
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Adaptation of Large Language Models for Streaming
Machine Translation

End of Degree Project

Bachelor's Degree in Informatics Engineering

AUTHOR: Vicente Hungerbuhler, Daniel Kyu

Tutor: Juan Císcar, Alfonso

Cotutor: Civera Saiz, Jorge

Experimental director: Iranzo Sánchez, Jorge

ACADEMIC YEAR: 2023/2024

Resum
La traducció automàtica (MT, de l’anglés) és un àmbit fonamental dins de l’aprenen-

tatge automàtic, on les xarxes neuronals han assolit avanços significatius que han im-
pulsat la recerca en MT. Això s’ha vist encoratjat encara més per la proliferació de plata-
formes que faciliten la transmissió de contingut audiovisual en streaming (per exemple,
YouTube, Twitch) i videoconferències (per exemple, Zoom, Webex). Aquestes platafor-
mes han posat de manifest la necessitat d’adaptar els models i tècniques de MT con-
vencionals al context de transmissió en temps real, és a dir, per a una entrada contínua
(en streaming) i sota un temps de resposta determinat (latència). Els avanços en l’en-
trenament de grans xarxes neuronals amb col·leccions massives de dades per part dels
principals proveïdors tecnològics, com ara Google, Meta i Microsoft, han conduït a l’apa-
rició de models de MT multilingüe i grans models de llenguatge que poden ser utilitzats
com a models fonamentals per abordar tasques posteriors específiques. En aquest con-
text, aquest treball aprofundeix en l’avaluació de l’eficàcia dels models fonamentals quan
s’adapten a tasques de MT, particularment per a MT en streaming. Per a això, utilitza-
rem dades, tecnologia i experiència del grup MLLP de VRAIN, adquirits en el marc de
projectes de recerca i transferència de tecnologia desenvolupats en els últims anys.

Paraules clau: Aprenentatge automàtic; Xarxes neuronals; Traducció automàtica; Tra-
ducció automàtica en streaming; Models de llenguatge grans; Adaptació de models.

Resumen
La traducción automática (MT, del inglés) es un área fundamental dentro del apren-

dizaje automático, donde las redes neuronales han alcanzado avances significativos que
han impulsado la investigación en MT. Esto se ha visto fomentado aún más por la prolife-
ración de plataformas que facilitan la transmisión de contenido audiovisual en streaming
(por ejemplo, YouTube, Twitch) y videoconferencias (por ejemplo, Zoom, Webex). Estas
plataformas han puesto de manifiesto la necesidad de adaptar los modelos y técnicas de
MT convencionales al contexto de transmisión en tiempo real, esto es, para una entrada
continua (en streaming) y bajo un tiempo de respuesta determinado (latencia). Los avan-
ces en el entrenamiento de grandes redes neuronales con colecciones masivas de datos
por parte de los principales proveedores tecnológicos, como Google, Meta y Microsoft,
han conducido a la aparición de modelos de MT multilingüe y grandes modelos de len-
guaje que pueden usarse como modelos fundacionales para abordar tareas posteriores
específicas. En este contexto, este trabajo profundiza en la evaluación de la eficacia de
los modelos fundacionales cuando se adaptan a tareas de MT, particularmente para MT
en streaming. Para ello, utilizaremos datos, tecnología y experiencia del grupo MLLP de
VRAIN, adquiridos en el marco de proyectos de investigación y transferencia de tecno-
logía desarrollados en los últimos años.

Palabras clave: Aprendizaje automático; Redes neuronales; Traducción automática; Tra-
ducción automática en streaming; Modelos de lenguaje grandes; Adaptación de modelos

iii

iv

Abstract
Machine translation (MT) stands as a pivotal domain within machine learning, where

the rise of neural networks has sparked significant advancements, propelling MT into a
highly researched field. This has been further fostered by the proliferation of platforms
facilitating audiovisual content streaming (e.g., YouTube, Twitch) and video conferenc-
ing (e.g., Zoom, Webex). These platforms have underscored the necessity of adapting
conventional MT models and techniques to accommodate real-time streaming scenarios,
which entails a continuous input stream to be translated under a given response time
(latency). Progress in training large neural networks on massive collections of data by
major technological providers, such as Google, Meta, and Microsoft, has led to the emer-
gence of multilingual MT and large language models, which can be used as foundational
models to tackle specific downstream tasks. In this context, this study delves into eval-
uating the efficacy of foundational models when adapted to MT tasks, particularly for
streaming MT. To this end, we will make use of data, technology, and expertise from
the MLLP group of VRAIN, acquired within the framework of research and technology
transfer projects developed in recent years.

Key words: Machine learning; Neural networks; Machine translation; Streaming ma-
chine translation; Large language models; Model adaptation

Contents

Contents v
List of Figures vii
List of Tables vii

List of Acronyms viii
1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 2
1.3 Document structure . 2

2 Background 3
2.1 Machine Learning . 3

2.1.1 Supervised Learning . 3
2.1.2 Shallow Neural Networks . 4
2.1.3 Deep Neural Networks . 7

2.2 Transformers . 9
2.2.1 Self-attention . 10
2.2.2 Transformer model & natural language processing 11

2.3 Large Language Models . 12
2.3.1 Distributed training . 14
2.3.2 Parameter Efficient Fine-Tuning & LoRA 15
2.3.3 Quantization . 16

2.4 Neural Machine Translation . 16
2.5 Streaming Machine Translation . 18

3 Adaptation for offline MT 21
3.1 Multilingual Encoder-Decoder Models . 21

3.1.1 No Language Left Behind (NLLB) 22
3.2 Datasets . 22

3.2.1 Evaluation datasets . 22
3.2.2 Training datasets . 23
3.2.3 Data processing pipeline . 24

3.3 Offline experimentation on NLLB . 25
3.3.1 Evaluation on adapted NLLB . 26

4 Adaptation for streaming MT 29
4.1 Streaming MT . 29

4.1.1 Policy . 30
4.1.2 Document-level MT & Prefix Training 30
4.1.3 Segmentation-Free Architecture . 31
4.1.4 Evaluation . 34

4.2 Datasets . 35
4.2.1 Data processing pipeline . 36

4.3 Experiments on NLLB - Setup . 37
4.3.1 Model Training . 37

v

vi CONTENTS

4.3.2 SegFree Architecture . 38
4.4 Experiments on NLLB - Cased NLLB . 38

4.4.1 Results - Cased NLLB . 40
4.5 Expriments on NLLB - Lowercased NLLB 45

5 Conclusions 49
5.1 Objectives achieved . 49
5.2 Future work . 49

Bibliography 53

Appendix
A Additional figures 59

A.1 Results on multilingual reverse models . 59
A.2 Results on LoRA rank and additional data experiments for the uncased

model . 60
Appendix: Sustainable Development Goals 62

List of Figures

2.1 Gradient descent . 5
2.2 1D linear regression . 5
2.3 Shallow network flow network . 6
2.4 ReLU . 6
2.5 Shallow network flow . 7
2.6 Deep network . 8
2.7 Deep network flow . 9
2.8 Attention routing . 10
2.9 Transformer layer . 12
2.10 Transformer model . 13
2.11 3D parallelism . 14
2.12 LoRA . 15
2.13 NMT architecture . 17
2.14 COMET architecture . 19

3.1 Training sentence post Truecasing and SentencePiece application 25

4.1 Wait-k . 31
4.2 Streaming MT training data preparation . 32
4.3 Streaming history . 33
4.4 NLLB LoRA streaming adaptation rank comparison 41
4.5 NLLB LoRA streaming adaptation extended dataset comparison 42
4.6 NLLB LoRA streaming adaptation size comparison 43
4.7 NLLB LoRA streaming adaptation multilingual comparison 44
4.8 NLLB LoRA lowercase streaming adaptation size comparison 46
4.9 NLLB LoRA cased and lowercase streaming adaptation comparison 47
4.10 Output comparison . 48

A.1 NLLB LoRA multilingual streaming adaptation reverse directions compar-
ison . 59

A.2 NLLB LoRA lowercase streaming adaptation rank comparison 60
A.3 NLLB LoRA lowercase streaming adaptation extended dataset comparison 61

List of Tables

3.1 INTERACT-EUROPE dataset . 23
3.2 Training corpora for language pair en→ f r 23
3.3 Training corpora for language pair en→ es 24
3.4 Training corpora for language pair en→ de 24

vii

3.5 Training corpora for language pair en→ sl 24
3.6 LoRA hyperparameters . 26
3.7 NLLB model sizes . 26
3.8 Results for NLLB models in the INTERACT dev sets 26

4.1 Europarl-ST dataset . 36
4.2 MuST-C dataset . 36
4.3 Offline performance of the original NLLB and its offline and streaming

LoRA adaptations . 44
4.4 Offline evaluation of the adapted models 45

List of Acronyms

MT Machine Translation

LLM Large Language Model

AI Artificial Intelligence

ML Machine Learning

NLP Natural Language Processing

MAE Mean Absolute Error

MSE Mean Square Error

CE Cross-Entropy

ReLU Rectified Linear Unit

PLM Pre-trained Language Model

DP Data Parallelism

TP Tensor Parallelism

PP Pipeline Parallelism

ZeRO Optimizer Parallelism

PEFT Parameter-Efficient Fine-Tuning

LoRA Low-Rank Adaptation

SMT statistical machine translation

NMT Neural machine translation

BLEU Bilingual Evaluation Understudy

viii

ix

BP brevity penalty

COMET Crosslingual Optimized Metric for Evaluation of Translation

ASR Automatic Speech Recognition

NLLB No Language Left Behind

OOV Out-Of-Vocabulary

VRAIN Valencian Research Institute for Artificial Intelligence

AP Average Proportion

AL Average Lagging

DAL Differentiable Average Lagging

SLT Spoken Language Translation

EOS End-Of-Sentence

CHAPTER 1

Introduction

This study delves into the current state of machine translation (MT), particularly fo-
cusing on Streaming MT, and explores the possibilities, to this end, of the massively
scaled-up models known as Large Language Models (LLMs) that are emerging in the
machine learning ecosystem. Their potential for adaptation to the streaming context is
examined, which opens a promising path of cost-effective techniques to obtain adapted,
fully-functional models. These are compared to a fully-trained, state-of-the-art stream-
ing bilingual MT baseline model, in order to determine the degree to which LLMs can
genuinely produce competitive outcomes in streaming MT.

In this chapter, the motivation and context of this study are explored in greater detail,
objectives are delineated, and an overview of the document’s structure is presented.

1.1 Motivation

In today’s interconnected global landscape, where individuals from different countries
and cultural backgrounds must collaborate and communicate, language poses a signif-
icant barrier. Machine translation, empowered by neural network advancements, has
become an essential tool in bridging these linguistic gaps. The current social and tech-
nological landscape has given rise to audiovisual content streaming platforms such as
Youtube or Twitch, that allow anyone from anywhere in the world to consume a given
content produced in real-time, and video conferencing tools such as Zoom and Webex,
facilitating meetings with participants dispersed across the globe.

Existing MT models and methods are generally designed to handle entire sentences,
processing them in batches rather than in real-time, incrementally processing each word.
As a result, these models and traditional MT methods are not well-suited for stream-
ing scenarios and must be adapted for these environments, where low latency is crucial.
Therefore, the predominant strategy to achieve state-of-the-art performance is to train
new models from scratch [1]. While this allows for tailored modeling efforts specific to
streaming cases, the process can be computationally intensive and hindered by the lim-
ited availability of data specifically suited for streaming purposes.

This raises the question of whether using pre-trained models with massive amounts
of data — the so-called ’Large Language Models’ (LLMs) or foundational models [2] —
developed by major tech companies such as Google, Meta, and Microsoft can be made
feasible with fine-tuning or similar techniques.

These methods significantly reduce the training process costs and could yield promis-
ing results [3]. The development of multilingual MT and LLMs offers a strong founda-
tion for specialized MT applications. Their adaptation allows leveraging the cumulative

1

2 Introduction

knowledge embedded in large-scale datasets, that cover various domains and languages
providing the adapted model with a rich foundation to start learning new tasks.

1.2 Objectives

In this context, our study aims to assess the effectiveness of foundational models for
streaming MT. Our objectives are twofold: firstly, to assess the adaptability of founda-
tional models to streaming environments, which implies the processing of a continuous
input stream to be translated under a given response time latency; and secondly, to ex-
plore their potential for bespoken solutions tailored to the unique challenges of real-time
translation, comparing them with state-of-the-art streaming MT models developed by
the MLLP group.

The primary objectives of this study are:

1. To acquire and process data appropriately for the streaming context.

2. To adapt and assess the efficacy of publicly accessible LLMs for streaming MT.

3. To compare and evaluate the effectiveness and results of the adapted models against
baseline state-of-the-art streaming MT models.

1.3 Document structure

The document consists of 5 chapters. Chapter 1 has provided a concise introduction of
the work, offering context and outlining its objectives. Chapter 2 familiarizes readers
with essential terminology and concepts necessary to grasp the objectives of the study,
providing a concise introduction to the domain of Machine Learning, exploring the trans-
former architecture that is the foundation of most MT models, discussing the develop-
ment of LLMs and their adaptation possibilities, and delving into the field of modern MT
and specifically, the particularities of Streaming MT. Chapter 3 explores the outcomes ob-
tained from the adaptation of large multilingual models tailored specifically for offline
bilingual MT, examining the nuances of the adaptation process, and detailing the strate-
gies employed and the corresponding performance metrics achieved. Chapter 4 ventures
into the realm of streaming MT, adjusting the adaptation of the large multilingual mod-
els realized in the previous section to this new task, and evaluates the results obtained.
Chapter 5 concludes with a general overview of the conclusions and findings derived
from this study, together with a review on potential future paths of research. Appendix
A is also added to provide additional figures related to training procedures and experi-
mentation results.

CHAPTER 2

Background

In this chapter, the fundamental concepts, ideas, and terminology related to MT are pre-
sented. An overview of machine learning is presented, followed by a comprehensive
examination of the transformer architecture, the primary model architecture employed
in MT tasks. These parts draw extensively from [4]. Subsequently, the concept of LLMs
is delved into, exploring the adaptation techniques available and the methods to make
them computationally feasible. Finally, an in-depth explanation of MT is provided, with
a specific focus on streaming MT.

2.1 Machine Learning

Artificial intelligence (AI) aims to develop systems that mimic intelligent behaviors. One
of its branches, machine learning (ML), focuses on training models to make decisions by
analyzing data patterns through probabilistic modeling. These models seek to generalize
datasets, predicting outcomes that closely match desired results when presented with
new data. Achieving this entails employing algorithms that adaptively learn the most
effective parameters or weights, influencing the system’s output.

ML problems are typically classified based on the type of output the system produces,
into classification (predicting discrete classes) or regression problems (predicting continu-
ous values), or based on the availability of an output label for given input data during
the training process. Supervised learning, commonly utilized in Natural Language Pro-
cessing (NLP) tasks, including MT, uses labeled data to train models to predict outputs
accurately.

Deep neural networks, a type of ML models that have profoundly impacted the
field, excel at representing complex functions capable of capturing intricate data pat-
terns and dependencies, enabling these networks to model relationships that are not eas-
ily described by simple linear functions. Deep neural networks have the capability to
handle inputs of large size, variable length, and containing diverse internal structures.
They can produce single real numbers (regression), multiple real numbers (multivariate
regression), or probabilities across two or more classes (binary and multiclass classification,
respectively).

2.1.1. Supervised Learning

The objective of supervised learning is to construct a model that takes an input x and
generates a prediction y. Both x and y are usually vectors of fixed size. The model is

3

4 Background

defined by parameters φ, which determine the specific relationship between x and y. The
prediction y from the input x is called inference, and can formally be represented as:

y = f (x, φ) (2.1)

The training process of a model involves optimizing these parameters using a training
dataset of input-output pairs (xi, yi) to minimize a chosen loss function L(φ) that quan-
tifies the discrepancy between the model’s predictions and the actual target values in the
training data. Thus our goal during training is to find parameters φ̂ that minimize this
loss function:

φ̂ = argmin
φ

L(φ) (2.2)

Different loss functions can be used depending on the case. For regression problems, the
mean absolute error (MAE) or L1

L(φ) =
1
n

n

∑
i=1
|yi − f (xi, φ)| (2.3)

or the mean square error (MSE) or L2

L(φ) =
1
n

n

∑
i=1

(yi − f (xi, φ))2 (2.4)

are usually used, where f (xi, φ) are the predicted values and yi the real values.

For classification problems, like MT, the Cross-Entropy (CE) H(p, q), which quanti-
fies dissimilarity between two distributions, the true probability distribution p and the
model’s predicted probability distribution q, is commonly employed [5]. It is defined as:

H(p, q) = ∑
x∈X

p(x) log(q(x)) (2.5)

Gradient descent is typically used to iteratively adjust parameters towards minimiz-
ing the loss, which involves initially selecting parameters at random and subsequently
improving them by walking down the loss function until its minimum is reached. One
method to accomplish this is to measure the gradient of the surface at the current posi-
tion and adjusting the parameters in the direction of the steepest descent. This iterative
process continues until the gradient flattens out, signifying that further improvements
are not feasible, as seen in Figure 2.1.

