The term ‘neural network’ has its origins in attempts to find mathematical representa-
tions of information processing in biological systems [9]. The main idea behind neural
networks is the ’neuron’ itself, which is often called as perceptron. The perceptron is a
non-linear function f : Rn × Rn × R → {0, 1} defined as follows

f (x; w, b) =

{
1 if wtx + b > 0
0 otherwise

(2.1)

where w, b are parameters and x is the input of the perceptron.

x2

x1

...

xn

∑w2

w1

b

...
wn

wtx + b =
n
∑

i=1
wixi + b

Activation Function

Figure 2.1: Representation of the perceptron as a neuron.

Figure 2.2 shows the representation of the perceptron for classifying a n dimensional
vector x. However, the most successful model of this kind is the feed-forward neural
network, which is also called the multilayer perceptron.

This model gained popularity thanks to the increment of the computational power avail-
able. The neurons are grouped into layers, and each neuron process the entry to produce
an output, which is passed to the next layer. Input layers takes the input vector, while
hidden layers are used to process the input vector and the output layer returns the pro-
cessed result.

x1

x2

x3

x4

y1

Hidden
layer

Input
layer

Output
layer

Figure 2.2: Representation of a multilayer perceptron



2.3 Transformers 5

As mentioned, the neural network model comprises two stages of processing, each of
which resembles the perceptron model, and for this reason the neural network is also
known as the multilayer perceptron [5], represented in Figure 2.2. A key difference com-
pared to the perceptron, however, is that the neural network employs differentiable non-
linearities in the hidden units, whereas the perceptron uses step-function nonlinearities.
This means that the neural network function is differentiable with respect to the network
parameters, and this property plays a central role in network training.

Neural networks use different architectures depending on the type of data. Multilayer
perceptrons are good for tabular data because they have fully connected layers that cap-
ture patterns in structured datasets. Convolutional neural networks are designed for im-
ages, recognizing spatial features. Recurrent neural networks, work well with sequential
data by maintaining temporal dependencies. As data becomes more complex, Transform-
ers have become popular due to their self-attention mechanisms that learn dependencies
on a sequence.

2.3 Transformers

The Transformer is a neural network architecture [3] that relies on the so called self-
attention mechanism to compute dependencies in a sequence. Self-attention assigns
weights to different parts of the sequence based on how they relate to each other. This
helps the model understand which elements in the sequence are important.

Input Embedding
+ Positional

Encoding

Multi-Head Attention

Add & Norm

Feed-Forward

Add & Norm

Encoder Output

N
×

En
co

de
r

su
bs

tr
uc

tu
re

N
×

D
ec

od
er

su
bs

tr
uc

tu
re

Output Embedding
+ Positional Encoding

Masked Multi-Head Attention

Add & Norm

Multi-head attention

Add & Norm

Feed-Forward + Add & Norm

Linear
+ Softmax

Output
probabilities

Figure 2.3: Representation of the Transformer architecture.



6 Background

Transformers have two important substructures that can be observed in Figure 2.3. The
first substructure is the encoder architecture. It consists of a stack of identical layers,
each comprising two main sub-layers: a multi-head self-attention mechanism and a fully
connected feed-forward network. Inputs are first converted into embeddings, which are
then augmented with positional encodings to retain sequence information. In each en-
coder layer, the self-attention mechanism allows the model to focus on different parts of
the input sequence, capturing relationships between words. The equation that models
the self-attention mechanism A is the following:

A(Q, K, V) = S
(

QKt
√

dk

)
V (2.2)

where Q, K, V are named as Query, Key and Value matrices, dk is the dimension of the
matrices, and S is the softmax function.

The multi-head approach enables the model to attend to information from various rep-
resentation subspaces [3]. Following the attention mechanism, a feed-forward network
processes each position independently. Each of these sub-layers is followed by residual
connections and layer normalization to stabilize training and facilitate gradient flow, en-
suring that the model can learn effectively even with deep architectures.

The second substructure is the decoder architecture in the Transformer model, which
mirrors the encoder but includes additional mechanisms to handle the auto-regressive
nature of sequence generation. Each decoder layer consists of three main sub-layers: a
masked multi-head self-attention mechanism, a multi-head attention mechanism over
the encoder’s output, and a position-wise fully connected feed-forward network. The
masked self-attention sub-layer ensures that predictions for a given position depend only
on known outputs for preceding positions, preserving the sequence order. The second at-
tention sub-layer performs multi-head attention over the encoder’s output, allowing the
decoder to focus on relevant parts of the input sequence. This is followed by a feed-
forward network for further processing. Each sub-layer in the decoder also has residual
connections and layer normalization to maintain training stability and efficiency. The fi-
nal output is passed through a linear transformation and a softmax layer to generate the
probability distribution over the target vocabulary.

2.4 Large language models

Large language models (LLMs) [10, 11] represent an advancement in computational lin-
guistics, born by the demands of human-machine natural language interaction. These
models, composed by neural networks and trained on vast datasets, serve as versatile
tools capable of executing complex language tasks such as translation, summarization,
and conversational interactions.

Their emergence marks a transformative milestone in artificial intelligence, fueled by
advancements in transformer architectures, increased computational prowess, and the
availability of extensive training data. LLMs stand as large-scale, pre-trained statistical
models that approximate human-level proficiency across diverse linguistic tasks. This
achievement represents the culmination of decades of research across four distinct waves:
statistical models, neural models, pre-trained models, and finally, the powerful LLMs of
today. LLMs are mainly divided into three categories regarding its structure:
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In encoder-only LLMs, each attention layer can access all words in the original sentence
at every stage. The pre-training process typically involves corrupting a given sentence,
such as by masking random words, and then tasking the model with reconstructing the
original sentence. Encoder models excel at tasks that require understanding the entire se-
quence, such as sentence classification, named entity recognition, and extractive question
answering. One prominent example of an encoder-only model is BERT (Bidirectional En-
coder Representations from Transformers) [12].

In decoder-only models, each attention layer at each stage can only access words that pre-
cede the current word in the sentence. These models are also known as auto-regressive
models. Pre-training for decoder-only models usually involves predicting the next word
or token in a sequence. They are particularly effective for tasks involving text generation.
GPT (Generative Pre-trained Transformer) [13, 14] models are notable examples of this
category.

In encoder-decoder models, they utilize both an encoder and a decoder. At each stage,
the encoder’s attention layers can access all words in the original sentence, whereas the
decoder’s attention layers can only access words that precede a given word in the in-
put. These models are typically pre-trained using objectives similar to those of encoder
or decoder models, but with more complex formulations. For instance, some models are
pre-trained by replacing random spans of text (which can contain several words) with
a single masked special word, and the objective is then to predict the original text that
this mask word replaces. Encoder-decoder models are well-suited for tasks that involve
generating new sentences based on a given input, such as summarization, translation, or
generative question answering. One good example would be BART [15].

2.4.1. Phi 1.5

Phi 1.5 [16] is a decoder-only LLM with 1.3 billion parameters, trained on a dataset of
30 billion tokens. Its architecture is based on a Transformer with 24 layers, 32 attention
heads per layer, and each head having a dimension of 64. The model utilizes rotary
embeddings and a context length of 2048 tokens, with training efficiency enhanced by
flash-attention techniques. The tokenizer used is from the codegen-mono model [18].

The training data for Phi 1.5 includes Phi 1’s [17] dataset (7 billion tokens) and an addi-
tional 20 billion tokens of synthetically generated "textbook-like" data, designed to teach
common sense reasoning and general knowledge. The data generation process was care-
fully designed, using 20,000 selected topics and web data samples to ensure diversity.
The non-synthetic portion of the training data consists of 6 billion tokens from a filtered
code dataset. From the training dataset, three models were trained: phi-1.5-web-only,
phi-1.5-web and phi-1.5. The first one was trained only using internet information, while
the last one was using the training data commented before. The model in the middle was
a mix of both types. For our purpose, we will employ phi-1.5 for performing the experi-
ments.

Phi 1.5 achieves performance on common sense reasoning benchmarks comparable to
models ten times its size, demonstrating significant efficiency. The use of synthetic data
helps address issues of toxic and biased content generation. Additionally, a variant called
Phi 1.5-web incorporates filtered web data to enhance performance further. The open-
sourcing of Phi 1.5 aims to facilitate research on critical issues such as in-context learning,
mechanistic interpretability, and mitigation strategies for hallucinations, toxic content,
and biased outputs [16].
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The model’s capabilities suggest that high-level performance can be achieved in smaller
LLMs, promoting more efficient and environmentally sustainable AI systems. Future
plans for Phi 1.5 include expanding its synthetic dataset to cover more topics and fine-
tuning the model for specific tasks. This model indicates that achieving capabilities com-
parable to larger models at a one-billion-parameter scale is a realistic goal [16].

