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Resumen
Los sistemas de IA son generalmente evaluados para entender su rendimiento em-

pleando una variedad de ’benchmarks’, sirviéndose de una única métrica para descri-
birlo, lo cual nos provee una imagen muy simple de sus capacidades. Sin embargo, esta
metodología no es adecuada cuando queremos entender su rendimiento en entornos de
una naturaleza más genérica.En este proyecto, tomaremos datos de rendimiento de al-
gunos de los agentes desarrollados en el proyecto MCS de DARPA e inferiremos sus
perfiles de capacidad mediante la triangulación bayesiana proporcionada por la metodo-
logía Measurement Layouts. Éstos, al fin y al cabo son redes bayesianas semánticamente
ricas inferidas mediante el motor probabilístico ofrecido en la librería PyMC, la cual se
encuentra disponible en Python. En el proyecto buscamos extraer perfiles de capacidad
mediante datos exhaustivos provenientes de agentes diseñados con el objetivo de mos-
trar capacidades de ’sentido común’. Todo ello mediante inferencia bayesiana. Igualmen-
te analizaremos el poder predictivo y explicativo de esta técnica, comparándola así con
métodos más tradicionales como la simple obtención de métricas de precisión a partir
de ’benchmarks’ masivos, o la simple predicción basada en métricas agregadas de rendi-
miento.

Palabras clave: Evaluación IA, Redes Bayesianas, Inferencia Bayesiana, PyMC, Evalua-
ción de Capacidades, Benchmarks, Perfil de Capacidad, Sentido Común
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Resum
Els sistemes de IA són generalment avaluats per a entendre el seu rendiment em-

prant una varietat de ’benchmarks’, servint-se d’una única mètrica per a descriure’l, la
qual cosa ens proveïx una imatge molt simple de les seues capacitats. No obstant això, es-
ta metodologia no és adequada quan volem entendre el seu rendiment en entorns d’una
naturalesa més genèrica. En aquest projecte, prendrem dades de rendiment d’alguns dels
agents desenvolupats en el projecte MCS de DARPA i inferirem els seus perfils de capaci-
tat mitjançant la triangulació bayesiana proporcionada per la metodologia Measurement
Layouts. Estos, al cap i a la fi són xarxes bayesianes semànticament riques inferides mit-
jançant el motor probabilístic oferit en la llibreria PyMC, la qual es troba disponible en
Python. En el projecte busquem extraure perfils de capacitat mitjançant dades exhausti-
ves provinents d’agents dissenyats amb l’objectiu de mostrar capacitats de ’sentit comú’.
Tot això mitjançant inferència bayesiana. Igualment analitzarem el poder predictiu i ex-
plicatiu d’esta tècnica, comparant-la així amb mètodes més tradicionals com la simple
obtenció de mètriques de precisió a partir de ’benchmarks’ massius, o la simple predicció
basada en mètriques agregades de rendiment.

Paraules clau: Avaluació IA, Xarxes Bayesianes, Inferència Bayesiana, PyMC, Avaluació
de Capacitats, Benchmarks, Perfil de Capacitat, Sentit Comú
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Abstract
AI systems are usually evaluated with a variety of benchmarks to determine their

performance for specific tasks, using a single metric which provides a simplistic image
of their capabilities. However, this procedure is insufficient when we want to evaluate
and infer their capabilities in more general settings. In this project, we will take perfor-
mance data from some of the agents that were developed in the DARPA’s MCS project
and infer their capability profiles through Bayesian triangulation provided by the Mea-
surement Layouts methodology. These are, semantically-rich hierarchical Bayesian net-
works (HBN) that are inferred using the probabilistic programming engine PyMC, which
is available in Python. Using extensive data of several agents that were tasked to solve a
variety of common-sense problems, we can extract their capability profiles and compare
them with each other just by using Bayesian triangulation. We analyse the predictive and
explanatory power of the inferred Bayesian models to evaluate AI over other procedures
like just estimating the aggregate accuracy of the agents with massive benchmarks.

Key words: AI Evaluation, Bayesian Networks, Bayesian Inference, PyMC, Capability-
oriented Evaluation, Benchmarks, Capability Profile, Common Sense
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CHAPTER 1

Introduction

Computers, and by extension AI systems, are often defined as universal machines [67].
Recent events have demonstrated "their potential extends to tackle a boundless universe
of tasks" [65]. The introduction of Transformers [69] back in 2017 and the subsequent
development of large-scale pre-trained versions of them [51, 52, 10]; inaugurated the era
of general-purpose AI systems, also known as Foundation Models. Here, the term general
addresses not only the demonstration of excellence in handling multimodal information
like audio, video, image or text [76, 64]; but also to the adaptability through in-context
learning (ICL) abilities [22], which enable them to thrive in unseen scenarios during their
training.

While the notion of AI systems reaching superintelligence –AI being superior to hu-
man in "practically every field"– in the short-term is still a controversial discussion in
this community [7], there is an overall consensus on the potential variety of intrinsic and
extrinsic catastrophic risks posed by highly-capable foundation models [6, 30].

In response, many experts argue that due to the distinct display of intelligence from
these systems, compared to natural (animal) intellect, we should reference cognitive sci-
ence and adopt universal psychometrics –"the analysis and development of measurement
tools for the evaluation of behavioural features in the machine kingdom, including cog-
nitive abilities and personality traits"– [32] as the preferred schema for evaluating these
general-purpose systems [71].

This represents a paradigm shift from the current evaluation philosophy, sometimes
referenced to as "task-oriented evaluation", which primarily tests systems on gigantic di-
verse benchmark suites [61] to compute an aggregate performance score. While this met-
ric compresses a general –but superficial– view of systems’ performance, allowing an
straightforward comparison between systems, it is only a measure of how a system per-
forms according to a distribution of items. "When this distribution changes, performance
also does" [11]. Therefore, it is not a suitable approach for evaluating general-purpose
agents.

This project presents an application of a solution to current AI evaluation intricacies:
the Measurement Layouts [12]. This cognitive approach to AI evaluation relies on extensive
experimental data from agents and (Bayesian) triangulation [29] to infer the cognitive
profile of general-purpose systems. This allows not only understanding what a system
is capable of, but also to predict future performance and comprehend the nuances of its
behaviour by mapping test items with their cognitive demands to capabilities (abilities
or skills). This project has built upon the RECOG-AI1 initiative, a multidisciplinary ini-
tiative from the Leverhulme Centre for the Future of Intelligence2 proposed to "provide

1http://lcfi.ac.uk/projects/kinds-of-intelligence/recog-ai/
2http://lcfi.ac.uk/
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2 Introduction

a framework and benchmarks for measuring the capabilities of AI systems". Specifi-
cally, we will apply this methodology to common sense agents from DARPA’s Machine
Common Sense program (MCS)3. More specifically, we will take performance data from
some of the agents that were developed in this project and infer their capability profiles
through Bayesian triangulation provided by the Measurement Layouts methodology.

1.1 Objectives

This project pursues the following main objectives:

1. Infer capability profiles of DARPA’s Machine Common Sense agents using Mea-
surement Layouts and provide comprehensive comparison of their common sense
capabilities.

2. Assess the predictive performance of Measurement Layouts in estimating the per-
formance of agents on unseen data, and compare it to other methods such as mak-
ing use of assessors or naive predictions such as using observed aggregate perfor-
mance as the indicator for future performance.

Secondary objectives include:

1. Understand how the Hierarchical Bayesian Networks (HBN) can be applied to
model cognitive processes.

2. Review current AI evaluation methods and identify their weaknesses.

3. Highlight the need for redefining evaluation techniques for general-purpose learn-
ing agents.

4. Explore the potential of cognitive modelling and cognitive compared computation
in AI Evaluation.

5. Integrate advanced Monte Carlo simulation algorithms for training Bayesian hier-
archical models.

1.2 Memory Structure

The present memory has the following structure:

In the Related Work and Background Chapter, we provide an overview of current
AI systems, the risks of highly-capable AI, and the importance of evaluation to mitigate
these risks. We discuss current AI evaluation dynamics and propose a "redirection". We
introduce the concept of common sense and its relation to DARPA’s Machine Common
Sense (MCS) Programme, and explain how Bayesian Theory can model cognitive mech-
anisms similar to our AI evaluation methodology.

In the Materials and Methods Chapter, we delve into DARPA’s MCS Programme,
explaining the simulation tools that were used and the performance data annotation pro-
cess by the MCS Evaluation team. We then present the statistical and probabilistic frame-
work for the measurement layouts, including Bayesian Networks, Hierarchical Bayesian
Networks, and Markov Chain Monte Carlo algorithms. The chapter concludes with an
introduction to the measurement layouts and their Bayesian formulation.

3https://www.darpa.mil/program/machine-common-sense



1.3 Collaborations 3

In the Exploratory Analysis Chapter, we analyze MCS Evaluation Data to identify
properties predictive of agents’ performance and build intuition about their capabilities.

In the Experimental Setting Chapter, we describe the experimentation phase, met-
rics for evaluating measurement layouts’ predictive performance, and comparison ap-
proaches. We also present the general topology of the measurement layouts used.

In the Results Chapter, we introduce the two specific settings of the measurement lay-
outs and compare the inferred capability profiles and predictive power across different
settings, granularities of evaluation data –instance and aggregated level–, and agents.

The project concludes by discussing limitations, future steps, the degree of achieve-
ment of objectives, and the influence of the Bachelor’s Degree Programme competences
on the project.

1.3 Collaborations

This project represents the continuation from the work put by the RECOG-AI Team at the
Leverhulme Center for the Future of Intelligence, at the University of Cambridge onto the
MCS Programme from DARPA. They pursued the "Robust Evaluation of Cognitive Capa-
bilities and Generality in Artificial Intelligence". The exchange of opinions with them has
been crucial to shape this initiative, providing an introduction to the measurement lay-
outs methodology, assistance with its formalisation and the intuitions to properly make
use of the framework for the purpose of this project.

On the other hand, it was worked together with the MCS Programme Evaluation
team, composed by Professor David Moore, Professor Koleen McCrink and Professor
Lisa Oakes. They provided a comprehensive explanation of how the evaluation process
was carried out, including the annotation phase of evaluation data, a crucial step for our
endeavour.

Both teams contributed to this project by proportioning myself with pivotal theoreti-
cal foundations on cognitive science and development psychology, domains that are the
core of this project.





CHAPTER 2

Related Work and Background

2.1 Categorisation of AI systems

The present project embraces the discipline of universal psychometrics, defined as the
"measurement of cognitive abilities for the machine kingdom" [32, 33]. The latter concept
addresses the "set of all interactive systems taking inputs and producing outputs, possi-
bly asynchronously, through interfaces, bodies, sensors and actuators, etc.". This ranges
from all types of biological life (human and non-human animals) to artificial life.

Figure 2.1: Euler Diagram representing the groups that integrate the Machine Kingdom. Figure
taken from [32]

The reason for the existence of universal psychometrics specially arises from the in-
tegration of artificial life into the population of interest for evaluating and analysing in-
telligent behavior. We can draw the proposal from [32] to understand this population, as
offers a simple yet comprehensive categorisation of the systems that are included of this
group:

1. Computers: group composed of "any type of computational behaviour, including
any artefact that is designed with some kind of artificial intelligence".

2. Cognitively enhanced organisms: by cognitive enhancing, it is referred to how an
organism (human or not human) can "get around" [50] or alter its cognitive abilities
through "cognitive extenders". These are "external physical or virtual elements that
are coupled to enable, aid, enhance, or improve cognition, such that its effect is lost
when the element is not present".[34] An example of this is the case when a human
has access to GPS or translation tools.

3. Biologically enhanced computers: when computers need of humans to achieve cer-
tain tasks.

5



6 Related Work and Background

4. Hybrid collectives: groups of organisms from the machine kingdom, not necessar-
ily belonging to the same "species".

This project puts the focus on the former group, specially in artificial intelligence agents.
An agent could be considered anything –a program, a robot– that reacts to some stimuli –
basically, data– provided by the environment it resides in. Taking the taxonomy provided
by S. Russell and P. Norvig in [54], we have the following types of agents:

1. Simple agents: they ignore previous received stimuli/data to react to the current
input.

• Example: Basic AI in video games that reacts to the player’s actions without
considering the history of interactions.

2. Model-based agents: they have some knowledge of the world/environment they
reside in. They update the ’model’ they have of the world as they perceive changes.

• Example: Thermostats that adjust heating based on current temperature and
historical data to maintain a comfortable environment.

3. Goal-based agents: they have a description of the final states/situations that are
desirable and, as a consequence, should be pursued. When "satisfactory results can
come from a single action", we call it a search problem; while when it requires long
sequences of decisions it is a planning problem.

• Example: In the entertainment industry, goal-based systems agents can be
used to suggest content that resonates with a target audience.

4. Utility-based agents: similarly to goal-based agents, their decisions are made on
a basis of the improvement of a performance measure, that determined how de-
sirable the current or next state is. To measure this, agents incorporate a utility
function which is an "internalisation of the performance" measure. These agents try
to optimised depending on the expected utility of their actions outcomes.

• Example: Trading algorithms in financial markets that decide to buy or sell
stocks based on the expected utility (profit) of the transactions.

5. Learning agents: These agents can learn from their their actions and improve their
performance over time by adjusting their behaviour based on past experiences.
This is the type of agents in current state-of-the-art systems.

• An example of this agents are Non-Playable-Characters (NPC) in some video
games, which are able to learn from their previous "plays" and strategies

As mentioned above, a great part of the most advanced technologies in the field are appli-
cations derived from machine learning. Usually, taxonomies for categorising AI learning
agents classify them based on the training technique employed –e.g. supervised learning,
reinforcement learning–; the specific problem their intended for –e.g. object segmenta-
tion, sentiment analysis–; the nature of the task –e.g. classification, regression, genera-
tion, etc.–; but in this case, we will provide some examples –without loss of generality–
of AI systems that are a matter of interest for the AI Evaluation discipline.

1. Reinforcement Learning Agents: they are a distinctive class of learning agents that
learn by interacting with their environment and receiving feedback in the form of
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rewards or penalties. This "feedback loop" allows the agent to learn optimal be-
haviours to achieve its goals. The core components of reinforcement learning are:
the environment; the state of the environment; the actions, which are the set of pos-
sible moves of the agent; the reward, that is the feedback provided to the agent after
taking an action or a sequence of them; a policy, which is the strategy that the agent
is pursuing to guide its actions given the feedback/reward received; and the value
function, that estimates the expected reward from a given action in a specific state.

This specific agents training schema derives from the concept of "conditioning".
This terms comes from psychology and explains how animals have a predisposition
against stimuli, and how the actions derived from these stimuli can be conditioned
–with rewards or penalties– to favour a desired behaviour [53, 32].

The field of reinforcement learning has benefited from the integration of deep neu-
ral networks in these systems. This had a considerable impact on the field as "rep-
resentation learning with deep learning enables automatic feature engineering and
end-to-end learning, so that reliance on domain knowledge is significantly reduced
or even removed".[43]

Figure 2.2: The workflow of deep reinforcement learning. Figure taken from [37]

Deep reinforcement learning (DRL) has contributed to the creation of very complex
cognitive systems, ranging in the field of application from natural language pro-
cessing to robotics. These systems exhibit very distinct intelligent behaviour than
humans or animals, and have accelerated the arrival of general-purpose agents.
The characterisation of these systems capabilities is one the biggest challenges in
the field nowadays, given their transformative yet risky potential[6]. Reinforce-
ment learning represents a paradigm for the understanding of cognitive processes
for every individual that can be simulated in a general setting where they can inter-
act with their environment through the use of observations, actions and rewards.

Some illustrative examples of deep reinforcement learning agents are Tesla’s self-
driving cars; DeepMind’s AlphaGo [59], that learnt to play go and beat professional
players; or DeepMind’s Agent57, which outperforms humans in 57 Atari games [3].

2. Transformers: these are one the most promising deep learning models, and have
been widely introduced in many contexts. They were introduced in 2017 [69], and
they leverage attention mechanisms in a similar way cognitive systems do, allow-
ing the selective processing and learning from what is considered "relevant infor-
mation" [49, 9]. They are adopted because of their efficiency and versatility, not only
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for the range of fields and problems they can be used in, but also for the variability
of usage they have. They can be used as decoders, encoders or both at the same
time.

Figure 2.3: Architecture of Vanilla Transformer, taken from [49]

[49] proposes a taxonomy for transformers attending to the "variants at the module
level, the architecture level, the pre-training schema and the applications". How-
ever, we will focus on generative pre-trained transformers, which are the building
blocks for current Large Language Models (LLMs), the first example of general-
purpose agents of our time.

Generative pre-trained transformers (GPT) [51, 52, 10] are transformers trained on
large amounts of text following the language modelling approach, taken from Lan-
guage Models (LM), a probabilistic approach of modelling a language which basi-
cally consists on "given a sequence of words, infer which is the most likely word to
come after". GPTs are also named Large Language Models.

The remarkable potential of these systems arises from the capabilities that emerge
from such a simple learning process [72], allowing them to achieve remarkable per-
formance across a multitude of diverse downstream tasks and applications, and ex-
celling at few-shot learning settings –"constructing new knowledge from sequences
of labelled examples presented in the input without further parameter updates" [1].

Generative pre-trained transformers are also the pillars for building Vision-Language
Models, an extension of Large Language Models in which architectural modifica-
tions are introduced to handle multimodal information [76, 64].

Large Language Models –and therefore VLLMs too–, also called "Foundation Models",
represent the latest evolutionary stage of a process of "emergence and homogenisation"
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[5] of machine learning agents over the last decades. These systems are the first example
of general-purpose agents in the history of Artificial Intelligence, and, despite the vast
number of opportunities they pose, their emergent nature and the very distinct display of
intelligent behaviour results in an immanent challenge of understanding and evaluating
their capabilities. [21, 5] Their ability to perform well across various tasks without task-
specific training demonstrates a form of general intelligence, a key focus of universal
psychometrics.

2.2 AI Safety

Sooner or later, artificial superintelligence will arrive. Nick Bostrom defines these sys-
tems in the following way: "AI being superior to human in practically every field" [6].

Figure 2.4: Aggregate subjective probability of ‘AGI-level machine intelligence’ arrival by future
years. Prediction comes from 352 researchers who published at the 2015 NIPS and ICML. Figure

taken from [26]

The arrival of a system with this level of intelligence may trigger the hypothetical
"technological singularity" event –humans losing control of AI [75]– and many of the
catastrophic risks associated to it [30].