After training the model, we evaluate its real-world performance by computing loss
on a separate test dataset. The accuracy on test data depends on the adequacy of the
training data’s representation and completeness, as well as the model’s complexity. A
simple model, like a straight line, may underfit and miss the true input-output relation-
ship. Conversely, an overly complex model can overfit by capturing irrelevant statistical
nuances from the training data, leading to unusual predictions.

2.1.2. Shallow Neural Networks

The 1D linear regression model, expressed as y = f (x, φ) = φ0 + φ1x, defines a simple
relationship between input x and output y using parameters φ = [φ0, φ1]

T. Varying φ0
and φ1 alters this relationship, as seen in Figure 2.2.

2.1 Machine Learning 5

0 1 2 3 4 5 6
1 (Slope)

0

1

2

3

4

5

6

7

8

0 (
In

te
rc

ep
t)

0

1

2

3
4

0

10

20

30

40

50

60

70

80

Lo
ss

 L
(

)

Figure 2.1: Gradient Descent. Iterative training algorithms initialize the parameters randomly
and then improve them by moving towards lower loss values (indicated by darker regions) until
no further improvement is possible. In this illustration, we start at point 0 and move downhill
(perpendicular to the contour lines) to reach point 1. We then reassess the downhill direction and
proceed to point 2. This iterative process continues until we reach the minimum of the function.

0.0 0.4 0.8 1.2 1.6 2.0
Input, x

4

5

6

7

8

9

10

Ou
tp

ut
, y

=(8, -2)

=(3, 1)

=(5, 2.5)

Figure 2.2: Linear Regression Model. With a specific selection of parameters φ = [φ0, φ1]
T , the

model generates output predictions (y-axis) corresponding to input values (x-axis).

This linear model’s limitation prompts exploration into shallow neural networks,
which, with their piecewise linear functions, can model more complex input-output rela-
tionships and can approximate any continuous function with arbitrary precision. Unlike
linear regression, these networks incorporate hidden units h and nonlinear activation
functions like ReLU to handle multi-dimensional inputs x and outputs y. Following this,
deep neural networks emerge, equally expressive but successful in depicting complex func-
tions with fewer parameters, leading to better performance.

Shallow neural networks are functions y = f (x, φ) with parameters φ that map
multivariate inputs x ∈ RDi to multivariate outputs y ∈ RDo using h ∈ RD hidden units.
Each hidden unit is calculated as:

hd = a

(
θd0 +

Di

∑
i=1

θdixi

)
(2.6)

6 Background

x

1

h2

h1

h3

1

y

θ11

θ21
θ31

φ1
φ2

φ3

θ10

θ20

θ30

φ0

Figure 2.3: Shallow neural network. Input x on the left, hidden units h1, h2, and h3 in the
center, and output y on the right. Computation flows left to right, with each of the ten arrows
representing a parameter, either an intercept (orange) or a slope (black). Parameters are
multiplied by their source and added to their target. ReLU functions are applied at the hidden
units.

and these are combined linearly to generate the output:

yj = φj0 +
D

∑
d=1

φjdhd (2.7)

where a(·) is a nonlinear activation function, and the model has parameters φ = {θdi, φjd}.
Neural networks are commonly referred to as having layers, and the neural network in
Figure 2.3 has one input layer, three hidden layers, and one output layer. The hidden
units are usually referred to as neurons. Then, what characterizes shallow neural net-
works is that they have 1 hidden unit.

The most common activation function is the Rectified Linear Unit (ReLU) [6], as illus-
trated in Figure 2.4, primarily due to its ease of interpretability. It allows the model to
capture nonlinear relationships by partitioning the input space into regions with distinct
linear functions.

3 0 3
z

3

0

3

Re
LU

[z
]

Figure 2.4: Rectified Linear Unit (ReLU) is an activation function that outputs zero if the input
is negative, and otherwise returns the input unchanged. Essentially, it truncates negative values
to zero.

Hence, the computation flow, seen for the previous network of Figure 2.3 and illus-
trated for a given function in Figure 2.5, involves each hidden unit containing a linear
function θd0 + θd1x of the input, producing a line that is then clipped by the ReLU func-
tion a(·) when it falls below zero. The positions where the three lines intersect zero serve
as the three "joints" in the final output. Subsequently, the three rectified lines are weighted
by φ1, φ2, and φ3, respectively. Finally, the offset φ0 is added, which adjusts the overall
height of the final function.

2.1 Machine Learning 7

Figure 2.5: Computation flow of a shallow neural network: a–c) Input x is processed through
three distinct linear functions, each with a unique y-intercept θ•0 and slope θ•1. d–f) Each
resulting line is subjected to the ReLU activation function, which truncates negative values to
zero. g–i) The three rectified lines are then scaled by the respective weights φ1, φ2, and φ3. j) The
scaled and rectified functions are added, and an offset φ0, governing the overall height, is
introduced. Each of the four linear regions corresponds to a distinct activation pattern in the
hidden units. Within the shaded region, h2 remains inactive (clipped), while both h1 and h3 are
active. Obtained from [4].

2.1.3. Deep Neural Networks

As the number of hidden units increases, shallow neural networks enhance their descrip-
tive capacity, allowing them to describe complex functions in high-dimensional spaces.
However, the required number of hidden units can become excessively large. Deep neu-
ral networks, with more than one hidden layer, can generate significantly more linear
regions compared to shallow networks with the same number of parameters. Therefore,
deep networks can capture a wider range of functions effectively.

Let’s consider a deep network comprising two hidden layers, with each layer housing
three hidden units as seen in Figure 2.6. The first layer is defined by:

hd = a(θd0 + θd1x), for d = 1, 2, 3 (2.8)

8 Background

the second layer by:

h′d = a(ψd0 +
3

∑
i=1

ψdihi), for d = 1, 2, 3 (2.9)

and the output by:

y′ = φ′0 +
3

∑
i=1

φ′i h
′
i. (2.10)

Taking into account these equations, a new perspective emerges on how the network
constructs a progressively complex function, illustrated in Figure 2.7:

1. The first layer computes three hidden units h1, h2, and h3 by forming linear func-
tions of the input and passing them through ReLU activation functions (see Equa-
tion 2.8).

2. The second layer forms new linear functions of these hidden units, passed through
activation functions (see Equation 2.9), effectively creating a shallow network with
three piecewise linear functions.

3. At the second hidden layer, another ReLU function a[·] is applied to each function
(see Equation 2.9), which clips them and adds new "joints" to each.

4. The final output is a linear combination of these hidden units (see Equation 2.10).

x h2

h1

h3

h′2

h′1

h′3

y

Figure 2.6: Neural network with one input, one output, and two hidden layers, each with three
hidden units.

Deep neural networks also introduce the concept of hyperparameters, such as the num-
ber of hidden units in each layer (network width), the number of hidden layers (depth),
and the total number of hidden units (network capacity). They are easier to fit and bet-
ter at generalizing to new data than shallow networks, which has driven advancements
in image recognition and natural language processing. However, challenges like train-
ing complexity and data requirements persist. The next chapter explores transformer
architectures, which leverage self-attention mechanisms to achieve remarkable results in
natural language processing and modern MT.

2.2 Transformers 9

Figure 2.7: Computation flow for the deep neural network in Figure 2.6: a–c) The inputs to the
second hidden layer (pre-activations) comprise three piecewise linear functions, with the "joints"
between linear regions located at identical positions. d–f) Each piecewise linear function
undergoes clipping through the ReLU activation function. g–i) These clipped functions are
weighted using parameters φ′1, φ′2, and φ′3, respectively. j) Finally, the clipped and weighted
functions are summed, and an offset φ′0, adjusting the overall height, is added. Obtained from
[4].

2.2 Transformers

The transformers architecture [7] resolved significant limitations found in MT systems
predating its invention, which struggled with adapting to varying sequence lengths found
in language datasets, establishing connections between various words in a text, and mod-
eling long-distance word relationships [8]. All these issues called for a new model archi-
tecture capable of addressing them, and the introduction of the transformer architecture
marked a groundbreaking advancement in the field of MT.

10 Background

2.2.1. Self-attention

The transformer architecture revolves around the concept of the dot-product self-attention.
A self-attention block sa(•) computes values for each input word, and then forms weighted
sums that are influenced by similarities between words. This mechanism allows for effi-
cient handling of lengthy input sequences of varying lengths, although it’s important to
note that it scales quadratically with sequence length N due to the pairwise comparisons
involved. Nevertheless, transformers use a single parameter set regardless of input size,
making them highly scalable.

If we have N inputs x1, . . . , xN , each with dimensions D× 1, the self-attention block
produces N output vectors of identical size. In the context of NLP and MT, each input
represents a word or word fragment. Then, a set of values are computed for each input
as

vj = βv + Ωvxj, (2.11)

where βv ∈ RD and Ωv ∈ RD×D represent biases and weights of the transformer model,
respectively.

Then, the ith output sai(x1, . . . , xN) is computed as a weighted sum of all the values
v1, . . . , vN :

sai(x1, . . . , xN) =
N

∑
j=1

a(xj, xi)vj. (2.12)

Here, the scalar weight a(xj, xi) represents the attention that the ith output directs toward
input xj. The N weights a(xj, xi) are non-negative and sum to one. Thus, self-attention
can be interpreted as routing the values in varying proportions to create each output,
illustrated in Figure 2.8.

x1

. . .

xi

. . .

xN

a(xi, xi)

a(x1, xi)

a(xN , xi)

×

×

×

Σ sai(x1, . . . , xN)

v1

vi

vN

Figure 2.8: Self-attention processes N inputs x1, . . . , xN ∈ RD individually to compute N value
vectors. The ith output sai(x1, . . . , xN) is then determined as a weighted sum of these N value
vectors, with weights that are positive and sum to one.

To compute attention, the inputs undergo two linear transformations, resulting in qn
(queries) and km (keys):

qn = βq + Ωqxn

km = βk + Ωkxm,
(2.13)

2.2 Transformers 11

Dot products between queries and keys are then computed and passed through a soft-
max function (which transforms the vector containing N real numbers into a probability
distribution across N potential outcomes, such that σ : RN → (0, 1)N):

a(xj, xi) = σj

(
kTqi

)
=

exp(kT
j qi)

∑N
n=1 exp(kT

n qi)
, (2.14)

ensuring that for each xn, the attention weights are positive and sum to one. This process,
known as dot-product self-attention, measures similarity between inputs, crucially af-
fecting how information flows through the network. Large dot products between queries
and keys may lead to a dominance of the largest value in the softmax function, resulting
in minimal changes in output for small input variations and challenging training due to
negligible gradients. To counter this, dot products are scaled by the square root of the
dimension Dq of queries and keys (i.e., the number of rows in Ωq and Ωk, which are
identical), acting as a normalization step.

The mechanism’s nonlinearity arises from the dot-product and softmax operations.
This mechanism uses a single set of parameters φ = {βv, Ωv, βq, Ωq, βk, Ωk}, indepen-
dent of input size N, and establishes input connections based on attention weights, solv-
ing the challenges mentioned at the beginning of the section.

2.2.2. Transformer model & natural language processing

Self-attention is just a component within a broader transformer layer. This layer, seen
in Figure 2.9, encompasses a multi-head self-attention unit (multiple self-attention mecha-
nisms are usually applied in parallel), facilitating interactions between word representa-
tions, followed by a fully connected network, which operates independently on each word.
Both units are residual networks, where their output is combined with the original input.
Additionally, a LayerNorm [9] operation is commonly incorporated after both the self-
attention and fully connected networks. This operation, akin to BatchNorm [10], utilizes
statistics across tokens within a single input sequence for normalization.

The standard NLP pipeline typically starts with tokenization, where text is divided
into tokens. These tokens are then mapped to learned embeddings stored in a matrix,
enabling the representation of words as continuous vectors. These embeddings are pro-
cessed through multiple transformer layers in the transformer model. The vocabulary
for tokenization is constructed using a sub-word tokenizer like byte-pair encoding, which
merges frequently occurring substrings based on their frequency.

Each token in the vocabulary V is linked to a unique word embedding, stored in a
matrix Ωe ∈ RD×|V|. Initially, the input tokens are encoded into a matrix T ∈ R|V|×N ,
where the nth column corresponds to the nth token and is encoded as a |V| × 1 one-hot
vector. Input embeddings are then computed as X = ΩeT, with Ωe learned as a network
parameter. Typically, the embedding size D is 1024, with a vocabulary size |V| ≈ 30, 000,
resulting in a considerable number of parameters to learn in Ωe even before engaging
with the main network.

The embedding matrix X is then processed through a sequence of K transformer lay-
ers, forming a transformer model. Transformers present themselves in various forms:
as encoder-only, decoder-only form, or encoder-decoder form, with the latter being the
original version of the transformer [7] and the one used in most sequence-to-sequence
tasks, including MT. In this last setup, the encoder transforms an input sequence of sym-
bol representations (x1, . . . , xn) that can represent our source sentence, into a sequence
of continuous representations z = (z1, . . . , zn). Given z, the decoder generates an output

12 Background

Input Embedding

Multi-Head Self-Attention

+

Layer Norm

Feed-Forward Network

+

Layer Norm

Output

Figure 2.9: The transformer layer processes an input represented as a D× N matrix of
D-dimensional word embeddings (continuous vector representations of words) for N tokens. It
comprises several operations: multi-head attention to enable interaction among embeddings,
followed by a residual block and LayerNorm. Then, a fully connected neural network is applied
separately to each word representation in another residual layer, followed by LayerNorm.

sequence (y1, . . . , ym) of symbols one by one, representing our sentence in the target lan-
guage. Throughout the process, the model operates in an auto-regressive manner, utilizing
previously generated symbols as additional input during each step of generation, as seen
in Figure 2.10.

Considering English-to-French translation, for instance, the encoder processes the En-
glish input using transformer layers to create token representations. During training, the
decoder predicts subsequent French words using masked self-attention, ensuring predic-
tions depend only on preceding words. The decoder also attends to encoder outputs,
incorporating both prior outputs and the English input. This is facilitated by introduc-
ing cross-attention, where decoder embeddings query encoder embeddings to enhance
translation quality.

Let’s consider English-to-French translation. The encoder processes the English input
through transformer layers, producing an output representation for each token. In the
training phase, the decoder, given the correct French translation, employs transformer
layers with masked self-attention (which ensures that predictions rely only on preceding
words, preventing access to future ones) to predict subsequent words. The decoder also
attends to encoder outputs, conditioning each French word on prior outputs and the
English input. This is facilitated by introducing cross-attention, here queries originate
from decoder embeddings, while keys and values are drawn from encoder embeddings.

2.3 Large Language Models

The NLP field has developed from statistical language modeling to neural language
modeling, and then from pre-trained language models (PLMs) to LLMs. While tradi-
tional models are trained for specific tasks in supervised settings, PLMs train in a self-

2.3 Large Language Models 13

Figure 2.10: Transformer model featuring an encoder-decoder architecture. Two sentences are
fed into the system for translation, aiming to convert the first sentence into the second. The
initial sentence is processed by an encoder. Then, the second sentence is processed by a decoder
with masked self-attention, while also attending to the output embedding through
cross-attention (depicted by the orange rectangle). The loss function remains consistent with the
decoder model, aiming to maximize the probability of the subsequent word in the output
sequence. Obtained from [4].

supervised manner on large text corpora to acquire generic representations, applicable
across different NLP tasks after a process of fine-tuning, outperforming traditional mod-
els. The recent developments in performance improvements have led to the transition
from PLMs to LLMs, achieved by an increase in computational power, training dataset
sizes, and model parameters [11].

LLMs typically denote transformer-based neural language models with tens to hun-
dreds of billions of parameters (GPT-3 has 175B, BLOOM 176B, or MT-NLG 540B) pre-
trained on extensive text data, and represent state-of-the-art systems capable of process-
ing and generating coherent text, approximating human-level performance, and general-
izing across multiple tasks. Initially relying on transfer learning (fine-tuning on a specific
task), newer models like GPT-3 [12] show great results in zero-shot setups, where fine-
tuning is not performed on the new downstream task, but improved further in a few-shot
setup or with task-specific fine-tuning [11].

LLMs also showcase unexpected emergent capabilities that were not part of their
training, such as reasoning, planning, and decision-making. Their huge scale contributes
to these abilities, however these impressive capabilities come with a cost, including slow
training and inference times, significant hardware requirements, and higher operational
costs, limiting their widespread adoption and driving efforts to develop more efficient
architectures and training strategies. Methods such as parameter-efficient tuning, prun-
ing, quantization, knowledge distillation, and context length interpolation are among the
techniques extensively researched to enhance the efficiency of LLM utilization [11]. We’ll
dive deeper into distributed training, parameter-efficient tuning methods, particularly
on the LoRA method [3], and quantization [13].

14 Background

2.3.1. Distributed training

A variety of approaches is used to distribute the load of the training process for LLM
models, which include:

1. Data Parallelism (DP): The model is replicated across different devices, where each
device processes a slice of the data. The weights are then synchronized across all
devices after each training iteration.