2.5 Transfer learning

To reach high-level performance efficiently, using existing model knowledge becomes
crucial, and this is where transfer learning becomes crucial. Transfer learning [7] aims to
solve a new problem by leveraging the similarity of data (task or models) between the
old problem and the new one to perform knowledge transfer. The concept of transfer
learning was originally born in psychology and pedagogy (Bray, 1928). It is also called
“Learning Transfer” by psychologists, indicating the influence of one learning process
to another. This even happens naturally in our daily lives. For instance, if we can play
badminton, then we can learn to play tennis since playing badminton and tennis share
some similar strategy and tricks

In recent years, there has been a growing interest in pre-training large language mod-
els. Researchers have found that by collecting large datasets, whether labeled or not, we
can pre-train these models using self-supervised learning methods. These pre-trained
models can then be fine-tuned for specific tasks in natural language processing (NLP) to
boost their performance.

2.6 Parameter-efficient fine-tuning techniques

With the continuous growth in the number of parameters of transformer-based pretrained
language models, particularly the emergence of large language models (LLMs) with bil-
lions of parameters, many NLP tasks have demonstrated remarkable success.

However, the very large size and high computational demands of these models create
challenges when adapting them to specific tasks, especially in environments with limited
computing power. Parameter-efficient fine-tuning (PEFT) [1] offers a solution by reduc-
ing the number of trainable parameters and memory usage while achieving similar per-
formance to full fine-tuning. This has led to increased development of PEFT techniques,
particularly for fine-tuning LLMs.



CHAPTER 3

Datasets and tasks

3.1 Introduction

This chapter is devoted to present the datasets required to train and evaluate the differ-
ent PEFT methods. Section 3.2 presents a library for managing prompt templates from
the different datasets. The following sections describe all the datasets employed with
its structure, and give a prompt example. In addition, it also remarks the benchmarks
obtained from the Phi-1.5 model described in Subsection 2.4.1.

3.2 PromptSource

PromptSource [19] is a system designed for creating, sharing, and using natural language
prompts. A prompt is an input or instruction given to a language model to guide its
response. It sets the context or specifies the task for the model to generate relevant output.
Prompts function by mapping an example from a dataset to a natural language input and
target output. Employing prompts to train and query language models is a burgeoning
area in NLP, requiring new tools that enable users to develop and refine these prompts
collaboratively. PromptSource addresses the emergent challenges in this new setting with

• A templating language for defining data-linked prompts.

• An interface that lets users quickly iterate on prompt development by observing
outputs of their prompts on many examples.

• A community driven set of guidelines for contributing new prompts to a common
pool. Over 2,000 prompts for roughly 170 datasets are already available in Prompt-
Source.

The process of prompt engineering is essential for successful deployment, as choices in
prompting can significantly impact downstream predictions, especially in zero-shot set-
tings. Consequently, there is an increasing demand for tools that facilitate the creation of
prompt corpora.

For our purpose, PromptSource will be employed for generating the corresponding prompts
and facilitate experimental reproducibility. Due to the prompt lack in all works [26, 30,
16], we will select the ones which gives better results.

9
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3.3 BoolQ

Understanding which facts can be inferred as true or false from a text is a crucial aspect
of natural language understanding. Often, these inferences extend beyond the explicit
statements in the text. BoolQ [20] is a dataset consisting of naturally occurring yes/no
questions. These questions are particularly challenging and demand a broad spectrum
of inference skills to answer correctly.

The dataset contains 15,942 examples, 9,427 for training a and 3,270 for testing. It consists
of 3 columns for generating the prompts:

• passage: the passage that needs to be understood.

• question: the question which requires passage comprehension to be answered cor-
rectly.

• answer: the correct solution.

For our training and evaluating purposes, the ’yes_no_question’ template from Prompt-
Source was employed. An example of prompt would be the following:

Text: Announced in April 2000 at the New York Auto Show and arriving in late
2000 in Japan and January 2001 in North America, the Highlander became one of the
first car-based mid-size SUV or mid-size crossovers. The Highlander is the crossover
counterpart to the more rugged, truck-based midsize 4Runner and became Toyota’s
best-selling SUV before being surpassed by the smaller RAV4 in 2006. In Japan, the
Kluger is exclusive to dealership network called Toyota NETZ as a larger alternative
to the RAV4.

Answer the following yes/no question: is the toyota highlander on a truck frame?
Yes or no?

From the technical report of Phi 1.5 [16], the baseline accuracy results presented using
zero-shot evaluation on this dataset are in Table 3.1.

Table 3.1: Baseline accuracy of Phi’s 1.5 models on BoolQ.

phi-1.5-web-only (1.3B) phi-1.5-web (1.3B) phi-1.5 (1.3B)
63.2 72.8 75.8

3.4 PIQA

PIQA [21] is a dataset designed to benchmark advancements in physical commonsense
understanding. The core task involves multiple-choice question answering: given a ques-
tion q and two possible solutions s1 and s2, a model must select the most appropriate
solution, with exactly one being correct.

PIQA’s aim is to offer insights and a benchmark for progress towards language represen-
tations that encompass knowledge typically acquired through seeing or experiencing,
thereby facilitating the development of language models beneficial beyond the natural
language processing community.
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The dataset contains 16,000 examples for training, 2,000 for development and 3,000 for
testing. It consists of 4 columns for generating the prompts:

• goal: the question which requires physical commonsense to be answered correctly.

• sol1: the first possible solution.

• sol2: the second possible solution.

• label: the correct solution. 0 refers to sol1 and 1 refers to sol2.

For our training and evaluating purposes, the ’what_is_the_correct_ending’ template
from PromptSource was employed. An example of prompt would be the following:

Goal: how do you go to sleep

Which is the correct ending?
- open your eyes and sit on your bed
- close your eyes and lay in bed.

Answer:

From the technical report of Phi 1.5 [16] the baseline accuracy results presented using
zero-shot evaluation on this dataset are in Table 3.2.

Table 3.2: Baseline accuracy of Phi’s 1.5 models on PIQA.

phi-1.5-web-only (1.3B) phi-1.5-web (1.3B) phi-1.5 (1.3B)
74.3 77.0 76.6

3.5 SIQA

SIQA [22] is a standardized benchmark for assessing commonsense reasoning in social
contexts. It encompasses different types of inferences related to people’s actions de-
scribed within various situational scenarios.

The benchmark includes multiple-choice questions, each offering three possible answers.
The questions and answers are collected through a three-phase crowd-sourcing process
designed to gather the context, formulate the question, and generate a set of both correct
and incorrect answers.

The dataset contains 35,364 examples, 33,410 for training and 3,000 for testing. It con-
sists of 6 columns for generating the prompts:

• context: the social context commonsense needed to answer correctly.

• question: the question in relation to the context given.

• answerA: the first possible solution.

• answerB: the second possible solution.

• answerC: the third possible solution.
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• label: the correct solution. 0 refers to answerA, 1 refers to answerB and 2 refers to
answerC.

For our training and evaluating purposes, the ’Show choices and generate index’ tem-
plate from PromptSource was employed. An example of prompt would be the following:

Context: Ash redeemed themselves after retaking the test they failed.

Question: How will Ash feel as a result?

Which one of these answers best answers the question according to the con-
text?

A: relieved

B: accomplished

C: proud

From the technical report of Phi 1.5 [16] the baseline accuracy results presented using
zero-shot evaluation on this dataset are in Table 3.3.

Table 3.3: Baseline accuracy of Phi’s 1.5 models on SIQA.

phi-1.5-web-only (1.3B) phi-1.5-web (1.3B) phi-1.5 (1.3B)
41.4 53.0 52.6

3.6 WinoGrande

WinoGrande [23] is a substantial dataset comprising 44,000 problems, designed to enhance
both the scale and difficulty of the dataset. These are pronoun resolution problems that
are straightforward for humans but challenging for machines that depend solely on sta-
tistical patterns without genuine commonsense reasoning abilities. The dataset is pre-
sented in a fill-in-the-blank format, where the blank corresponds to a mention of one of
the two names in the given context.

The sub-dataset used is ’winogrande_l’, which contains 10,234 examples for training and
1,767 for testing. It consists of 4 columns for generating the prompts:

• sentence: the sentence in which appears an underscore to be filled.

• option1: the first possible solution.

• option2: the second possible solution.

• answer: the correct solution.

For our training and evaluating purposes, the ’underscore refer to’ template from Prompt-
Source was employed. An example of prompt would be the following:

Kenneth went cheap on the gemstone present for Michael and _ was understanding
about being a cheapskate.
What does the _ in the above sentence refer to? Kenneth or Michael?

From the technical report of Phi 1.5 [16] the baseline accuracy results presented using
zero-shot evaluation on this dataset are in Table 3.4.
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Table 3.4: Baseline accuracy of Phi’s 1.5 models on WinoGrande.

phi-1.5-web-only (1.3B) phi-1.5-web (1.3B) phi-1.5 (1.3B)
60.4 74.0 73.4

3.7 ARC

The AI2 Reasoning Challenge (ARC) [24] demands significantly more advanced knowl-
edge and reasoning capabilities compared to earlier benchmarks like SQuAD or SNLI.
The ARC dataset is divided into a Challenge Set and an Easy Set. The Challenge Set con-
sists exclusively of questions that were incorrectly answered by both a retrieval-based
algorithm and a word co-occurrence algorithm. This dataset features only natural, grade-
school level science questions.