The Center for AI Safety (CAIS)1, one of the leading AI research laboratories provides
a comprehensive view of the catastrophic risks from artificial superintelligence in [30].
They categorise these risks into four groups, leading to think that risks can be materi-
alised as “an intentional cause, environmental/structural cause, accidental cause, or an
internal cause”. In any case, their work presents an incentive for developing better eval-
uation tools that allow us to know which are the actual capabilities of these systems. In
this sense, well-reputed AI safety “thinker” and researcher Roman Yampolskiy states in
[74] that potential risks and catastrophes associated with AI systems have historically
proved to be proportional to the causing systems’ capabilities.

Having said this, AI Safety can be defined as the area of research which is focused on
decreasing the expected/possible risks from AI systems. This definition might seem very

1https://www.safe.ai/
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vague due to that AI Safety is a very heavily loaded concept and it covers a wide range
of subfields. We can have a better idea of what actually AI Safety intends to by looking
at some of the areas it brings together:

1. Alignment: Paraphrasing the definition given by Paul Christiano, “when it is said
that say system A is aligned with an operator H, it is meant that A is trying to do
what H wants it to do” [18]. Many experts depict a future where we will delegate so
many responsibilities to highly-capable AI systems. If these systems are not doing
what we intend them to do, the results could be catastrophic. We can break down
the alignment field into two problems:

2. Moral philosophy is one of the most complex areas of AI Safety, it is basically a
debate about morality on giving arguments for the definition of “good” policies
that in the case of being learnt would lead to “good” outcomes. This discussion is
widely covered and explained in [8].

3. Competence, which targets AI to effectively accomplish the tasks it is designed for.
This field might seem trivial, but there are many recent examples that highlight the
relevance of it. 2 3 4

4. Governance. Given the high-stakes implications of advanced AI in every imagin-
able scope/field, governance seeks for investigating “how humanity can best navi-
gate the transition to advanced AI systems” [20] and regulating when the develop-
ment or deployment is potentially harmful at a societal scale.

While the accelerated process of building general-purpose AI is motivated by the
beneficial potential of this technology, as we have pointed out previously, this may lead
general-purpose agents to acquire capabilities that pose “extreme risks”. Recent work
promoted by DeepMind gathered many experts view on the pivotal role of model eval-
uation for the “identification of dangerous capabilities and the propensity of models to
apply their capabilities for harm” [58]. One of the key arguments that was discussed was
the unpredictable nature of foundation models emergent abilities –abilities which are not
present in small models but are present in larger ones–, that Large Language Models are
depicting [72]. These also include harmful capabilities that their developers did not aim
for [25]. They state that a model should be considered as highly dangerous "if its capa-
bility profile is sufficient for extreme harm in the case of misuse or misalignment". This
is why the project that is being presented with this thesis has such a possible beneficial
impact, as it allows inferring robustly AI systems capability profiles [12].

Also, a recent investigation led by multiple Turing Award winners proposes an al-
ternative approach to AI safety development referred to “guaranteed safe” AI [21]. It
consists on "providing the sufficient mechanisms in AI design and deployment to ensure
high-assurance quantitative safety guarantees". They point out that these mechanism-
s/measures can be summarised into three crucial components: (a), "a world model that
provides explanation of how AI is affected by the outside world"; (b) "a safety specifica-
tion to state mathematically which effects/behaviour are acceptable"; and (c), "a verifier
to provide proof of AI satisfying the safety specification relative to the world model".

Despite this philosophy differing from the approach this project presents for AI eval-
uation, there is a consensus on the urgency of redesigning AI evaluation tools. Similar

2https://www.wired.com/story/zillow-ibuyer-real-estate/
3https://www.euractiv.com/section/disinformation/news/youtubes-algorithm-fuelling-harmful-

content-study-says/
4https://www.theverge.com/2018/7/26/17619382/ibms-watson-cancer-ai-healthcare-science
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to the conclusions drawn from [5], it is agreed that current evaluation procedures cannot
provide a comprehensive view of advanced AI capabilities. The latter proposes that un-
derstanding foundation models’ behaviour may require of a multidisciplinary approach
so that "evaluation tools are precise in terms of what is actually being assessed" with each
of items the environment/benchmark/test data may be composed by. This is the spirit
of the Measurement Layouts [12].

2.3 AI Evaluation: The Paradigm Shift

Now that we are aware of the relevance of evaluating AI systems due to not only their
potential risks, but also to the fact that they are increasingly being introduced in high-
stakes situations, let’s discuss the "ongoing" practices for evaluating them.

Current evaluation standards mainly rely on using experimental benchmarks, sum-
marising with a metric –e.g. error rate, accuracy, correlation coefficient, Brier score, etc.–
"how well" a given system performs. This tendency has induced a dynamic in which ad-
vancements in any sub-field of AI to be considered as promising must be accompanied
of a "SOTA" jump in any benchmark –i.e. a substantial improvement in the performance
metric of the benchmark [44]. This fosters that research can be sometimes focused on im-
proving model’s performance on benchmarks, and that systems’ capabilities are regarded
and compared on the "linear order" the evaluation metric provides [57], what eventually
leads research to be focused on "overfitting" to the benchmark dataset. Illustrative of this
phenomenon are the leaderboards’ plots provided by Papers with Code 5. In Figure 2.5
we see results for Natural Language Inference from the GLUE benchmark, "a collection
of tools for evaluating the performance of models across a diverse set of existing NLU
tasks" [70]

Figure 2.5: Natural Language Inference Task Performance from GLUE Benchmark

Then, when performance is saturated, benchmark creators launch a new set of sam-
ples updating the dataset, claiming that it is more challenging. However, there is some
misconceptions about this cycle; improvement on benchmark results do not imply sys-
tems are not necessarily becoming more capable, those more challenging samples are
basically new, and given that benchmarks only measure competence in a distribution of
items, it is very likely that more variability may bring out more failures. Nevertheless,
models reaching superhuman level in a given benchmark does not mean that it is more

5https://paperswithcode.com/
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capable than human, instead, it outperforms human in that specific distribution of items.
This dynamic is sometimes called "challenge-solve-and-replace" [57, 31].

Moreover, despite aggregate metrics providing an overview of systems’ performance,
this task-oriented approach usually omits details on which kind of instances systems
struggle or succeed, information that taking a more curated procedure, trying to annotate
demands from instances could provide a very valuable insight into systems’ capabilities.
Even when there is an intention to create a variate benchmark composed by many tasks
that can potentially measure different capabilities, like in the case of Beyond the Imita-
tion Game (BIG-Bench) [61], developers opt for reporting results with aggregate metrics.
Another recent example of this takes place when AI Research companies report the re-
sults of their latest Large Language Model. They take a "bunch" of benchmark datasets,
they check whether they are better than competence and they publish the results they are
interested in. An example of this can be seen in Figure 2.6.

Figure 2.6: Report from Claude 3: A Large Language Model from Anthropic. Figure taken from
Anthropic’s Claude 3 report

Once again, the reason why task-oriented evaluation based on reporting aggregate
results from massive benchmark does not seem appropriate relies on the fact that "ag-
gregate metrics depend not only on the capability of the system but also on the charac-
teristics of the instances used for evaluation" [13]. At the end, this metric represents the
success degree in a particular distribution of items. Moreover, while it may be claimed
that a "sufficiently variate" set of datasets in terms of the tasks/domains could provide a
meaningful insight into a system’s "general capabilities", recent work has proved a model
can excel on two considerably distinct benchmarks by leveraging the same underlying
capabilities [46].

When it comes to characterising general-purpose agents –defining them as a system
that can do a range of tasks for which it has not been trained/prepared–, it seems that a
feature/capability-oriented approach could make the difference. While task-oriented ap-
proach can measure to which extent a system excels at particular task, capability-oriented
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evaluation intends to infer some agent’s features –capabilities and personality traits. This
could allow us to build constructs –a set of factors of features that explain great part of
an individual’s behavioural "variance" [55]– that are predictive and explanatory about
systems behaviour. This approach is inspired by psychometrics, a discipline this project
embraces.

2.4 Cognitive Evaluation of AI and the Challenge of Measuring
Capabilities

As it has been pointed out above, evaluating systems in terms of capabilities is not only a
more comprehensive approach for understanding AI systems intelligent behaviour, but
"the way" to provide high-quality assurance of advanced AI agents safety or alignment.

Nonetheless, this poses some challenges, and the best way to understand them is by
going through some of the ideas discussed in [2]. In this work it is reviewed some of the
complexities of evaluating Foundation Models capabilities. Given the "general" nature
of this systems, we can extrapolate some conclusions that were drawn for the capability-
oriented evaluation field. Some of the key points are:

1. Despite having similar performance in some tasks, the capabilities from AI and hu-
mans are very likely to be "mechanistically and behaviourally distinct". This phe-
nomenon is also referred to as humans and AI having "different capability shapes".

2. Given this immanent and undoubted difference in capabilities, we should be cau-
tious extrapolating human intelligence evaluation procedures and concepts to AI
Evaluation. Therefore, constructs inferred about natural (human and non-human)
intelligence to understand organisms capabilities "may be ill-suited" to describe AI
capabilities.

3. The term "capability" has been used indiscriminately to address "models being able
to perform well on tasks of some particular type". It suggests some ideas to (re-
)conceptualise capabilities.

4. It puts as examples of conceptualisation, some psychometrics’ techniques that can
be applied to systems to infer "factors" –in the case of factor analysis [15]– or latent
variables that can explain "measurements across subjects". In this case, capabilities
would be those inferred factors.

5. One of the most relevant properties of a conceptualisation of capabilities is that
it must ensure that we can make robust claims about the presence of capabilities
–capabilities are present to some extent, or absent–.

Moreover, the main problem that has originated undesired dynamics on task-oriented
evaluation [57] we discussed in Section 2.3 comes from "using human intelligence as a
yardstick, what limits our vision of what AI should be, how to devise benchmarks and
how to extrapolate beyond them" [31]. Given the potential of AI reaching human level in
many domains, if we want to robustly evaluate these systems, there is a need to change
the yardstick for devising evaluation procedures [31]. Proposes to break down evaluation
domains into dimensions that allow evaluators to introduce "cognitive modifications" so
that the "the space of evaluation stretches longer and wider than the trajectory that is
defined by humans". Also, it discusses how relevant it is to map that space of dimensions,
to a scale with its respective units for measuring them, claiming that the difficulty of the
item in the given dimension should be a fundamental principle for the definition of the
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units. In this sense, systems capabilities would be defined by "the level of difficulty that
can be achieved by a system".

Following this idea, [35] devises a metric to evaluate generality, considered to be "com-
prehensive performance up to a certain level of difficulty and capability". It is claimed
that the degree of generality depends on how capability is displayed as a function of the
task difficulty. This proposal aims to provide an alternative to evaluate general intel-
ligence without the need to rely on populational variance, as it has been usually done
in the field of psychometrics with the g factor Spearman "discovered" that could explain
most intelligence test results [60].

Another approaches inspired in psychometrics that have been used to evaluate AI
capabilities are Factor Analysis [40, 14]; Item Response Theory [45]; or Structural Equa-
tion Modelling [68]. The latter has the inconvenience of relying on unlikely premises
like linear relationships and normally distributed means of capabilities. In the case of
Factor Analysis and Item Response Theory, they are also populational, and derive abili-
ties and difficulties relative to population averages, therefore the parameters of the same
item can change if we add new items, or the abilities of a system may change if we add
more systems, and this is an issue for AI, where systems are rarely stable in number and
behaviour.

In [71], there is a call for adapting universal psychometrics to evaluate general-purpose
because unlike task-oriented evaluation, psychometrics focuses on latent constructs which
provide predictive and explanatory power, essential for understanding AI agents’ be-
haviour and even for improving their performance. It is stated that a rigorous evaluation
procedure following this approach will be constituted by three steps: the construct iden-
tification, the construct measurement and the test validation. This proposal explanation
in detail can be seen in Figure 2.7.

Figure 2.7: Evaluation framework proposal for construct-oriented evaluation grounded in psy-
chometrics by [71].

2.5 Commonsense: the Missing Component in AI

Commonsense reasoning is considered to be one of the areas in which AI has seen very
little progress. We could define commonsense reasoning as "the basic ability to perceive,
understand, and judge things that are shared by –are common to– nearly all people and
can reasonably be expected of nearly all people without need for debate." [73]
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Advances in AI may have resulted in emergent abilities [72] but they are still narrow
and very specialised systems. The key difficulty in modelling commonsense reasoning
is that it often "operates" implicitly and does not need to be explicitly articulated, unlike
Chain-of-Thought reasoning where every step of the thought process is clearly expressed
[19]. (Un)Consciousness about commonsense still remains one of the most interesting
features of it, as it is present in many actions and statements. Commonsense is considered
the last step and, at the same time, the final and most significative barrier for AI agents
to behave human-like and being more general instead of narrowly focused systems.

Many challenges have been introduced to foster the development of commonsense
agents. A recent example of this is the DARPA’s Machine Common Sense (MCS) ini-
tiative, in which the agency proposed the funded initiative for researchers of the "de-
velopment of a computational model able to mimic the core cognitive capabilities of up
to 3-year-old children and a test and evaluation environment for evaluating the models
against cognitive development milestones as evidenced in developmental psychology re-
search with children from 0 to 18-months old" [28]. This set of milestones can be seen in
Figure 2.8

Figure 2.8: MCS proposal of Milestones of Cognitive Development for Children up to 3 years old
[28].

They set the foundations for this initiative on the cognitive development Theory of
Core Knowledge [63]. This theory states that "human and animal cognition is built upon
some structures or systems [...] that allow representing and reasoning about entities of
different kinds". Also, it remarks that there are six domains (see Table 2.1) which are
considered to be the "cornerstone to set the foundations for future learning". Like the
building blocks of human intelligence and commonsense –specially the three first as they
correspond to intuitive physics, intentional actors and spatial navigation–.
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Domain Description
Objects Supports reasoning about objects and the laws of physics
Agents Supports reasoning about agents that act autonomously to pursue goals
Places Supports navigation and spatial reasoning around an environment

Number Supports reasoning about quantity and how many things are present
Geometry Supports representation of shapes and their affordances

Social World Supports reasoning about Theory of Mind and social interaction

Table 2.1: Theory of Core Knowledge domains.

In this project, we will take data from some of the agents that were developed in this
project and infer their capability profiles through Bayesian triangulation provided by the
Measurement Layouts methodology [12].

2.6 Bayesian Modelling and Cognitive Science

Throughout history, Bayesian theory has been applied to many disciplines. Its philos-
ophy of how given some "prior knowledge" it is had about a phenomenon, it can be
updated, resulting in "posterior knowledge" thanks to observing the phenomenon and
retrieving data about it has been widely adopted. And in the case of cognitive sciences,
it has proved its versatility and usefulness in many ways:

1. Using Bayesian statistics to conduct statistical inference based on sampling distri-
butions and null hypothesis significance testing. Basically, helping cognitive sci-
ence to rigorously analyze its data. [24]

2. A more theoretical approach, in which Bayesian is applied directly as a model
for cognitive modelling on trying to "explain how minds make inferences"[16, 41].
This approach is sometimes addressed informally with the metaphor "Bayes in the
head".

3. The most recent –and the one this project is based on– pursues "relating models of
psychological processes to data"[41, 42]. This is basically taking some prior assump-
tions about cognition, modelling these assumptions mathematically and evaluate
this model against observed behavioural data. This is specially interesting when
we model cognitive capabilities as the latent variables of our model, and Bayesian
inference allows for determining the capability profile for the individual we have
behavioural data.

A specific example of this approach are hierarchical models. These are models which
have a set of parameters which characterise a process that generates data –behavioural
data in this case– through a likelihood function. A deeper idea of them, adds that the
parameters of the model are themselves generated by some other process parameterised
by hyper-parameters. This extension of the basic hierarchical model seeks explaining
how the parameters that "regulate" the functions that produce data are generated. This
is, extending hierarchical model from the theory of task performance, to the theory of the
parameters from the variables that control task performance, also called psychological
variables in this field –which can be cognitive abilities– [41]. The basic hierarchical model
can be seen in Figure 2.9.

In our case, we are interested in how this extension can be applied to model how
multiple cognitive processes can be combined to produce observed performance data. An
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Figure 2.9: A general structure for the hierarchical dependence of basic data-generating process
f parameterised by ϕ upon a more abstract process g parameterised by ψ. [41]

example of this model can be seen in Figure 2.10. We will discuss measurement layouts
in detail in Section 3.3 but they basically take this idea a step further, linking how these
cognitive capabilities, given the cognitive demands an given instance, can model agents’
task performance at the instance level.

Figure 2.10: A hierarchical modelling approach extension allowing a set of different psychological
processes to combine to produce observed data [41]

.





CHAPTER 3

Materials and Methods

3.1 DARPA’s Machine Common Sense Program

As it has already been introduced later, this project is demarcated in the context of DARPA’s
Machine Common Sense Program (MCS). Just as a reminder, the programme sought to
address the challenge of machine common sense, two broad strategies are being pursued.
Both approaches envision machine common sense as a computational service or a series
of machine commonsense services. "The first challenge focused on creating a system that
learns from experience, similar to a child, by developing computational models that em-
ulate the core domains of child cognition: objects (intuitive physics), agents (intentional
actors), and places (spatial navigation). The second strategy aimed to develop a service
that learns from reading the Web, akin to a research librarian, to build a commonsense
knowledge repository capable of answering questions about commonsense phenomena
in both natural language and images"1.

This final degree’s project is focused on using the Measurement Layouts framework
to study the capability profiles from the agents that resulted from the first "challenge". We
will enter into more details of how this methodology will serve us for our purpose later
on Section 3.3. For training and testing these systems, the Allen Institute for Artificial
Intelligence2 developed a set of tools for simulating scenes for testing AI common sense
agents:

• Scene Generator3: This ILE –"Interactive Learning Environment"– Scene Generator
was used to generate training scenes. This allowed teams participating to train their
agents on concepts core to common sense reasoning like physics, occlusion, navi-
gation, localisation, agency, and more. Test scenes were comprised of combinations
of these concepts.