2. Tensor Parallelism (TP): Also referred to as horizontal parallelism, each tensor is
divided into multiple chunks, having each shard of the tensor on multiple devices
instead of having the whole tensor on a single device. During processing, each
shard is processed separately and simultaneously across the different devices, with
the results synchronized at the end of the step.

3. Pipeline Parallelism (PP): Also known as vertical parallelism, the model layers get
distributed across different devices, having each device processing a different stage
of the pipeline.

4. 3D Parallelism: A combination of data, tensor, and pipeline parallelism (see Figure
2.11).

5. Optimizer Parallelism (ZeRO) [14]: Memory redundancies among data-parallel
processes get eliminated by partitioning model states (gradients, parameters and
optimizer states) across devices instead of duplicating them. It allows per-device
memory usage to grow linearly with the level of data parallelism and results in a
comparable communication volume to traditional data parallelism. ZeRO-powered
data parallelism can handle models of any size, given that the combined device
memory is adequate for sharing the model states.

Figure 2.11: Distributed training setup for the BLOOM LLM, a DP+TP+PP combination or 3D
Parallelism. 8 copies of the model are trained in parallel, one copy taking 48 GPUs and one data
batch. The model parameters are then divided across 4 GPUs, and the layers spread across 12
GPUs. Obtained from [15].

2.3 Large Language Models 15

2.3.2. Parameter Efficient Fine-Tuning & LoRA

The scale of billions of parameters in most LLMs makes fine-tuning a computationally-
intensive and time-consuming process. Parameter-efficient fine-tuning (PEFT) tech-
niques aim to strike a balance between a good model fine-tuning performance and re-
duced costs by minimizing the number of parameters and computational resources needed
to adapt a model to a new given task. The performance of these techniques compared to
a full fine-tuning is better in low-resource settings, comparable in medium-resource sce-
narios, and slightly worse in high-resource environments in general, although there are
cases where full fine-tuning may lead to catastrophic forgetting [16] as it modifies all model
parameters, and since PEFT only updates a small subset of parameters, it has the poten-
tial to reduce this catastrophic forgetting effect.

Low-Rank Adaptation (LoRA) [3] improves efficiency by restricting the updates to
the model’s weights using a low-rank decomposition. It keeps the initial weight matrix
W0 ∈ Rd×k frozen without gradient updates and trains only the smaller low-rank matri-
ces A ∈ Rr×k, B ∈ Rd×r, with rank r � min(d, k). This approach constrains the update
using the low-rank decomposition W0 + ∆W = W0 + BA.

Both W0 and ∆W = BA are applied to the same input, and their respective output
vectors are summed coordinate-wise, as illustrated in Figure 2.12. For h = W0x, the
modified forward pass becomes:

h = W0x + ∆Wx = W0x + BAx (2.15)

A random Gaussian initialization for matrix A is used, and matrix B is set to zero, so
∆W = BA is zero at the start of training. The change ∆W is then scaled by α

r , where α is
a constant dependent on r. This scaling strategy helps stabilize training and avoids the
need for frequent hyperparameter adjustments.

W ∈ Rd×k

A = N (0, σ2) B = 0

x h

Figure 2.12: LoRA reparametrization, only A and B are trained.

LoRA can be applied to any subset of weight matrices within a neural network to de-
crease the count of trainable parameters. In the self-attention module of the transformer,
LoRA targets the weight matrices (Wq, Wk, Wv, Wo) and freezes the MLP module (the
fully connected network), aiming for simplicity and parameter efficiency. By freezing
parts of the model and updating only the necessary matrices, LoRA achieves significant
gains in efficiency, reducing hardware requirements and allowing for easy adaptation
to different tasks without retraining the entire model, allowing for multiple LoRA mod-
ules to be trained, with a significant reduction in storage requirement and task-switching
overhead.

However, it has its limitations. It is complicated to batch inputs to different tasks
within a single forward pass if adjustments to attention matrices (A and B) are absorbed
into weights (W) to reduce inference latency. Nonetheless, this problem can be managed

16 Background

by selectively applying LoRA modules based on batch samples, particularly in scenarios
where latency isn’t critical.

2.3.3. Quantization

LLMs demand significant computational resources and memory not only for training,
but for inference tasks too. The GPT-3 model with its 175B parameters necessitates at
least five A100 GPUs with a memory capacity of 80GB each, totaling 350GB of memory
when stored in FP16 format [17]. This supposes a huge barrier for smaller organizations
aiming to utilize LLMs.

To address this, techniques like mixed precision [13] are used, where model weights
are stored in high precision (FP32) for accuracy but computations during training and
inference are performed in lower precision (FP16 or BF16) to enhance speed and reduce
memory usage. The gradients computed in lower precision are then utilized to update
the FP32 main weights.

In some cases, FP32 precision is necessary, such as when gradients become too small
in FP16, potentially rounding to zero and compromising optimizer performance. Simi-
larly, a large weight value to weight update ratio can cause weight updates to be rounded
down to zero in FP16 when added to the weight value, as it gets shifted to align with the
binary point of the weight. This occurs when a weight value of 1000 is summed with
a weight update of 0.001, resulting in a sum of 1000.0, for example. Both issues are ad-
dressed by using FP32 copies for gradient updates, ensuring accuracy is maintained.

Furthermore, gradient values often have small magnitudes, leaving much of the pos-
itive representable range of FP16 unused. Scaling up gradients shifts them to occupy
more of this range, preserving values that might otherwise be lost to rounding. Before
updating weights, these scaled gradients are unscaled to maintain update magnitudes as
in FP32 training.

2.4 Neural Machine Translation

Machine translation (MT) can be defined as the application of rule-based or probabilistic
ML techniques to automatically translate text from one language to another. The inherent
complexity of natural languages poses a problem in trying to cover all language partic-
ularities with hard-coded manual translation rules. With the increasing amounts of data
available nowadays, approaches that can learn linguistic information from data have in-
creased in popularity.

Early efforts in the mid-20th century focused on rule-based approaches, where lin-
guists and computer scientists devised sets of linguistic rules to translate text from one
language to another. However, these systems struggled with the complexities of natural
languages.

In the early 1990s, statistical machine translation (SMT) emerged, an approach that
learns to translate by analyzing the statistical correlations between original texts and their
corresponding human translations, leveraging parallel corpora (collections of texts in two
or more languages that are translations of each other, aligned at the sentence or phrase
level). Despite its advancements, SMT had limitations in handling long-distance word
relationships [8].

The breakthrough of deep learning addressed this drawback, giving rise to a new
paradigm. Neural machine translation (NMT) utilizes continuous representations in-
stead of the discrete symbolic representations used in SMT, and a single large neural

2.4 Neural Machine Translation 17

network with an end-to-end training that models the entire translation procedure, which
avoids over the top feature engineering and separately tuning components as it happens
with SMT. Despite this simplicity, NMT has achieved state-of-the-art results in a wide
variety of MT tasks and has become the key technology behind a lot of commercial MT
systems [8].

Formally, NMT aims to approximate the conditional distribution P(y|x) using a dataset
D, where x and y represent source and target sentences respectively [8]. Translation is
formulated as finding the most likely target sentence ŷ given some source sentence x.

ŷ = argmax
y

P(y | x). (2.16)

Translation can be represented at various granularities, including document, paragraph,
and sentence levels. Assuming sentence-level translation, and presuming both input
and output sentences to be sequences, an NMT model can be viewed as a sequence-
to-sequence model. Having a source sentence x = {x1, . . . , xS} and a target sentence
y = {y1, . . . , yT}, the conditional distribution can be expressed as:

P(y|x) =
T

∏
t=1

P(yt|y0, . . . , yt−1, x1, . . . , xS). (2.17)

where prediction at step t is taken as an input at step t + 1 [8].

NMT models typically employ the encoder-decoder framework, and it comprises
four fundamental components, which are embodied in different architectures including
the transformer, previously discussed and currently the state-of-the-art in MT: embed-
ding layers, encoder and decoder networks, and the classification layer (an example can
be seen in Figure 2.13).

ChuangXin SuZao WeiLai <eos>

..
.

..
.

..
.

..
.Embedding

Encoder

<bos> Innovate for the future

..
.

..
.

..
.

..
.

..
. Embedding

Decoder

..
.

..
.

..
.

..
.

..
. Classifier

Innovate for the future <eos>

Figure 2.13: A summary of the NMT structure, including embedding layers, an encoder and a
decoder network, and a classification layer, with distinct colors indicating different languages.
"<bos>" and "<eos>" are special tokens used to denote the start and end of a sentence,
respectively. Obtained from [8].

In terms of evaluation, human experts are the best option for obvious reasons, since
it is them which can assess the quality of a given translation. This is quite expensive
and impractical, and a variety of automatic evaluation metrics have been developed,
which allow for a fast and easy evaluation of the performance of the models during the
experimental phase.

BLEU (Bilingual Evaluation Understudy) [18] is the most commonly used automatic
metric in MT. This metric relies on the concepts of an n-gram, a contiguous sequence of n

18 Background

items (usually words), and that of precision, a metric that makes a count of the number of
candidate translation words (unigrams) found in any reference translation and divides it
by the total number of words in the candidate translation.

BLEU is calculated by using a modified average n-gram precision pn, where the pre-
cision is adjusted to ensure that an n-gram appears in the candidate c translation no more
frequently than it does in the reference r translation. Standard precision measures don’t
take this into account, and can give a very high precision value to a candidate phrase
such as "The the the the the the". Thus, our average precision is:

Average Precision(N) =
1
N

N

∑
n=1

log pn (2.18)

A brevity penalty (BP) component is introduced, which weights the precision. Let c
be the length of the candidate translation, while r denotes the effective length of the
reference corpus.

Brevity Penalty =

{
1 if c > r
e(1−

r
c) if c ≤ r

(2.19)

Then our BLEU metric, typically computed with a value of N = 4, is left as:

BLEU = Brevity Penalty ∗Average Precision(4) (2.20)

The resulting BLEU score ranges between 0 and 1, usually multiplied by 100 for easier
interpretation, with higher values indicating better translation quality.

There have been recent studies that demonstrate that overlap-based metrics like BLEU
underperform against the newer neural-based learned metrics [19], which primarily uti-
lize the embedding representations of specifically pre-trained neural encoders for MT
evaluation. This is attributed to the challenges the traditional metrics face in accurately
correlating with human evaluations at segment level and in distinguishing effectively
between the top-performing MT systems.

COMET (Crosslingual Optimized Metric for Evaluation of Translation) [20] is one
of the most popular neural metrics. It utilizes a pre-trained, multilingual model adapted
and trained on high-quality translation pairs to serve as a regressor for translation quality
scores. The architecture of the COMET model can be seen in Figure 2.14.

Initially, the source, hypothesis, and reference sentences undergo encoding into multi-
ple word embeddings for each of the intermediate layers of the model, these embeddings
are then passed through a trainable layer-wise attention mechanism, are concatenated,
and averaged to produce sentence-level embedding vectors s, h, and r. Then, the com-
bined features h� s, h� r, |h− s|, and |h− r| are obtained, which are then concatenated
with r and h into a single vector x = [h; r; h� s; h� r; |h− s|; |h− r|] that is fed into a
trainable forward regressor. This regressor produces scores ranging from 0 to 1, where
0 signifies random input and 1 denotes a flawless translation. Typically, these scores are
then rescaled to a range between 0 and 100 for reporting.

2.5 Streaming Machine Translation

Streaming MT is closely related to the concept of simultaneous MT. Both address the
challenges of translating continuous input streams, such as those generated by Automatic
Speech Recognition (ASR) systems or live audiovisual content.

2.5 Streaming Machine Translation 19

ReferenceSource Hypothesis

Pre-trained Encoder

rs h

Pooling Layer & Concatenation

[h; r; h� s; h� r; |h− s|; |h− r|]

Feed Forward

MSE(ŷ, y)

Figure 2.14: COMET architecture. Source, hypothesis, and reference sentences undergo
individual encoding via a pre-trained cross-lingual encoder to produce word embeddings.
Pooling is applied to the word embeddings to generate a sentence embedding for each segment.
These sentence embeddings are then combined and concatenated into a single vector, which
serves as input to a feed-forward regressor. The model’s training process involves minimizing
the Mean Squared Error (MSE).

Simultaneous MT consists of translating an input sentence incrementally, before it
is fully available. This concept is particularly relevant in scenarios such as translating a
continuous text stream generated by ASR, and its uses range from facilitating person-to-
person communication to providing subtitles for audiovisual content.

Streaming MT, on the other hand, expands upon Simultaneous MT by focusing on
the gradual translation of a continuous input text stream, that is, the simultaneous trans-
lation of a potentially unbounded and unsegmented text stream. Unlike traditional batch
processing where sentences are processed independently, streaming MT maintains con-
text over time, leveraging a streaming history to improve translation quality and coherence
throughout the entire stream. This approach introduces challenges such as handling la-
tency constraints and maintaining alignment between source and target texts, especially
in the absence of clear sentence boundaries.

Therefore, the concept of sentence segmentation becomes crucial in the context of stream-
ing MT. It helps establish a monotonic alignment between the source and target sen-
tences, ensuring that translations remain coherent and accurate despite the continuous
nature of the input stream [21]. A comprehensive exploration of streaming MT is elabo-
rated in Section 4.1, which offers both a formal definition and a detailed examination, as
well as the details of its practical implementation in this work.

CHAPTER 3

Adaptation for o�ine MT

In this chapter, the capabilities of LLMs are explored, along with how they can be en-
hanced through adaptation for MT tasks. Previous studies have determined the No Lan-
guage Left Behind (NLLB) model as one of the publicly available LLMs with best results
on various test sets [22], and is characterized as being a multilingual MT model. Hence,
our focus will be on this model, given its potential to deliver superior results. This chap-
ter is dedicated to discussing adaptation within the offline context, which constitutes the
standard setup for MT, where the model is provided with complete phrases or sentences
for translation.

In our first step towards our primary goal of obtaining a fine-tuned LLM adapted for
streaming MT, NLLB will be fine-tuned for a specific language pair and domain in an
offline setting in order to gain experience and reproduce the experiments reported in [5].
This will help us grasp the basics of the process and understand the group’s experimental
setting, utilizing their resources and methodologies. To this purpose, LoRA was applied
to different versions of the NLLB model and then evaluated on the INTERACT-EUROPE
dataset, which is domain-specific to medicine and oncology. Our goal is to study how the
model’s performance evolves for a given language pair and a particular domain when
LoRAs are trained using data specific to each language pair and domain.

3.1 Multilingual Encoder-Decoder Models

The most general approach for an MT model typically involves an individual model
trained for a particular language pair, directly mapping a symbol or a sequence of sym-
bols from a source language with its corresponding symbol or sequence in a target lan-
guage. However, this approach presents practical challenges. This mapping method is
exclusively tailored to a particular language pair, and extending it to accommodate mul-
tiple language pairs is not a trivial task. Then, as the number of language directions
increases, the cost at training and inference also increases, as more models are required
to cover all directions.

However, neural MT systems can be decomposed into two modules, the already men-
tioned encoder and decoder. This opens the door to the construction of systems capable
of mapping a source sentence from any language into a unified continuous representation
space. From this representation, the system can decode the sentence into any target lan-
guage, opening the way to multilingual MT systems. This type of models have shown
better results when evaluated across various languages compared to single-pair models,
particularly excelling in translating low-resource language pairs [23].

21

22 Adaptation for o�ine MT

The design of multilingual MT models includes important aspects such as determin-
ing the number of languages that the model is able to handle. There exists a trade-off
between the number of supported languages and translation accuracy when employing a
fixed model capacity and training setup, where initially adding more languages enhances
performance but seems to be counterproductive at a given point [24]. The accuracy of
zero-shot translation, which involves translating between languages lacking parallel data,
is also affected by the number of languages supported. The zero-shot accuracy can be
seen as a measure of model generalization, as by accommodating more languages the
model is prompted to create a more generalized representation to better use its capacity.
While the trend suggests that incorporating more languages improves this accuracy, at a
given point the benefit stops and the accuracy even deteriorates, hinting at the necessity
of even larger models for such settings [24].

The promising potential of multilingual MT models has encouraged a multitude of
studies aimed at improving their performance. Consequently, the NLLB model, an LLM
that is also a multilingual MT model, will be introduced, and examined in our pursuit of
achieving streaming MT.

3.1.1. No Language Left Behind (NLLB)

No Language Left Behind (NLLB) [25] is a series of multilingual MT models that can pro-
duce translations between 200 languages, including low-resource languages. The NLLB
model architecture is based on the Transformer encoder-decoder architecture, and is of-
fered in three versions: with 600M, 1.3B, and 3.3B parameters.

Various strategies were employed in its development. Curriculum learning, grad-
ually introducing harder aspects of a problem during training, was used to mitigate
overfitting on low-resource language pairs by introducing these in phases during train-
ing, with each pair being introduced K updates before training conclusion, being K the
number of updates a given language pair needs to empirically overfit. Self-supervision
was employed to leverage the amounts of monolingual data available for low-resource
languages, which often lack bitext data. Self-supervised learning enables the model to
learn linguistic patterns from monolingual text, and different self-supervised tasks were
tried including a language modeling objective, a denoising autoencoder objective, and
the combination of both. Data augmentation was also used to leverage monolingual
data through back-translation. Back-translation involves generating parallel corpora that
are noisy on the source side from monolingual text using MT.