One of sub-dataset used is ARC-Easy, which contains 1,119 examples for training and
1,172 for testing. It consists of 3 columns for generating the prompts:

• question_stem: the question to be answered.

• choices: a dictionary which contain pairs of text and labels to identify them.

• answerKey: the key of the correct solution.

For our training and evaluating purposes, the ’pick_the_most_correct_option’ template
from PromptSource was employed. An example of prompt would be the following:

Pick the most correct option to answer the following question.

Which of the following has the greatest direct influence on movement of the litho-
sphere?

Options:

- A: the Sun

- B: the Moon

- C: Earth’s core

- D: Earth’s mantle

From the technical report of Phi 1.5 [16] the baseline accuracy results presented using
zero-shot evaluation on this dataset are in Table 3.5.

Table 3.5: Baseline accuracy of Phi’s 1.5 models on ARC-Easy.

phi-1.5-web-only (1.3B) phi-1.5-web (1.3B) phi-1.5 (1.3B)
66.6 76.1 75.6

The other sub-dataset used is ARC-Challenge, which contains 2,251 examples for training
and 2,376 for testing. It contains the same columns as ARC-Easy. For our training and
evaluating purposes, the ’qa_options’ template from PromptSource was employed. An
example of prompt would be the following:
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Which investigation would require the longest period of observation?

Options:
- chicken eggs hatching
- paint fading to a lighter color
- apples ripening on the tree
- boulders weathering into gravel

From the technical report of Phi 1.5 [16] the baseline accuracy results presented using
zero-shot evaluation on this dataset are in Table 3.6.

Table 3.6: Baseline accuracy of Phi’s 1.5 models on ARC-Challenge.

phi-1.5-web-only (1.3B) phi-1.5-web (1.3B) phi-1.5 (1.3B)
32.9 44.9 44.4

3.8 OBQA

OpenBookQA [25] is a question-answering dataset designed to resemble open book ex-
ams, which are used to assess human understanding of a subject. The accompanying
"open book" consists of 1326 elementary-level science facts. Approximately 6000 ques-
tions in the dataset challenge users to demonstrate their understanding of these facts and
their ability to apply them to new situations.

While existing QA datasets over documents or knowledge bases are generally self-contained
and focus on linguistic understanding, OpenBookQA delves into a more profound com-
prehension of both the subject matter and the language in which it is conveyed.

The main dataset contains 4,957 examples for training and 500 for testing. It consists
of 3 columns for generating the prompts:

• question_stem: the question to be answered.

• choices: a dictionary which contain pairs of text and labels to identify them.

• answerKey: the key of the correct solution.

For our training and evaluating purposes, the ’which_correct’ template from Prompt-
Source was employed. An example of prompt would be the following:

Green parts of a life form absorb

Which is the correct answer?
- carbon dioxide
- light
- oxygen
- water
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From the technical report of Phi 1.5 [16] the baseline accuracy results presented using
zero-shot evaluation on this dataset are in Table 3.7.

Table 3.7: Baseline accuracy of Phi’s 1.5 models on OBQA.

phi-1.5-web-only (1.3B) phi-1.5-web (1.3B) phi-1.5 (1.3B)
27.4 36.0 37.2





CHAPTER 4

LoRA, DoRA and LoKr

4.1 Introduction

This chapter introduces some PEFT techniques belonging to the LoRA family. As ex-
plained in Section 1.2, one of the goals of this work is to compare some fine-tuning tech-
niques in terms of performance after fine-tuning Phi-1.5 model. Section 4.2 is dedicated to
introduce orthonormal matrices, needed for understanding the next sections and chap-
ters. Section 4.3 introduces LoRA, remarking its advantages against other fine-tuning
techniques. Section 4.4 presents LoKr, a variant of LoRA for fine-tuning. Section 4.5
shows DoRA, a variant of LoRA, and discusses some of its improvements. Section 4.6
performs experiments on the tasks commented in Chapter 3 and compare the results.
Finally, section 4.7 is devoted to give detailed conclusions of this chapter.

4.2 Orthonormal matrices

One important issue concerning fine-tuning is the possibility to separate direction and
magnitude during training [30, 31, 32]. It is easy to see that the scaling transformation can
be done correctly using a scalar matrix. However, distance-preserving direction changes
can only be achieved through orthonormal matrices [4], which are matrices belonging to
the special orthogonal group SO(n), defined as follows:

SO(n) =
{

U ∈ GL(n) | UUt = UtU = I ∧ det(U) = 1
}

(4.1)

where GL(n) is the group containing all the possible n × n invertible matrices. All ma-
trices belonging to SO(n) are also called unitary matrices. This group is also called the
rotation group, since it generalizes rotations of vectors in higher dimensions.

Unlike other matrix groups, SO(n) is not closed over + operation. That means, for in-
stance, given any two matrices M, N ∈ SO(n), M + N does not always belong to SO(n).
SO(n) is only closed over the matrix multiplication operation. This group is also named
as the group of distance-preserving transformations of a Euclidean space of dimension n
that preserves a fixed point.

17
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4.3 LoRA

Low Rank Adaptation (LoRA) [26, 27] on large models marked a before and after in fine-
tuning techniques. This method freezes the pretrained model weights and injects train-
able rank decomposition matrices into each targeted layer, greatly reducing the number
of trainable parameters for downstream tasks. Considering the targeted matrix M ∈
Rm×n, we define the new matrix M′ ∈ Rm×n as follows:

M′ = M + ∆M = M + BA (4.2)

where A ∈ Rr×n, B ∈ Rm×r are trainable matrices and M is frozen during training. The
core idea behind this method is that the change in weights during model adaptation also
has a low ’intrinsic rank’.

A = N (0, σ)

B = 0

M ∈ Rm×n ∆M ∈ Rm×n

Figure 4.1: LoRA reparametrization.

For initialization, a random Gaussian distribution is used for A, while B is initialized to
zero, ensuring that ∆M = BA = 0 at the start of training. This approach is necessary to
begin training with M′ = M, as observed in Figure 4.1. Additionally, ∆M is scaled by α

r ,
where α is a constant relative to r. This scaling reduces the need to retune hyperparame-
ters when r varies.

One interesting perspective of LoRA’s method is to see it as a computed bias vector ob-
tained by b(x) = ∆Mx and then added to the original vector y = Mx.

∆Mx = BAx
Mx

Mx + ∆Mx

Figure 4.2: LoRA geometric interpretation.

Thus, the result is the sum of both vectors, which is represented in Figure 4.2. The pre-
cision of the computed bias improves as the intrinsic dimension (rank) increases. Yet,
empirical studies indicate that simply increasing the rank doesn’t consistently yield op-
timal outcomes [26, 30] in LLMs. These implications hint at the necessity to consider
additional factors, like data volume, task complexity, etc., when determining the intrinsic
rank r.
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LoRA presents notable advancements in machine learning by targeting specific model
parameters for modification, significantly reducing computational and storage demands.
This focused adjustment not only enhances efficiency but also preserves the original
model’s knowledge, resulting in improved performance across tasks.

Moreover, LoRA’s methodology enhances model scalability, facilitating smooth integra-
tion and customization across various applications. Its capacity to maintain high perfor-
mance while minimizing resource consumption positions LoRA as an appealing solution
for deploying complex models in resource-limited environments [26].

4.4 LoKr

Other PEFT methods, such as the Low-Rank Kronecker Product (LoKr) [28, 29], tries
to improve LoRA by redefining some of its components. In this case, LoKr utilizes the
standard Kronecker product of matrices A ∈ Rs×t and B ∈ Rp×q:

B ⊗ A =

a11B · · · a1tB
...

. . .
...

as1B · · · astB

 (4.3)

Where B ⊗ A ∈ Rsp×tq, sp = m, tq = n. One unique advantage of using Kronecker
products lies in the multiplicative nature of their ranks, allowing to move beyond the
limitations of low-rank assumptions.

4.5 DoRA

Finally, Weight-Decomposed Low-Rank Adaptation (DoRA) [30] method is similar to the
ones mentioned before: they compute a bias ∆Mx and then add it to the original matrix.
However, the main difference that makes DoRA better is its normalization strategy. They
try to separate magnitude m and direction V, allowing both parts to be focused only on
one type of transformation:

M′ = m
M + ∆M

∥M + ∆M∥ = m
M + BA

∥M + BA∥ = m
V

∥V∥ (4.4)

where V ∈ Rm×n is the direction and m ∈ Rm is the magnitude. At the beginning,
m = ∥M∥ and B, A are initialized in the same way as LoRA for maintaining the original
matrix at the start of the training process.