• MCS AI2-Thor4: This framework was modified to interprets the scene JSON created
in the Scene Generator to "build the low fidelity 3D environment where teams tested
the intelligent system on common sense principles"

As detailed in Section 2.5, the MCS project took as reference the Theory of Core Knowl-
edge [63] and child cognition for guidance on how teams should focus the development
of their agents. However, the technical area proposed to develop AI systems able to sim-
ulate early-developing, nonverbal common sense focused only on objects, agents, and

1https://www.darpa.mil/program/machine-common-sense
2https://allenai.org/
3https://github.com/NextCenturyCorporation/mcs-scene-generator
4https://github.com/allenai/ai2thor
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places [27] domains. Therefore, the remaining areas of this theory –numbers, forms and
social beings– were not a target for the MCS initiative. Let’s introduce how commonsense
was intended to be evaluated on agents from this domains perspective while taking the
theory of children cognitive development as a reference:

• Agents Domain: In the agents domain, commonsense should appear by under-
standing and interacting with other agents, which include both living organisms
and inanimate objects that exhibit goal-directed behaviour. AI systems were evalu-
ated on their ability to distinguish between living and non-living entities, infer the
goals behind an agent’s actions, and use agents as sources of information.

• Objects Domain: Commonsense in the objects domain centered on the understand-
ing of the properties and behaviours of physical objects. AI systems were tested on
their grasp of object permanence, the concept that objects continue to exist even
when not visible, and their comprehension of physical principles such as solidity
and gravity. Tasks evaluated agents ability to track objects moving through space,
understand interactions like collisions, and recognise the numerical properties of
sets of objects.

• Places Domain: In the places domain, commonsense pertains to navigating and
understanding spatial environments. AI systems were challenged to keep track of
their own location in space, navigate through spaces, and monitor the movement
of objects within these spaces. These tasks were designed to see if common sense
agents could emulate children’s ability to logically deduce the location of objects,
navigate environments effectively, and track object movement across different spa-
tial contexts.

Table 3.1 provides an overview of some of the tasks developed per domain.

3.1.1. Agents Evaluations in MCS

The evaluation team was charged with designing studies to assess AI common sense in
the above discussed domains. The evaluation team comprised experts in two domains:
developmental psychologists with training in the assessment of infant and toddler per-
ception, cognition, and behavior, and software engineers able to program virtual environ-
ments in which AI systems could be given tests based on what is known about infants’
and toddlers’ understandings of objects, agents, and places.

The evaluation had three innovative features: it was motivated by research in de-
velopmental psychology, it involved novel hypercube designs, and training data which
could be generated by AI development teams using an interactive learning environment
(ILE) that was already introduced above.

Research in Developmental Psychology The tests for evaluating systems were moti-
vated by the research literature on early developing competencies, so they were analo-
gous to tasks designed to assess competencies seen in infants and toddlers. Two broad
classes of tests were developed: “passive” tasks and “interactive” tasks. Passive tasks
were designed to simulate looking-time tasks used with infants, where the duration of
looking at various scenes is recorded to infer the child’s competencies. Infants typically
look longer at unexpected events. Analogous tests for AI involved presenting scenes that
appear plausible or implausible to human observers and asking AI systems to generate
plausibility scores. Interactive tasks mimic assessments where children retrieve an ob-
ject, such as a toy hidden in a container. Similar AI tests involved placing AI systems in a
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virtual room with a reward object, requiring them to navigate the room and interact with
objects to retrieve the reward.

Novel Hypercube Design The evaluations utilised hypercube designs that controlled
for numerous variables while manipulating only one variable at a time. Instead of pre-
senting AI systems with a collection of scenes and reporting the overall accuracy, the
evaluations used carefully controlled stimuli to assess the effects of specific variables on
the AI’s common sense reasoning. This is exactly the spirit of the paradigm shift in AI
evaluation we presented earlier in Section 2.3. We can have a look at an example of a
hypercube for the agent domain task "Agent Identification" in Figure 3.1. Each cell from
the hypercube is "assigned" to each kind of experiment of this task and represents a set
of crucial characteristics of the item, providing insight beyond whether or not an AI suc-
ceeds at that instance.

Figure 3.1: Agent Identification task Hypercube, taken from MCS Project Website.

Three teams participated in the first strategy/challenge from the MCS project, each
of them developing an agent with the framework provided by MCS. The first team, com-
posed by IBM, and the universities of MIT, Stanford and Harvard presented "CORA"; UC
Berkeley, CMU, University of Michigan, the MIT and UIUC developed "MESS" (Model-
Building, Exploratory, Social System); and the last team, constituted by Oregon State Uni-
versity, New York University and the University of Utah introduced their agent "OPICS"
(Obvious Plans and Inferences for Common Sense).

This project had a duration several years and during this period, up to 7 evaluation
"acts" were carried out periodically, allowing agents to be re-trained after receiving feed-
back from the evaluation process. In each of these evaluations, different commonsense
concepts were object of evaluation with some proposed tests –tasks from the domains we
introduced above– and metrics for assessing them. Some of the tasks that were used per
domain can be seen in Table 3.1.

For the present project, we take performance data from the agents which was gener-
ated at evaluations 6 and 7. The process of evaluation generated instance-level results
for the aforementioned agents, in which we do not only know whether the systems suc-
ceeded, but also get access to details from the specific scene/instance. However, for the
specific setting of the Measurement Layouts we were going to use to infer the agents’
capability profiles, we were only interested in knowing the cognitive demands –the cog-
nitive demand of a task, is related to the complexity of the task/problem from the per-
spective of the cognitive ability assessed[66]– each of the instances had. To achieve so,
MCS Evaluation team annotated each instance with 9 macro-level variables, representing
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Domain Task Name Evaluation Procedure
Common Sense Concept as-
sessed

Agents
Spatial Ref-
erence

Test whether agents use
spatial reference information
from agents only, not from
objects

Agents can provide solu-
tions to problems and convey
knowledge

Agents Imitation

Test if agents are able to
solve a simple problem af-
ter viewing an agent model
a non-obvious solution (such
as touching targets in a spe-
cific sequence), demonstrat-
ing recognition of the poten-
tial value of imitation

Same concept as Spatial Ref-
erence

Places Holes

It is tested if systems can nav-
igate to either a target or an
agent that holds the target in
a room with holes in the floor
that obstruct the AI’s path.

Agents can navigate to a tar-
get, avoid places that are dan-
gerous, update their location
relative to the environment,
select the most efficient route,
and identify another agent
that may have the target

Places Occluder

Search in a room to obtain
a target object that may be
invisible behind an occluder,
using depth relations to infer
possible locations of the tar-
get object

Objects exist in 3D space, and
persist, even when occluded

Places Shell Game

Agents are required to track
a target object that has been
placed in one of several con-
tainers either before or after
the container is moved

Objects can be tracked over
spatial displacement

Places
Spatial
Elimination

AI systems must determine
where an occluded object
must be located given that
only one of two occluders in
the room is big enough to
fully occlude the object

Objects can be located in
space by a logical process of
elimination

Objects
(Passive
Task)

Collisions

Provide a plausibility rating
for scenes in which a colli-
sion may or may not have oc-
curred

One object can be launched
into motion when it is hit by
another object

Objects
(Passive
Task)

Object Per-
manence

Passive recognition that ob-
jects do not appear or disap-
pear behind occluders

Objects persist, even when
occluded

Objects
(Active
Task)

Symmetrical
Tool Use

Use a simply symmetrical ob-
ject as a tool, to push or ma-
neuver a target object so that
it becomes accessible

Object functions can be pre-
dicted by their forms

Objects
(Active
Task)

Moving
Target Pre-
diction

Anticipate the location of a
moving object and proceed to
that location in order to inter-
cept the object

Objects have trajectories that
can be anticipated

Table 3.1: Some Evaluation Tasks from MCS Program per Common Sense Domain.
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"generic" cognitive abilities and other high-level relevant properties/features that define
the instance and may affect performance; non-ability variables, representing which kind
of task the instance was –passive, interactive or a peripheral instance in which the scene
featured reasoning–; and 38 micro-level variables representing more specific abilities that
were tested in a given instance or other more detailed properties that may be relevant to
understand agent’s behaviour at the given instance.

For characterising the capabilities of OPICS, CORA and MESS we focused on the
macro-level variables. These variables were binary, indicating whether that demand is
present or not. Nonetheless, annotation of the macro-level variables represents in a cer-
tain way an aggregation of the observed micro-level variables. Therefore, the annotation
of micro-level variables was crucial to finally define the task characterisation –"a set of
observable, usually constructed, meta-features, expressing cognitive demands and other
high-level properties of the task" [12]. This micro-level variables were based on some
qualitative patterns or observations from the scene/instance. The following table pro-
vides some of these micro-level variables and the qualitative characteristics of scenes
that required of the ability they represent:

Ability/Micro-level
variable

Qualitative feature present in the scene/instance

Reason about mo-
tion change at con-
tact between two ob-
jects

An object begins to move or changes the direction of move-
ment when it is hit by another moving object; movement by
placers doesn’t count and features of the room (platform,
floor) are not untethered objects

Reason about a tar-
get that is not imme-
diately visible

At the start of scene, the target is not within the systems
line of sight and it does not see the object hidden or coming
out of a popper or moving or on a placer, i.e. it is not visible
before the AI starts to act

Reason about object
trajectories

The AI needs to anticipate a –visible or invisible– trajectory
of a moving object or an object you are about to move –e.g.,
using a tool to move the target– to obtain the target, even if
it is falling down; does not count placer placements

Reason about agents
providing solutions
to problems

Agents can have targets or can indicate (by pointing) where
the target is

Reason about vary-
ing number of task-
relevant objects

In the instance design some element of the scenes are ma-
nipulated.

Obtain a target after
forced rotation

The AI is forced to rotate (either 360 in place) or around a
cog during the scene

Understand that
agents only know
about what they
have seen

In the instance, agents can see (or not see) where the target
is hidden; agents only know what they have seen or expe-
rienced

Table 3.2: Some of the micro-level variables used for annotating MCS Evaluation Data.

On the other side, the macro-level variables were: moving object reasoning, core ob-
ject reasoning, quantity reasoning, agent reasoning, AI reorientation, object permanence
reasoning, generalising, tool use and challenging navigation.
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3.2 Hierarchical Bayesian Networks and Approximate Inference

Measurement Layouts are semantically-rich specialised Hierarchical Bayesian Networks.
To understand them, we have to look at Bayesian Networks first.

3.2.1. Bayesian Networks

Bayesian Networks (BN) benefit from the probability theory, graph theory and statis-
tics. They are also known as belief networks, belonging to the family of graphical mod-
els. These graphs allow for representing uncertainty in many domains. In Bayesian
Networks, nodes represent random variables, and the edges, the probabilistic relation-
ship/dependence between the nodes that it connects. Therefore, due to that Bayesian
Networks are usually directed acyclic graphs; the whole structure is a representation of
the joint probability distribution over the nodes –random variables [38]. The dependency
of variables is given by the direction of the edges. If a variable Xi is a parent node of vari-
able Xj, it indicates that the latter is conditionally dependant on the former.

More precisely, the absence of edge represents a conditional independency. If nodes
are assigned a number in topological order, and then we connect them such that each
node is conditionally independent of all its predecessors given its parents –this is called
ordered Markov property– [48] like this:

Xi ⊥ Xpred(i)\pa(i) | Xpa(i) (3.1)

In which pa(i) represent the parents of node i, and pred(i) are the predecessors of node
i in the ordering. Using this property, we can represent the joint probability distribution
(JPD) as:

P(X1:NG) =
NG

∏
i=1

P(Xi | Xpa(i)) (3.2)

This expression allow us to define easily the joint distribution in a factored form,
what eases evaluating possible inferences by applying marginalisation. Borrowing the
example provided in [38], we have the Bayesian Network of Figure 3.2, composed by
discrete binary random variables.

"It considers a person who might suffer from a back injury, an event represented by
the variable Back (denoted by B). Such an injury can cause a backache, an event repre-
sented by the variable Ache (denoted by A). The back injury might result from a wrong
sport activity, represented by the variable Sport (denoted by S) or from new uncomfort-
able chairs installed at the person’s office, represented by the variable Chair (denoted by
C). In the latter case, it is reasonable to assume that a coworker will suffer and report
a similar backache syndrome, an event represented by the variable Worker (denoted by
W)".

In Bayesian Networks, there are two types of inference top-down, also known as pre-
dictive inference and bottom-up, also called diagnostic inference. Taking our example of
Bayesian Network, a case of top-down inference would be: given that we have observed
that an individual suffers from backache, which are the probabilities of uncomfortable to have been
installed at the office?

Using Bayes’ Rule, that inference is expressed in the following way:
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Figure 3.2: A simple Bayesian Networks modelling dependencies between discrete binary vari-
ables [38].

P(C = T|A = T) =
P(C = T, A = T)

P(A = T)
(3.3)

now we use the JPD expression given by Equation 3.2

P(C = T, A = T) = ∑
S,W,B∈{T,F}

P(C = T) P(S) P(W|C = T)P(B|S, C = T) P(A = T|B)

(3.4)

and

P(A = T) = ∑
S,W,B,C∈{T,F}

P(C)P(S)P(W|C)P(B|S, C)P(A = T|B) (3.5)

Computing the JPD takes exponential time as it has size O(2n), where n is the number
of nodes. Summing –or integrating when using continuous variables– over the variables
is called exact inference, which is known to be a NP-hard problem. Given its computational
cost, most of the times approximate inference is used instead, an inferential method we will
delve into later.

3.2.2. Hierarchical Bayesian Networks

As we briefly introduced in Section 2.6, advanced Bayesian hierarchical models enable
the explanation of how parameters governing the functions that produce data are gener-
ated. Now, let’s delve into a more formal definition of Hierarchical Bayesian Networks.

These models serve as a solution for scenarios involving multiple related datasets,
where some aspects or features are shared across datasets while others are specific to
each. For example, in cognitive science, memory can be studied across various modalities
such as verbal, visual, and spatial memory. Each dataset captures unique aspects specific
to its modality –idiosyncratic features–, yet they all share underlying processes related to
encoding, storage, and retrieval of information –shared features.

To address such complexities, Hierarchical Bayesian Networks (HBN) introduce la-
tent variables that represent unobserved factors influencing the observed data across



26 Materials and Methods

datasets. These latent variables accommodate both shared and idiosyncratic effects by
allowing parameters to vary at different levels of the hierarchical structure, while com-
ing from the same prior distribution.

If we have J datasets –depending on the problem, j could represent an individual, an
experiment, etc.– with Nj data points:

Dj = {(xj
n, yj

n) : n = 1 : Nj} (3.6)

The first two options that may come to mind could be: fitting a model per each dataset
–i.e p(y|x; Dj) the posterior distribution of the response variable–, what may result in
overfitting; or train a single model taking all datasets together –i.e p(y|x; D = ∪J

j=1Dj),
a choice that might result in underfitting. However, we can use hierarchical Bayesian
model in which each dataset (group) has its own parameters θ j, but they have a shared
prior p(θ0). This results in a model with posterior distribution:

p(θ0:J ,D) = p(θ0)
J

∏
j=1

[
p(θ j | θ0)

Nj

∏
n=1

p(yj
n | xj

n, θ j)

]
(3.7)

Example of Hierarchical Bayesian Model: Radon Regression

This is an illustrative example inspired in Chapter 15 from [48]. In this case, it is proposed
a hierarchical model to predict the churn rates –the rate to which customer decide to
unsubscribe– from a streaming company like Netflix based on a categorical that indicates
the region to which a customer/household belongs to, and a binary variable, represent-
ing whether the household has youngsters at home or not. It is used a dataset of many
households for J regions, in which each j represents a region from a given country. Then,
the hierarchical model will fit a regression model for each region, where the parameters
of the regression model –slope and baseline–, together with the parameters that model
them are the latent variables of the hierarchical model. The graphical representation of
the model can be seen in Figure 3.3:

Figure 3.3: Representation of the Hierarchical Model for the Netflix churn rate prediction.



3.2 Hierarchical Bayesian Networks and Approximate Inference 27

In this model, given the priors assumed that will be presented later, the likelihood of
the target variable –log radon levels at a given house from a region– follows a normal
distribution like this:

p(yn | xn, gn = j, θ) = N(yn | αj + β jxn, σ2
y ) (3.8)

We define hierarchical priors that model the parameters of the regression model for each
region:

• For the region intercept. I.e. the baseline churn rate for region j: αj ∼ N (µα, σ2
α)

• For the region slope. I.e. the effect of having youngsters on churn rate for region j:
β j ∼ N (µβ, σ2

β).

And the following weak priors for the rest of the parameters/variables:

• µα ∼ N (0, 1), µβ ∼ N (0, 1), σα ∼ C+(1), σβ ∼ C+(1), σy ∼ C+(1)

Table 3.3 provides us an explanation of the variables/parameters that appear in the
model:

Parameter Description Meaning
αj Region-specific intercept Baseline churn rate for Region j
β j Region-specific slope Effect of having youngsters at home for Region j
µα Mean of Region intercepts Overall mean of αj across all regions
σα Std. dev. of Region intercepts Variation of αj across regions
µβ Mean of Region slopes Overall mean of β j across all regions
σβ Std. dev. of Region slopes Variation of β j across regions
σy Measurement noise std. dev. Noise in the churn rate measurements
yn Observed churn rate Churn rate for house n
xn Youngster at home indicator 0 if not, 1 if yes
gn Region indicator Indicates that house n is in Region j

Table 3.3: Summary of Parameters and their Meanings in the Hierarchical Bayesian Model for
Churn Rate Prediction

Before moving into the final step of fitting the model and how we can use it to do
predictions, let’s review what has been defined until now:

1. It has been defined priors for our latent variables: µα, σα, µβ, σβ, σy

2. With this latent variables, we have defined hierarchical priors for the latent vari-
ables that parametrise the regression model: αj and β j.

3. Given these priors, and the dependencies the hierarchical model represents with
respect to the target variable, we have the likelihood of our model defined in Equa-
tion 3.8.

4. Then, taking Bayes’ Theorem, we know that the posterior distribution will be pro-
portional to –in the sense of the "shape"– the product of the likelihood and priors:

p(θ|D) ∝ p(D|θ)p(θ) (3.9)

Substituting priors –remember we have two types of priors, the hyperparameters
ones and the hierarchical priors– and likelihoods in Equation 3.9 we have:

p(µα, σα, µβ, σβ, α1:J , β1:J | D) = p(µα, σα, µβ, σβ)

×∏J
j=1

[
p(αj | µα, σα)p(β j | µβ, σβ)∏

Nj
n=1 p(yj

n | xj
n, αj, β j, σy)

]
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5. Now, given the data we have, we should analytically marginalise over the region
parameters –α and β– and then, over the hyperparameters to infer the posterior.
In this case, this analytical process is really complex, and given that some priors
–the ones that are define with the half-Cauchy– are not conjugate to the likelihood,
the exact inference of the posterior is intractable. However, we can use approximate
methods to infer the posterior. To proceed, we present Markov Chain Monte Carlo
(MCMC), a numerical approach to approximate robustly the real posterior.