3.2 Datasets

3.2.1. Evaluation datasets

To examine how the NLLB model performance changes, the evaluation is done on the
INTERACT-EUROPE project evaluation dataset, a recent project undertaken by the MLLP
group. This dataset comprises English transcriptions and their corresponding transla-
tions in various languages, derived from a series of video conferences held at the Eu-
ropean School of Oncology (ESO)1. The transcriptions, initially provided by ESO, were
sourced from 10 videos, each split into two subgroups summing 3.5 hours and 3.8 hours
of speech, respectively. These videos were then professionally translated into Spanish,
French, German, and Slovene by a translation agency.

1https://www.eso.net/

https://www.eso.net/

3.2 Datasets 23

Through this process, a collection of non-aligned translations were obtained. A cu-
rated list of regular expressions was used to preprocess them, and the Moses toolkit script
split-sentences.perl was used to extract phrases from the evaluation sets, obtaining
sentence-level parallel text for each language direction. The Vecalign alignment tool [26]
additionally improved the alignments of these extracted phrases. Ultimately, another
manual review was performed to identify alignment errors and any other undetected
mistakes that may have slipped through the cleanup. Table 3.1 displays the total count
of sentences for each language pair in the evaluation sets.

Table 3.1: INTERACT-EUROPE datasets. Total number of sentence-level bitext for the
evaluation sets.

Language pair Dev Test
en→ f r 1445 1407
en→ es 1450 1405
en→ de 1424 1399
en→ sl 1458 1407

3.2.2. Training datasets

The training sets for the fine-tuning included, for the en → es, de, f r language direc-
tions, data from Medline-WMT22, which includes Medline abstracts provided by the
WMT22 Biomedical Translation Task [27] 2, the Europarl-ST dataset [28] which contains
paired audio-text samples made from publicly available videos of debates held in the Eu-
ropean Parliament, and the MuST-C dataset [29] which is based on TED Talks. This data
selection tries to represent both a clean, high quality corpora of data sourced from speech
to represent spoken language, and close in-domain medical data.

Given the limited availability of data in comparison to the other language pairs, the
en → sl language direction used an aleatory subset of medical data from the EMEA
corpus, comprised of PDF documents from the European Medicines Agency, and back-
translations from a baseline model trained on the reverse direction of data provided by
the Institute of Oncology of Ljubljana 3, approximately matching the number of sentences
found in the other fine-tuning datasets.

Tables 3.2, 3.3, 3.4 and 3.5 report an overview of the selected corpora for English into
French, Spanish, German and Slovene, respectively. In summary, the total volume of data
amounts to 497.3K sentences for en→ es, 468.0K sentences for en→ f r, 430.5K sentences
for en → de, and around 147.8K sentences for en → sl when factoring in the additional
bilingual and monolingual data.

Table 3.2: Training corpora for language pair en→ f r.

Dataset Sentences Words
English French

Europarl-ST [28] 96.5 K 2.3 M 2.6 M
MuST-C [29] 275.0 K 5.1 M 5.3 M
Medline-WMT22 96.5 K 2.4 M 3.0 M
Total 468.0 K 9.8 M 10.9 M

2https://github.com/biomedical-translation-corpora/corpora
3https://www.onko-i.si/eng/sectors/research_and_education/medical_and_other_scientific_

publication
3https://commoncrawl.org

https://github.com/biomedical-translation-corpora/corpora
https://www.onko-i.si/eng/sectors/research_and_education/medical_and_other_scientific_publication
https://www.onko-i.si/eng/sectors/research_and_education/medical_and_other_scientific_publication
https://commoncrawl.org

24 Adaptation for o�ine MT

Table 3.3: Training corpora for language pair en→ es.

Dataset Sentences Words
English Spanish

Europarl-ST [28] 77.9 K 1.8 M 1.9 M
MuST-C [29] 265.6 K 5.2 M 5.0 M
Medline-WMT22 153.8 K 3.6 M 4.2 M
Total 497.3 K 10.6 M 11.1 M

Table 3.4: Training corpora for language pair en→ de.

Dataset Sentences Words
English German

Europarl-ST [28] 105.3 K 2.3 M 2.2 M
MuST-C [29] 229.7 K 3.9 M 4.2 M
Medline-WMT22 95.5 K 2.0 M 2.2 M
Total 430.5 K 8.2 M 8.6 M

Table 3.5: Training corpora for language pair en→ sl.

Dataset Sentences Words
English Slovene

Back-translations 36.1 K 693.7 K 683.9 K
EMEA [30] 111.7 K 2.1 M 2.1 M
Total 147.8 K 2.8 M 2.8 M

3.2.3. Data processing pipeline

Pre-tokenization is applied to the data with the Moses tokenizer.perl tokenizer. Any
sentences exceeding 250 tokens are eliminated through the Moses clean-corpus script.
The vocabulary size is then reduced using Truecasing [31] that acts similarly to a normal-
ization technique. Its goal is to transform text into its most appropriate upper or lower
case form by analyzing diverse statistics to then construct a prediction model based on
them. In Moses, the Truecasing model primarily modifies words at the beginning of
sentences to their most common form, along with any words whose current form is un-
familiar.

Next, the data undergoes tokenization using a subword vocabulary derived from
the gathered data. This provides a cost-effective method for simulating large vocab-
ularies and addressing out-of-vocabulary (OOV) issues. Subword tokenization can be
very handy in cases where, for example, a word-level Spanish vocabulary is available,
denoted as V , containing words like V = [revestido , acabaría]. A model trained solely
with V would only recognize these specific words. In contrast, a model trained with a
subword vocabulary, such as V = [re, ves, ti, do, a, ca, ba, ría], could also identify words
like vestido, acabado, or batido.

The SentencePiece library [32] is used for subword tokenization. Its C++ implemen-
tation ensures its subword tokenizer’s speed and robustness, and features different parti-
tioning algorithms like Byte-Pair Encoding [33], [34] and unigram-based language mod-
els [35]. Additionally, SentencePiece offers automatic normalization of NFKC UTF-8 text,

3.3 O�ine experimentation on NLLB 25

potential regularization of subwords, and language-agnostic representations facilitated
by special treatment of whitespaces.4

BPE was selected as the partitioning algorithm for this work. BPE breaks down text at
character level and identifies text combinations (referred to as merge operations) to gener-
ate a vocabulary based on character frequency and sequences in the training dataset. This
process continues until reaching the vocabulary limit or the maximum specified number
of merge operations. Figure 3.1 illustrates an example of a training sentence after True-
casing and SentencePiece have been applied.

Original This is a strange day ...

Truecase and SPM th is_ is_ a_ str ange_ day_ ...

Figure 3.1: Comparison of a training sentence following Truecasing and SentencePiece. Observe
the change from This to this due to Truecasing, and the space representation with _ as well as
the segmentation into subwords strange by SentencePiece.

3.3 O�ine experimentation on NLLB

The performance of NLLB model variants with 600M, 1.3B, and 3.3B parameters was
studied across all INTERACT dev sets to establish a baseline of the model’s behavior.
Then, LoRAs were trained for each of these sizes and language directions to explore
the efficacy of this method as a lightweight domain adaptation tool. Our objective is to
study and measure the enhancement of NMT models when tailored towards a specific
language direction using LoRAs, which could reduce potential biases in the models rep-
resentation space due to multilingualism. Positive outcomes in this offline setting would
also motivate the idea that the streaming adaptation could be achieved through a LoRA
adaptation.

In order to conduct these experiments, the Hugging Face5 framework was chosen. It
consists of a series of tools to build ML applications, and stands out for its Transform-
ers library6, which facilitates building natural language processing applications by easily
downloading and training pretrained models (including the NLLB model). These mod-
els can be found built on different frameworks, and those implementing the PyTorch
framework [36] are utilized in this work. It also supports the use of techniques such as
multi-GPU, mixed precision training and parameter efficient fine-tuning.

The LoRAs training was done using the fine-tuning sets introduced in Section 3.2.1 for
language directions en → es, de, f r, sl. The LoRA hyperparameters chosen are outlined
in Table 3.6 and remain consistent across all language pairs. The LoRAs training was
conducted using the Valencian Research Institute for Artificial Intelligence (VRAIN)7 in-
frastructure, making use of a computation node composed of 8 NVIDIA A40 GPUs, each
with 48GB of memory.

As previously stated, the three versions of the NLLB are composed of 600M, 1.3B and
3.3B parameters. The model size in bytes can be calculated by multiplying the number
of parameters by the size of the chosen precision in bytes. In this case, the training was
conducted in float16. The respective sizes of the models are detailed in Table 3.7. No-
tably, there is some leeway to increase batch sizes since our GPUs can handle up to 48GB
of memory. For the 600M model, a batch size of 16 is feasible, while for the 1.3B and

4In SentencePiece, whitespace is escaped by default with the Unicode character (U+2581).
5https://huggingface.co/
6https://huggingface.co/docs/transformers/index
7https://vrain.upv.es/

https://huggingface.co/
https://huggingface.co/docs/transformers/index
https://vrain.upv.es/

26 Adaptation for o�ine MT

3.3B models, a maximum batch size of 8 is possible before encountering memory over-
flow. This combined with gradient accumulation (a method emulating a larger batch size,
which involves accumulating gradients from several small batches prior to executing a
weight update) and multi-GPU training (DDP), provided an effective batch size of 32,
making the training of one epoch of the 600M parameters model in around 12 minutes,
while for the larger 3.3 billion parameter model, it takes approximately 102 minutes.

Table 3.6: LORA hyperparameters for the fine-tuned models.

Hyperparameter Value

Optimizer AdamW [37]
Warm up Steps 100
LR Schedule Linear
Initial Learning Rate 2e-5

Epochs 3
Lora Dropout 0.05
LoRA Target Modules Q, V , O
LoRA rank config. rQ = rV = rO = 16
LoRA α 32

Trainable parameters8 0.3-0.4%

Table 3.7: Sizes in Gigabytes of the different versions of the NLLB model.

Model Size

NLLB-600M 600× 106 × 2 Bytes = 1.2 GB
NLLB-1.3B 1.3× 109 × 2 Bytes = 2.6 GB
NLLB-3.3B 3.3× 109 × 2 Bytes = 6.6 GB

3.3.1. Evaluation on adapted NLLB

The inference of the predictions is done using beam search [38] as a decoding algorithm,
with size 5 and early stopping. Then, the inferences were evaluated using BLEU and
COMET-22, with Table 3.8 showing the results for each language direction. These are
categorized by model version, the utilization of LoRA, and the language pair.

Table 3.8: Results for NLLB models in the INTERACT dev sets

en→ fr, es, de, sl
French Spanish German Slovene

Model LORA BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-600M 7 51.90 83.40 56.13 85.92 37.52 81.81 32.88 84.21
NLLB-1.3B 7 54.59 84.17 57.32 86.32 40.29 83.27 37.15 86.09
NLLB-3.3B 7 54.97 84.28 57.31 86.34 41.70 83.69 38.63 86.36

NLLB-600M 3 52.24 83.89 56.33 86.49 39.09 82.98 33.68 84.65
NLLB-1.3B 3 55.07 85.01 58.76 87.25 41.71 84.29 37.80 86.82
NLLB-3.3B 3 56.18 85.16 59.76 87.51 42.97 84.80 39.17 87.52

It can be observed that the model’s scale has a significant impact on performance,
where the discrepancy between the largest and smallest NLLB models results in BLEU

8The dimension and number of matrices Q, K, V , O can differ across models, which varies the amount of
trainable parameters.

3.3 O�ine experimentation on NLLB 27

differences ranging from 1.18 in en → es up to 5.75 in en → sl, and COMET differences
ranging from 0.42 in en→ es up to 2.87 in en→ sl.

Then, analyzing the LoRA’s effect, a positive effect is observed across all models in
every language pair combination. Remarkably, it can be seen that in most instances the
effect of training a LoRA for a given model size has a bigger improvement in both metrics
compared to scaling model size. The most substantial enhancements are noted in the
en→ es language pair, with a performance boost of 2.45 in BLEU and 1.17 in COMET.

Then, having determined that LoRA is an improvement in every case and with our
training configuration set, the fine-tuning of the NLLB model for streaming MT will be
proceeded with in the next section.

CHAPTER 4

Adaptation for streaming MT

In this chapter, the NLLB model adaptation into a streaming MT setting is explored,
following on the successful results from the previous chapter. Key theoretical concepts
of streaming MT are introduced and explained, including the SegFree architecture that
will be employed for our experiments, as well as some important notions of MT, such as
document-level MT and prefix training, which are crucial to realize our fine-tuning.

Following this, a series of experiments to study different adaptations of the NLLB
model under a variety of conditions will be conducted, evaluating how these adaptations
affect the model’s capabilities, particularly in terms of translation quality and latency. The
Europarl-ST dataset [28] will be used for these evaluations. This dataset is well-suited for
assessing streaming MT and reference results for comparison are available.

The results of these experiments will be compared against the NLLB’s performance in
an offline setting, serving as a benchmark of the model’s maximum performance, as well
as with a baseline reference model consisting of a Transformer BIG model utilizing the
SegFree architecture, which was trained for streaming MT as described in [1]. However,
this baseline model is not directly comparable to our NLLB adaptation due to significant
differences in training data and setup. Therefore, it serves only as a reference to illustrate
the current state-of-the-art performance, rather than for direct comparison.

4.1 Streaming MT

As described briefly in Section 2.5, Streaming MT focuses on a gradual translation of a
continuous input text stream. In a traditional cascade setup, combining an ASR and an
MT system, an intermediate segmentation is performed, where the transcription stream is
split into sentence-like units to allow the MT system to translate them.

Thus, a source stream X is desired to be translated into Y , and in this configuration,
the decoding process typically entails making a greedy decision regarding which token
will appear next at the i-th position of the ongoing translation being generated:

Ŷi = argmax
y∈Y

p(y | XG(i)
1 , Yi−1

1) (4.1)

being G(i) a global delay function, indicating the last position in the source stream that
was accessible when the i-th target token was produced, while Y denotes the target vo-
cabulary.

29

30 Adaptation for streaming MT

As considering the entire source and target streams can be computationally demand-
ing, the next token can be made dependent on the last H(i) tokens of the stream:

Ŷi = argmax
y∈Y

p(y | XG(i)
G(i)−H(i)+1, Yi−1

i−H(i)) (4.2)

4.1.1. Policy

Delay functions are determined based on the policy implemented. This policy dictates
the action taken at each time step, whether to read a token from the input or generate
a target token. Policies can be fixed, relying solely on the current timestep, or adap-
tive, considering available input source words as well. Notable fixed policies include
the sentence-level wait-k policy [39] widely utilized in simultaneous MT. Since source
and target segmentations are available in simultaneous MT, instead of the global delay
function G(i), a sentence-level local delay function is used:

g(i) = k + i− 1 (4.3)

This policy begins by reading k source tokens before generating any target tokens. Conse-
quently, higher values of k tend to yield better outcomes since the offline scenario, where
the entire source text is visible beforehand, is progressively approached. After the ini-
tial read of k tokens, it alternates between generating a target token and reading another
source token, see Figure 4.1. This holds when the ratio between the lengths of the source
and target sentences is one. However, in the broader scenario, a catch-up factor γ, com-
puted as the inverse of the source-target length ratio, determines the number of target
tokens generated for each read token:

g(i) =
⌊

k +
i− 1

γ

⌋
(4.4)

The wait-k policy can be reformulated in the context of streaming MT such that the wait-k
behavior is implemented for each sentence individually:

G(i) =
⌊

k +
i− bn

γ

⌋
+ an − 1 (4.5)

where variables a and b represent the segmentation of the source and target streams,
respectively, and can be interpreted as two vectors of the same length, indicating that
the n-th source sentence begins at position an, while the n-th target sentence begins at
position bn [21].

4.1.2. Document-level MT & Prefix Training

Standard MT models trained with full sentences usually underperform in streaming sit-
uations. There are mainly two factors for this occurrence: First, these models fail to rec-
ognize that they are dealing with a continuous, interconnected discourse rather than iso-
lated sentences; and second, they are not well prepared to deal with incomplete phrases,
which is typical in streaming contexts. To address these issues, document-level MT and
prefix training are essential concepts, as they help the model exploit the fact that it is
working with a continuous discourse and handle incomplete inputs effectively, respec-
tively, making them crucial for successful streaming MT models.

4.1 Streaming MT 31

<s>

y1

y2

y3

y4

</s>

x1 x2 x3 x4 x5</s>

Wait-3

Source

<s>

y1

y2

y3

y4

</s>

x1 x2 x3 x4 x5</s>

Wait-∞

Source

Figure 4.1: Wait-k. Wait-k decoding as a sequence of reads (horizontal) and writes (vertical) over
a source-target grid. After first reading k tokens, the decoder alternates between reads and
writes. In Wait-∞, or Wait-until-End, the entire source is read first, which just happens to be the
offline, traditional MT case. Obtained from [40].

Document-level MT is different from sentence-level MT in that it entails the transla-
tion of complete documents while also capturing specific discourse phenomena through
modeling. The methods used in document-level MT can be tailored for streaming scenar-
ios by employing the concept of streaming history [1], which consists of a sliding win-
dow that maintains a limited context of previously encountered source segments along
with their corresponding translations generated by the MT model, discarding over time
the oldest translated words that are no longer necessary.