A = N (0, σ)

B = 0

M ∈ Rm×nm 1
∥V∥

Magnitude Direction

Figure 4.3: DoRA reparametrization.
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Although DoRA tries to separate direction from magnitude, it does not still obtain its
objective due to matrix normalization. Normalization does not always produces unitary
matrices. This can be easily observed in this example:

M =

(
2 0
1 3

)
=⇒ ∥M∥ =

(
1√
5

,
1
3

)t

=⇒ det
(

M
∥M∥

)
=

2√
5
≈ 0.89 ̸= 1 (4.5)

Therefore, normalizing a matrix is not an optimal technique for obtaining unitary matri-
ces that uniquely alter the vector directions. Despite normalization only applies a slight
scaling transformation, it might be interesting to see whether full separation of magni-
tude and scale gives better or worse results.

4.6 Experiments

In this section, comparative results among the PEFT techniques are presented. However,
for the sake of simplicity, results with the LoKr technique have been discarded for dis-
cussion since it does not improve those achieved by LoRA and DoRA.

For comparing LoRA and DoRA, we will study its effects varying the intrinsic rank
r ∈ {4, 8, 16, 32, 64}. One evaluation per dataset per method per rank has been performed
due to time and computational power limitations. All datasets described in Chapter 3
were employed. More information about training hyper-parameters in Appendix A.

Figure 4.4 shows average accuracy across datasets over increasing matrix ranks in or-
der to compare the performance of LoRA and DoRA techniques.

4 8 16 32 64
Rank r

56.5

58.5

60.5

Ac
cu

ra
cy

LoRA DoRA

Figure 4.4: Comparative average accuracy across commonsense reasoning tasks over an increas-
ing matrix rank for LoRA and DoRA.

At first sight, Figure 4.4 shows how DoRA performs slightly better than LoRA in all cases.
This difference is bigger when the intrinsic rank is lower, which correlates with the re-
sults from the results reported in [30]. The difference obtained between both methods
could be bigger, since only Query, Key and Value matrices from the Transformers were
fine-tuned. In addition, the model employed, Phi-1.5, has less parameters than common
large language models. Thus, the main factors that make the results reported different
from those in [30] are the size of the LLMs employed and the amount of targeted matrices
for fine-tuning.
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4.7 Conclusions

During this chapter we have discussed how LoRA’s family can be understood as additive
fine-tuning, learning the correct bias to be added to the original result. This implication
help us to understand its advantages, making these methods the most valuable from the
PEFT methods due to its adaptability, efficiency and good performance.

From the experimental perspective, the first conclusion obtained is the results obtained
by using LoKr, which are not as good as those reported using LoRA or DoRA. LoKr
distribution of trainable parameters doesn’t seem a good choice for fine-tuning LLMs,
since both accuracy and time cost are worse than LoRA itself. We can also conclude that
DoRA performs slightly yet consistently better than LoRA. From the results obtained, the
maximum average accuracy obtained is when r = 64 and using DoRA, achieving 61.2 of
accuracy. In this case, increasing the rank more than 64 could have given better results.





CHAPTER 5

OFT: Orthogonal fine-tuning

5.1 Introduction

This chapter introduces a new PEFT technique that is focused on orthogonality. As ex-
plained in Section 1.2, one of the goals of this work is to compare some fine-tuning tech-
niques in terms of performance after adapting Phi-1.5 model. Section 5.2 is dedicated
to introduce the main orthogonal PEFT technique. Section 5.3 shows a variant for mak-
ing fine-tuning with orthogonal matrices. Section 5.4 performs experiments on the tasks
commented in Chapter 3 and compares the results with those reported in Section 4.6 with
other PEFT techniques. Finally, Section 5.5 is devoted to give detailed conclusions of this
chapter.

5.2 OFT

The PEFT methods discussed in Sections 4.3, 4.4 and 4.5 have certain drawbacks that
need consideration. While LoRA, DoRA, and LoKr concentrate on learning matrices that,
when multiplied with the input, yield the necessary bias to augment the original result,
Orthogonal Fine-Tuning (OFT) [31] takes a different approach. OFT is centered around
learning an optimal distance-preserving transformation to modify the output, disregard-
ing scaling transformations. In other words, OFT aims to learn the matrix R ∈ SO(m)
such that:

M′ = RM (5.1)

where M, M′ ∈ Rm×n. To understand the effect of distance-preserving transformations,
it is needed to understand hyperspherical energy. Hyperspherical energy is defined as
the sum of hyperspherical similarity (e.g, cosine similarity) of M′. By performing OFT,
hyperspherical energy remains the same during the fine-tuning stage. This means that
the distance between subspaces remains the same. In the case of LoRA’s family, hyper-
spherical energy could vary. OFT authors claim that it is preferable to preserve the same
hyperspherical energy during fine-tuning [31].

Standard orthogonalization methods such as Gram-Schmidt method, despite differen-
tiable, are often too expensive to compute in practice. For better efficiency, OFT adopt
Cayley parametrization to generate the orthogonal matrix R:

R = (I + Q)(I − Q)−1 (5.2)

where Q is a skew-symmetric matrix satisfying Q = −Qt. Even using Cayley transform
to parameterize the unitary matrix, making R can still be very parameter-inefficient with

23
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a large dimension. To address this, R is represented as a block-diagonal matrix with r
blocks, leading to the following form:

R =


R1

R2
. . .

Rr

 (5.3)

where R1, R2, . . . , Rr ∈ SO( n
r ) are obtained using Equation 5.2. OFT authors claim that

the most effective update to modify the semantics is to change neuron directions, which
is exactly what OFT is designed for.

R1

R2

Rr

· · ·
M ∈ Rm×n

Figure 5.1: OFT reparametrization.

If orthogonalization is desired, there are two possible ways to achieve it. The first one is
to produce an orthogonal differentiable matrix. The other option is to restrict the matrix,
by adding a term in the loss function, to ensure that the matrix is close to be orthogonal.

The second option is simpler to execute but doesn’t guarantee orthogonality in the re-
sulting matrix. The first option yields the intended outcome, yet constructing fast dif-
ferentiable orthogonal matrices suppose a challenge. As illustrated in Figure 5.1, em-
ploying the Cayley transformation requires to construct skew-symmetric matrices and
subsequently transform them to each block, involving numerous inverse computations.
This process significantly elevates time expenses due to the operations required to derive
the resultant matrix R.

In addition to computing the unitary matrix R, the authors of OFT also introduce a
straightforward extension to the original method. This extension involves learning a
magnitude scaling for each neuron. This addition is motivated by the observation that
scaling transformations do not alter the hyperspherical energy, given that vectors are
normalized for computing it. Consequently, the resulting matrix M′ is as follows:

M′ = RMD (5.4)

where R is computed using Equation 5.2 and D = diag(s1, . . . , sn) is the learnable scaling
transformation. Whether to put D at the beginning or at the end is a choice made by the
authors, though it is easy to see that D1RM = RMD2 only if D1 = D2 = I. Therefore,
despite author experiments show that using this method gives better results than usual
OFT, the scaling transformation may not be correctly placed in all possible cases.

5.3 BOFT

Another approach to orthogonalization is Orthogonal Fine-tuning via Butterfly Factor-
ization (BOFT) [32]. The butterfly structure, originally employed in the Cooley-Tukey
algorithm for fast Fourier transform, has also been adopted as a network topology for
efficient data exchange in computing. An example of this factorization is provided in
Figure 5.2.
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Figure 5.2: Butterfly structure for d = 4

In Fourier transform, a local modification in the frequency domain can induce a global
change in the spatial domain, similar to our information transmission problem where
each node at the initial level communicates with every node at the final level.

Because the final orthogonal matrix in BOFT results from multiplying several orthog-
onal matrices, the training runtime overhead is greater compared to OFT and other PEFT
methods mentioned earlier. Additionally, it’s uncertain whether the butterfly network is
the most efficient method for transmitting information.



26 OFT: Orthogonal fine-tuning

5.4 Experiments

In this section, comparative results among the PEFT techniques are presented. However,
for the sake of simplicity, results with the BOFT technique have been discarded for dis-
cussion since it does not improve those achieved by OFT, LoRA and DoRA.

For comparing LoRA, DoRA and OFT, we will study its effects varying the intrinsic rank
r ∈ {4, 8, 16, 32, 64}. One evaluation per dataset per method per rank has been per-
formed due to time and computational power limitations. For making a ’fair evaluation’
between all methods, OFT rank needs to be computed as a function of LoRA’s rank in
order to have approximately the same number of trainable parameters. This is due to
the different meaning of the rank in both methods [26, 31]. No scaling transformations
have been employed for OFT. All datasets described in Chapter 3 were employed. More
information about training hyper-parameters in Appendix A.

Figure 5.3 shows average accuracy across datasets over increasing matrix ranks in or-
der to compare the performance of LoRA, DoRA and OFT techniques.