In the next section, we introduce this stochastic technique to approach complex numerical
integration problems, and that is used in the Measurement Layouts for approximating
complex posterior distributions.

3.2.3. Approximate Inference: Markov Chain Monte Carlo Sampling

Markov Chain Monte Carlo algorithm has been widely adopted in many fields. In the
present project, it presents special interest because it application on approximating in-
tractable integration problems in Bayesian statistics like normalisation, marginalisation
or expectation.

Monte Carlo integration

The intuition behind MCMC relies on the Monte Carlo integration. This is often used
when we want to compute the expected value of a given function of a variable E[ f (X)].
This is equivalent to the following integral:

E[ f (X)] =
∫

f (x)p(x)dx (3.10)

Where p(x) is the target distribution of X –in many cases, like in the Measurement Layout,
p(x) can be a posterior distribution p(x|y) instead. Solving this problem analytically by
numerical integration might be unfeasible as the number of dimensions of X increases.
Then, the idea of Monte Carlo integration is drawing n random samples so that xn ∼ p(x)
and to approximate this expected value we take the arithmetic mean of these drawn
samples evaluated at the function:

E[ f (X)] ≈ 1
N

N

∑
n=1

f (xn) (3.11)

One key aspect of this approach is that there is no need to draw samples from the whole
variable space, but only in which the probability of the sample is significantly greater
than zero.

One challenge of this process that it will not be delved into are the wide range of
methods to generate random samples from the chosen distribution. However, some of
the most used techniques for univariate distributions are cumulative distribution function
inverse sampling, rejection sampling or importance sampling. These methods serve as the
building blocks for sampling from more complex distributions like multivariate ones.

The MCMC Algorithm

The basic idea of the MCMC methods is to generate a Markov Chain –a stochastic process
where the probability of transitioning to any future state depends solely on the present
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state [48]– whose stationary distribution matches a target density function p∗(θ). In the
present context, this target density will be a posterior p∗(θ) ∝ p(θ|D) of some parameters.

With this technique, the random walk generated induces that the "fraction of time"
spent across the values from the state space –parameter space– is proportional to the
p∗(θ) it is desired to be estimated. The connection between Markov Chains and the
Monte Carlo methods is that by "drawing correlated –correlated because of the Markov
Chain definition– samples from the chain we can perform Monte Carlo integration with
respect to p∗".

The simplest version of MCMC is the Metropolis-Hastings algorithm, the first MCMC
algorithm, proposed back in 1953 [47]. The pseudocode for the algorithm can be seen
below 3.1.

Algorithm 3.1 Metropolis-Hastings MCMC Algorithm

Initialise x0

for s = 0, 1, 2, . . . do

Define x = xs

Sample x′ ∼ q(x′|x)
Compute acceptance probability

α =
p̃(x′)q(x|x′)
p̃(x)q(x′|x)

Compute A = min(1, α)

Sample u ∼ U(0, 1)

Set new sample to

xs+1 =

{
x′ if u ≤ A (accept)
xs if u > A (reject)

Let’s briefly explain the algorithm. A initial estimation for the variable it is desired
to be estimated is chosen (x0), then, until the desired number of samples are drawn the
following steps are executed:

1. It has been defined a proposal distribution q5 which given the current state –the last
sample draw– of the random walk, proposes a new state x′ to move with probability
q(x′|x).

2. Then, we compute the probability of given the current state, to accept the proposal
–this is called the acceptance probability "A". Usually this probability would be
minimum between 1 and the ratio –α in the algorithm– of p∗(x′) with respect to
p∗(x), but to avoid the proposal favouring certain states/values it is introduced the
Hastings correction, which is the form that can be seen in the algorithm.

Note that p̃ represents the unnormalised form of p∗ –i.e. p∗ = 1
Z p̃(x), where Z is

the normalisation constant. This estimation assuming it is being approximated a
posterior, is usually in the form of the product of its likelihood and prior.

5There are many approaches for choosing a "valid" proposal, but when p∗(x) is a posterior, very often
it is opted to include observed data when conditioning the sampling –i.e. q(x′|x) now is q(x′|x, D). This
approach is called data-driven MCMC [48]
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3. After it, if acceptance probability is higher than 0.5, it does not necessarily imply
that the new sample is accepted as the current state. To proceed, it is sampled a
value "u" from a uniform distribution U(0, 1), which is compared with the accep-
tance probability "A". If "A" is greater than "u", the proposed sample becomes the
new state, otherwise, the current state is taken again as the new state and the pro-
posal distribution samples a new proposal state.

After "s" steps –i.e. the chain is composed by "s" states–, the estimation for the
parameter is trying to be inferred is the sample mean from the values that compose
the chain.6

This was the basic form of the MCMC algorithm, and, as many other variants of it, strug-
gles when sampling at high dimensional spaces, as it basically relies on random search
based on local perturbations of the current state. In this sense, it was proposed Hamilto-
nian Monte Carlo (HMC) [23], which leverages concepts from Hamiltonian mechanics for
defining a more "informed" sampling chain that introduces gradient information. This is
the approximate inference algorithm that we use in the Measurement Layouts. First, let’s
introduce a few concepts from Hamiltonian mechanics which are crucial to understand
the algorithm:

1. The motion of a particle is characterised by its position q and its momentum p.
The combination of position and momentum is called phase space. The energy of
the particle is given by the Hamiltonian function, which depends on its potential
energy E(q) and its kinetic energy K(p):

H(p, q) = E(q) +K(p) (3.12)

2. When transferring these concepts to Bayesian statistics, these terms are redefined
in the following way:

E(q) = −logp̃(q) (3.13)

Where p̃(q) is the unnormalised distribution from the posterior of the parameter
we want to approximate (q).

K(p) =
1
2

pTΣ−1 p (3.14)

Where Σ is the inverse mass matrix. The choice of this positive definite matrix is
relevant. The most common approach consists on setting it to the identity matrix
for the burn-in sampling step, and then computing the empirical covariance matrix
using the sampled values for the parameter that is being estimated like this:

Σ =
1
N

N

∑
i=1

(qi − q̄)(qi − q̄)T (3.15)

where qi are the samples, q̄ the mean of the samples, and N is the number of samples
collected after the burn-in period.

Below we have the pseudocode for the HMC Algorithm. We will explain the variation
that uses the "leapfrog integrator", other well-known versions are the Euler’s and its mod-
ified version, which do not even need keeping the momentum parameter.

Now, let’s briefly break it down step by step:

6It must be noted that usually the first samples from the chain called mixing time or burn-in time samples,
which are discarded because they are used to converge to the target distribution.
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Algorithm 3.2 Hamiltonian Monte Carlo Algorithm

for t = 1 : T do

Generate random momentum vt−1 ∼ N (0, Σ)

Set (q′0, p′0) = (qt−1, pt−1)

Half step for momentum: p′1/2 = p′0 −
η
2∇E(q′0)

for l = 1 : L− 1 do

q′l = q′l−1 + ηΣ−1 p′l−1/2

p′l+1/2 = p′l−1/2 − η∇E(q′l)
end for

Full step for location: q′L = q′L−1 + ηΣ−1 p′L−1/2

Half step for momentum: p′L = p′L−1/2 −
η
2∇E(q′L)

Compute proposal (q∗, p∗) = (q′L, p′L)

Compute α = min (1, exp [−H(q∗, p∗) +H(qt−1, pt−1)])

Set qt = q∗ with probability α, otherwise qt = qt−1

1. For starting the algorithm, it is taken a random initialisation of the position –the pa-
rameters to be approximated. Then, we obtain a random value for the momentum
coming from a normal distribution with mean 0 and using the mass matrix as its
covariance matrix. This will be our initial conditions for this t step.

2. It is computed the gradient of the potential energy, and it is performed half step of
the momentum update. The update is performed using the gradient of the potential
energy weighted by its step size, represented by the parameter η.

3. It is performed L leapfrog steps to update the initial position and the (half-)updated
momentum. The momentum is updated following the same procedure as detailed
in the previous step, while the position is updated weighting –pre-multiplying–
the (half-)updated momentum by the inverse mass matrix and the step size. This is
repeated for L− 1 leapfrog steps.

4. It is performed the final update for this iteration of the location/position q and the
rest of the half-step for the momentum p. This two last updates compose the new
proposed state (q∗, p∗) = (q′L, p′L)

5. We compute the acceptance probability of this new phase space, given by the ex-
pression : min (1, exp [−H(q∗, p∗) +H(qt−1, pt−1)]). The reason for this expression
of the acceptance probability arises from the fact that it we have chosen appropri-
ate priors and we have modelled Hamiltonian mechanics appropriately, the pro-
cess should be energy conserving and then, the differences between the Hamilto-
nian/energy function between the proposal and the previous state would be zero.
Therefore, obligating to take the new state.

In our methodology for approximate inference, we use HMC with no-U-turn sampler
[36], which chooses the number of leapfrog steps L to be large enough that the algorithm
explores the states that keep constant energy without the need to stay in the same posi-
tion.
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3.3 Measurement Layouts

As it will be recalled many times later and has already been stated out before, "a Measure-
ment Layouts is a specialised, semantically-rich version of Hierarchical Bayesian Net-
works, which allow us to model how task-instance features interact with AI systems
capabilities to affect performance".

From the cognitive science perspective, it can be understood that the performance at
a given task from a cognitive system –in essence, a member from the machine kingdom–,
is a function of that task demands and the capability levels. The relation between the
two depends on the characteristics of the task and the capabilities being evaluated. For
example, in a language comprehension task, the complexity of the sentences to be under-
stood requires a comprehension capability that matches or exceeds the complexity level
of the sentences. Another less abstract example, and introduced in [12] states: "in a mem-
ory problem, the number of objects to remember in a particular task demands a memory
capability level at least as high as the number of objects".

It must be taken also into account the fact that simply observing the differences of the
capability with respect to the demand does not explain all performance variance. Other
unaccounted factors, noise and cognitive biases could have its influence on it.

Now, we will explain some key terms for understanding this framework from a high-
level perspective and see how they are "connected" through the Measurement Layout,
and then, we will dive into formalising them.

Measurement Layout: Some definitions

• Cognitive Task: Taking the definition from [32], a cognitive task is an "interactive
series of stimuli that allows for different observable behaviours on the subject and
it is cognitive as far as performance is involved, and its interface can be altered or
simulated without affecting the nature of the process".

• Task Characterisation: A set of meta-features that can affect performance in a given
task. When characterising cognitive tasks, this may include cognitive demands and
other high-level properties of the task.

• Cognitive Ability: We have already defined this concept a few time previously, but
a more precise definition provided in [32] is: "a gradient property of an interactive
system in the machine kingdom that allows the system to perform well in a class
of cognitive tasks". Cognitive abilities are inherently tied to an organism’s capacity
and cognitive resources. Any scale measuring cognitive abilities reflects that they
are gradient features, meaning a higher magnitude indicates greater capability.

When a system/individual has a singular behaviour in a class of task in terms of
only being able to carry out very specific and maybe considerably complex settings
of it, it is preferable to call this attainment instead of ability.

• Cognitive Profile: It derives from the concept of psychometric profile, which is
defined as the set of behavioural features which are measured for a particular in-
dividual/system. But in our applied case, it has a more precise definition, being
the following triplet ⟨C, B, R⟩. These three elements are vectors of capability levels,
bias and robustness respectively.

The former represents what the agent can do; bias values, limitations or preferences
that may affect performance in a "less monotonic way" [12]; and the latter accounts
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for reliability issues, i.e., unexplained or random effects (noise) on either the agent
or the environment.

• Compensatory Capabilities : In this context, compensatory behaviour is observed
in an agent when it lacks a particular capability but has developed another ability to
such an extent that it can compensate for the weaker one in a specific task. This con-
cept is linked to whether the performance of an agent at a given instance requires
all the capabilities from its cognitive profile to some extent, or conversely, whether
some capabilities can compensate for the absence of others. The first step to deter-
mine whether the capabilities are compensatory is to model if they are independent
or not.

• Measurement Layout: The measurement layouts is a directed acyclic graph based
on the concept of Hierarchical Bayesian Networks that connects through "linking
functions" the meta-features coming from the task characterisation with the cogni-
tive profile of an agent in such a way that allows predicting the system’s perfor-
mance.

Measurement layouts are Hierarchical Bayesian Networks in which nodes repre-
sent every meta-feature from the instance or an element from the system’s cogni-
tive profile. These nodes are the roots of the HBN, and the connection between them
represents conditional dependencies, as they do in normal hierarchical models. The
relationship between dependent nodes has not only a probabilistic interpretation,
but a semantic one. In this sense, when saying semantic it is referred to that they
encode domain-knowledge.

The set of all the nodes and their dependencies, as expressed by the Equation 3.2,
encodes a probability distribution, but we will delve into more details about for-
malising the measurement layouts in Section 3.3

Now let’s study specific types of nodes and "components" we can find in measure-
ment layouts that will allow us to understand the "link" between the aforemen-
tioned concepts.

– meta-features: They come from the task characterisation and are fixed observ-
able values.

– Cognitive Profile Nodes: Elements from the cognitive profile that are relevant
to the assessed task’s demands. These may include capabilities and biases.
Cognitive profile nodes can combine with meta-features and feed into derived
nodes. As explained in Section 2.6, when trying to model complex cognitive
mechanisms, we define prior distributions for the parameters that regulate
the variables –in this case, these variables are the elements from the cognitive
profile– that are in control/influence task performance.

– Linking Function: A mathematical expression that maps values from the out-
put of one node’s probability distribution to the input of the another. Some ex-
amples that are actually used in some topologies of the measurement layouts
are: the sigmoid function of the difference between capability and demands; a
product of capabilities when they are not compensatory, etc.

– Derived Nodes: They are instance-level inferences. They surge as a combina-
tion of meta-features and elements from the cognitive profile, and the parame-
ters of the probability distribution that model them derive from the nodes they
depend on. Indeed, due to measurement layouts encoding domain-knowledge
information, their parameters are computed through the linking functions,
and their outputs are used as the summary statistics of their distribution.
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A relevant example of derived node that is present in every topology is the
observable performance. However, the most frequent derived nodes are the
"Intermediate Non-Obervable Nodes" (INON), which represent intermediate
non-observable performance or effects.

It is important to insist on how relevant is domain-knowledge and having a deep under-
standing of how cognitive capabilities and the available meta-features from the instance
are expected to affect the values of instance-level inference nodes. This can help to build
richer connective structures that introduce higher-order and complex relationships be-
tween nodes, "with certain INON nodes requiring the nuanced confluence of many cog-
nitive profile elements and meta-features" [12]. This complex structure is not intended
solely to enhance predictive power in the model. Rather, it serves the crucial purpose
of accurately distinguishing between success, failure, and the nuances of complex be-
haviours that a well-designed benchmark for evaluating agents must address.

The primary distinction between HBNs and measurement layouts relies in their pri-
mary goal: "capturing the hierarchical dependencies between capabilities and demands,
rather than encoding information on hyper-priors". Indeed, the process of building the
connective structure of the measurement layouts is done by applying ideas from cogni-
tive modelling.

As an example of this, we can look at important decision of determining if some
capabilities are independent and, if so, whether they are compensatory, using additive
or multiplicative expressions accordingly. If they are not independent, they need to be
linked with a mathematical function expressing their dependency.

Given a system’s cognitive profile and the characteristics of a new task, performance
can be predicted using top-down inference. Before this, the cognitive profile must be
inferred from the observed performance on other tasks using bottom-up Bayesian infer-
ence. To achieve this process, we employ PyMC’s inference engine, which we will intro-
duce in 3.4 and the No U-Turn Sampler –introduced in Section 3.2– approach to Bayesian
approximate inference. To accurately predict a system’s cognitive profile, the test battery
must control for alternative explanations, allowing performance results to "triangulate"
latent capabilities.

High-level introduction of the measurement layout

To grasp an actual idea of the functioning of this framework, let’s look at an introductory
high-level example taken from its original paper [12], which can be seen graphically in
Figure 3.4.

This measurement layouts displays the two types of inferences that are used within
this framework. This topology illustrates an agent which has been observed to perform
badly when exploring a 3D environment to find a reward, what demands understanding
that the reward still exists when occluded (object permanence). It requires remembering
where it is, and successfully navigating to it. But we do not know if the reason for failure
arises from the lack of object permanence, limited memory or navigation skills. This
type of task instances are represented by the red –red indicating failute– circle with the
number 3.

However, we have found that it performs well when the task only demands complex
navigation –green circle with the number 1–, and in tasks which imply both navigation
and memory only –green circle with the number 2–. By bottom-up inference, having
observed this patterns of behaviour, we could intuitively determine that the agent has
decent navigation and memory ability, while it has a bad object permanence ability. This
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bottom-up triangulation has allowed us to; given the observed data, to infer the agent’s
cognitive profile.

On the other hand, we see a new incoming task represented by the blue circle with
the number 4. This task is very demanding from the point of view of object permanence,
so we can infer that it is very likely that the system fails at this new task. This is top-down
inference.

Figure 3.4: Example of Triangulation in the measurement layouts. Bottom-up inference from
three tasks (in green and red for success and failure respectively) leading to the cognitive profile.

Top-down inference (in blue) predicting failure for the fourth task. Taken from [12].

Formalising the Measurement Layout

We can formally define the Measurement Layouts as a "model that parametrises a prob-
ability distribution over the performance of a subject on a given instance, using the de-
mands of the instance and the capabilities of the subject".

Let i denote instance index and j denote subject index. Let θj ∈ RM denote the capa-
bilities of subject j, and xi ∈ RM denote the demands of instance i. We often consider the
margin between the l-th capability and demand, defined as θj,l − xi,l . The introduction of
margins allows to solve a problem introduced in Section 2.4, and it is that the capabili-
ties of a system and the demands of the task should be in the same scale. Also, with an
appropriate choice of the priors probability distributions for them, the capabilities can be
positively correlated with performance. As we already introduced in the previous sec-
tion, there may be other elements from a task characterisation which are are not strictly
demands and may affect performance without the need to be combined or linked with
capabilities through margins; let us denote those by ϕj. Also, there may be other parame-
ters which are common to the evaluation setting and are present for all agents and tasks,
which we will denote as ξ.