Thus, the sliding window has two segments, a portion of history words, which has
been fully processed and can thus be discarded in the future, and the active segment that
requires translation. Once the maximum capacity of the streaming history is reached, the
oldest source segment and its corresponding translation are discarded.

Prefix training [41] is a data augmentation technique designed to enable a model to
handle incomplete phrases. It achieves this by generating prefix pairs from the original
available data, thereby preparing the model to work effectively with partial inputs.

Before prefix training, an additional step of document-level data adaptation can be
performed, wherein sentences containing document-level information are augmented
with their respective streaming histories [21], by concatenating the preceding source and
target sentences until a maximum size of 50 tokens is attained.

Then, a partial translation pair is obtained from each sentence pair in the original cor-
pus by randomly selecting a partial prefix from both the source and target sentences. If a
sentence pair includes streaming history information, the streaming history remains un-
changed, and prefix generation is solely applied to the current sentence pair. The model
can then be trained using the concatenation of the original training data and the par-
tial prefix data, doubling the size of the training set [1]. This training data construction
process can be seen in Figure 4.2.

4.1.3. Segmentation-Free Architecture

As already mentioned, a canonical use of streaming MT is in the context of speech trans-
lation where we translate a continuous text stream generated by an ASR system. The ac-
tual MT systems rely on an intermediate segmentation step that divides the transcription
stream into units resembling sentences. This necessity comes from the fact that standard
MT systems training data consist of pairs of sentences aligned with each other (bitexts).

The segmentation model is employed to divide the incoming text stream into units
resembling sentences, enabling translation by the MT system. Each of these sentence-like

32 Adaptation for streaming MT

Original Prefix-augmented
I’m going to talk today about energy and climate. I’m going to talk today
Hoy voy a hablar sobre energía y clima. Hoy voy a hablar

Think about it. [SEP] The PC is a miracle. Think about it. [SEP] The PC is
Piensa en ello. [SEP] El PC es una maravilla. Piensa en ello. [SEP] El PC es

Figure 4.2: Streaming MT training data preparation. For each sentence pair, a prefix training
variant is generated by removing a section of both the source and target sentences. In the first
row, a source-target sample lacking streaming history is randomly prefixed. In contrast, the
second row illustrates a source-target sample incorporating streaming history (light gray), where
prefix augmentation is only applied to the current sentence being translated, while the history
remains unmodified. Adapted from [1].

units, or segments, is usually translated independently, and techniques from document-
level MT can be applied to furnish a standard MT model with additional context beyond
the current sentence. However, this approach can introduce limitations and errors into
the system due to its rigid nature. A notable challenge arises from the difference in length
between the training data, typically consisting of a few hundred tokens in aligned sen-
tence pairs, and the conditions during inference, which frequently involve thousands of
tokens in live sessions.

Thus, the primary drawback of the segmented setting lies in its heavy reliance on the
quality of the segmenter, which significantly influences translation quality. By enforcing a
rigid decision-making process independently of the MT system, the resulting translation
quality becomes conditioned and potentially compromised.

The Segmentation-Free (SegFree) approach addresses this issue and has been shown
to improve results [1]. In this method, the MT model receives an unsegmented stream
of source text and produces a continuous sequence of translated words. It does not only
generate the translation, but also determines its segmentation by incorporating a special
token ("[SEP]") into the translation stream. Thus, where in the segmented setting the seg-
mentation is made independently from the MT model on the source side, in the SegFree
setting is made by the MT model, which considers both the source and target streams,
giving the SegFree model the ability to leverage additional target-side information, a
pivotal factor contributing to its improved performance over the segmented approach
[1].

Formally, the source stream X = {x1, x2, . . . , xJ} and target stream Y = {y1, y2, . . . , yI}
are represented by sequences of words. A segment of active source words xj′

j and its cor-

responding partial translation ŷi′
i are also considered. Whenever the translation model

generates an end-of-segment token [SEP], the memory mechanism comes into play. A
source position â ∈ [j, j′] is selected within the active segment based on the ongoing
translation. Then, the words xâ

j at the source segment and their corresponding transla-

tions ŷi′
i are moved to the streaming history, while the translation continues with xj′

â+1.
This is shown in Figure 4.3.

In this context, the memory mechanism takes the current active source segment x =

xj′

j and target segment ŷ = ŷi′
i , and employs a log-linear model composed of a set of

feature functions h f (a, x, ŷ) that assign a score to each position a within the active source

4.1 Streaming MT 33

yi = “duda”t = i

reduce harmful emissionsX

reducir emisiones nocivas [SEP]Y

there is no doubt about that the question is how to do

no me cabe ninguna duda

t = i + 1 (Before history update) yi+1 = “[SEP]” xâ = “that”

reduce harmful emissionsX

reducir emisiones nocivas [SEP]Y

there is no doubt about that

no me cabe ninguna duda [SEP]

the question is how to do it

t = i + 1 (After history update) yi+1 = “[SEP]”

there is no doubt about thatX

no me cabe ninguna duda [SEP]Y

the question is how to do it

Figure 4.3: Memory mechanism. Shaded chunks are part of the streaming history, while
unshaded chunks depict the current active source (top) and target (bottom) streams. The first
row (t = i) shows that the MT system has just generated the final target word yi = "duda". In
the second row (t = i + 1), the translation model produces the [SEP] token, signaling the end of
a target segment. The memory mechanism triggers and selects â = j + 5 with xâ = "that",
resulting in the phrase "there is no doubt about that" being transferred to the streaming history
together with the ongoing translation. In the third row, the streaming history has grown
excessively large but the translation process continues. Consequently, the memory mechanism
discards the oldest segment. Obtained from [1].

segment. The position of the last source word â to be moved to the streaming history is
determined as:

â = argmax
a

∑
f

λ f log h f (a, x, ŷ) (4.6)

The weights of these feature functions, denoted by λ ∈ RF, are optimized using gradient
descent by minimizing the standard cross-entropy loss across a dataset.

In this study, the SegFree model introduces a memory mechanism that relies on two
feature functions:

• Reverse translation model (Reverse MT): This model assigns a score to each posi-
tion in the source by calculating the probability of a partial translation xa

j , a being
the relative position from the start of the active chunk (a ∈ [1, |x|]), followed by
an end-of-sentence symbol ("</s>"). Formally, it is represented as h f (a, x, ŷ) =
py→x([xa

j , </s>]|ŷ), which is the product of individual token probabilities includ-
ing the end marker. The reverse model employs the same architecture and training
data as the forward model but reverses the translation direction during training.

• Linear Regression-based Normal Distribution (LinReg): This model defines h f (a, x, ŷ)
as a normal distribution N (a | θµ · |ŷ|, θ2

σ), where the mean and variance are esti-
mated using Ordinary Least Squares regression based on the length of the hypoth-
esis translation, |ŷ|.

34 Adaptation for streaming MT

4.1.4. Evaluation

Additionally to the traditional MT metrics BLEU and COMET seen, which are also suited
for simultaneous MT [42], streaming MT systems must contend with real-time latency
constraints. This demands the adoption of specific metrics to measure latency effectively.
Currently, translation latency metrics include the Average Proportion (AP) [43], Average
Lagging (AL) [39] and Differentiable Average Lagging (DAL) [44]. For our study, the
AL metric will be used, which is the standard in conferences1 given its consistency, and
informativeness.

Although these metrics are the standard, they are evaluated on a sentence-level basis,
meaning they compute the translation latency for each sentence independently, ignoring
potential interactions that can result from accumulated delays in a real-world streaming
scenario [45]. Further research efforts should address this limitation to provide a more
comprehensive evaluation of streaming MT systems.

These metrics can be described as a normalization of the number of read-write word
operations needed to produce a translation y from a source sentence x:

L(x, y) =
1

Z(x, y) ∑
i

Ci(x, y) (4.7)

Here, Z is a normalization function, i is an index over the target positions, and Ci is a cost
function for target position i. Ci is defined depending on the specific latency measure
being used. The cost function for AL is:

Ci(x, y) = g(i)− i− 1
γ

(4.8)

Here, g(i) represents the number of source tokens read when a token is written at position
i, and γ is the target-to-source length ratio |y||x| . The AL cost function takes the number of
source words the model falls behind a wait-0 oracle. This oracle distributes source words
uniformly across target positions based on the ratio 1

γ .

The normalization function Z varies depending on the specific measure used. The
normalization function for AL is:

Z(x, y) = argmin
i:g(i)=|x|

i (4.9)

The AL normalization term normalizes over the number of target positions, which in
AL is limited to those target positions reading new source tokens. These sentence-level
latency measures are typically reported as an average value over an evaluation set com-
prising multiple sentence pairs, with each pair evaluated independently from each other.

All this is, however, not straightforwardly useful for the latency evaluation of a con-
tinuous paired stream of sentences, with one of the few evaluations strategies used in
this context being the Concat− 1, which consists of concatenating all sentences into a sin-
gle source/target pair in order to compute the corresponding latency measure. A study
of this strategy compared to the conventional one that considers independent sentences
[45] concludes that enhancements to the accuracy of AL could be achieved if there were
means to obtain sentence-level estimates for γ in a streaming setting. Then, a stream-
ing adaptation of the cost functions from Equation 4.8 could be done based on a global

1https://iwslt.org/2021/simultaneous

https://iwslt.org/2021/simultaneous

4.2 Datasets 35

function G(i), which outputs the count of source tokens read, encompassing those from
preceding sentences, similar to the Concat-1 strategy.

Ci(x, y) = gn(i)−
i− 1
γn

(4.10)

having gn(i) = G(i + |yn−1
1 |)− |xn−1

1 |, where the global delay is transformed into a local
representation, facilitating its comparison with the local sentence oracle.

4.2 Datasets

In order to conduct our experiments, it is essential to examine the data available for use.
This assessment will inform the selection of appropriate datasets for training our models
and ensure that the data aligns with the objectives of our study.

First, since the NLLB model processes sentences individually, it ignores the possibility
of an input being part of a larger body of text, and thus is not able to leverage previous
context, an issue that document-level MT addresses. Additionally, the model requires
complete sentences as input. Therefore, if the input is a continuous stream of words,
which may form an unfinished sentence, the model would not be able to process it cor-
rectly, a problem that prefix training can resolve. Moreover, in most cases the source of
this text stream is a lowercased and unpunctuated audio transcription, which involves
spoken language. This differs from the written language that constitutes the majority of
the data the NLLB has been trained on.

Thus, the training of our LoRA will be aimed towards making our model able to work
under these conditions. For this end, the data used will ideally be formed by large bodies
of related text (documents, books...) and from spoken language (speech transcriptions).
Then, this data will have to be preprocessed and prepared for the model to be able to
learn the new task.

An excellent source of data for our needs can be found in the field of spoken language
translation (SLT), also known as speech-to-text translation. This domain effectively han-
dles long form, spoken language data. However, research in SLT has always presented
difficulties due to the scarcity of specific datasets, as existing SLT datasets are limited
to a small number of language pairs. Two prominent datasets in this domain are the
Europarl-ST and MuST-C datasets.

The Europarl-ST dataset [28] is a multilingual SLT corpus featuring paired audio-
text samples for speech-to-text translation from and into 9 European languages (English,
German, French, Spanish, Italian, Portuguese, Romanian, Polish and Dutch), for a total
of 72 different translation directions. This corpus was obtained from publicly available
videos of debates held in the European Parliament between 2008 and 2012. A summary
of the data can be seen on Table 4.1.

The MuST-C dataset [29] is another multilingual SLT corpus for spoken language
translation from English into 14 languages (German, Spanish, French, Italian, Dutch, Por-
tuguese, Romanian, Russian, Arabic, Chinese, Czech, Persian, Turkish and Vietnamese).
MuST-C comprises hundreds of hours of audio recordings from English TED Talks, auto-
matically aligned at the sentence level with their manual transcriptions and translations.
A summary of the data can be seen on Table 4.2.

These two datasets will be utilized as our training datasets since they currently pro-
vide the best fit for our task. The dev and test sets from Europarl-ST will be employed to
assess the performance of our model, as well as that of the baseline model. As previously

36 Adaptation for streaming MT

Table 4.1: Europarl-ST dataset. Total number of hours for each language direction.

src/tgt en fr de it es pt ro nl

en - 81 83 80 81 81 72 80
fr 32 - 21 20 21 22 18 22
de 30 18 - 17 18 18 17 18
it 37 21 21 - 21 21 19 20
es 22 14 14 14 - 14 12 13
pt 15 10 10 10 10 - 9 9
ro 24 12 12 12 12 12 - 12
nl 7 5 5 4 5 4 4 -

Table 4.2: MuST-C dataset. Total number of talks, hours, and sentence pairs for each language
direction.

src/tgt Talks Hours of speech Sentence pairs

en-de 2093 408 234K
en-es 2564 504 270K
en-fr 2510 492 280K
en-it 2374 465 258K
en-nl 2267 442 253K
en-pt 2050 385 211K
en-ro 2216 432 241K

mentioned, the primary focus will be on one language direction, specifically en → es,
which is present in both datasets, allowing us to leverage them effectively. This results
in a training dataset comprising 304,634 sentence pairs sourced from Europarl-ST and
MuST-C, along with 1,316 sentence pairs for the dev set and 2,502 for the test set, all
exclusively from Europarl-ST.

4.2.1. Data processing pipeline

With our chosen datasets, processing is initiated for model training [1]. In order to exploit
the document-level information, sentences are augmented with their respective stream-
ing history [21]. This involves concatenating previous source and target sentences until a
maximum of 50 tokens is reached. Sentence boundaries are defined using special tokens:
[DOC] indicates the beginning of a document, [CONT] signifies being in the middle of
a document, [END] marks the end of a document, and [SEP] separates the sentences in
the document. This part of the processing is crucial for our fine-tuning, as it enables
our model not only to use the document-level information. Given that our model was
extensively trained without this context before, formatting the input with these special
tokens signals to the model that it is engaged in a distinct separate task, which might play
a role in preventing interference from the prior training when the model is performing
streaming MT.

As previously mentioned in Section 4.1.2, the prefix-training data augmentation tech-
nique [41] is used to enable simultaneous translation. The model is trained using both
the original training data and the augmented partial prefix data. Figure 4.2 previously
seen illustrates an example of this data processing.

Lastly, as previously mentioned, the data processing could also make the input re-
semble the raw output of an ASR system. This entails lowercasing the source side of the

4.3 Experiments on NLLB - Setup 37

dataset and eliminating punctuation marks. However, this case will be examined sepa-
rately in Section 4.5, as previously indicated.

Now that our data processing pipeline is prepared, in the next section, our model
and its training process will be examined. Different approaches and hypothesis will be
explored, and the benefits they provide will be discussed and their results evaluated.

4.3 Experiments on NLLB - Setup

To implement our NLLB adaptation, several factors need to be addressed. The NLLB
model operates on a sentence-by-sentence basis, taking a complete sentence in one lan-
guage and generating its translation. Therefore, using it for real-time usage requires
adjustments. This entails modifying the model to handle the new task, and obtaining
appropriate data as well as processing it in a way that allows the model to effectively
learn from it. Subsequently, a real-time situation will be simulated, and the model’s per-
formance will be evaluated.

Furthermore, an additional challenge arises. In streaming MT models, inputs typi-
cally consist of lowercase text streams without punctuation coming from ASR systems,
although exceptions may exist, such as when a casing module is present. This also im-
plies that the models are able to punctuate their output. However, the NLLB model
is predominantly trained on truecased text, therefore it lacks punctuation training, and
cased tokens become redundant in a non-cased setting, therefore making much of its
size and power becomes ineffective and potentially detrimental to performance in such a
setting.

For this reason, our study is separated into two parts: the first one focuses on enabling
the NLLB to work with an input including casing, while the next aims to make it work on
an input without casing nor punctuation. Our baseline model exclusively handles low-
ercase inputs, and thus it will be used as a reference on the second section for the results
to be comparable, while in the first one, the model’s offline performance will serve as our
reference. Since the primary objective of our experiments is to assess the plausibility of
the streaming adaptation, attention will primarily be directed towards a single language
direction.

4.3.1. Model Training

In order for the NLLB model to undergo training using our processed corpora, modifi-
cations are necessary. Particularly, the new special tokens introduced previously need to
be incorporated to capture the document-level information:: [END], [DOC], [SEP] and
[CONT]. This requires modifying both the tokenizer, to which these tokens need to be
added, and the token embedding matrix of the model, which now has to include the new
token embeddings. The initialization values for these new token embeddings are a sub-
ject of debate. In our case, random initialization is opted for, although alternative options
exist. These include initializing them to the mean of the other token embeddings, or
temporarily freezing the model to conduct an initial training solely on the new token
embeddings before subsequently unfreezing and training all of them.

Given that our embedding matrix has changed, our LoRA training now incorporates
the embedding matrix as an additional target module alongside the Q, V , and O matrices
from our previous offline experiment. The remaining LoRA hyperparameters and train-
ing setup remain consistent with those defined in the offline experiment in Section 3.3,

38 Adaptation for streaming MT

although it was found through experimentation that training for up to 5 epochs produces
slightly better results.