4 8 16 32 64
Rank r

47

49

51

53

55

57

59

61

63

Ac
cu

ra
cy

LoRA DoRA OFT

Figure 5.3: Comparative average accuracy across commonsense reasoning tasks over an increas-
ing matrix rank for LoRA, DoRA and OFT.

It can be easily in Figure 5.3 seen that OFT performs significantly worse when the rank
is lower. This can be influenced by the fact of computing similar amount of trainable
parameters. For low ranks in OFT, there are many tiny blocks in R matrix, which do not
perform empirically well. For higher ranks, the blocks are grouped into bigger ones in R,
leading to better results.

Since OFT does not perform random initialization [31], only one evaluation per dataset
per rank is enough to show its weakness against LoRA and DoRA.
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5.5 Conclusions

This chapter is focused on showing another approach to do fine-tuning. Instead of adopt-
ing additive fine-tuning, a multiplicative fine-tuning approach is presented as a possible
alternative.

From the experiments perform on the previous section, the main conclusion is the worse
results obtained from BOFT. Although they were not as bad as the ones obtained with
LoKr, both time and computational resources were excessive comparing to other PEFT
techniques. BOFT tries to perform orthogonality in another way than OFT, but it does
not obtain competitive results when used for fine-tuning LLMs. This is also supported
by the authors [32], which mention its weaknesses.

Additionally, as observed in Figure 5.3, OFT performs similarly than LoRA and DoRA
for r ≥ 32, although being slightly worse in those cases. OFT is not a good choice when
having low resources for increasing r, since low ranks perform worse. In addition, OFT
time cost is ×3 higher than LoRA. Thus, although OFT tries to introduce orthogonality
as a better technique, it does not appear to give better results in LLMs. Possibly, scaling
transformations are needed together with distance-preserving transformations in order
to correctly fine-tune LLMs.





CHAPTER 6

SHOFT: SVD Householder
orthonormal fine-tuning

6.1 Introduction

This chapter proposes a designed PEFT technique, SHOFT. As commented in section 1.2,
one of the goals of this work is to develop a fine-tuning technique in order to improve
performance after adapting Phi-1.5 model. Sections 6.2 and 6.3 explain some mathemat-
ical concepts needed to understand the proposed PEFT method. Section 6.4 is dedicated
to introduce the insights of the method proposed and how it works. Section 6.5 shows the
initialization of the proposed method, comparing it to other PEFT initializations. Section
6.6 performs experiments on the tasks commented in Chapter 3 and compares the results
with those reported in Sections 4.6 and 5.4 with other PEFT techniques. Finally, Section
6.7 is devoted to give detailed conclusions of this chapter.

6.2 Singular value decomposition

The practical and theoretical importance of the singular value decomposition (SVD) [4]
is hard to overestimate. If A is a real m × n matrix, then there exist unitary matrices:

U = [u1 | · · · | um] ∈ SO(m) V = [v1 | · · · | vn] ∈ SO(n) (6.1)

such that
Ut AV = Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min{m, n} (6.2)

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

One important aspect of SVD is its geometric interpretation: any matrix A can be decom-
posed into two distance-preserving transformations U, V and a scaling transformation
Σ.

29
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6.3 Householder transformation

Let u ∈ Rn be a vector of unit length (∥u∥2 = 1). Then

H = I − 2uut (6.3)

is said to be a Householder transformation or reflector [4]. A Householder transformation
is a linear transformation that describes a reflection about a hyperplane containing the
origin.

u

x

x − 2(utx)u

x − (utx)u

Figure 6.1: Householder transformation on R3

Figure 6.1 show how the x vector is projected into the hyperplane made by the normal-
ized u vector and then reflected. The general formulation of Householder transformation
for a given nonzero vector u ∈ Rn is the following

H = I − uut

τ
(6.4)

where τ =
∥u∥2

2
2 . It can be demonstrated that for any matrix U ∈ SO(n), it can be decom-

posed as a composition of Householder transformations [6] as follows

U = H1H2 · · · Hn (6.5)

6.3.1. CWY transform

Computing the product of multiple matrices is costly. Thus, numeric methods are needed
to facilitate this computation. In our case, the action of multiple Householder transfor-
mations and cast it in terms of high-performance matrix-matrix products was proposed
in the late 1980s. In particular, the WY transform and the CWY transform were proposed.
From [33] we refer to a theorem that ensures the properties mentioned before:

Theorem 1 Let the matrix U ∈ Rm×k have linearly independent columns. Partition U by
columns as

U = (u0 | u1 | . . . | uk−1) (6.6)

and consider the vector t = (τ0, τ1, . . . , τk−1)
t with τi ̸= 0, 0 ≤ i < k. Then, there exists a

unique nonsingular upper triangular matrix S ∈ Rk×k such that(
I − u0ut

0
τ0

)(
I − u1ut

1
τ1

)
· · ·
(

I −
uk−1ut

k−1

τk−1

)
= I − USUt (6.7)

S can be computed by the following three steps:



6.4 Insights and method 31

1. S := the upper triangular part of UtU.

2. Divide the diagonal elements of S by two.

3. S := S−1.

However, step 3 can be omitted by using the UT transform, considering T−1 = S. The
basic idea is to compute M := T−1Ut as a triangular solve instead of computing the in-
verse and the profuct of both matrices, reducing the number of floating point operations
performed.

6.4 Insights and method

The purpose of SHOFT is to divide the strategy of fine-tuning the pretrained matrix into
its two atomic parts: fine-tuning distance-preserving transformations and scaling trans-
formations separately. Given a matrix M ∈ Rm×n, we can decompose it using singular
value decomposition:

M = UΣVt (6.8)

where U ∈ SO(m) and Vt ∈ SO(n) are distance-preserving transformations and Σ ∈
Rm×n is a scaling transformation. For fine-tuning U and V, we will employ accumulated
Householder transformations. Additionally, in order to compute faster this transforma-
tions, UT transform described in Section 6.3 is used.

Considering that WU ∈ Rm×rU , WV ∈ Rn×rV are trainable matrices containing rU and
rV vectors that describe the Householder transformations, we compute their respective
accumulated Householder matrices HU ∈ SO(m), HV ∈ SO(n). For fine-tuning the scal-
ing transformation Σ, we fine-tune all its elements, since Σ only contains the singular
values of M. Thus, SHOFT can be formulated as follows:

M′ = HU · U · Σ′ · Vt · HV = U′Σ′V ′ (6.9)

As noted in [9], any unitary matrix can be decomposed into a product of Householder
transformations. This suggests that using a greater number of Householder vectors
yields better approximations of any unitary matrix. Indeed, SHOFT can be seen as a
method for fine-tuning the SVD of the original matrix, learning both the singular vectors
and singular values. Consequently, from a theoretical standpoint, SHOFT can approxi-
mate any matrix M′ ∈ Rm×n by employing a sufficient number of Householder vectors,
as it can approximate any singular value decomposition of any matrix.

HU U ∈ Rm×m Σ′ ∈ Rm×n Vt ∈ Rn×n HV

U′ ∈ SO(m) V ′ ∈ SO(n)

Figure 6.2: SHOFT reparametrization.

SHOFT might initially be perceived solely as an orthogonal PEFT method. Nevertheless,
it is important to recognize that SHOFT cleverly incorporates the use of a scaling trans-
formation. As discussed earlier in Section 5.4, OFT can utilize a scaling transformation,
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though its correct position was uncertain. In contrast, SHOFT effectively leverages the
algebraic structure provided by SVD to achieve this goal.

Some advantages of SHOFT include:

• It employs orthogonal transformations, which, as discussed in section 5.2, are prefer-
able to additive weight updates.

• It wisely uses scaling and distance-preserving transformations to correctly separate
magnitude and direction.

• It is more interpretable than typical PEFT techniques. SHOFT fine-tunes both sin-
gular vectors and singular values, providing insight into their variations during
training.

• It is faster than standard orthogonal PEFT techniques due to the use of CWY and
UT transforms.

• There is no additional inference overhead because, during deployment, the learned
matrix M′ can be explicitly computed.

In terms of memory, SHOFT needs to compute the SVD and store the U and V matrices
as non-trainable parameters at the beginning of the training process. This approach in-
creases both time and memory costs. However, since the SVD is only computed at the
start, its cost can be amortized over the duration of the training.

On the other hand, removing the original matrix helps free up some memory, though
it does not eliminate the additional memory usage entirely. To completely resolve this
issue, the current method must be reformulated. This problem will be addressed in the
next chapter by introducing a generalization of the designed method.

6.5 Initialization

Initialization plays a crucial role in the training process, impacting both the speed of con-
vergence and the quality of the final result. Random initialization have shown better
results than constant initialization by breaking symmetry and improving generalization.
One constrain imposed in PEFT techniques is that the initialization needs to ensure that,
at the beginning, the matrix remains untouched (M′ = M).