Then, taking these terms and our initial definition of the measurement layout, the
probability distribution (likelihood) of performance for the instance i and individual j
has the following expression:

p(yi,j | θj, ϕj; xi; ξ) (3.16)
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Then, given the prior distributions on θj, ϕj and ξ, we can define the following pos-
terior distribution over all the parameters after having observed n instances for each of
the m subjects similarly as we did in 3.7 for Hierarchical Bayesian Networks and using
Bayes’ Theorem to infer that the posterior is proportional to the product of the likelihood
and the priors:

π
(
θj, ϕj, ξ | y1:n,1:m, x1:n

)
∝ π(ξ)

m

∏
j=1

[
πj(θj, ϕj)

n

∏
i=1

p(yi,j | θj, xi, ϕj; ξ)

]
(3.17)

This expression "is" the Measurement Layout, and is the posterior probability we aim
to approximate using the HMC algorithm provided by the PyMC framework. The ap-
proximate inference of this posterior also allows us to estimate the marginals for the pa-
rameters for each subject.

Notice that, while the capabilities for each subject are independent on the others given
the values of the demands and ξ, the posterior does not factorise for ξ and (θj, ϕj) due to
the presence of all the parameters in the likelihood term. As a result, if a new subject is
added, both distributions will change. To avoid this appreciation, it can be fixed a Dirac-
delta distribution on ξ: π(ξ) = δξ0 . This results on a simplification of the posterior of the
subjects because it factorises:

π
(
θj, ϕj, ξ | y1:n,1:m, x1:n

)
∝

m

∏
j=1

[
πj(θj, ϕj)

n

∏
i=1

p(yi,j | θj, xi, ϕj; ξ)

]
(3.18)

This is a really important assumption, as it allows us to infer the posterior per each
individual/subject separately, which is more feasible from the computational perspective

The capability parameters ϕj acquire meaning from the specific measurement layouts
formulation, including their interaction with demands (e.g., via the margin). Therefore,
capability posterior distributions from different measurement layouts are not compara-
ble, even if they are compared against the same demands but differ in how margins are
combined.

Example: Bernoulli Response and Single Margin and Demand

To give an example of it works, let’s consider that performance in a task is a Bernoulli
variable and we only have one single demand and a unique margin. Therefore, a possible
expression for measuring the success at the task could be:

p
(
1|θj, xi, ϕj; ξ

)
=

1

1 + e−ξ(θj−xi)
(3.19)

Which exploits a logistic function of the margin to compute the probability of suc-
cess. In this case ξ represents the slope of the logistic, and it is desirable to fix it a ≥ 0 to
make sure that larger capabilities correlate with larger probability of success. This slope
can be an "inferrable" parameter to be adjusted automatically using the hierarchical mea-
surement layouts formulation from Equation 3.17. However, a general approach used
is to fix a value so that the scaled margins have roughly the same orders of magnitude
across capabilities, which ensure that the various margins can impact the final probability
equally. This is done by setting the following value for the logistic function:
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ξ =
log 1−p

p

max_margin
(3.20)

Where p is the probability that wants to be assigned to the maximum margin –represented
by max_margin– that can take place for each combination of the capability and demand.

Example: Multiple Margins

This is a more generic setting, in which we may find that there are multiple capabilities
that may be combined by linking functions and then compared to a demand, or we sim-
ply may find multiple margins that are result of "simple" margins –simple in the sense
that comes from the "comparison" of an only demand and capability–.

Going back to the high-level characterisation of the measurement layouts above, these
margins, transformed into "sub-probabilities" using Equation 3.19 could represent inter-
mediate effects/performance, so we might be interested on combining them to obtain a
second derived node that aggregates this information, or maybe this aggregation may be
used to infer the parameters that characterise the final performance probability distribu-
tion. Hence, if we have multiple probabilities (σl) coming from the expression given by
Equation 3.19, we have multiple choices for combining them:

• Product: the product of this probabilities would result in a probability which is
smaller than the minimum σl . From the cognitive science perspective, this has an
actual interpretation that can be explained as each σl representing the performance
of a sub-task and the performance across them is not-compensatory, so that it is
needed to pass all of them to succeed in the general task.

• Complementary product: this option is given by the following expression:

1−
L

∏
l=1

(1− σl) (3.21)

This has the opposite interpretation to the product of σ values, and is introduced
when the sub-task performance can compensate for others.

There are other options, like using the maximum or minimum σ, using weighted means,
but we will principally focus on the first two presented.

Binary demands

When the demands themselves are binary, then we need an revised ”margin”, as θj − xi
is not easily interpretable. A possibility is:

p(yi,j|θj, xi) = 1− ((1− θj)xi) (3.22)

The goal of this margin is to reflect that the demand can be present, in which case
the capability is utilised (and the sub probability is θj ), or the demand can be absent,
in which case the outcome of the sub-problem is 1 independently of the capability. This
approach is only valid when the capabilities are bounded in [0, 1]. While this may make
sense for certain capabilities and binary demands, there are cases in which the capabilities
"make more sense" if they are modelled not to be bounded, as it is the case when prior
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distributions for them are normal. In these cases, it is proposed the following alternative
for the logistic function for computing probability of success at sub-tasks:

p(yi,j|θj, xi) = σ(θj − log(xi + ϵ)) (3.23)

Where ϵ is just a constant used to ensure numerical stability and the margin is rede-
fined to be θj− log(xi + ϵ). This is interpreted has a similar interpretation to the previous
alternative

Introducing Noise in the Measurement Layout

Sometimes it is desirable to introduce a noise component in our measurement layouts
formulation as follow:

p(1 | θj, xi, ϕj; ξ) = (1− φj) · p̃(1 | θj, xi, ϕj; ξ) + φjνj (3.24)

Where the probability of success, obtained by combining capabilities and demands
and denoted as p(1|θj, xi, ϕj; ξ), is weighted with a constant component φj ∈ [0, 1] that is
a agent-specific parameter which is used to weight the demand-dependent part and the
demand-independent part νj ∈ [0, 1].

This is used in the following way:

1. Draw a binary random variable with probability φj

2. If that sample is 1, use the measurement layouts to predict probability of success;
otherwise, the latter is set to νj

These last two parameters are not random, and can be approximated with the mea-
surement layout. The motivation for including noise is as follows: if the demands are not
predictive for the subject and the specific measurement layouts formulation, the poste-
rior for φj will give high weight to values close to 1. In this case, the prediction of success
will be the constant νj, independently of the demand xi.

There is another approach for introducing noise, that indeed allows bounding the
predicted performance as we decide to, between "a" and "b" as follows:

p(1 | θj, xi, ϕj; ξ) = aj + (bj − aj) · p̃(1 | θj, xi, ϕj; ξ) (3.25)

This is equivalent to Equation 3.24, but aj = φjνj and bjaj = φj. It is suggested that
aj is a fixed value, while bj can be learnt for each subject independently and indicates
the level of “reliability” that the measurement layouts has for the considered subject.
This captures both the randomness of the subject as well as the unexplained factors in
the data. The estimation of this last parameter introduces the following possibilities for
interpreting the measurement layouts inferred values for them:

• A subject with a lower estimated capability level might outperform one with a
higher estimated capability level for a specific dataset. This happens if the latter has
a lower bj estimated. This would suggest that that the most capable subject may fail
in ways not captured by the considered demands, possibly due to randomness or
unconsidered demands.

• If a subject has an estimated bj<1 and we introduce a new demand to explain some
of the failures, the other capability estimates will be expected to change less than if
bj was not present.



3.4 PyMC 39

The importance of the Choice of the Prior Distribution for Capabilities

The choice of the prior distribution for the element of the cognitive profile to be inferred
are important for their further interpretation. This concept arises from the psychology’s
concept of the level of measurement. The level of measurement corresponds to "a classi-
fication initially proposed by Stevens [62] in order to describe the nature of information
contained within numbers assigned to objects or subjects –abilities in our case. It refers
to the degree to which characteristics of the data may be modelled mathematically." [39]

In our case, the choice of prior must be accompanied by a justification of which scale
we are trying the abilities to be located at. Table 3.4 provides an overview of some of
the scales that have been tried to be modelled within the measurement layout, together
with its corresponding measurement property following Stevens’ classification and its
practical implementation and interpretation.

3.4 PyMC

PyMC [56], is a probabilistic programming language available for Python that allows us
to build the measurement layouts, which as we have pointed out many times previously,
are "is a specialised, semantically-rich version of Hierarchical Bayesian Networks...". And
"that" for what it helps us with: building Bayesian models and fitting them with Markov
Chain Monte Carlo (MCMC) methods. In our work, we make use of the No U-Turn
Sample (NUTS), an extension of the Hamiltonian MC algorithm that we introduced back
in Section 3.2.3. Table 3.5 introduces some of the classes and methods that we have used
the most for defining the hierarchical model that the measurement layouts represent.
This table also includes use cases of them.

The pseudocode in Algorithm 3.3 provides a general idea of how it was proceeded
for defining the measurement layouts using PyMC.
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Scale/Level
Measurement
Property

Practical Implementa-
tion

Interpretation

Ordinal
Comparison,
rank order

The choice of prior
allows only assign-
ing ranks to abilities
based on performance
metrics or observed
behaviour without as-
suming equal intervals
between ranks.

Allows for determin-
ing relative positioning
of abilities (e.g., bet-
ter, worse) but does not
quantify the magnitude
of difference between
ranks.

Interval
Difference,
affinity

Define abilities on a
scale where the differ-
ence between any two
values is meaningful
and consistent, but the
ratio between them is
not. The normal dis-
tribution fits this scale
well, especially for cal-
culating differences be-
tween capabilities and
demands.

Quantifies the degree
of difference between
abilities. Measures of
central tendency like
mode, median, and
mean, and measures of
dispersion like range
and standard deviation
have sense for this
scale. Ratios of differ-
ences can be used, but
absolute ratios are not
meaningful.

Ratio
Magnitude,
amount

Define a prior for abili-
ties such that the scale
has a true zero point,
where both differences
and ratios are meaning-
ful. The lognormal dis-
tribution was consid-
ered for this scale to
try to represent abilities
with an absolute zero
and proportionality.

Provides the most
detailed level of mea-
surement. Allows for
all mathematical oper-
ations, including ratios.
This scale is useful for
understanding com-
pensatory capabilities,
where combined abil-
ities can meet a total
required capabilities.
Modelling this kind of
scale is more challeng-
ing.

Table 3.4: Level of Measurement Theory and its relation to modelling Abilities Scales
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Name Class/Method Description of Use

Model Class
This allows us creating the hierar-
chical model that the measurement
layouts represents

MutableData Class
This allows us to introduce envi-
ronment variables in the defined
model, i.e., the demands of the task

Deterministic Class
It is used for defining derived
nodes

Distributions Class
This allows us to introduce the ca-
pabilities as random variables and
assign prior distributions to them

Sample Method

Applies MCMC sampling using the
defined model. In our case, we use
the NUTS sampler, an extension
of the Hamiltonian MC algorithm.
This corresponds to the bottom-up
inference we introduced in Section
3.3

Model to Graph Method
Allows us to obtain a graphical rep-
resentation of the model

Sample Posterior
Predictive

Method

It is used after bottom-up inference,
once it has been fitted the distribu-
tions for our capabilities, in order to
predict hold-out data. This process
corresponds to top-down inference

Table 3.5: Classes and Methods from probabilistic programming language PyMC used in the
Measurement Layouts
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Algorithm 3.3 Setup Measurement Layouts in PyMC

Input: relevantData, taskResults, noise_type, prior, compensate

Output: Model m

Initialize global constants and settings

Initialize ability ranges for different capabilities

procedure SETUPMODEL(trainingData, taskResults, noiseType, prior, compensatory)

m← PyMC Model Class

with m:

Define data input variables (meta-features)

Define priors for abilities

Define derived nodes (INON nodes) based on abilities and demands margins or
linking functions chosen.

Aggregate performances (if derived nodes representing intermediate performance
was computed) into a single performance measure and depending on the compensatory
setting.

if includeNoiseBeforePerformance then

Incorporate noise into performance based on noise type

end if

if binaryOutputs then

Define task performance using Bernoulli distribution

else

Define task performance using Beta distribution

end if

Return model m

end procedure



CHAPTER 4

Data Processing and Exploratory
Analysis

Data preparation process was already introduced in Section 3.1, but let’s do a quick sum-
mary of how the evaluation data from the MCS project was generated and preprocessed:

1. Firstly, developers of MCS participating agents OPICS, CORA and MESS used
Scene Generator and the AI2-Thor simulator –both introduced in Section 3.1– to
create and run their own set of test scenes to train on concepts core to common
sense reasoning.

2. After it, the multidisciplinary evaluation team from MCS designed the tasks to as-
sess AI common sense in three domains: Objects, Agents, and Places. We recall to
Table 3.1 for a description of some of the tasks used for the evaluations.

3. During the program, several evaluation acts took place. In each of these evalua-
tions, different commonsense concepts were object of evaluation with some pro-
posed tests and metrics for determining the degree of accomplishment. As we al-
ready mentioned, we focus on the last two evaluation processes –from now on we
will refer to them as Evaluation 6 and Evaluation 7–.

4. The evaluation acts were carried out in such a way that for each instance provided
for each agent, a important number of meta-features characterising the behaviour
of the agent, the characteristics of the scene and the final results were generated.
However, for our specific purpose of deriving systems’ cognitive profiles with the
measurement layouts, we needed that the instances were annotated with its cog-
nitive demands –as discussed in Section 3.3–, and these were not derived directly
from the MCS evaluation process.

5. As discussed in Section 3.1, the MCS Evaluators assisted us by annotating each in-
stance with various variables. These include 9 macro-level variables representing
generic cognitive abilities and other high-level features that define the instance and
may impact performance, non-ability variables indicating the type of task –whether
passive, interactive, or peripheral with reasoning–, and 38 micro-level variables
representing specific abilities tested or other detailed properties relevant to under-
standing the agent’s behaviour in each instance.

6. This process generated two datasets –one for each evaluation act– that we used
for inferring the agents’ capability profiles. Both datasets have the same structure
of columns, but they do not contain test results for the same type of tasks, due
to that evaluation acts overlapped only in some tasks –the fact that the same task
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appears in both evaluations does not necessarily mean that the observed results are
the same, due to that the instances might not be repeated from one evaluation to
another.

Table 4.1 represents the structure of the dataset –data displayed does not necessarily
mean to be real– that we received from the MCS Evaluation team. As we can see, we have
the results at the instance level for each agent (performer), this is what the measurement
layouts is intended to predict. Let’s provide some descriptions of the columns of our
dataset:

• Task Name: indicates the name of the task that instance/scene belongs to.

• Cell: to understand this column, we have to take a look back at the concept of task
hypercubes we defined in Section 3.1.1. This column identifies, given the task, in
which cell from the hypercube the instance is assigned to. This summarises rele-
vant information about the features of that instance. If we take the example of the
occluded trajectory task instances that appear in Table 4.1, we notice that their cell
value is D1. Then if we look at this task’s hypercube, which can be seen in Figure
4.1, we can conclude that in that specific instance, the trajectory to get to the reward
is straight and that the reward is located to the right with respect to the original
position of the agent.

• Score: a binary variable indicating it the agent succeeded or not at the given in-
stance –1 if it succeeded, 0 if not.

• Evaluation: indicates whether the instance comes from evaluation 6 or evaluation
7.

• Baseset: serves as an alias used by MCS for identifying instances.

• meta-feature i: these columns are the meta-features –binary variables– we used for
characterising the tasks within the measurement layouts. These are: "moving ob-
ject reasoning","core object reasoning", "quantify reasoning", "agent reasoning", "AI
reorientation", "object permanence reasoning", "generalising", "tool use", "challeng-
ing navigation", "interactive task", "peripheral scene feature reasoning". Taking the
definition of meta-features we provided back in the measurement layouts formali-
sation, these are cognitive demands and other high-level properties of the task that
may assist on explaining agents’ performance. When that meta-feature is present,
the variable takes value 1, otherwise, 0.

Figure 4.1: Occluded Trajectory Task Hypercube, taken from MCS programme website.
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Performer Task Name Cell Score Evaluation Baseset meta-feature 1 ... meta-feature N
CORA arithmetic A1 1 Evaluation {6|7} arithmetic_0010 1 ... 0
MESS arithmetic A1 0 Evaluation {6|7} arithmetic_0010 1 ... 0
OPICS arithmetic A1 1 Evaluation {6|7} arithmetic_0010 1 ... 0

... ... ... ... ... ... ... ... ...
CORA occluded trajectory D1 0 Evaluation {6|7} occluded_trajectory_0002 0 ... 1
MESS occluded trajectory D1 0 Evaluation {6|7} occluded_trajectory_0002 0 ... 1
OPICS occluded trajectory D1 1 Evaluation {6|7} occluded_trajectory_0002 0 ... 1

Table 4.1: Evaluation Dataset Structure - Instance Level Data.

Performer Task Name Cell Cell Mean Evaluation N Scenes meta-feature 1 ... meta-feature N
CORA arithmetic A1 0.85 Evaluation {6|7} 25 1 ... 0
MESS arithmetic A1 0.75 Evaluation {6|7} 25 1 ... 0
OPICS arithmetic A1 0.9 Evaluation {6|7} 25 1 ... 0

... ... ... ... ... ... ... ... ...
CORA occluded trajectory D1 0.65 Evaluation {6|7} 25 0 ... 1
MESS occluded trajectory D1 0.45 Evaluation {6|7} 25 0 ... 1
OPICS occludded trajectory D1 0.95 Evaluation {6|7} 25 0 ... 1

Table 4.2: Evaluation Dataset Structure - Aggregated (Cell) Level Data.
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On the other hand, Table 4.2 represents the same results but at the aggregated level.
The aggregation is done grouping instances per cell value, task and agent. Then is com-
puted the average performance –using the "Score" variable– per group. This percentage
of success at the instances is referred to as "cell mean". The "N Scenes" column represents
how many instances compose the group, i.e., how many scenes are used to compute the
% of succesfully solved instances by the agent.

Now, let’s present some exploratory analysis conducted to gain insights into how we
could model performance based on the available meta-features with the measurement
layouts. This analysis aimed to answer the following questions:

• Do any of the meta-features have predictive power for performance across different
agents?