4.3.2. SegFree Architecture

With our trained model ready, only the inference and evaluation setups need to be estab-
lished. As previously said, the SegFree architecture will be implemented by employing
the Segmentation Free Toolkit from the MLLP group. This toolkit was also used to eval-
uate the SegFree model described in the SegFree paper [1], which is established as our
baseline for state-of-the-art performance as already mentioned. Key differences between
this model and the NLLB models include its training exclusively with lowercased text as
input, and its use of an additional model for the reverse translation model feature that
performs the segmentation.

The SegFree system utilizes a memory mechanism, as detailed in Section 4.1.3, to track
the translated chunks of the source stream and their corresponding translations. Dur-
ing inference, model latency is managed using a wait-k policy, outlined in Section 4.1.1.
The policy ignores words in the streaming history, focusing only on the active chunk for
READ or WRITE decisions. A beam search with a beam size of 4 generates hypotheses,
from which the best scoring one is selected. The search is initialized with a target pre-
fix of already committed words. Then, according to the wait-k policy, a number of the
generated words are committed as a WRITE operation, and the rest are discarded.

Whenever a target sentence is committed (indicated by the “[SEP]” token), the seg-
mentation mechanism is triggered, and the length of the streaming history is checked.
If it surpasses the maximum history size on either the source or target side, pairs of seg-
ments are removed from the streaming history until the word count is below our chosen
50-word limit.

As for the reverse translation model feature the segmentation mechanism uses, the
SegFree baseline model operates only in the en → es language direction, and thus an
additional es → en model is used for the reverse translation model feature. Since the
NLLB model is a multilingual model, the reversed language direction training is incor-
porated into the model’s training, allowing us to use the same model for both directions,
eliminating the need for an additional model.

In the original SegFree paper, the reverse translation feature calculates the score for
each position as the probability of a partial translation followed by an end-of-sentence
(EOS) symbol, which is the product of individual token probabilities including the EOS
marker [1]. It was found experimentally that giving more weight to the probability of the
EOS token alone improved results in our case. Since we are interested in cases where the
EOS is highly probable, indicating a complete phrase and potential alignment, and since
we are working with log probabilities, squaring the EOS probability penalizes scores for
partial translations where the model is uncertain about the phrase’s completeness, even
if the overall sequence score (taking into account the probability of the other tokens) is
high.

4.4 Experiments on NLLB - Cased NLLB

In this section, the evaluation focuses on the NLLB-adapted model using cased inputs.
As previously mentioned, a comparison with the baseline model from the SegFree paper
[1] will be presented in the next section. In that comparison, the model will be trained on
lowercase input, which is the expected format for the baseline model.

4.4 Experiments on NLLB - Cased NLLB 39

A performance baseline was established by testing the model in an offline context,
both with and without a streaming history. This offline baseline sets an upper bound
of the model’s peak performance, as it is tested under ideal conditions (it receives the
entire, pre-aligned phrases). By comparing the streaming performance to this offline
baseline, the degradation of the model’s performance on streaming can be evaluated.
Furthermore, comparing the offline results with and without streaming history helps us
assess how effectively the model leverages the streaming history, which would indicate
the training for streaming scenarios, where streaming history is crucial, was successful.

Then, additionally to the model trained with the hyperparameters and the data pre-
viously mentioned in Section 4.3, different hypotheses on how the model could be im-
proved are tested. For this, fine-tune is applied under different conditions, ending up
with a variety of fine-tuned models:

• NLLB-600M LoRA Ranks: Our base fine-tuning performs a LoRA with a rank of
16. A higher rank could allow the model to capture more complex patterns and
nuances in the data since more parameters can be fine-tuned, potentially preventing
underfitting. This is particularly crucial for our case, as the model needs to learn a
completely new task. Conversely, a lower rank would result in lower training times
and reduced memory consumption, although it could impact translation quality.

• NLLB-600M Extended: A general rule of thumb is that more data leads to better
model performance. To test this, the training data will be expanded beyond our
initial datasets, Europarl-ST and MuST-C, which are concise and relevant to our
evaluation set (a subset of Europarl-ST, composed of parliamentary debates). The
new data, which needs to adhere to the format described in Section 4.2, includes
the News Commentary dataset [30] which consists of 49,089 bitext sentences from
newspaper articles, the QED dataset [46] containing 1,115,444 sentences from subti-
tles of educational videos and lectures, and the Biomedical WMT22 dataset [27] with
169,884 sentences from biomedical abstracts. Including reverse direction training
for the reverse model, this amounts to a total of 3,238,102 sentences, compared to
the baseline’s 609,268 sentences, representing a fivefold increase. However, this
additional data is less domain-specific, which might not entirely benefit the model.

• NLLB-600M Multilingual: A multilingual MT model is being utilized, capable of
handling up to 200 different languages. As demonstrated in Section 3, when eval-
uating for a specific language direction, fine-tuning the model to it enhances per-
formance, as it guides the model to focus on that particular direction. Extending
fine-tuning to multiple directions tends to dissipate this benefit. However, since
not only adaptation to a particular language direction is involved but also the in-
troduction of a new task, our model may benefit from fine-tuning for streaming
MT across various language directions, as the embedding space is shared for all
languages, and the adaptation of just one language could distort the representa-
tion.

To explore this, our model will be trained on languages included in both Europarl-
ST and MuST-C: English, Spanish, German, French, Italian, Portuguese, Romanian,
and Dutch. The training will focus on English → (Spanish, German, French, Italian,
Portuguese, Romanian, Dutch), with performance evaluated on English → Spanish.
Languages similar to Spanish will progressively be incorporated into the training:
first, only Italian; then, only Portuguese; followed by both Italian and Portuguese;
next, Italian, Portuguese, French, and Romanian; and finally all seven languages.
The goal is to mitigate potential drawbacks of multilingual training by using lan-
guages closely related to Spanish.

40 Adaptation for streaming MT

To enable the trained models to also translate into these newly included language
directions, the training data must also incorporate the reverse translation direction
for all language pairs. This ensures the reverse translation feature functions effec-
tively for all included directions.

• NLLB-1.3B & NLLB-3.3B: As seen in Section 3, the larger 1.3B and 3.3B parameters
models deliver better performance. However, in the context of streaming MT, la-
tency becomes a significant issue. For real-time applications, generation times are
crucial, and larger models tend to produce inferences more slowly. Furthermore,
our AL latency metric is not computationally aware, that is, it does not account for
the computation time required for inferences, making it particularly unsuitable for
direct comparison between models of different sizes. Consequently, the 1.3B and
3.3B parameter models cannot be fairly compared with the 600M parameter model
or the SegFree baseline, as the latter two have faster inference times that are not re-
flected in the AL metric. The NLLB-600M model, being closer in size to the SegFree
baseline (which consists of two 300M parameter transformers) offers a more appro-
priate comparison.

4.4.1. Results - Cased NLLB

The streaming LoRA-adapted models performance is assessed by varying the k parame-
ter of the wait-k policy to analyze the tradeoff between latency and quality across values
from 1 to 10. Performance metrics include BLEU and COMET scores, while latency is
measured using AL, which indicates the delay in words compared to an ideal real-time
system. Three regimes can be determined for the AL: low latency (AL ≤ 3), medium
latency (AL ≤ 6) and high latency (AL ≤ 15) [47].

Figure 4.4 illustrates the outcomes of the LoRA rank experiments, depicting adapta-
tions for LoRAs with ranks 4 and 16. Tests with rank 64 yielded performance similar to
rank 16, and rank 8 closely mirrored rank 4; hence, these were excluded from Figure 4.4
for clarity. The rank 64 LoRA results suggest that a rank of 16 may be sufficient to cap-
ture the necessary amount of parameters. On the other side, reducing the rank to 4 or 8
slightly degrades model performance, although not significantly, with the overall quality
remaining comparable. These results indicate that there are no substantial performance
differences across the tested ranks.

The best streaming case, with k = 10, lags behind the offline baseline by 0.89 BLEU
points and 1.67 COMET points. This suggests that our streaming model could potentially
improve its results by this margin. However, having such a small difference also implies
that the training was quite successful in transferring the model’s translation capabilities
into the streaming context.

Translations with BLEU scores in the range of 30-40 are considered good translations,
and scores between 40-50 indicate high quality. Similarly, a COMET score around 85
indicates high quality [48]. Overall, for k = 4, BLEU scores of approximately 40 are
achieved with an AL around 4, which is slightly above the low latency threshold. The
best results are found around k = 6, offering a good balance between quality and latency
for medium latency requirements. Beyond this range, the benefits of increasing k become
less pronounced, and the high latency domain is entered.

Figure 4.5 shows the results of training with additional data. Training with an extended
dataset appears to negatively affect performance in our case, probably because the data
strays too far from the test set’s domain (parliamentary debate and spoken text), the
lower-quality of some datasets like QED, the lack of a preprocessing to clean the new
data, and the presence of shorter sentences that teach the model to segment more of-

4.4 Experiments on NLLB - Cased NLLB 41

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10 11

BLEU

AL

En-Es Europarl-ST

Offline

Low Medium High

LoRA 4
LoRA 16

 80

 85

 90

 2 3 4 5 6 7 8 9 10 11

COMET

AL

En-Es Europarl-ST

Offline

Low Medium High

LoRA 4
LoRA 16

Figure 4.4: Rank experiment: BLEU vs. AL (left) and COMET vs. AL (right) at three regimes,
low, medium, and high latency, on the English to Spanish Europarl-ST test sets for the the
NLLB-600M LoRA adapted model. LoRAs displayed have ranks 4 and 16, and an offline
baseline is established using the rank 16 model.

ten. This last issue would be expected to worsen in the next section, where there is no
punctuation to guide the model’s segmentation decisions.

Therefore, it appears that the model adapts well to the streaming task, indicating
that in-domain and high-quality data are more crucial than providing the model with an
enormous amount of data to learn the new task.

Figure 4.6 shows the results of utilizing the larger versions of the NLLB model. As
expected, the NLLB-1.3B model outperforms the NLLB-600M, showing an average im-
provement across all values of k by 1.75 BLEU and 0.9 COMET. The most significant vari-
ability is seen at k = 3 with a BLEU increase of 2.5 and at k = 4 with a COMET increase
of 1.57. Similarly, the NLLB-3.3B model outperforms the NLLB-1.3B model, displaying
comparable gains to those seen when moving from the NLLB-600M to the NLLB-1.3B,
and particularly excelling at lower values of k. Interestingly, the performance jump from
the NLLB-1.3B to the NLLB-3.3B model is quite significant, when in our offline tests in
Section 3.3 the difference from these models was minor. However, as mentioned earlier,
a direct comparison between these models is not possible, since the latency metric is not
computationally aware.

In Figure 4.7, the outcomes of NLLB-600M models trained with additional language
directions beyond the initial en → es direction can be observed. These results are jux-
taposed with the base training, which only includes the en → es direction. A range
of LoRAs were trained, progressively introducing more languages starting with those
most similar to Spanish. Therefore, models were trained with the following language
directions: en → {es, it}, en → {es, pt}, en → {es, it, pt}, en → {es, it, pt, f r, ro}, and
en → {es, it, pt, f r, ro, de, nl}. The models trained with the added directions en → it and
en → pt separately yielded results nearly identical to the one trained with both added
directions, so the first two were removed from the graph for clarity.

42 Adaptation for streaming MT

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10 11

BLEU

AL

En-Es Europarl-ST

Offline

Low Medium High

Base
Extended

 80

 85

 90

 2 3 4 5 6 7 8 9 10 11

COMET

AL

En-Es Europarl-ST

Offline

Low Medium High

Base
Extended

Figure 4.5: Extended data experiment: BLEU vs. AL (left) and COMET vs. AL (right) at three
regimes, low, medium, and high latency, on the English to Spanish Europarl-ST test sets for the
NLLB-600M LoRA adapted models with the base training and with additional training data. An
offline baseline is established using the model with the base training.

Upon initial inspection, a gradual decline in terms of COMET is observed as more
languages are incorporated, with a maximum loss of 1.56 COMET, although minimal dif-
ferences are observed in terms of BLEU between all the models. The largest degradation
in performance in the en → es direction is observed in the model trained with seven
language directions. Given that no additional improvement has been observed from
incorporating additional language directions, the hypothesis that a training including
streaming for multiple languages would enhance overall streaming performance does
not appear to be substantiated.

However, these differences, particularly on the BLEU metric, are small. A paired t-
test conducted for statistical significance even shows no significant difference between
the base training and the multilingual training encompassing seven language directions,
with a p-value of 0.66 for the BLEU metric. Furthermore, the gap between the model
trained solely on the en→ es directions and the one trained on seven language directions
narrows when reverse translation training is excluded for all languages, as illustrated in
Figure A.1 in the Appendix. With our training encompassing seven language directions,
a single model capable of translating from English to seven languages has been devel-
oped, and for values of k at six and below (the range that would be used in deployed
models, with latencies in the low to medium regimes) the model performs comparably
to the one trained solely for the en → es direction. These results suggest our model can
be effectively used within a multilingual streaming framework, where the same model
translates in real-time to different languages, with minimal negative impact to translation
quality.

This presents a clear advantage over the SegFree baseline bilingual model, which op-
erates exclusively within a single language direction. With such model architectures,
additional models would have to be trained to work with new language directions. In
contrast, our approach only needs to train a single LoRA, which is fast and needs mini-

4.4 Experiments on NLLB - Cased NLLB 43

 30

 35

 40

 45

 50

 2 3 4 5 6 7 8 9 10 11

BLEU

AL

En-Es Europarl-ST
3.3B Offline

1.3B Offline

600M Offline

Low Medium High

NLLB-600M
NLLB-1.3B
NLLB-3.3B

 80

 85

 90

 2 3 4 5 6 7 8 9 10 11

COMET

AL

En-Es Europarl-ST
3.3B Offline

1.3B Offline

600M Offline

Low Medium High

NLLB-600M
NLLB-1.3B
NLLB-3.3B

Figure 4.6: Size experiment: BLEU vs. AL (left) and COMET vs. AL (right) at three regimes, low,
medium, and high latency, on the English to Spanish Europarl-ST test sets for the LoRA
streaming adapted NLLB-600M, NLLB-1.3B and NLLB-3.3B models. Offline baselines are
established for each model.

mal memory space, and provides a single streaming model capable of translating across
a multitude of different languages. Moreover, for applications prioritizing maximum
quality, aiming to compensate the differences in COMET scores observed in Figure 4.7,
multiple LoRAs could be trained and seamlessly interchange them to our needs while
maintaining the same base NLLB model, which is fast and minimizes storage require-
ments, given the lightweight nature of LoRAs.

An experiment was conducted comparing the original unmodified NLLB-600M model,
our streaming LoRA-adapted model, and a new LoRA adaptation of the model using
the same datasets as the streaming adaptation but in an offline setup. This experiment
aimed to evaluate the offline performance of the streaming-adapted model to determine
if it could also function effectively in an offline environment. The results reveal that
our LoRA streaming-adapted model outperforms the original model, as shown in Table
4.3. Therefore, our streaming model can also serve as an offline model, even surpassing
the original NLLB model and offering an advantage over models exclusively trained for
streaming MT. Then, the LoRA offline adaptation showed a modest improvement of 0.25
BLEU and 0.08 COMET over the streaming adaptation, indicating that the LoRA suc-
cessfully learns the new task without significantly degrading offline performance in our
streaming adaptation.

Table 4.4 shows BLEU and COMET scores for the base NLLB-600M and NLLB-1.3B
streaming-adapted models when evaluated in an offline setup with and without the use
of context. Context is provided by including the source and translation from the previ-
ous iteration (either the model’s translation or the correct golden translation), while also
adding [DOC] and [SEP] tokens.

As shown, adding the model’s translation did not lead to an improvement on nei-
ther of the models. This failure to leverage the context might be due to the model not

44 Adaptation for streaming MT

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10 11

BLEU

AL

En-Es Europarl-ST
Offline

Low Medium High

Es
Es, It, Pt

Es, It, Pt, Fr, Ro
Es, It, Pt, Fr, Ro, De, Nl

 80

 85

 90

 2 3 4 5 6 7 8 9 10 11

COMET

AL

En-Es Europarl-ST Offline

Low Medium High

Es
Es, It, Pt

Es, It, Pt, Fr, Ro
Es, It, Pt, Fr, Ro, De, Nl

Figure 4.7: Multilingual experiment: BLEU vs. AL (left) and COMET vs. AL (right) at three
regimes, low, medium, and high latency, on the English to Spanish Europarl-ST test sets for the
NLLB-600M multilingual models: the model fine-tuned with 7 language pairs, and the one with
just italian and portuguese added. The en→ es base model is also added, and it also establishes
the offline baseline.

Table 4.3: Offline performance of the original NLLB model, the streaming LoRA adaptation of
the NLLB model, and an additional LoRA adaptation using the same data for an offline setup.