While LoRA, DoRA, LoKr can be randomly initialized, OFT cannot, due to also need-
ing to preserve orthogonality (Q = 0 to ensure R = I). In general, orthogonal PEFT
methods cannot be randomly initialized. By contrast, SHOFT can be randomly initial-
ized by considering consecutive pairs of equal vectors. Since HU , HV are accumulated
reflections, we can obtain the identity matrix by putting together two identical vectors
that express the same reflection:(

I − u0ut
0

τ0

)(
I − u0ut

0
τ0

)
︸ ︷︷ ︸

I

· · ·
(

I − urut
r

τr

)(
I − urut

r
τr

)
︸ ︷︷ ︸

I

= I (6.10)

Thus, if k is even, we can generate r = k
2 pairs of random vectors. If k is odd, we can

generate ⌊ k
2⌋ pairs of random vectors and a zero vector. Vectors in WU , WV will be picked

from a random high-dimensional uniform distribution of range [−1, 1]. This distribution
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is considered the best option in order to correctly sample the unit hipersphere. In the case
of Σ′, it will be initialized to the original singular values, Σ.

6.6 Experiments

In this section, SHOFT is compared against the best performing PEFT technique from
Chapters 4 and 5. As in previous chapters, this comparison is performed in terms of ac-
curacy as a function of the intrinsic rank r ∈ {4, 8, 16, 32, 64}. Five evaluations per dataset
per rank have been performed in this case for obtaining more precise results. All datasets
described in Chapter 3 were employed. For all comparisons, rU = rV = r in order to
perform ’fair evaluations’.

DoRA results produced for making Figures 4.4 and 5.3 will be used to alongside with
the new evaluations performed. More information about training hyper-parameters in
Appendix A.

6.6.1. Experiments on WinoGrande

For WinoGrande dataset, described in section 3.6, DoRA will be employed to make the
comparison, presented in Figure 6.3.
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Figure 6.3: Comparative average accuracy on WinoGrande over an increasing matrix rank for
DoRA and SHOFT.

As observed in Figure 6.3, there is a clear decrease tendency after r = 8. DoRA performs
slightly better, although the maximum difference between both methods is less than 0.5
of accuracy. Therefore, we can’t conclude there is a significant difference between both
methods in this task.
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6.6.2. Experiments on BoolQ

For BoolQ dataset, described in section 3.3, DoRA will be employed to make the compar-
ison, presented in Figure 6.4.
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Figure 6.4: Comparative average accuracy on BoolQ over an increasing matrix rank for DoRA
and SHOFT.

As observed in Figure 6.4, there’s a slightly increase tendency. In this case, we can see
how SHOFT outperforms DoRA, giving higher results. Therefore, in BoolQ SHOFT gives
better performance.

6.6.3. Experiments on PIQA

For PIQA dataset, described in section 3.4, DoRA will be employed to make the compar-
ison, presented in Figure 6.5.
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Figure 6.5: Comparative average accuracy on PIQA over an increasing matrix rank for DoRA and
SHOFT.

As observed in Figure 6.5, there’s a logarithmic decrease tendency. In this case, we can
see how DoRA outperforms SHOFT. In this task, increasing r supposed an accuracy loss
in both methods, which was commented in Section 4.3. Therefore, in PIQA DoRA gives
better performance.
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6.6.4. Experiments on SIQA

For BoolQ dataset, described in section 3.5, DoRA will be employed to make the compar-
ison, presented in Figure 6.6.
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Figure 6.6: Comparative average accuracy on SIQA over an increasing matrix rank for DoRA and
SHOFT.

As observed in Figure 6.6, there is a clear increase tendency with a peak at r = 32. In
this case, SHOFT clearly outperforms DoRA. This fact is more noticeable in lower ranks.
Thus, in SIQA SHOFT gives better performance.

6.6.5. Experiments on ARC-e

For ARC-e dataset, described in section 3.7, DoRA will be employed to make the com-
parison, presented in Figure 6.7.
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Figure 6.7: Comparative average accuracy on ARC-e over an increasing matrix rank for DoRA
and SHOFT.

As observed in Figure 6.7, there is a clear increase tendency. In this case, SHOFT outper-
forms DoRA along all ranks explored. Thus, in ARC-e SHOFT gives better performance.
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6.6.6. Experiments on ARC-c

For ARC-c dataset, described in section 3.7, LoRA will be employed to make the compar-
ison, presented in Figure 6.8.
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Figure 6.8: Comparative average accuracy on ARC-c over an increasing matrix rank for DoRA
and SHOFT.

As observed in Figure 6.8, there is a clear increase tendency. This make sense since in
the previous subsection similar results were obtained with ARC-e subset. In this case,
SHOFT outperforms DoRA along all ranks explored. Thus, in ARC-c SHOFT gives better
performance.

6.6.7. Experiments on OBQA

For OBQA dataset, described in section 3.8, DoRA will be employed to make the com-
parison, presented in Figure 6.9.
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Figure 6.9: Comparative average accuracy on OBQA over an increasing matrix rank for DoRA
and SHOFT.

As observed in Figure 6.9, there is a clear increase tendency. In this case, SHOFT outper-
forms DoRA along all ranks explored. Thus, in OBQA SHOFT gives better performance.
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6.6.8. Average results

As done in sections 4.6 and 5.4, we will also study the comparative average accuracy
across commonsense reasoning tasks over an increasing matrix rank for DoRA and SHOFT.
This results are presented in Figure 6.10.
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Figure 6.10: Comparative average accuracy across commonsense reasoning tasks over an increas-
ing matrix rank for DoRA and SHOFT.

As observed in Figure 6.10, there’s a clear increase tendency. In this case, SHOFT clearly
performs better, although at r = 64 both methods provide similar results. Even in lower
ranks, SHOFT obtains high performance compared with DoRA. Thus, SHOFT gives bet-
ter results in average than DoRA.

6.7 Conclusions

The purpose of this chapter was to design a PEFT technique that improves the weak-
nesses presented on previous chapters. The role of Householder reflections and SVD
played a crucial role for achieving this objective.

A random initialization for the multiplicative fine-tuning method was proposed, which
was not previously tried by other orthogonal PEFT techniques. This was suggested to
improve SHOFT capabilities while preserving orthogonality.

Experimental results have shown that SHOFT consistently outperforms DoRA on most
tasks. This can also be observed in Figure 6.10, in which clearly SHOFT outperforms
DoRA.





CHAPTER 7

RHOFT: Randomized SHOFT

7.1 Introduction

This chapter proposes a generalization of the designed PEFT technique commented in the
previous chapter, RHOFT. As explained in Section 1.2, one of the goals of this work is to
develop a fine-tuning technique in order to improve performance after adapting Phi-1.5
model. Section 7.2 explain some mathematical concepts needed for understanding the
variant PEFT method. Section 7.3 makes an analysis of the distribution of the singular
values. Section 7.4 is dedicated to introduce the insights of the method proposed and how
it works. Section 7.5 performs experiments on the tasks commented on Chapter 3 and
compares the results with the ones obtained in Sections 4.3, 5.4 and 6.6 with other PEFT
techniques. Finally, Section 7.6 is devoted to give detailed conclusions of this chapter.

7.2 Randomized singular value decomposition

Randomized singular value decomposition (randomized SVD) is a technique used to ap-
proximate a given matrix with less singular values than usual SVD. If A is a real m × n
matrix and k ∈ N, k ≤ min{m, n}, then we can compute:

U = [u1 | · · · | uk] ∈ SO(m) V = [v1 | · · · | vk] ∈ SO(n) (7.1)

such that
A ≈ UΣVt (7.2)

where Σ = diag(σ1, . . . , σk) are the highest k approximated eigenvalues. Halko, Martins-
son, and Tropp [34], demonstrated that a modular framework could be used for good
randomized matrix approximations.

The geometric interpretation of SVD is crucial because it reveals the intrinsic structure
and dimensionality of the matrix learned. By isolating the directions of maximum vari-
ance (through the singular values), SVD helps identify the most important features and
reduces the dimensionality without significant loss of information.

Randomized SVD is faster to compute that usual SVD and approximates only the de-
sired number of singular vectors and singular values.

39
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7.3 SVD curve analysis

In order to understand RHOFT, it would be interesting to see how the magnitude of the
largest singular values of the targeted matrices are distributed. That is, the curve made
by sorting them for each target.

For this purpose, Phi-1.5 Key, Query and Value matrices will be employed. Figures
7.1, 7.2 and 7.3 show the average curves of the Query, Key and Value matrices respec-
tively. The X axis represent the position that occupies the singular value, and the Y axis
represents its associated magnitude. Since there are 24 matrices for each target, the rep-
resentation of the curve will be an average of the respective matrices. All quartiles are
represented in the form of dots, allowing to show the cumulative sum of the singular
values at 4 stages.
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Figure 7.1: SVD curve of Query matrix
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Figure 7.2: SVD curve of Key matrix
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Figure 7.3: SVD curve of Value matrix

Both Query and Key curves show high top singular values, while Value curve largest
singular value is less than 5. However, although their different shapes, all curves share a
common property: first, second and third quartiles are situated before 250, 500 and 1000
respectively.