• Which agent is the best performer?

• Does any agent appear particularly strong or weak in specific instance settings?

4.1 Evaluation 6 Exploratory Analysis

In this case, we will start trying to find if there are specific meta-features from the scenes
that seem to have predictive power about agent’s performance. To do so, we used the
Spearman’s correlation coefficient to test whether there is a (monotonic) relationship be-
tween the performance at the aggregated level. Figure 4.3 correlation matrix has been ob-
tained using aggregated level performance data coming from the three agents. Looking
at the last column, we see that performance is poorly correlated with all the other vari-
ables, this results in meta-features having little predictive power about performance. It
is also noticeable the strong negative association between Core Object Reasoning and Pe-
ripheral Scene Feature Reasoning; the positive correlations between Quantity Reasoning
and Interactive Task; and between Challenging Navigation and Interactive Task. These
associations provide an valuable insight of the patterns of demands we can find at the
tasks from Evaluation 6. Moreover, it we put our focus on the last column again, spe-
cially to the cells associated to the the agents –in other words, the correlation between
performance and a binary variable indicating that the response comes from that specific
agent–, we see that at first glance the relative ordering of them in terms of being more or
less predictable –absolute value of the correlation coefficient– would be CORA, OPICS
and MESS.

When looking at these specific associations at the aggregated level per agent –Figures
available in Appendix A.2–, we notice similar patterns to the ones observed aggregat-
ing all the agents. However, we could highlight that for CORA and OPICS agents, the
Agent Reasoning demand has a significant negative impact on their performance –strong
negative correlation–.

For Evaluation 6, the best performer is OPICS, followed by MESS and then by CORA,
as Table 4.3 reveals.

Performer Aggregated Performance
CORA 0.562
MESS 0.759
OPICS 0.893

Table 4.3: Aggregated Performance per Agents in Evaluation 6.
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Figure 4.2: Spearman’s Correlation Heatmap for All Agent Data (Aggregated Level) in Evaluation
6.

When analysing performance at the instance level, we used the Matthews Correlation
Coefficient –Equation 4.1 provides the expression for this coefficient, its explanation and
interpretation– to compute the association between cognitive demands and performance
due to that both variable are binary. We can see the correlation matrix obtain in Figure
A.2.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.1)

where:

• TP = True Positives (C.Demand and Performance are both 1)

• TN = True Negatives (C.Demand and Performance are both 0)

• FP = False Positives (C.Demand is 0, Performance is 1)

• FN = False Negatives (C.Demand is 1, Performance is 0)

Notice that FP and FN could be defined inversely as they are expressed now, the inter-
pretation of the coefficient would be the same. It is as follows:

• MCC = 1: A perfect positive correlation indicating that the presence cognitive de-
mands consistently leads to high performance, and its absence demand consistently
leads to low performance.

• MCC = 0: No correlation, indicating that cognitive demand has no association with
performance.

• MCC = -1: A perfect positive correlation indicating that the presence of that cog-
nitive demand consistently leads to bad performance, and its absence consistently
leads to high performance.
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Figure 4.3: Matthews Correlation Coefficient between Demands and Performance (Instance
Level) in Evaluation 6.

It can be remarked a similar appreciation we made when analysing data at the ag-
gregated level: for CORA and OPICS –specially for CORA–, we see that the Agent Rea-
soning demand usually leads them to fail. However, this association is not very strong.
Also, we see that Moving Object Reasoning demand influences negatively on CORA’s
performance, but conversely, when an instance has this type of demand, MESS agent
usually thrives. Besides, we see that Core Object Reasoning affects negatively to CORA’s
performance.

None of the mentioned apparent associations are actually "significant", as the values
are not very high in absolute value, but they might be providing us some intuition for
understanding the capabilities that we will infer using the measurement layouts.

4.2 Evaluation 7 Exploratory Analysis

Similarly to what we observed with Evaluation 6 when analysing performance at the
aggregated level, as Figure 4.4 depicts, again, there are not meta-features that have sig-
nificant predictive power over agents’ performance. Indeed, when we look at the cells
corresponding to the agents, we see that predictability seems to be worse than in Eval-
uation 6. Now, the relative ordering in terms of predictability would be OPICS, CORA
and MESS respectively. Moreover, we highlight again the negative association between
the Core Object Reasoning and Peripheral Scene Feature Reasoning demands; and the
positive association of the latter with Object Permanence Reasoning demands. We notice
again that Challenging Navigation and Interactive Task meta-features appear together in
instances often.

When looking at the agents’ correlation matrices separately –available Figures in Ap-
pendix A.2–, it is remarkable to note that differently to Evaluation 6, Agent Reason-
ing does not seem to influence importantly to any of the agents’ performance anymore.
Nonetheless, we notice that OPICS performance seems to be negatively correlated with
the Moving Object Reasoning and Tool Use demands.
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Figure 4.4: Spearman’s Correlation Heatmap for All Agent Data in Evaluation 7.

For Evaluation 7, the best performer is again OPICS, but in this case, CORA performs
better than MESS, as Table 4.4 shows.

Performer Aggregated Performance
CORA 0.707
MESS 0.691
OPICS 0.790

Table 4.4: Aggregated Performance per Agents in Evaluation 7.

When analysing the Matthews Correlation Coefficient at the instance level between
performance and demands –Figure 4.5, we confirm the observations made at the aggre-
gated level, i.e. it is observed negative correlation coefficients between Tool Use and
Moving Object Reasoning demands with respect to performance in the case of OPICS
agent. Nevertheless, if we look at the last column, which represent the average correla-
tion across demands with respect to performance, it reveals a lack of predictability –this
is probably due to the fact that correlations fluctuate and some are positive while others
are negative, what eventually leads to an average MCC close to 0 for the three agents.
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Figure 4.5: Matthews Correlation Coefficient between Demands and Performance (Instance
Level) in Evaluation 7.

However, in general terms, the observed correlations both at the aggregated and in-
stance level do not seem enough "strong" to extrapolate the conclusions and make state-
ments about systems capabilities.

4.3 Exploring Agents’ "Weaknesses" and "Strengths"

In this case, we decided to explore the idea of studying the distribution of performance
at the aggregated level and by grouping by task in order to build some intuition about
the possible capabilities of the agents. Also, we differentiate per Evaluation "act" to study
how the cognitive profiles that we would build through the measurement layouts could
fluctuate their predictions on the estimated capabilities from one evaluation to another.

We pretended to detect "strengths" or "weaknesses" by studying distributions of ag-
gregated performance per task type. If we observed that an agent had a consistent out-
standing performance distribution in a given task at both evaluations, we considered that
the agent was likely to have advanced capabilities related to the cognitive demands that
were present in that task. For instance, if we observed that agent CORA achieved close
to a perfect score for a task –i.e. the distribution of the aggregated performances per
cell for that given task is very narrow and close to 1–, we would suspect that CORA has
advanced capabilities related to the demands from this task. For detecting weaknesses,
we proceeded exactly in the same way, but looking for narrow distributions around rela-
tively low average performance.

For studying these distributions, we took aggregated level results –that if we remem-
ber, are a result of averaging performance after grouping instances by cell and task, so,
for each task we have an observation per cell, which represents the average performance
at instances located at that cell in that task–. Then, we grouped results by task, and we
represented the distribution as boxplots of them at both evaluations. We will only show
those tasks from which we got valuable insights. We found the following results:
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Figure 4.6 shows the distribution of cell aggregated performance at Interactive Object
Permanence task per Agent at the different Evaluations. Here we highlight that both
MESS and OPICS excel at most of the instances from this task at both evaluation acts.
However, in the case of CORA, we highlight that there is a notable improvement from
Evaluation 6 to Evaluation 7, but average performance is considerably poor, specially
comparing it to the other two agents.

Figure 4.6: Distribution of Cell Aggregated Performance at Interactive Object Permanence Task.

For each meta-feature we had, we computed the percentage of instances from this
task in which that property/cognitive demand was present. This is summarised in Table
4.5.

Task % of Instances
Moving Object Reasoning 100

Core Object Reasoning 100
Quantity Reasoning 0.00

Agent Reasoning 0.00
AI Reorientation 0.00

Object Permanence Reasoning 48.45
Generalising 0.00

Tool Use 0.00
Challenging Navigation 100

Interactive Task 100
Peripheral Scene Feature Reasoning 0.00

Table 4.5: Percentage of "presence" of meta-features in Instances from Interactive Object Perma-
nence Task.

Given that the cognitive demands of Moving and Core Object Reasoning, as well as
the high-level properties of Challenging Navigation and Interactive Task, are present in
all instances of this task, and both MESS and OPICS excel at it, we could infer that when
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modeling capabilities through the measurement layout, the ones assigned to tackling
these demands might be expected to be advanced for them, at least in comparison to the
CORA agent.

We also see a very similar observation for agents MESS and OPICS in the case of
the task "Moving Target Prediction Task", they are consistently very good performers at
instances from this task at both Evaluations, as it can be seen in Figure 4.7. Note that
CORA, was not tested on this task at Evaluation 6.

Figure 4.7: Distribution of Cell Aggregated Performance at Moving Target Prediction Task.

Therefore, observing in Table 4.6 the relative frequency with which demands are dis-
tributed through the instances from this task, we could lead us to "make a guess" on MESS
and OPICS possessing advanced cognitive abilities that address the cognitive demands
of Moving Object Reasoning, Core Object Reasoning, AI Reorientation, and Interactive
Task. In the case of agent CORA, we cannot draw any conclusions from this task, as the
aggregated performance per cell has a broad distribution.

For the Spatial Elimination task, we observe in Figure 4.8 that all three agents are
strong performers, with the mean of their cell aggregated performance distributions at
both evaluations being around 100% accuracy/success.

After having observed that all three agents excel at this task, it is reasonable to con-
sider the capabilities modelled later in the measurement layouts at both evaluations to
address the demands present in 100% of the instances from this task –such as Core Ob-
ject Reasoning, Quantity Reasoning, Challenging Navigation, and Interactive Task– as
advanced.

When considering the "Obstacle" task, we see again that the three agents are very
good performers –note that neither MESS agent was not evaluated on this task at the
Evaluation 7, nor OPICS at Evaluation 6–. This can be seen by looking at their aggregate
performance distributions in Figure 4.9, because they have very narrow distributions
with considerably high average performance.
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Task % of Instances
Moving Object Reasoning 100

Core Object Reasoning 100
Quantity Reasoning 0.00

Agent Reasoning 0.00
AI Reorientation 100

Object Permanence Reasoning 0.00
Generalising 0.00

Tool Use 0.00
Challenging Navigation 50.0

Interactive Task 100
Peripheral Scene Feature Reasoning 0.00

Table 4.6: Percentage of "presence" of meta-features in Instances from Moving Target Prediction
Task.

Figure 4.8: Distribution of Cell Aggregated Performance at Spatial Elimination Task.
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Task % of Instances
Moving Object Reasoning 0.00

Core Object Reasoning 100
Quantity Reasoning 100

Agent Reasoning 0.00
AI Reorientation 0.00

Object Permanence Reasoning 25.0
Generalising 0.00

Tool Use 0.00
Challenging Navigation 100.0

Interactive Task 100
Peripheral Scene Feature Reasoning 0.00

Table 4.7: Percentage of "presence" of meta-features in Instances from Spatial Elimination Task.

Figure 4.9: Distribution of Cell Aggregated Performance at Obstacle Task.

Task % of Instances
Moving Object Reasoning 0.00

Core Object Reasoning 100
Quantity Reasoning 0.00

Agent Reasoning 0.00
AI Reorientation 0.00

Object Permanence Reasoning 50.0
Generalising 50.0

Tool Use 0.00
Challenging Navigation 50.0

Interactive Task 100
Peripheral Scene Feature Reasoning 0.00

Table 4.8: Percentage of "presence" of meta-features in Instances from Obstacle Task.
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Then, by looking at the presence of the demands in this task instances in Table 4.8, we
could suspect that these agents could have robust capabilities for addressing instances
demanding in Core Object Reasoning and that are categorised as a Interactive Task.

In this last task that we will consider we put the focus on agent CORA, as we cannot
reliable make some assumptions about agents MESS and OPICS because despite their
performance distributions are narrow and on average close to 100% accuracy, there are
some cells for them where the observed performance is completely the opposite, very
erratic and they practically fail on every instance from that cell –this can be seen as the
"isolated" points represented as outliers in their boxplots.

Figure 4.10: Distribution of Cell Aggregated Performance at Spatial Reference Task.

Task % of Instances
Moving Object Reasoning 100

Core Object Reasoning 100
Quantity Reasoning 55.5

Agent Reasoning 100
AI Reorientation 0.00

Object Permanence Reasoning 100
Generalising 40.7

Tool Use 0.00
Challenging Navigation 100

Interactive Task 100
Peripheral Scene Feature Reasoning 0.00

Table 4.9: Percentage of "presence" of meta-features in Instances from Spatial Reference Task.

It is important to note that CORA was not assessed on this task in Evaluation 6. There-
fore, the conclusions drawn are only applicable to CORA’s performance specifically in
Evaluation 6. Since CORA failed in nearly every instance of this task, and considering
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the frequency of demands across its instances as indicated in Table 4.9, we could specu-
late that CORA likely has limited capabilities related to Agent Reasoning, Moving and
Core Object Reasoning, Object Permanence Reasoning, Challenging Navigation, and In-
teractive Task. This is due to that these demands were consistently present in all scenes
of this task.

In this final section of the exploratory analysis, we have speculated that individuals
who excel in certain tasks may possess advanced capabilities specifically suited to ad-
dress the cognitive demands that appear more consistently in that task. Conversely, poor
performers may struggle with these demands and, therefore have limited capabilities to
"counter" this demands. This "speculative" approach may sound very familiar indeed,
and this is because it is close to the intuition behind the bottom-up inference we intro-
duced with an example in Section 3.3 and that is carried out by the measurement layouts.

Here, our shallow assumptions –which might be wrong– about agents capabilities
were based exclusively on some specific tasks, due to the uncertainty and lack of a clear
perspective when considering broader performance and demand distributions of other
tasks. Differently to this speculative approach, measurement layouts excel in taking re-
sults across all instances and tasks but with the possibility of analysing one agent at-a-
time. The comprehensive method we introduce in this project is able to consider all the
nuances of an agent’s performance across different task instances –what includes their
demands–, providing a precise inference of their capabilities.



CHAPTER 5

Experimental Setting

In this chapter, it is introduced how we conducted the experiments with the measurement
layouts; how we tested and compared its predictive performance against an "assessor"
and the baseline prediction; and which kind of settings of this framework we considered
for inferring MCS programme agents capability profiles.

5.1 Measurement Layouts for Inferring Capability Profiles and
Predicting Performance

As we explained thoroughly in Section 3.1.1, the two evaluation acts that we are consid-
ering generated meta-annotated instance level results for the three agents. Some tasks
overlapped between evaluations, but not all the agents had exactly the same scenes to be
evaluated in. We will use instance level and aggregated results per cell –see Tables 4.2
and 4.1 for an illustration of their structure– to infer the cognitive profile of the agents
CORA, MESS and OPICS and predict their future performance.

We will show the results of two different settings of the measurement layouts per
evaluation data, which are fitted for each combination of agent and data granularity level
–instance or aggregated level. Depending on the target response, i.e. whether the data
is taken at the instance level or aggregated level, the measurement layouts is trained to
predict the success or fail of an agent at an instance, or a continuous response (from 0
to 1) at the aggregated level, which represents the average success at a given cell of the
corresponding agent.

After an iteration of fitting a measurement layouts to an agent’s data –it does not
matter whether it is aggregated or instance level data– with HMC algorithm, we obtain
the following:

• The capability profile of the agent. Actually, what it is obtained is the estimation
from the HMC algorithm for the mean of the approximated marginal distribution
of the abilities that we set the cognitive profile to be composed by.

• The performance on held-out data given by a selected metric we will introduce in
the next section.

More details into the fitting and evaluation process of the measurement layouts in the
following section.
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5.2 Fitting and Evaluating Measurement Layouts Predictive
Performance

To fit a measurement layouts it is followed this process:

1. Define the model. As a reminder measurement layouts are specialized HBNs that
incorporate tools like linking and compensatory functions to model the hierarchical
dependencies between agents’ capabilities and demands.

• First, select the priors for the capabilities that compose the cognitive profile to
be inferred.

• Define the meta-features from instances that will be introduced in the mea-
surement layout.

• Specify the inner details of the topology for the measurement layout, such
as which margins are considered; whether these margins generate "sub-task"
performances; determining whether capabilities are dependent or indepen-
dent and selecting which linking functions to use for combining dependent
capabilities.

• Choose the type of noise that will be introduced.

• Depending on the granularity of data (instance or aggregated level), define the
target variable as a Bernoulli or a Beta distribution, with parameters depend-
ing on the hierarchical dependencies of capabilities and demands encoded
"up" in the measurement layout.

2. Select the number of iterations of the Hamiltonian Monte Carlo (HMC) algorithm
that will be executed and the hyperparameters of the algorithm.

3. For each iteration, split the agent’s data into training and test sets –using a 90/10
split for training and testing respectively. Just as a reminder, the measurement lay-
outs is fitted for each agent separately.

4. In each iteration, HMC uses training data to approximate our parameter distribu-
tions. After fitting them –including the estimations for the capability profile–, it
uses the posterior predictive to compute the predictions on the test split.

5. For evaluating the predictive performance of the measurement layout, we use the
Brier Score. See Subsection 5.2.1 for the explanation of this choice.

For testing a given setting of the measurement layouts in an agents’ evaluation per-
formance data we predetermine the following considerations for the HMC algorithm:

• Five iterations of the HMC algorithm will be executed.

• Each iteration of the algorithm will consist of 5 chains. For each chain, there will
be 1000 samples in the burn-in period and 2000 samples used to approximate the
parameter distributions.

• For the posterior predictive distribution, we will also use 5 chains of 2000 samples
each. The final prediction for each item is the average sampled value for it across
the chains.

• In the case of instance-level data, despite the measurement layouts using a Bernoulli
variable as the output, the final output can be regarded as the estimated probability
of success for a given instance.
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• In the case of aggregated data, the prediction for a cell is the estimated average
performance at the cell.