Model BLEU COMET

Original 44.74 88.51

LoRA Offline 46.54 88.92

LoRA Streaming 46.29 88.84

learning to use it properly with the fine-tuning, not being able to handle long dependen-
cies, relying too much on its previous training and still preferring a sentence-to-sentence
processing, or not properly translating the context sentence is using and therefore, propa-
gating the errors to the new translation. The improvement seen with golden translations
primarily in BLEU scores, but not COMET scores, suggests that the translations are closer
to the references rather than genuinely better in quality. The larger NLLB-1.3B model also
fails to utilize context more effectively, indicating that the issue is not related to model
size.

In conclusion, the results of our different experiments suggest that deviating from the
base training approach minimally impacts model performance. Training a small LoRA
with just enough data to learn the new task adapts our model while enhancing its offline
performance. Nevertheless, further hyperparameter optimization, such as adjusting the
learning rate and the LoRA alpha scaling factor, or the LoRA rank in the extended dataset
and multilingual settings, could potentially yield different outcomes.

Furthermore, by incorporating additional language directions into the training pro-
cess, the way is paved for a single model capable of multilingual streaming translation.

4.5 Expriments on NLLB - Lowercased NLLB 45

Table 4.4: Offline evaluation with and without context in the test set for the NLLB models LoRA
adapted for streaming MT.

Setup BLEU COMET

600M base train w/o context 46.29 88.84
600M base train w/ context 46.29 88.83

+ Golden translations 46.68 88.90

1.3B base train w/o context 47.92 89.39
1.3B base train w/context 48.01 89.38

+ Golden translations 48.24 89.44

Alternatively, various LoRAs can be trained, each fine-tuned for specific language di-
rections. Therefore, unlike current state-of-the-art streaming MT models, such as our
SegFree model baseline, our adaptation opens a path for streaming MT models that can
also work offline, and with support for multiple language directions.

In the following section, adaptation of our model to a more realistic scenario will be
explored, where lowercased input, akin to the type of output an ASR system produces,
is handled. Results will be compared with those of the SegFree baseline model in this
section.

4.5 Expriments on NLLB - Lowercased NLLB

In this section, NLLB-adapted model using lowercased inputs is evaluated. As previously
mentioned, this scenario is more representative of real-world applications, where stream-
ing MT models are part of a cascade speech-to-text setup, receiving input from an ASR
system that typically outputs lowercased text. Its performance is compared to the refer-
ence state-of-the-art SegFree model [1], which is trained specifically for streaming from
scratch with lowercased inputs. However, it is important to note that this reference
should be regarded as an upper bound rather than used for a direct comparison, due to
the differing training methods and data used.

The training setup of the model remains identical to our previous experiment with
cased inputs. However, this time, the source side of the input will additionally be lower-
cased and have all its punctuation marks removed, while the casing on the target side will
be maintained. This adjustment introduces a new challenge for the model: to correctly
case and punctuate its translations when the input lacks these features. As previously
explained, this significantly increases the complexity of the task at hand.

The evaluation process follows the same protocol defined in Section 4.4: the wait-k
policy with values of k ranging from 1 to 10 is employed, translation quality is assessed
using BLEU and COMET, and latency measured using AL. An offline baseline without
using context will also be established for comparison.

Analogously to Section 4.4, in this section the experimental setup explores the LoRA
rank, the use of additional data and the model size. However, for the sake of clarity,
only those figures drawing significant conclusions are reported in this section, while the
rest of figures are available in AppendixA for the interested reader. A larger LoRA rank
can address increased complexity, the extended dataset training can provide the model
with more opportunities to enhance its casing capabilities, and the larger 1.3B and 3.3B
models are used to assess potential translation quality improvements due to increased
model capacity.

46 Adaptation for streaming MT

The results of the LoRA rank and extended dataset experiments can be found in Ap-
pendix A. Figure 4.8 shows the results of exploring larger versions of the NLLB model,
alongside those of the SegFree baseline model. The smaller 600M and 1.3B models can
achieve performance comparable to the SegFree baseline at lower latency values, partic-
ularly when higher values of k are used, but from medium latency onwards, the SegFree
baseline outperforms the fine-tuned models in both quality and latency. The NLLB-3.3B
model gets closer to the SegFree baseline, achieving nearly equivalent COMET scores to
the SegFree baseline. However, its inference time is considerably longer.

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10

BLEU

AL

En-Es Europarl-ST

600M Offline

1.3B Offline

3.3B Offline

Low Medium High

SegFree Baseline
NLLB-600M
NLLB-1.3B
NLLB-3.3B

 75

 80

 85

 90

 2 3 4 5 6 7 8 9 10

COMET

AL

En-Es Europarl-ST

600M Offline

1.3B, 3.3B Offline

Low Medium High

SegFree Baseline
NLLB-600M
NLLB-1.3B
NLLB-3.3B

Figure 4.8: Size experiment: BLEU vs. AL (left) and COMET vs. AL (right) at three regimes, low,
medium, and high latency, on the English to Spanish Europarl-ST test sets for the NLLB-600M,
NLLB-1.3B and NLLB-3.3B models trained with lowercase input, together with the SegFree
baseline model.

On average, for a given value of k, the SegFree model outperforms the NLLB-600M
LoRA adapted with the base training by 4.22 BLEU points, and 2.65 COMET points.
Even disregarding the fact that the latency metric is not computationally aware, the per-
formance of the larger models, including the 3.3B model which is eleven times the size of
the SegFree baseline, falls short. This significant degradation due to the additional casing
task was expected since the NLLB model is solely a translation model.

The gap between streaming and offline performance of the adapted model closely mir-
rors that observed in the previous section. However, closing this gap alone won’t be
enough to match the SegFree baseline model’s BLEU score, although there is potential for
an improvement in COMET score that would. This suggests that surpassing the SegFree
baseline model is achievable even with the current state of the training and adaptation
methods, paving the way to potentially reach state-of-the-art performance levels.

Figure 4.9 illustrates a comparison between the NLLB-600M model adapted with
cased input (as discussed in Section 4.4) and the same model adapted with lowercased
input from this section. When lowercased input is used, there is an observed average
decrease of 3.22 BLEU points and 2.89 COMET points. This translates to a relative per-
formance decline of 8.6% in BLEU scores and 3.5% in COMET scores compared to the
cased input adaptation.

4.5 Expriments on NLLB - Lowercased NLLB 47

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10

BLEU

AL

En-Es Europarl-ST

Low Medium High

Cased
Lowercased

 75

 80

 85

 2 3 4 5 6 7 8 9 10

COMET

AL

En-Es Europarl-ST

Low Medium High

Cased
Lowercased

Figure 4.9: Casing comparison: BLEU vs. AL (left) and COMET vs. AL (right) at three regimes,
low, medium, and high latency, on the English to Spanish Europarl-ST test sets for the
NLLB-600M model trained with cased input and with lowercase input.

Figure 4.10 illustrates the outputs of both models for an example input, showing that
the translation quality is quite comparable.

A further study is necessary to determine the full extent of the model’s adaptability to
the new task. The upcoming section will discuss different points, highlighting potential
lines of research to fully leverage the potential of LLMs for streaming MT.

48 Adaptation for streaming MT

Input

commissioner i would like to ask you once more about our famous ignalina atomic
plant recently our prime minister met the president of the european commission mister
barroso and in our papers there were some interpretations that there is a gap there is a
possibility of prolonging the work of this station what is your opinion and what would
you recommend to the lithuanian government in this situation

SegFree NLLB

Señor Comisario, me gustaría pedirle una
vez más información sobre nuestra famosa
planta atómica de Ignalina. [SEP] Recien-
temente, nuestro Primer Ministro se reunió
con el Presidente de la Comisión Europea,
el señor Barroso, y en nuestros documentos
había algunas interpretaciones de que hay
una brecha. [SEP] Existe la posibilidad de
prolongar el trabajo de esta estación. [SEP]
¿Cuál es su opinión y qué le recomendaría
al Gobierno lituano en esta situación? [SEP]

Señor Comisario, quisiera preguntarle una
vez más sobre nuestra famosa planta
atómica de Ignalina. [SEP] Recientemente,
nuestro Primer Ministro se reunió con el
Presidente de la Comisión Europea, el señor
Barroso. [SEP] Y en nuestros artículos había
algunas interpretaciones de que hay una
brecha. Hay una posibilidad de prolongar
el trabajo de esta estación. [SEP] ¿Cuál es
su opinión? ¿Y qué recomendaría a la ad-
ministración lituana en esta situación?

Figure 4.10: Outputs for the NLLB-600M adapted model and the SegFree baseline model for the
input in gray.

CHAPTER 5

Conclusions

In this work, the possibility of adapting an LLM for streaming MT was explored. Follow-
ing an initial examination of the adaptation of LLMs in offline scenarios, the necessary
data to develop a streaming MT model was successfully acquired and processed. Sub-
sequently, Meta’s NLLB LLM [25] was effectively adapted, achieving excellent results
with cased inputs adaptation and competitive, promising results with lowercase inputs
adaptation, the case that better reflects real-world scenarios.

The performance of the NLLB adapted model in the new streaming setting closely
resembles its performance in the offline setting for which it was originally designed,
demonstrating the success of the adaptation. A comparison with a state-of-the-art stream-
ing MT model also revealed that the results of the adapted model are highly competitive,
suggesting that there is still potential for further improvement to bring the adaptation to
state-of-the-art levels.

5.1 Objectives achieved

Data for streaming MT adaptation was successfully sourced from speech-to-text datasets
including Europarl-ST and MuST-C. A successful data processing pipeline was estab-
lished, leveraging document-level MT techniques to exploit context and employing pre-
fix training to facilitate the translation of incomplete phrases.

The model was successfully modified with new special tokens to allow learning of the
new task and subsequently trained using the processed data. The LoRA adaptation was
successful, resulting in an NLLB model capable of streaming MT. A variety of training
approaches were tested and evaluated to further refine the model’s performance.

Excellent translation quality was achieved, particularly for cased inputs as outlined
in Section 4.4. The model performs nearly as effectively in the streaming setup as it does
offline, showcasing its successful adaptation to the new task and achieving a quality level
comparable to state-of-the-art specialized streaming MT models.

5.2 Future work

Throughout this study, various hypotheses have emerged, aimed at enhancing perfor-
mance for the adapted model, and devising new approaches for streaming MT in pro-
duction.

A significant finding is that training the LoRA with various language directions did
not significantly degrade the translation quality in our evaluation of the en → es direc-

49

50 Conclusions

tion. This paves the way for multilingual streaming MT, where a single model could
be employed to translate to different languages. This can be implemented by using the
same model in a single GPU, increasing the batch size by the amount of additional lan-
guages desired for inference, or more ideally with a multi-GPU setup, with the model
loaded onto each GPU and having each one perform inferences for one language direc-
tion at maximum speed. Since LoRAs are easily trainable and lightweight, and LoRA
adapters can be interchanged effortlessly, there is the possibility to use either the model
trained across all language directions or individual LoRAs for each language direction
to maximize performance in the multi-GPU setup. Additional tests should be conducted
using the model trained on seven language pairs, also comparing it with LoRAs trained
for single language directions to evaluate the quality degradation.

Various approaches have surfaced to enhance streaming outcomes too, encompass-
ing improvements in training methodologies, dataset selection and processing, or stream-
ing setup configurations.

Our examination of model performance in offline settings, with and without addi-
tional context, revealed that the addition of extra context did not provide better results,
unless the context included was the golden translation rather than the model-generated
one. This suggests that the model is not properly leveraging context, possibly due from
inadequate fine-tuning, inability to handle long dependencies, over-reliance on previous
training and still preferring a sentence-to-sentence processing, or inaccurate translation
of the context sentence, leading to error propagation in new translations.

The model’s generation of [SEP] special tokens also exhibits inconsistencies, often
generating consecutive [SEP] tokens and empty sentences between them. This issue fre-
quently arises when a new sentence, meaning a semantically encapsulated block that
would be delimited by alignments, starts to get into the input. This happens when the
source is almost empty, either because a new stream is starting or the streaming history
has been cleared, or when the input has only a few words appended after a position
where the model placed a [SEP]. This behavior suggests that the model struggles with
very short prefixes and doesn’t know how to proceed in such cases. Additionally, the
model tends to oversegmentate, likely due to the presence of very short lines in the train-
ing data that teach the model to insert too many [SEP] tokens.

In Section 4.5, the adaptation of the model with lowercase inputs was explored,
which required the model to also learn how to case the output. The new casing task
showed detrimental to performance. Learning to leverage context through prefix and
document-level training was already challenging for the model, but still related to trans-
lation. The impact on performance from the additional casing task is possibly due to it
not typically being associated with translation, and the model likely had little prior expo-
sure to it. To address this issue, solutions proposed include integrating a casing tool into
the speech-to-text pipeline to provide cased inputs to the translation model, enhancing
the model with additional casing-focused training data, studying bilingual models to as-
sess how the presence of additional language directions influences adaptation to the new
tasks, or trying LLMs such as Llama 2 [49].

The inferences of the model are also not optimized, and changing elements like the
policy could significantly boost its performance. The wait-k policy is too rigid, failing
to consider scenarios where waiting for more input is necessary, or having too much is
not. Additionally, our inferences generate as many words as possible, even if they are not
being written in the final output translation.

Given the various issues identified, several options are proposed to address them and
potentially enhance the results. Among these options, the most promising one are:

5.2 Future work 51

• Additional Data: Adding more data sourced from speech to reflect spoken lan-
guage, that maintains a document-level format and is high-quality, such as the
CoVoST 2 dataset [50], could significantly benefit the model. An important dis-
tinction between spoken and written text lies in the nuanced relationship between
intended meaning and actual expression in spoken language. Thus, our system
needs to exhibit adaptability and creativity in its interpretations, going beyond lit-
eral translations. Additionally, the impact of in-domain data could be investigated
by incrementally incorporating portions of the Europarl-ST dataset during training
to evaluate how this addition enhances streaming capabilities.

• Phased Training Approach: Implement a phased training approach where training
begins with an extended dataset or various language directions to assist the model
in adapting to the new task, and later fine-tune it with domain-specific test data
and the target language direction.

• Revamping Prefix Training: Revise the prefix training phase, ensuring different
prefix sizes are generated, particularly very short prefixes of a couple of words.

• Adaptive Policies: Experiment with different policies other than the wait-k policy.
Adaptive policies considering inference time, the total available words in a given
time, or the probability of a given generated inference being correct, can make low
latency inferences match the translation quality of medium to high latency infer-
ences observed in the wait-k results.

• Inference Efficiency: Investigate methods to speed up inferences and reduce their
number. This implies the use of different policies as previously mentioned, and the
use of other different criteria and heuristics, like limiting the amount of tokens gen-
erated to only what will be written by the policy for example, or avoiding inference
generation at any new word that enters the stream.

• Streaming History Impact: Examine how the context size and its content affect
translation quality and inference speed. Different criteria to keep or not parts of the
streaming history could be considered to reduce unproductive inferences.

• Reverse Feature: In the original SegFree paper, various features were used to de-
termine the optimal segmentation of the stream. It was found that, for our case,
relying solely on the reverse model feature, which in our case was carried by the
same NLLB model, was sufficiently effective. This suggests that, rather than em-
ploying the model in reverse mode and making additional inferences, the model’s
inference could be monitored at the point when the [SEP] token is generated, and
observe which tokens does the [SEP] attend to in the source stream, which would
pinpoint the segmentation locations. This approach would reduce the LoRA train-
ing process to a single direction for each language pair, eliminating the need for
reverse training. Consequently, this would halve the amount of training data and
focus the training exclusively on translation, potentially enhancing model perfor-
mance.

• Different Models: Accelerating the inference generation sufficiently might make
the use of larger models plausible, and different LLMs could also be examined. Al-
ternatives might include bilingual models to assess how the presence of additional
language directions influences adaptation to the new tasks, or LLMs such as Llama
2 [49] which are less focused on translation.

Additionally, other potentially beneficial options can be tested. One such option in-
volves using the whitespace meta symbol ”” as a suffix instead of a prefix in NLLB’s

52 Conclusions

tokenizer to be able to write a full word after its last subword has been generated [1].
Optimizing special tokens by incorporating a whitespace to them, akin to other NLLB to-
kens, and replacing [DOC] and [CONT] tokens with [SEP] could standardize token repre-
sentation and simplify it. Enhancing data preprocessing may also be tried, by removing
or merging short sentences to reduce [SEP] tokens and replacing uncommon characters
converted into <unk> tokens. And lastly, exploring full fine-tuning, varying hyperpa-
rameters for LoRA, and exploring alternative PEFT methods like DoRA [51] could lead
to better model adaptations.

Bibliography

[1] J. Iranzo-Sánchez, J. Iranzo-Sánchez, A. Giménez, J. Civera et al., “Segmentation-Free
Streaming Machine Translation,” Sep. 2023, arXiv preprint arXiv:2309.14823.

[2] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman et al., “On the Opportunities and
Risks of Foundation Models,” Jul. 2022, arXiv preprint arXiv:2108.07258.

[3] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu et al., “LoRA: Low-Rank Adaptation of
Large Language Models,” in International Conference on Learning Representations, Oct.
2021.

[4] S. J. D. Prince, Understanding Deep Learning. MIT Press, 2023.