The main implication of the curves represented is the importance of each dimension in
order to fine-tune. For instance, a dimension with a singular value of less than 1 is less
important than a dimension with a singular value of 14. Lower singular values mean that
the dimension learned does not contain many useful information.

7.4 Insights and methods

As mentioned in Section 6.4, one issue concerning SHOFT is that it increases the size of
the model while training because of the need of storing matrices U, V from SVD. This can
be solved by computing the randomized SVD instead of the full SVD. Given a number k,
the randomized SVD reconstructs the top k singular values:

M ≈ UΣVt (7.3)

where U ∈ Rm×k and Vt ∈ Rk×n are distance-preserving transformations combined with
projection transformations, and Σ ∈ Rk×k is a scaling transformation. For initialize and
fine-tune U, V and Σ, we will do the same approach as in SHOFT.

By choosing k << min{m, n}, we can reduce the number of non-trainable parameters
we must save by loosing some precision in the decomposition. In order to maintain the
same number of non-trainable parameters as the pretrained matrix, then k = mn

m+n . For
square matrices, that limit is k = d

2 .
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HU U ∈ Rm×k

Σ′ ∈ Rk×k

Vt ∈ Rk×n HV

U′ ∈ Rm×k V ′ ∈ Rk×n

Figure 7.4: RHOFT reparametrization.

If k is lower than this limit, then RHOFT employs less non-trainable parameters than the
pretrained matrix. This fact opens new opportunities not previously contemplated due
to memory overhead, such as:

• Fine-tuning more layers while training.

• Use more trainable parameters during training.

• Train large models by reducing the total amount of parameters in training.

Thus, for a low k, RHOFT can also be used as a reduction technique for training the
model, in addition to being a fine-tuning technique.

In order to give a better understanding on how removing lower singular values can give
good results, a geometric approach can be contemplated. Considering both singular val-
ues and vectors form a hypersphere, we can deduce that small singular values can be
removed in order to flatten the hypersphere in one dimension. If the singular value as-
sociated was small enough, the resulted hypersphere will be mostly equivalent to the
original.

Figure 7.5: Hypersphere on R3 Figure 7.6: Hypersphere on R2

For instance, as shown in Figure 7.5, we can consider a hypersphere on R3 in which on
one of its axis is mostly flatten. Thus, Figures 7.5 and 7.6 show shapes that are simi-
lar when stretched enough. As observed in Section 7.3, this is the case to the targeted
matrices, since the curves seem to follow nonlinear decreases.
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7.5 Experiments

In this section, RHOFT is compared against SHOFT and the best performing PEFT tech-
nique from Chapters 4 and 5. As in previous chapters, this comparison is performed in
terms of accuracy as a function of the intrinsic rank r ∈ {4, 8, 16, 32, 64}. Five evaluations
per dataset per rank have been performed in this case for obtaining more precise results.
All datasets described in Chapter 3 were employed. For all comparisons, rU = rV = r in
order to perform ’fair evaluations’. In the case of RHOFT, k = 1024, which means that
less than 25% of the lowest singular values are removed for making RHOFT as memory
efficient as DoRA.

DoRA results produced for making Figures 4.4 and 5.3 will be used to alongside with
the new evaluations performed. More information about training hyper-parameters in
Appendix A.

7.5.1. Experiments on WinoGrande

For WinoGrande dataset, described in section 3.6, DoRA will be employed to make the
comparison, presented in Figure 7.7.
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Figure 7.7: Comparative average accuracy on WinoGrande over an increasing matrix rank for
DoRA and RHOFT.

As observed in Figure 7.7, RHOFT follows the same tendency as SHOFT. It gives slightly
worse results than SHOFT, as expected.
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7.5.2. Experiments on BoolQ

For BoolQ dataset, described in section 3.3, DoRA will be employed to make the compar-
ison, presented in Figure 7.8.
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Figure 7.8: Comparative average accuracy on BoolQ over an increasing matrix rank for DoRA
and RHOFT.

As observed in Figure 7.8, RHOFT does follow a similar tendency as SHOFT, although
there is a peak at r = 8. Except to that peak, RHOFT performs similarly to SHOFT in
average in BoolQ.

7.5.3. Experiments on PIQA

For PIQA dataset, described in section 3.4, DoRA will be employed to make the compar-
ison, presented in Figure 7.9.
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Figure 7.9: Comparative average accuracy on PIQA over an increasing matrix rank for DoRA and
RHOFT.

As observed in Figure 7.9, RHOFT follow a similar tendency as SHOFT, although it per-
forms slightly better at r = 64. In this case, RHOFT is more robust than SHOFT in PIQA.
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7.5.4. Experiments on SIQA

For SIQA dataset, described in section 3.5, DoRA will be employed to make the compar-
ison, presented in Figure 7.10.
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Figure 7.10: Comparative average accuracy on SIQA over an increasing matrix rank for DoRA
and RHOFT.

As observed in Figure 7.10, RHOFT follows the same tendency as SHOFT. It gives slightly
worse results than SHOFT, as expected.

7.5.5. Experiments on ARC-e

For ARC-e dataset, described in section 3.7, DoRA will be employed to make the com-
parison, presented in Figure 7.11.
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Figure 7.11: Comparative average accuracy on ARC-e over an increasing matrix rank for DoRA
and RHOFT.

As observed in Figure 7.11, RHOFT follows the same tendency as SHOFT. It gives slightly
worse results than SHOFT, as expected.
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7.5.6. Experiments on ARC-c

For ARC-C dataset, described in section 3.7, DoRA will be employed to make the com-
parison, presented in Figure 7.12.
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Figure 7.12: Comparative average accuracy on ARC-c over an increasing matrix rank for DoRA
and RHOFT.

As observed in Figure 7.12, RHOFT follows the same tendency as SHOFT. It gives worse
results than SHOFT, as expected. However, it is curious to see that in this task, which
was named as ARC Challenge, RHOFT accuracy difference with respect to SHOFT is less
than those reported on ARC Easy task.

7.5.7. Experiments on OBQA

For OBQA dataset, described in section 3.8, DoRA will be employed to make the com-
parison, presented in Figure 7.13.
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Figure 7.13: Comparative average accuracy on OBQA over an increasing matrix rank for DoRA
and RHOFT.

As observed in Figure 7.13, RHOFT follows the same tendency as SHOFT. Nevertheless,
RHOFT seems to perform similarly to SHOFT, concluding there is no significant accuracy
difference between RHOFT and SHOFT.
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7.5.8. Average results

As done in sections 4.6, 5.4 and 6.6, we will also study the comparative average accuracy
across commonsense reasoning tasks over an increasing matrix rank for DoRA, SHOFT
and RHOFT. This results are presented in Figure 7.14.
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Figure 7.14: Comparative average accuracy across commonsense reasoning tasks over an increas-
ing matrix rank for DoRA, SHOFT and RHOFT.

As observed in Figure 7.14, there’s a clear increase tendency. In this case, RHOFT perfor-
mance is slightly below SHOFT performance. However, RHOFT outperforms DoRA for
r ≤ 32. Thus, RHOFT gives better results than DoRA for lower ranks. Additionally, at
r = 64, RHOFT accuracy decreases.

7.5.9. Effect of k

In addition to the analysis made in the previous subsections, some works [35] show that
fine-tuning the top singular components gives better results in average than full fine-
tuning. We will conduct an ablation study on how different k values affects the perfor-
mance of the fine-tuned model. Considering all matrix targets are 2048 × 2048 matrices,
we will adjust k within the set k ∈ {64, 128, 256, 512, 1024, 2048} and fixing rU = rV = 16.
Results are provided in Figure 7.15.
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Figure 7.15: Average accuracy on all datasets varying k
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As observed in Figure 7.15, lower values of k reduce accuracy consistently. This could be
because, although lower dimensions can be removed, they are essential to obtain higher
performance. In the case of k = 1024, this loss can be ignored.

7.5.10. Speed comparison

This subsection will be devoted to study time performance of all the PEFT methods com-
mented in previous chapters and sections. For this experiment, NVIDIA GeForce RTX
3090 GPUs were employed for avoiding hardware inconvenients.

Table 7.1: Average time on the commonsense reasoning tasks

LoRA LoKr DoRA OFT BOFT SHOFT RHOFT
1.5 1.6 2.0 4.2 5.3 2.7 2.5

Table 7.1 show the different time performance obtained per method. Time performance
is measured as the average of the seconds per training step along all datasets commented
on Chapter 3. LoRA is the fastest method, followed by its variants. However, SHOFT
and RHOFT are time efficient considering they perform multiplicative fine-tuning. Com-
pared to OFT and BOFT, the designed methods give good results. If we sort the methods
by speed and take LoRA as the reference we can obtain Table 7.2.