5.2.1. Brier Score

The Brier Score is defined as:

Brier Score =
1
N

N

∑
i=1

(pi − oi)
2 (5.1)

We use Brier Score because of its probabilistic interpretation. In the case of the measure-
ment layouts being used for estimating the probabilities of an agent succeeding in an
instance, it reflects how close the estimated probabilities are to the real observation (0
or 1). Similarly, when the model is predicting the average performance of an agent at
a given cell, this is analogous to predicting probabilities for individual instances, so the
Brier Score is a good metric to express how accurate the measurement layouts estimations
are.

The Brier Score can be decomposed into calibration and refinement components:

Brier Score =
1
N

K

∑
j=1

nj( p̂j − ôj)
2

︸ ︷︷ ︸
Calibration

+
1
N

K

∑
j=1

nj ôj(1− ôj)︸ ︷︷ ︸
Refinement

(5.2)

where:

• N is the total number of instances (depends on the agent and whether the data is at
the instance level or aggregated per cell).

• K is the number of bins (in our case 10).

• nj is the number of predictions in bin j.

• p̂j is the average predicted probability (or proportion in the aggregated case) in bin
j.

• ôj average observation (represents a probability in the instance level case, and a
proportion in the aggregated level) in bin j .

The reason for this decomposition is because the components provide a complemen-
tary comprehensive interpretation of the Brier Score. The calibration component provides
a measure of how close the forecast probabilities –or proportions– are close to the true
ones. Meanwhile, the refinement component reflects the measurement layout’s ability
to differentiate between instances with varying probabilities of success. A higher refine-
ment value indicates that the outcomes are more evenly split (closer to 0.5), while a lower
value indicates more certainty (closer to 0 or 1). Basically, the latter measures the inherent
uncertainty/variability in a given bin. [4]

5.3 Predictive Performance Comparison

To provide a comparison of predictive performance to the measurement layout, we chose
a baseline prediction and an assessor:
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• Baseline Prediction: we take the approach of extrapolating the success ratio of each
agent as the prediction.

– Instance Level Baseline Prediction: for each iteration of the algorithm, it is
taken agent’s training data to estimate the average performance. This mean
performance metric is used as the prediction for the held-out instances of that
iteration.

– Aggregated Level Baseline Prediction: Exactly the same, but in this case the
average performance represents the mean of aggregated performance per cell
task.
At the end the interpretation is the same, is used the average performance as
extrapolation of future performance.

• XGBoost Assesor: XGBoost or "Extreme Gradient Boosting" is one of the most
widely used Machine Learning algorithms. It leverages gradient boosted trees and
is renowned for its efficiency and predictive power, especially with tabular data.
XGBoost builds an ensemble of decision trees following the technique of gradient
boosting, where new models are added iteratively to correct the error of previous
existing models [17]. The model takes as input the same meta-features as the mea-
surement layouts does. Depending on the granularity of the data we use, the objec-
tive function for fitting the XGBoost model varies:

– Instance Level Data: it has a binary logistic objective, as it is used for a bi-
nary classification task –the model predicts the probability of success (e.g., an
agent’s success) given the meta-features of the instance.

– Aggregated Level Data: it is a regression problem. Here, the objective is to
predict the aggregated performance per cell.

For comparing them to the measurement layouts we also use the Brier Score as the
evaluation metric.

5.4 The Measurement Layouts General Topology for MCS

As explained in Section 3.3, "building" the measurement layouts topology involves se-
lecting the abilities for the cognitive profile based on available meta-features, structuring
hierarchical dependencies, and determining whether the capabilities are compensatory.
This process heavily relies on domain knowledge in cognitive science and development
psychology, limiting our flexibility to modify the framework. Furthermore, our ability to
vary the architecture is constrained by the nature of the tasks used to assess the agents’
cognitive profiles. Consequently, the MCS Evaluation team and the RECOG-AI team,
with whom we collaborated on this project, predefined the cognitive profile and its de-
pendencies on the available demands and task properties. This topology can be seen
visually in Figure 5.1.
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Figure 5.1: Initial Measurement Layouts Topology.

We notice that the meta-features appear as root (rectangular shaded) nodes of the HBN, which correspond to the annotated macro-level variables
by the MCS Programme Evaluation team. Also, the cognitive profile nodes (white circular) are also the roots of the HBN. The capability profile
is composed by the Navigation Ability –represented as navigationA–, the Object Permanence Ability –represented as objPermanenceA–, Moving
Object Ability –represented as movingobjectA–, the Tool Use Ability –represented as tooluseA–, the Agential Ability –represented as agentialA–
and the Objectual Ability –represented as objectualA–. Note that Object Permanence, Moving Object and Tool Use abilities distributions will be
dependent on Objectual Ability distribution. More specifically, the mean of their respective distributions depends on the distribution of the Objectual
Ability.

The abilities appear to fall into three distinct categories, each corresponding to a specific domain studied in the MCS Programme. Navigation
Ability is linked to the Places Domain and is associated with Interaction, Reorientation, and Complex Navigation Demands. Objectual Ability
focuses on the Objects Domain, addressing Objectual, Object Permanence, Moving Object, and Tool Use demands. Finally, Agential Ability targets
the Agential Demand, and, as suggested by its name it pertains to the Agents Domain.
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The rest of the topology characteristics is a specification, to introduce the "core" of our measurement layouts structure we just needed to introduce
the predefined cognitive profile, the metafeatures and the dependencies between them from a high-level perspective.



CHAPTER 6

Results

In this chapter, we analyse the results obtained during the experimental phase using
measurement layouts for inferring MCS Programme agents’ capability profiles and pre-
dicting their performance. To begin with, we will start introducing the two measurement
layouts topologies we will consider. The results are presented following the sequence of
evaluation acts, starting with Evaluation 6 and then proceeding to Evaluation 7. For each
evaluation, we will examine the two presented variations of the measurement layouts.
We will analyse their predictive performance at both the instance and aggregated levels,
interpret the inferred cognitive profiles of the agents by looking at their radial plots, and
explore how agents are ranked based on their capabilities relative to their observed per-
formance. Additionally, we will conduct a comparative analysis of the two measurement
layouts topologies considered. Notice that for each radial plot we will provide the actual
inferred mean of the distribution for the capabilities in a table, together with their estima-
tion error –standard deviation–. However, for making it more straight and easier to link
the approximated capabilities to the predictive performance of the measurement layouts
setting we only include the radial plot in this section. For inspecting the tables refer to
Appendix C.

After studying each evaluation separately, we will analyse the possible fluctuation/-
consistency of the inferred capability profiles across evaluations, the measurement lay-
outs predictive power and its dependency to the granularity of data used.

6.1 The Measurement Layouts Settings

In Section 5.4 we introduced the fundamental part of the measurement layouts topology
we will use for inferring the capability profiles of the MCS Programme Agents. These
were the aspects of the measurement layouts that would remain unaltered for the rest
of the experimentation process –the elements of the cognitive profile, the meta-features
of the tasks and the basic dependencies between them. Now, we will present the details
of the two settings we consider for the assessing its predictive power and analysing the
inferred capability profiles.

6.1.1. Setting 1: Normal Priors and "Downscaling" Noise

The reasoning behind choosing normal priors for the distribution of the capabilities is the
following:

• Defines an unconstrained scale for the capabilities, allowing to express the absence
of an ability through the approximation of the capability as a negative value.
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• Following the measurement theory explained in Section 3.3, the choice of this prior
defines an interval scale for the capabilities. This implies that the scale gives the
same probability of success when when the difference between capability and de-
mand is the same –e.g., capability 10 and demand 8 versus capability 5 and demand
3.

• We can use the capabilities inferred to estimate the extent to which an agent is more
"capable" than another.

With respect to the choice of noise, we use a variant of the noise introduced by Equa-
tion 3.24 in Section 3.3. In this specific noise setting, we delete the term φjνj. The inter-
pretation of the inferred values for the parameters of the distribution of noise –φj in the
first term of the equation– is that it is "capping" the internal performance. For example, a
value of 0.2 inferred for the noise would mean that the final estimated performance could
be 0.8 as maximum (1-0.2).

For computing non-observed intermediate performances –navigationP, objectualP,
objPermanenceP, movingobjectP, tooluseP and agentialP nodes in 5.1– through the logis-
tic function of margins, we use the margin for binary demands –given that our demands
are binary– expressed by Equation 3.22 in Section 3.3 and its respective logistic function
expressed by Equation 3.23.

Due to that we do not consider a compensatory setting, these intermediate perfor-
mances are combined through their product. These product is then fed to model final
performance distribution parameter, which is also affected by the noise variant we ex-
plained above.

6.1.2. Setting 2: Scaled Beta Priors and "Convex Combination" Noise

Selecting a scaled beta prior for the capabilities distribution has the following conse-
quences on the measurement layouts inferences:

• Capabilities are now bounded between 0 and 2.

• Following the measurement theory explained in Section 3.3, the capabilities are
now in an ordinal scale.

• Since the capabilities are on an ordinal scale, the final inferred mean of their beta
distribution cannot be used to quantify the magnitude of differences between agents’
capabilities. However, it can provide an idea of the relative ordering of general ca-
pability based on the inferred distributions for them.

The selection of noise is represented by the same Equation as the previous setting,
but in this case, we preserve the φjνj term. However, νj is not a "learnable" parameter
through the HMC algorithm, but it is fixed to the average observed performance of that
agent. This means that the inferred mean of the distribution for noise (φj) determines to
which extent the estimation of future performance relies on observed performance. For
instance, if hypothetically the approximated noise is 1, all the future predictions of the
measurement layouts will depend on the observed responses from that agent.

For this setting we consider that capabilities are non-compensatory as well.
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6.2 Evaluation 6: Measurement Layouts Setting 1

As shown in Figure 6.1, it is notable that despite MESS having advanced Moving Object
and Agential capabilities compared to OPICS, the best performer, MESS shows worse
performance from both the instance and aggregated level perspectives. This is evidenced
by the Performance column in Tables 6.1 and 6.2. Conversely, OPICS is estimated to have
superior Object Permanence and Objectual capabilities. Interestingly, MESS has similar
estimated values for these capabilities to CORA, the worst performer. This disparity sug-
gests that the evaluation instances in Evaluation 6 may not heavily feature items demand-
ing Agential and Moving Object abilities, but rather items requiring Objectual Ability are
more prevalent.

For CORA, the lack of Agential capability is evident, as its estimated mean for this
ability distribution is negative. Additionally, it is interesting to note that both CORA and
MESS have Tool Use capabilities close to zero. In contrast, OPICS has an estimated Tool
Use capability nearly double that of the other two systems, which may also explain its
better performance. On the other hand, it seems that the three agents have very similar
Navigation capabilities.

In summary, the Evaluation 6 appears to favour items requiring Objectual and Tool
Use abilities, which align more closely with OPICS’s strengths, what may explain its
superior performance in comparison to CORA and MESS.

Figure 6.1: Radial Plot Capability Profiles from Evaluation 6 with Measurement Layouts Setting
1.
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With respect to the predictive performance of the Measurement Layout, we can refer
to Tables 6.1 and 6.2, which present the data at both the instance and aggregated lev-
els respectively. We observe that the measurement layouts consistently outperforms the
estimations based on observed aggregate performance at both levels. While its estima-
tions are slightly worse than those provided by the assessor at the aggregated level, the
Measurement Layouts surpasses the predictive performance of XGBoost at the instance
level.

Another strength of this setting we are considering of measurement layouts is that
it provides robust noise estimations, consistently close to zero across both granularities
of evaluation data –instance and aggregated. This promising finding suggests that, with
a sufficient and varied performance dataset, the predefined cognitive profile we are as-
suming within the measurement layouts can effectively explain the agents behaviour.

Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.5716 0.2450 0.1991 0.2823
MESS 0.7589 0.1829 0.1729 0.2153
OPICS 0.8987 0.0885 0.0846 0.0970
Mean 0.7385 0.1721 0.1522 0.1980

Table 6.1: Predictive Performance (Brier Score) from Measurement Layouts Setting 1 on Evalua-
tion 6 - Instance Level.

Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.5716 0.0671 0.0641 0.0609
MESS 0.7589 0.0933 0.0773 0.0522
OPICS 0.8987 0.066 0.0296 0.0224
Mean 0.7385 0.0837 0.0570 0.0440

Table 6.2: Predictive Performance (Brier Score) from Measurement Layouts Setting 1 on Evalua-
tion 6 - Aggregated Level.

6.3 Evaluation 6: Measurement Layouts Setting 2

Figure 6.2 provides insights into the capability profiles of the agents using scaled beta pri-
ors. With capabilities bounded between 0 and 2, and simulating an ordinal scale, we can
infer the relative ordering of the agents’ general capabilities. We highlight MESS shows
strong Agential and Moving Object capabilities, similarly to what we observed with the
previous setting. However, its overall performance, once again indicates that Evaluation
6 instances may not emphasise tasks requiring these abilities. On the other hand, OPICS,
with more advanced Object Permanence and Objectual capabilities, exhibits higher per-
formance. This appreciation reinforces the intuition we observed analysing the first set-
ting on this evaluation data, that the tasks in which agents were assessed on this evalu-
ation act, featured more instances demanding from the point of view of Objects domain
–area where OPICS seems to excel compared to the others to MESS and CORA– than
from other common sense domains considered.

Interpreting the capability profiles inferred assuming Beta priors is complex, and we
cannot make accurate assumptions about how much more capable OPICS is –or at least
seems– compared to MESS and CORA. This complexity comes because the Beta prior
does not reveal significant differences on the capability profile, and we can only rely on
the relative order of the approximations computed for the capabilities. In this sense, we
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can confirm that the relative ordering of agents’ capabilities observed in the first setting
appears to be consistent.

Figure 6.2: Radial Plot Capability Profiles from Evaluation 6 with Measurement Layouts Setting
2.

The noise term in this setting, influenced by a fixed average observed performance pa-
rameter, allows the model to balance observed data and inferred capabilities. In this case,
the inferred noise value is practically zero for all agents and data granularities, which is
a promising sign of the robustness of the measurement layouts and the variability of the
evaluation data. This zero noise estimation suggests that the measurement layouts does
not need to rely heavily on average observed performance to produce accurate forecasts
about the agents’ performance.

The predictive performance of the Measurement Layout, as shown in Tables 6.3 and
6.4, consistently outperforms simple aggregate estimation methods and even surpasses
XGBoost at the instance level again. However, is still obtains slightly worse estimations
at the aggregated level.

6.4 Evaluation 7: Measurement Layouts Setting 1

When analysing the approximated capability profiles using "Setting 1" with the Evalua-
tion 7 data, the first noticeable pattern is the significant decline in Agential abilities for
MESS, as shown in the radial plot in Figure 6.3. Indeed, from Evaluation 6 to Evaluation
7, MESS transitions from being the most capable agent in this facet to being the "weakest."
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Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.5716 0.2015 0.2008 0.2823
MESS 0.7589 0.2128 0.1741 0.2153
OPICS 0.8987 0.1692 0.0862 0.0970
Mean 0.7385 0.1721 0.1537 0.1980

Table 6.3: Predictive Performance from Measurement Layouts Setting 2 on Evaluation 6 - Instance
Level.

Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.5623 0.1313 0.0668 0.0609
MESS 0.7598 0.0855 0.0785 0.0522
OPICS 0.8935 0.0342 0.0298 0.0224
Mean 0.7385 0.0837 0.0583 0.0440

Table 6.4: Predictive Performance (Brier Score) from Measurement Layouts Setting 2 on Evalua-
tion 6 - Aggregated Level.

Additionally, the Moving Object ability appears to have "improved" for all agents from
one evaluation to the next. Furthermore, the capabilities of CORA seem to be "better"
in this evaluation across almost every ability. Most significantly, CORA has transformed
from lacking Agential capabilities, as represented in Figure 6.1, to being closely matched
with OPICS. It is now the most capable agent regarding Tool Use ability and closely
matches the other agents in terms of Object Permanence and Navigation capabilities.

This considerable improvement in CORA from Evaluation 6 to 7, as indicated by the
changes in the radial plot of its cognitive profile, correlates with its relative performance
improvement in this evaluation, confirmed by Tables 6.5 and 6.6. Indeed, the relative
ordering of performance now places OPICS first, followed by CORA, and then MESS.

However, the difference between CORA and MESS is not particularly significant. It is
also worth noting that despite a general drop in performance among the agents –except
for MESS– the relative ordering of capabilities across the cognitive profile elements re-
mains majorly unaltered from one evaluation to the next –with the exception of tool use
ability. This stability suggests that the core "strengths" and "weaknesses" –from the capa-
bilities perspective– of each agent are consistent, even if their overall performance fluc-
tuates between evaluations.

Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.7278 0.2015 0.1967 0.2341
MESS 0.6921 0.2128 0.1929 0.2431
OPICS 0.7902 0.1692 0.1374 0.1793
Mean 0.7367 0.1945 0.1754 0.2188

Table 6.5: Predictive Performance (Brier Score) from Measurement Layouts Setting 1 on Evalua-
tion 7 - Instance Level.

The predictive performance of this first setting of the Measurement Layouts in Eval-
uation 7 is detailed in Tables 6.5 and 6.6, which summarise the performance metrics at
the instance and aggregated levels, respectively. We can highlight the following observa-
tions:

At the instance level (Table 6.5), the Measurement Layouts shows again consistent im-
provement over the Aggregate baseline performance estimation for all agents. In terms
of the aggregated level –Table 6.6–, the Measurement Layouts again performs better than
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Figure 6.3: Radial Plot Capability Profiles from Evaluation 7 with Measurement Layouts Setting
1.

Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.7069 0.0671 0.0672 0.0498
MESS 0.6907 0.0933 0.0716 0.0497
OPICS 0.7899 0.0660 0.0504 0.0589
Mean 0.7298 0.0756 0.0631 0.0528

Table 6.6: Predictive Performance (Brier Score) from Measurement Layouts Setting 1 on Evalua-
tion 7 - Aggregated Level.
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the Aggregate method, with lower Brier Scores across the board. It is noticeable that for
CORA and MESS, the Brier Scores are very close to the Assessor scores. This "closeness"
indicates that the measurement layouts is robust in predicting aggregated performance.
This robustness is also proved by the fact that the noise estimations for every agent and
considering instance and aggregated level data are consistently very close to 0. Taking
into consideration the noise implementation of this setting, this result reinforces one of
the Measurement Layout’s strengths: that a complete well predefined set of cognitive
profile abilities, coupled with diverse evaluation data, can reliably infer the agents’ capa-
bilities and achieve strong predictive performance.