Table 7.2: Time performance on the commonsense reasoning tasks

LoRA LoKr DoRA RHOFT SHOFT OFT BOFT
1.0 1.1 1.3 1.7 1.8 2.8 3.5

From table 7.2 it is clear that both RHOFT and SHOFT need less that the double of time
of LoRA, and gives better results than DoRA, as seen before.

7.6 Conclusions

The purpose of this chapter was to redesign SHOFT in order to make it memory efficient.
Randomized SVD helps to reduce the amount of non-trainable parameters saved, while
discarding the less valuable singular values.

Most experiments performed seem to give the same conclusions: RHOFT performs slightly
worse than SHOFT on the tasks selected. This can also be observed in Figure 7.14. This
makes sense, since half of the singular values have been discarded in RHOFT in order
to make it efficient. This values represented less than 25% of the total sum of singular
values, which not supposed a problem for fine-tuning correctly the model.

Additionally, there were other two key experiments. The first one, the effect of vary-
ing k, helped to understand how accuracy increases when augmenting k. The second
one, the speed comparison along all PEFT methods, gave us as conclusions that SHOFT
and RHOFT are time efficient compared to other PEFT methods.



CHAPTER 8

Conclusions

8.1 Summary of work done

In this work we have seen how PEFT methods bring opportunities to LLMs to be correctly
fine-tuned without performing a full fine-tuning. All PEFT methods were discussed in
detail, exposing important aspects that may be unnoticeable at first sight. It also were
designed PEFT methods inspired on aspects of the state-of-the-art PEFT methods. The
importance of orthogonal fine-tuning was remarked theoretically and then tested empir-
ically, giving the desired results with SHOFT and RHOFT.

For this work, +800 experiments were performed. This entailed, on average, +1600 hours
of computation (approximately 66 days). Additionally, experiments needed to be per-
formed using NVIDIA GeForce RTX 3090 GPUs, since more than 12 GBs of GPU memory
were required by each experiment.

After the experimental part, we discussed the performance of SHOFT and RHOFT against
DoRA, which is the best state-of-the-art PEFT technique. The conclusions were clear, both
methods significantly surpass DoRA in average.

8.2 Objectives achieved

Four main objectives were proposed at the beginning of this work.

The state-of-the-art PEFT techniques where analyzed and described in deep, alongside
with its disadvantages and advantages. Theoretical assertions were confirmed by per-
forming the corresponding experiments.

SHOFT and RHOFT were designed considering the good and bad aspects of the PEFT
techniques studied and the concepts learned during this degree. These methods gave
better results than state-of-the-art PEFT techniques.

Thus, all objectives were accomplished successfully.
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8.3 Future work

As future work, there are several aspects that were skipped and may be interesting to
explore:

• Perform experiments on bigger LLMs to conclude SHOFT and RHOFT high perfor-
mance other models.

• Study the effect of adding more trainable parameters by removing non-trainable
parameters in RHOFT.

• Perform experiments on other machine learning models and tasks, such as com-
puter vision or machine translation, using SHOFT and RHOFT.
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APPENDIX A

Hyperparameters

For performing the experiments described in sections 4.3, 5.4, 6.5 and 7.5, some hyper-
parameters must be set in order to make fair comparison between the techniques. This
appendix is devoted to gather all these hyperparameter configurations. Table A.1 gathers
all hyperparameters configurations for training.

Table A.1: Hyperparameter configurations for Phi-1.5 on the commonsense reasoning tasks.

LoRA DoRA OFT SHOFT RHOFT

Rank r 16 16 64 16, 16 16, 16

α 32 32 32 - -

Dropout 0.05 0.05 0.05 0.05 0.05

Optimizer AdamW AdamW AdamW AdamW AdamW

LR 2e−4 2e−4 2e−4 2e−4 2e−4

LR Scheduler Linear Linear Linear Linear Linear

Batch size 16 16 16 16 16

Warmup Steps 100 100 100 100 100

Epochs 3 3 3 3 3

Targets Q, K, V Q, K, V Q, K, V Q, K, V Q, K, V

The hyperparameter α is not used in SHOFT and RHOFT. Additionally, SHOFT and
RHOFT have two values in Rank row corresponding to rU , rV respectively.
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ANEXO 
 
OBJETIVOS DE DESARROLLO SOSTENIBLE                        
 
 
Grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS). 
 

Objetivos de Desarrollo Sostenibles Alto Medio Bajo No 
Procede 

ODS 1. Fin de la pobreza.     x 
ODS 2. Hambre cero.     x 
ODS 3. Salud y bienestar.     x 
ODS 4. Educación de calidad.     x 
ODS 5. Igualdad de género.     x 
ODS 6. Agua limpia y saneamiento.   x   
ODS 7. Energía asequible y no contaminante.  x    
ODS 8. Trabajo decente y crecimiento económico.    x  
ODS 9. Industria, innovación e infraestructuras.  x    
ODS 10. Reducción de las desigualdades.  x    
ODS 11. Ciudades y comunidades sostenibles.   x   
ODS 12. Producción y consumo responsables.     x 
ODS 13. Acción por el clima.     x 
ODS 14. Vida submarina.     x 
ODS 15. Vida de ecosistemas terrestres.     x 
ODS 16. Paz, justicia e instituciones sólidas.     x 
ODS 17. Alianzas para lograr objetivos.     x 
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Reflection on the Relationship of the Final Degree/Master's Project with the SDGs and 
the Most Related SDGs: 
 
Pretrained models play a crucial role in modern AI, enabling the rapid deployment of 
sophisticated solutions across a wide array of fields. These models, already trained on 
vast amounts of data, can be fine-tuned for specific tasks with minimal additional 
training, making them highly efficient and versatile. This work aims to delve into the 
time and performance benefits of PEFT techniques. PEFT techniques are crafted to 
minimize the computational power and resources required for fine-tuning, which is 
essential for making AI more sustainable and accessible. This aligns directly with 
Sustainable Development Goals (SDGs) 6 and 7, which focus on clean water and 
sanitation, and affordable and clean energy, respectively. By reducing the electricity and 
water consumption needed for cooling large data centers, PEFT techniques offer an 
environmentally friendly solution that conserves energy and water. 
 
Moreover, the advanced PEFT techniques such as SHOFT and RHOFT are linked to SDG 
9, which emphasizes industry, innovation, and infrastructure. These techniques are built 
upon the latest PEFT methods, enhancing existing industry standards and driving 
forward innovation in the fine-tuning process. SHOFT and RHOFT improve efficiency by 
selectively tuning only specific parts of the model, which significantly reduces the 
computational load and speeds up the fine-tuning process. By enhancing these 
techniques, PEFT methods make AI development more efficient and sustainable, 
ensuring that industry practices keep pace with technological advancements and 
contribute to building robust and innovative infrastructures. 
 
PEFT techniques are also instrumental in reducing inequalities, aligning with SDG 10, 
which aims to reduce inequality within and among countries. By making advanced AI 
more accessible and affordable, especially in resource-constrained environments like 
developing countries, PEFT significantly lowers costs of producing fine-tuned models. 
This accessibility allows organizations with limited budgets to deploy AI in critical sectors 
such as education, healthcare, and economic development. For instance, AI can be used 
to improve educational resources, provide better healthcare diagnostics, and support 
local businesses, thereby helping to bridge social and economic disparities. By 
democratizing access to advanced AI, PEFT techniques play a vital role in fostering 
inclusive growth and reducing inequality. 
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Furthermore, PEFT techniques contribute to the achievement of SDG 11, which focuses 
on sustainable cities and communities. By enabling the development of AI models for 
smart and sustainable cities without demanding extensive computational resources, 
PEFT techniques make it possible to implement advanced AI solutions in urban planning 
and management. This capability can significantly enhance urban planning by providing 
better data analysis and predictive insights, optimize resource management by 
improving the efficiency of utilities and services, and improve disaster response systems 
by enabling faster and more accurate emergency responses. These improvements lead 
to cities that are more resilient, inclusive, and sustainable, ensuring better quality of life 
for their inhabitants. 
 
Lastly, the efficiency of PEFT techniques reduces the barrier to entry for small businesses 
and developing economies to utilize advanced AI, fostering innovation and productivity 
across various sectors. This is closely related to SDG 8, which promotes sustained, 
inclusive, and sustainable economic growth, full and productive employment, and 
decent work for all. As AI becomes more accessible and scalable, it stimulates economic 
growth by enhancing operational efficiencies, enabling the creation of new business 
models, and facilitating more informed decision-making processes. Small businesses can 
use AI to optimize their operations, improve customer service, and develop innovative 
products and services, driving economic expansion. This widespread access to AI can 
substantially accelerate economic growth and sustainable development on a global 
scale, ensuring that the benefits of AI technology are widely distributed and contribute 
to overall societal advancement. Through these multifaceted impacts, PEFT techniques 
not only advance the field of AI but also contribute to a more equitable, sustainable, and 
prosperous world. 
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