6.5 Evaluation 7: Measurement Layouts Setting 2

The results inferred profiles for Evaluation 7 data with the second setting can be seen
below in Figure 6.4. Just as a reminder, when using scaled beta priors, capabilities are
bounded between 0 and 2 on an ordinal scale, which enables relative ordering but does
not allow us for direct quantification of differences.

In this case, there are substantial changes from one evaluation to other in the approx-
imated capability profiles. Nonetheless, taking into account the variations we observed
using the setting 1 for this evaluation data, we can conclude that they are consistent. As
an example, we see that using this second setting, CORA seems to be the most capable
agent from the perspective of Tool Use ability, when it used to be the "weakest" from this
perspective on Evaluation 6. However, this is also observed when using normal priors
on Evaluation 7. This leads us to think that CORA’s tool Use abilities could have been
"enhanced" between these two evaluations.

Furthermore, similar to the observations with Setting 1, CORA and MESS have man-
aged to match OPICS’s Object Permanence capabilities. This capability was a key differ-
entiator in Evaluation 6, contributing to OPICS’s superior performance. This alignment
of capabilities might explain the lack of significant performance differences between the
agents in Evaluation 7, as reflected in the "Performance" columns in Tables 6.7 and 6.8.

Additionally, in relation to CORA’s inferred profile, we observe notable differences
between the instance and aggregated level capabilities, particularly in Tool Use, Object
Permanence, and Moving Object abilities. This is evident in both settings tested for this
evaluation, as illustrated in the radial plots in Figures 6.3 for setting 1 and 6.4 for setting
2. In relation to this, we observe that noise values for CORA are significantly different
from zero, specially in comparison to the other agents. This suggests that measurement
layouts inferences for CORA’s performance are less "stable" and more dependent on the
observed performance. This might be the reason why there is less consistency between
instance and aggregated level inferred capability profiles.

Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.7278 0.2015 0.1975 0.2341
MESS 0.6921 0.2128 0.1968 0.2431
OPICS 0.7902 0.1692 0.1420 0.1793
Mean 0.7367 0.1945 0.1787 0.2188

Table 6.7: Predictive Performance (Brier Score) from Measurement Layouts Setting 2 on Evalua-
tion 7 - Instance Level.

When analysing the predictive performance of Measurement Layouts Setting 2 in
Evaluation 7, we observe a similar trend of results as in previous settings and evalua-
tions. Starting with the instance-level performance metrics as shown in Table 6.7, the
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Figure 6.4: Radial Plot Capability Profiles from Evaluation 7 with Measurement Layouts Setting
2.

Agent Performance Aggregate (BS) Measurement Layouts (BS) Assessor (BS)
CORA 0.7069 0.0671 0.0669 0.04978
MESS 0.6907 0.0933 0.0765 0.04967
OPICS 0.7899 0.0663 0.0545 0.0589
Mean 0.7385 0.0756 0.066 0.0528

Table 6.8: Predictive Performance (Brier Score) from Measurement Layouts Setting 2 on Evalua-
tion 7 - Aggregated Level
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Measurement Layouts demonstrates consistent improvements over the Aggregate base-
line performance estimations for all agents.

Additionally, at the aggregated level as detailed in Table 6.8, the Measurement Lay-
outs again outperforms the Aggregate method. The lower Brier Scores indicate a more
accurate prediction of aggregated performance across all agents. It’s worth noting that
the Measurement Layout’s predictive performance is also close the XGBoost Assessor’s.

6.6 Closing Remarks

• Taking a look back at the exploratory analysis about agents weaknesses and strengths
carried out in Section 4.3, we concluded that for agents MESS and OPICS, abili-
ties considered in the measurement layouts’ cognitive profile to address Moving
Object Reasoning, Core Object Reasoning and Object Permanence demands were
expected to be advanced, at least in comparison to CORA. The inferred capability
profiles from different measurement layouts’ settings confirm this intuition. This
demonstrates how the bottom-up inference of agents’ capabilities can be effectively
explained by the nuances of their behaviour. While these capabilities can be intu-
itively inferred from detailed performance data, the measurement layouts provide
a comprehensive framework that robustly infers these capabilities integrating all
performance data "at once" and demonstrates remarkable predictive power regard-
ing the agents’ future performance.

• The selection of different measurement layouts settings, specially with respect to
the choice of priors, has allowed us to contrast the consistency of the measurement
layouts when inferring agents’ capability profiles independently of the hyperpame-
ter choice. Opting for normal priors permitted us to determine the extent to which
some agents seem more capable than others. On the other hand, beta priors pro-
vided an overview of the relative ordering of agents in terms of their capabilities.

• Measurement layouts framework demonstrates consistently stronger predictive power
in relation to agents’ performance for both Evaluation acts than the Assesor and the
baseline prediction considering the instance level perspective. Also, despite predic-
tions are more accurate at the aggregated level, XGBoost Assesor achieves slightly
better predictability.



CHAPTER 7

Conclusions

7.1 Limitations and Future Work

As we have already mentioned multiple times previously, the fact that we have to rely
on theoretical constructs from cognitive science for deciding the measurement layouts
topology is a limiting factor. Measurement layouts are not as "simple" as common HBNs
or other machine learning models, we do not have that much flexibility for "playing" with
its inner structure and hyperparameters.

In the considered settings of the measurement layouts, it made sense to think that ca-
pabilities of agents could be compensatory (Definition3.3), i.e., high values for one ability
can compensate for the weaker ones in a specific task. This is particularly evident when
examining the inferred capability profiles of agents like MESS in setting 1 of Evaluation
6 (see Figure ??). MESS demonstrates very advanced Moving Object and Agential Abil-
ities, which can compensate for its weaker abilities in areas like Object Permanence and
Navigation Ability.

Nonetheless, when we introduced compensation following the expression given by
Equation 7.1, it resulted in a worse predictive performance from the measurement layout.

Then, we tried to find out another approach to model compensation. To achieve
this, we proposed the following expression for integrating intermediate performance and
therefore, modelling a compensatory setting:

1−
L

∏
l=1

(1− σl ∗ αl) (7.1)

Here we took the original expression of compensatory performance, and add a weight
–represented by αl ∼ Beta– to each intermediate performance node. This weight repre-
sents to which extent a given intermediate performance node –which is at the end related
to a specific ability– can compensate for the rest.

For example, taking our initial topology, if the weight αnavigationA inferred distribution
mean is 1, we would expect navigation capabilities to fully compensate for the rest be-
cause in the case that navigation performance is 1, in that specific situation, the rest of
capabilities would not matter, as final performance will be 1 independently of the rest
intermediate performance values.

This approach of modelling compensation locally resulted to be promising, at least
in comparison to the current approach. We compared the predictive performance –with
multiple combinations of prior and noise initialisations–, and the new compensatory set-
ting had more predictive power than the older one. This can be seen in Table C.1, avail-
able in the Appendix C.
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For the Future Work, we propose:

• Keep exploring ways to model compensation.

• Study new topologies of the measurement layouts.

• Work on modelling capabilities distributions in such a way that they can be mea-
sured with a ratio scale.

7.2 Objectives Fulfilment

In relation to the specified objectives in Section 1.1, we can confirm the following:

• These objectives were tackled deeply throughout the results Section 6, having previ-
ously introduced the experimental procedure for testing the measurement layouts
and the settings that we were going to consider in Section 5.

With respect to secondary objectives:

• The first was widely covered when presenting the potential of Bayesian Modelling
in Cognitive Evaluation of Artificial Intelligence systems in Section 2.4.

• We provided a comprehensive view of the current state of AI Evaluation in Section
2, remarking its crucial role on the field of AI Safety and we also advocated for a
change in the current paradigm of AI Evaluation, specially for assessing general-
purpose systems. This covers the two first secondary objectives.

• In Section 2.4 we discussed the possibilities of the cognitive evaluation of AI, and
how it may respond to the deficits of current evaluation approaches, covering the
third objective.

• Finally, in Section 3.2.3 we introduced the role of Monte Carlo method on Bayesian
statistics, commenting different existing variations of it, and we framed its implica-
tion on the measurement layouts framework later in Section 3.3.

7.3 Integration of Bachelor’s Degree Competences

The present project represent the last stage of 4 years of continuous learning in the aca-
demic and personal scope. Therefore, I will highlight some specific courses that have
been crucial to set the foundations to develop this work:

1. Linear Algebra (13998), Exploratory Data Analysis (14004), Statistical models for
decision making I and II (14005 and 14006) and Descriptive and predictive models
I and II (14010 and 14011): because these have represented the building blocks in
probability theory (specially Bayesian Theory) and algebra for understanding the
complexities of Hierarchical Bayesian Networks and approximate inference.

2. Programming (14003), Data Structures (14008) and Algorithmics (14007): because
they helped me to acquire the fundamental coding and logic skills for implement-
ing in Python the complex framework the measurement layouts are in the com-
putational and coding scope. They also provided me with the guidelines to write
clean code.
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3. Descriptive and predictive models I and II (14010 and 14011) and Model evaluation,
deployment and monitoring (14028): because they introduced me pivotal concepts
from the Machine Learning field. Specially, I highlight the introduction and discus-
sion of model evaluation practices. This discussion encouraged me to be interested
on AI Evaluation and Safety.
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Appendix A: Exploratory Analysis
Figures

A.1 Evaluation 6 Exploratory Analysis

Figure A.1: Spearman’s Correlation Heatmap for Agent CORA in Evaluation 6
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Figure A.2: Spearman’s Correlation Heatmap for Agent MESS in Evaluation 6

Figure A.3: Spearman’s Correlation Heatmap for Agent OPICS in Evaluation 6
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A.2 Evaluation 7 Exploratory Analysis

Figure A.4: Spearman’s Correlation Heatmap for Agent CORA in Evaluation 7

Figure A.5: Spearman’s Correlation Heatmap for Agent MESS in Evaluation 7



86 Appendix A: Exploratory Analysis Figures

Figure A.6: Spearman’s Correlation Heatmap for Agent OPICS in Evaluation 7



APPENDIX B

Appendix B: Capability Profiles
Table Summaries

87



88
A
ppendix

B
:C

apability
P
rofiles

Table
Sum

m
aries

Agent Ability Ability_mean Ability_sd
Instance Level Aggregated Level Instance Level Aggregated Level

CORA

agentialA -0.78 -0.75 0.05 0.08
movingobjectA 0.80 1.32 0.08 0.46

navigationA 0.58 0.97 0.05 0.37
noise 0.008 0.05 0.007 0.02

objectualA 0.53 0.53 0.04 0.08
objpermanenceA 0.84 0.57 0.06 0.13

tooluseA 0.16 0.28 0.06 0.13

MESS

agentialA 1.98 1.47 0.41 0.43
movingobjectA 3.22 2.78 0.47 0.51

navigationA 0.60 0.78 0.03 0.10
noise 0.003 0.008 0.003 0.01

objectualA 1.18 1.13 0.005 0.09
objpermanenceA 0.74 0.66 0.03 0.05

tooluseA 0.44 0.34 0.02 0.04

OPICS

agentialA 0.77 0.56 0.04 0.08
movingobjectA 1.19 1.09 0.04 0.06

navigationA 0.89 1.29 0.03 0.22
noise 0.001 0.001 0.001 0.001

objectualA 2.47 2.55 0.27 0.24
objpermanenceA 3.39 2.54 0.64 0.64

tooluseA 1.03 1.02 0.04 0.07

Table B.1: Capability Profiles from Evaluation 6 and Measurement Layouts Setting 1
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Agent Ability Ability_mean Ability_sd
Aggregated Level Instance Level Aggregated Level Instance Level

CORA

agentialA 0.602 0.599 0.053 0.027
movingobjectA 1.893 1.714 0.110 0.104

navigationA 1.875 1.840 0.096 0.098
noise 0.010 0.003 0.009 0.003

objectualA 1.396 2.012 0.049 0.036
objpermanenceA 1.395 1.538 0.066 0.043

tooluseA 1.266 1.161 0.108 0.044

MESS

agentialA 1.801 1.930 0.118 0.051
movingobjectA 1.965 1.997 0.005 0.002

navigationA 1.419 1.341 0.056 0.022
noise 0.027 0.008 0.028 0.008

objectualA 1.725 1.775 0.035 0.018
objpermanenceA 1.541 1.593 0.049 0.017

tooluseA 1.249 1.320 0.033 0.020

OPICS

agentialA 1.439 1.624 0.049 0.038
movingobjectA 1.998 1.997 0.010 0.002

navigationA 1.655 1.738 0.093 0.032
noise 0.019 0.015 0.019 0.015

objectualA 1.792 1.881 0.012 0.010
objpermanenceA 1.999 2.000 0.004 0.002

tooluseA 1.996 1.997 0.018 0.014

Table B.2: Capability Profiles from Evaluation 6 and Measurement Layouts Setting 2
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Agent Ability Ability_mean Ability_sd
Aggregated Level Instance Level Aggregated Level Instance Level

CORA

agentialA 1.644 1.184 0.508 0.228
movingobjectA 0.616 0.884 0.084 0.058

navigationA 0.750 0.440 0.265 0.042
noise 0.205 0.110 0.032 0.011

objectualA 1.887 1.965 0.342 0.304
objpermanenceA 1.812 2.961 0.764 0.638

tooluseA 2.159 1.046 0.802 0.110

MESS

agentialA 0.416 0.657 0.064 0.030
movingobjectA 3.361 3.724 0.651 0.614

navigationA 0.134 0.168 0.027 0.024
noise 0.005 0.003 0.005 0.003

objectualA 2.393 2.574 0.348 0.252
objpermanenceA 3.160 2.443 0.703 0.373

tooluseA 0.236 0.237 0.094 0.049

OPICS

agentialA 1.571 1.633 0.258 0.037
movingobjectA 2.421 2.097 0.436 0.032

navigationA 0.825 0.814 0.054 0.040
noise 0.001 0.001 0.002 0.002

objectualA 2.541 2.693 0.236 0.234
objpermanenceA 2.886 3.099 0.785 0.768

tooluseA 0.445 0.186 0.094 0.045

Table B.3: Capability Profiles from Evaluation 7 and Measurement Layouts Setting 1
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Agent Ability Ability_mean Ability_sd
Instance Level Aggregated Level Instance Level Aggregated Level

CORA

agentialA 1.674 1.842 0.238 0.111
movingobjectA 0.789 1.580 0.191 0.068

navigationA 1.416 1.109 0.307 0.033
noise 0.694 0.470 0.063 0.049

objectualA 1.619 1.738 0.093 0.033
objpermanenceA 1.398 1.997 0.310 0.012

tooluseA 1.930 1.972 0.129 0.065

MESS

agentialA 1.307 1.521 0.054 0.038
movingobjectA 1.998 2.000 0.006 0.003

navigationA 1.182 1.185 0.027 0.014
noise 0.089 0.012 0.067 0.012

objectualA 1.745 1.792 0.031 0.011
objpermanenceA 1.996 1.997 0.012 0.007

tooluseA 1.144 1.193 0.076 0.036

OPICS

agentialA 1.933 1.982 0.057 0.017
movingobjectA 1.368 1.503 0.031 0.023

navigationA 1.589 1.694 0.044 0.038
noise 0.011 0.004 0.011 0.005

objectualA 1.789 1.807 0.014 0.010
objpermanenceA 1.999 2.000 0.009 0.006

tooluseA 1.327 1.181 0.064 0.029

Table B.4: Capability Profiles from Evaluation 7 and Measurement Layouts Setting 2
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Algorithm Prior and Noise Type Brier Score New Compensatory Setting Brier Score Original Compensatory Setting

CORA Normal, convex combination 0.062289 0.066025

MESS Normal, convex combination 0.088896 0.091138

OPICS Normal, convex combination 0.068348 0.082667

CORA Normal, downscaling 0.071292 0.078174

MESS Normal, downscaling 0.090687 0.095992

OPICS Normal, downscaling 0.070841 0.062096

CORA Beta, convex combination 0.068163 0.065815

MESS Beta, convex combination 0.088994 0.091112

OPICS Beta, convex combination 0.068728 0.056770

CORA Beta, downscaling 0.076020 0.069088

MESS Beta, downscaling 0.091389 0.094273

OPICS Beta, downscaling 0.071712 0.061129

Table C.1: Brier Scores for Different Algorithms and Settings.
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Appendix D: Sustainable
Development Goals

Sustainable Development Goals High Medium Low Not
Applicable

SDG 1. No Poverty. X
SDG 2. Zero Hunger. X
SDG 3. Good Health and Well-being. X
SDG 4. Quality Education. X
SDG 5. Gender Equality. X
SDG 6. Clean Water and Sanitation. X
SDG 7. Affordable and Clean Energy. X
SDG 8. Decent Work and Economic Growth. X
SDG 9. Industry, Innovation and Infrastructure. X
SDG 10. Reduced Inequality. X
SDG 11. Sustainable Cities and Communities. X
SDG 12. Responsible Consumption and Production. X
SDG 13. Climate Action. X
SDG 14. Life Below Water. X
SDG 15. Life on Land. X
SDG 16. Peace, Justice and Strong Institutions. X
SDG 17. Partnerships for the Goals. X
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The impact of this project on the Sustainable Development Goals (SDGs) can be dis-
cussed principally in relation to its potential contributions to innovation, industry and
infrastructure; as well as decent work and economic growth, which we explicitly point
out as areas where out project has a high potential impact. These areas correspond to the
goals:

• SDG 9. Industry, Innovation and Infrastructure: The reason why our project has
a high impact on this goal because it contributes to it by presenting a more sophis-
ticated methodology for evaluating Artificial Intelligence systems capabilities. This
innovative approach could be critical in the future for industries reliant on AI tech-
nologies, as it helps them understanding and predicting AI systems behaviour.

• SDG 8. Decent Work and Economic Growth.: the project promotes decent work
by potentially improving how AI agents can be used in various sectors to support
jobs and by fostering an economic environment benefited by reliable AI technolo-
gies. Better AI evaluations can lead to more effective and safer AI implementations,
fostering growth and supporting employment in tech-driven sectors.

• SDG 10. Reduced Inequality: the project indirectly contributes to reduced inequal-
ity by enhancing the capability to evaluate AI systems that could be used in a va-
riety of applications, potentially making advanced technology more accessible and
beneficial across different demographics and sectors.

• SDG 11. Sustainable Consumption and Production: we note its impact on this
goal as a low, reflecting the project’s marginal but existing effects on urban sus-
tainability directly but acknowledging that improved AI can play a role in smarter
urban development indirectly through better infrastructure planning and manage-
ment technologies.
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