[5] J. Iranzo Sánchez, “Evaluation of strategies for the adaptation of large neural models
to the task of machine translation in constrained scenarios,” Trabajo Final de Máster,
Universitat Politècnica de València, Valencia, 2023.

[6] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” Feb. 2019, arXiv
preprint arXiv:1803.08375.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit et al., “Attention is All you Need,” in
Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc.,
2017.

[8] Z. Tan, S. Wang, Z. Yang, G. Chen et al., “Neural machine translation: A review of
methods, resources, and tools,” AI Open, vol. 1, pp. 5–21, Jan. 2020.

[9] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” Jul. 2016, arXiv preprint
arXiv:1607.06450.

[10] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift,” in Proceedings of the 32nd International Confer-
ence on Machine Learning. PMLR, Jun. 2015, pp. 448–456.

[11] H. Naveed, A. U. Khan, S. Qiu, M. Saqib et al., “A Comprehensive Overview of
Large Language Models,” Feb. 2024, arXiv preprint arXiv:2307.06435.

[12] T. Brown, B. Mann, N. Ryder, M. Subbiah et al., “Language Models are Few-Shot
Learners,” in Advances in Neural Information Processing Systems, vol. 33. Curran
Associates, Inc., 2020, pp. 1877–1901.

[13] P. Micikevicius, S. Narang, J. Alben, G. Diamos et al., “Mixed Precision Training,” in
International Conference on Learning Representations, Feb. 2018.

[14] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory optimizations To-
ward Training Trillion Parameter Models,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov. 2020, pp. 1–16.

53

54 BIBLIOGRAPHY

[15] B. Workshop, T. L. Scao, A. Fan, C. Akiki et al., “BLOOM: A 176B-Parameter Open-
Access Multilingual Language Model,” Jun. 2023, arXiv preprint arXiv:2211.05100.

[16] D. Kalajdzievski, “Scaling Laws for Forgetting When Fine-Tuning Large Language
Models,” Jan. 2024, arXiv preprint arXiv:2401.05605.

[17] G. Xiao, J. Lin, M. Seznec, H. Wu et al., “SmoothQuant: Accurate and Efficient Post-
Training Quantization for Large Language Models,” in Proceedings of the 40th Inter-
national Conference on Machine Learning. PMLR, Jul. 2023, pp. 38 087–38 099.

[18] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A Method for Automatic
Evaluation of Machine Translation,” in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, P. Isabelle, E. Charniak, and D. Lin, Eds.
Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, Jul.
2002, pp. 311–318.

[19] M. Freitag, R. Rei, N. Mathur, C.-k. Lo et al., “Results of WMT22 Metrics Shared Task:
Stop Using BLEU – Neural Metrics Are Better and More Robust,” in Proceedings of
the Seventh Conference on Machine Translation (WMT), P. Koehn, L. Barrault, O. Bojar,
F. Bougares et al., Eds. Abu Dhabi, United Arab Emirates (Hybrid): Association for
Computational Linguistics, Dec. 2022, pp. 46–68.

[20] R. Rei, C. Stewart, A. C. Farinha, and A. Lavie, “COMET: A Neural Framework for
MT Evaluation,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Online:
Association for Computational Linguistics, Nov. 2020, pp. 2685–2702.

[21] J. Iranzo-Sánchez, J. Civera, and A. Juan, “From Simultaneous to Streaming Machine
Translation by Leveraging Streaming History,” in Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), S. Muresan,
P. Nakov, and A. Villavicencio, Eds. Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 6972–6985.

[22] W. Zhu, H. Liu, Q. Dong, J. Xu et al., “Multilingual Machine Translation with
Large Language Models: Empirical Results and Analysis,” Oct. 2023, arXiv preprint
arXiv:2304.04675.

[23] O. Firat, K. Cho, and Y. Bengio, “Multi-Way, Multilingual Neural Machine Transla-
tion with a Shared Attention Mechanism,” in Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. San Diego, California: Association for Computational Linguis-
tics, 2016, pp. 866–875.

[24] R. Aharoni, M. Johnson, and O. Firat, “Massively Multilingual Neural Machine
Translation,” in Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds. Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 3874–3884.

[25] N. Team, M. R. Costa-jussà, J. Cross, O. Çelebi et al., “No Language Left Be-
hind: Scaling Human-Centered Machine Translation,” Aug. 2022, arXiv preprint
arXiv:2207.04672.

[26] B. Thompson and P. Koehn, “Vecalign: Improved Sentence Alignment in Linear
Time and Space,” in Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural Language

BIBLIOGRAPHY 55

Processing (EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp. 1342–1348.

[27] M. Neves, A. Jimeno Yepes, A. Siu, R. Roller et al., “Findings of the WMT 2022
Biomedical Translation Shared Task: Monolingual Clinical Case Reports,” in Pro-
ceedings of the Seventh Conference on Machine Translation (WMT), P. Koehn, L. Barrault,
O. Bojar, F. Bougares et al., Eds. Abu Dhabi, United Arab Emirates (Hybrid): Asso-
ciation for Computational Linguistics, Dec. 2022, pp. 694–723.

[28] J. Iranzo-Sánchez, J. A. Silvestre-Cerdà, J. Jorge, N. Roselló et al., “Europarl-ST: A
Multilingual Corpus for Speech Translation of Parliamentary Debates,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2020, pp. 8229–8233.

[29] R. Cattoni, M. A. Di Gangi, L. Bentivogli, M. Negri et al., “MuST-C: A multilingual
corpus for end-to-end speech translation,” Computer Speech & Language, vol. 66, p.
101155, Mar. 2021.

[30] J. Tiedemann, “Parallel Data, Tools and Interfaces in OPUS,” in Proceedings of
the Eighth International Conference on Language Resources and Evaluation (LREC’12),
N. Calzolari, K. Choukri, T. Declerck, M. U. Doğan et al., Eds. Istanbul, Turkey:
European Language Resources Association (ELRA), May 2012, pp. 2214–2218.

[31] L. V. Lita, A. Ittycheriah, S. Roukos, and N. Kambhatla, “tRuEcasIng,” in Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics. Sapporo,
Japan: Association for Computational Linguistics, Jul. 2003, pp. 152–159.

[32] T. Kudo and J. Richardson, “SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text Processing,” in Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, E. Blanco and W. Lu, Eds. Brussels, Belgium: Association for Computa-
tional Linguistics, Nov. 2018, pp. 66–71.

[33] P. Gage, “A new algorithm for data compression,” The C Users Journal archive, Feb.
1994.

[34] R. Sennrich, B. Haddow, and A. Birch, “Neural Machine Translation of Rare Words
with Subword Units,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), K. Erk and N. A. Smith, Eds.
Berlin, Germany: Association for Computational Linguistics, Aug. 2016, pp. 1715–
1725.

[35] T. Kudo, “Subword Regularization: Improving Neural Network Translation Models
with Multiple Subword Candidates,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), I. Gurevych and
Y. Miyao, Eds. Melbourne, Australia: Association for Computational Linguistics,
Jul. 2018, pp. 66–75.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information Processing
Systems, vol. 32. Curran Associates, Inc., 2019.

[37] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,” in Interna-
tional Conference on Learning Representations, Sep. 2018.

56 BIBLIOGRAPHY

[38] M. Freitag and Y. Al-Onaizan, “Beam Search Strategies for Neural Machine Trans-
lation,” in Proceedings of the First Workshop on Neural Machine Translation, 2017, pp.
56–60.

[39] M. Ma, L. Huang, H. Xiong, R. Zheng et al., “Stacl: Simultaneous Translation with
Implicit Anticipation and Controllable Latency Using Prefix-to-Prefix Framework,”
in Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, A. Korhonen, D. Traum, and L. Màrquez, Eds. Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 3025–3036.

[40] M. Elbayad, L. Besacier, and J. Verbeek, “Efficient Wait-k Models for Simultaneous
Machine Translation,” in Interspeech 2020 - Conference of the International Speech Com-
munication Association, Shangai (Virtual Conf), China, Oct. 2020, pp. 1461–1465.

[41] N. Arivazhagan, C. Cherry, W. Macherey, and G. Foster, “Re-translation versus
Streaming for Simultaneous Translation,” in Proceedings of the 17th International Con-
ference on Spoken Language Translation. Online: Association for Computational Lin-
guistics, 2020, pp. 220–227.

[42] D. Macháček, O. Bojar, and R. Dabre, “MT Metrics Correlate with Human Ratings
of Simultaneous Speech Translation,” in Proceedings of the 20th International Con-
ference on Spoken Language Translation (IWSLT 2023), E. Salesky, M. Federico, and
M. Carpuat, Eds. Toronto, Canada (in-person and online): Association for Compu-
tational Linguistics, Jul. 2023, pp. 169–179.

[43] K. Cho and M. Esipova, “Can neural machine translation do simultaneous transla-
tion?” Jun. 2016, arXiv preprint arXiv:1606.02012.

[44] C. Cherry and G. Foster, “Thinking Slow about Latency Evaluation for Simultaneous
Machine Translation,” May 2019, arXiv preprint arXiv:1906.00048.

[45] J. Iranzo-Sánchez, J. Civera Saiz, and A. Juan, “Stream-level Latency Evaluation for
Simultaneous Machine Translation,” in Findings of the Association for Computational
Linguistics: EMNLP 2021. Punta Cana, Dominican Republic: Association for Com-
putational Linguistics, 2021, pp. 664–670.

[46] A. Abdelali, F. Guzman, H. Sajjad, and S. Vogel, “The AMARA Corpus: Building
Parallel Language Resources for the Educational Domain,” in Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14), N. Calzolari,
K. Choukri, T. Declerck, H. Loftsson et al., Eds. Reykjavik, Iceland: European
Language Resources Association (ELRA), May 2014, pp. 1856–1862.

[47] A. Anastasopoulos, O. Bojar, J. Bremerman, R. Cattoni et al., “FINDINGS OF THE
IWSLT 2021 EVALUATION CAMPAIGN,” in Proceedings of the 18th International Con-
ference on Spoken Language Translation (IWSLT 2021), M. Federico, A. Waibel, M. R.
Costa-jussà, J. Niehues et al., Eds. Bangkok, Thailand (online): Association for
Computational Linguistics, Aug. 2021, pp. 1–29.

[48] V. Raunak, A. Sharaf, Y. Wang, H. Awadalla et al., “Leveraging GPT-4 for Automatic
Translation Post-Editing,” in Findings of the Association for Computational Linguistics:
EMNLP 2023. Singapore: Association for Computational Linguistics, 2023, pp.
12 009–12 024.

[49] H. Touvron, L. Martin, K. Stone, P. Albert et al., “Llama 2: Open Foundation and
Fine-Tuned Chat Models,” Jul. 2023, arXiv preprint arXiv:2307.09288.

BIBLIOGRAPHY 57

[50] C. Wang, A. Wu, J. Gu, and J. Pino, “CoVoST 2 and Massively Multilingual Speech
Translation,” in Proc. Interspeech 2021, 2021, pp. 2247–2251.

[51] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov et al., “DoRA: Weight-Decomposed Low-
Rank Adaptation,” Jun. 2024, arXiv preprint arXiv:2402.09353.

APPENDIX A

Additional �gures

A.1 Results on multilingual reverse models

Figure A.1 shows the results of the NLLB-600M model adaptation using 7 different lan-
guage directions, where the reverse translation direction is added to all of the 7 directions
(En–>All Reverse) or only to the Spanish direction (En–>Es Reverse). Figures A.2 and A.3
illustrate the results of the LoRA rank and extended dataset experiments on the NLLB-
600M model adaptation using lowercase input, which similarly to the results with cased
input case, didn’t provide any improvement on the base training.

 30

 35

 40

 45

 2 4 6 8 10

BLEU

AL

En-Es Europarl-ST

Low Medium High

NLLB En-->Es Reverse
NLLB En-->All Reverse

 80

 85

 2 4 6 8 10

COMET

AL

En-Es Europarl-ST

Low Medium High

NLLB En-->Es Reverse
NLLB En-->All Reverse

Figure A.1: BLEU vs. AL (left) and COMET vs. AL (right) at three regimes, low, medium, and
high latency, on the English to Spanish Europarl-ST test sets for the NLLB-600M models trained
using 7 language directions, including reverse training for each of the language directions for the
reverse translation model feature (En–>All Reverse), and specifically for the en→ es direction
(En–>Es Reverse).

59

60 Additional �gures

A.2 Results on LoRA rank and additional data experiments for

the uncased model

Figure A.2 and Figure A.3 present the outcomes of the LoRA fine-tunings using a higher
rank and an extended dataset. Once again, differences in LoRA rank and additional data
fail to yield improved results, likely for similar reasons as the ones exposed in Section 4.4.
Although, in this case the extended dataset LoRA fine-tuning did not hurt the model’s
performance as before, which suggests that the model doesn’t learn the new task as easily
as the previous one.

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10

BLEU

AL

En-Es Europarl-ST
Offline

Low Medium High

Lora 16
Lora 64

 75

 80

 85

 90

 2 3 4 5 6 7 8 9 10

COMET

AL

En-Es Europarl-ST
Offline

Low Medium High

Lora 16
Lora 64

Figure A.2: BLEU vs. AL (left) and COMET vs. AL (right) at three regimes, low, medium, and
high latency, on the English to Spanish Europarl-ST test sets for the NLLB-600M model trained
with lowercase inputs and LoRA ranks of 16 and 64. An offline baseline is established using the
rank 16 model.

A.2 Results on LoRA rank and additional data experiments for the uncased model 61

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10

BLEU

AL

En-Es Europarl-ST
Offline

Low Medium High

Base
Extended

 70

 75

 80

 85

 90

 2 3 4 5 6 7 8 9 10

COMET

AL

En-Es Europarl-ST
Offline

Low Medium High

Base
Extended

Figure A.3: BLEU vs. AL (left) and COMET vs. AL (right) at three regimes, low, medium, and
high latency, on the English to Spanish Europarl-ST test sets for the NLLB-600M LoRA adapted
model with lowercase input and the base training setup, and the NLLB-600M LoRA adapted
model with additional training data. An offline baseline is established using the model with the
base training.

ANEXO

OBJETIVOS DE DESARROLLO SOSTENIBLE

Grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenibles Alto Medio Bajo No
Procede

1 Fin de la pobreza. X

2 Hambre cero. X

3 Salud y bienestar. X

4 Educación de calidad. X

5 Igualdad de género. X

6 Agua limpia y saneamiento. X

7 Energía asequible y no contaminante. X

8 Trabajo decente y crecimiento económico. X

9 Industria, innovación e infraestructuras. X

10 Reducción de las desigualdades. X

11 Ciudades y comunidades sostenibles. X

12 Producción y consumo responsables. X

13 Acción por el clima. X

14 Vida submarina. X

15 Vida de ecosistemas terrestres. X

16 Paz, justicia e instituciones sólidas. X

17 Alianzas para lograr objetivos. X

ETS Enginyeria Informàtica
Camí de Vera, s/n. 46022. València
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

Reflexión sobre la relación del TFG/TFM con los ODS y con el/los ODS más
relacionados.

La tecnología de traducción automática en streaming tiene el potencial de influir
positivamente en la salud y el bienestar, la educación de calidad, el trabajo decente y
el crecimiento económico, así como en la industria, la innovación y la infraestructura.
Identificamos que el impacto de este trabajo sobre los Objetivos de Desarrollo
Sostenible (ODS) de las Naciones Unidas es más relevante en:

• ODS 4. Educación de Calidad: La capacidad de traducir contenido educativo en
tiempo real puede revolucionar la educación, permitiendo a estudiantes de
todo el mundo acceder a recursos y clases en su idioma preferido. Esto
fomenta la inclusividad y promueve una educación de calidad accesible para
todos.

• ODS 8. Trabajo Decente y Crecimiento Económico: La tecnología de traducción
en streaming puede abrir nuevos mercados y oportunidades laborales al
permitir una mejor comunicación entre empresas y clientes internacionales, así
como facilitar la inclusión laboral de personas que hablan diferentes idiomas o
la formación de equipos de trabajo internacionales.

• ODS 3. Salud y Bienestar: La traducción automática en streaming puede
permitir una comunicación fluida entre personas independientemente de los
idiomas que hablen, lo que podría facilitar la vida de personas extranjeras o
emigrantes, eliminando la barrera del idioma para su inclusión en las
sociedades que las acogen.
Además, permitiría mejorar significativamente la accesibilidad a información
médica, permitiendo a los profesionales de la salud y a los pacientes superar
barreras lingüísticas cuando las hubiera. Esto podría facilitar una mejor
comunicación, y mejorar así la precisión del diagnóstico y el tratamiento.

• ODS 9. Industria, Innovación e Infraestructura: La innovación en traducción
automática en tiempo real contribuye al desarrollo de infraestructuras
tecnológicas avanzadas, como pueden ser plataformas de traducción en tiempo
real integradas en sistemas de comunicación, o al desarrollo de nuevas
herramientas y aplicaciones basadas en IA para mejorar la traducción
automática. Esto impulsa la competitividad industrial y promueve la innovación
continua en el campo de la inteligencia artificial y el procesamiento del
lenguaje natural, donde el desarrollo de sistemas de IA capaces de funcionar a
tiempo real y la investigación de las posibilidades de los LLMs son temas de
gran relevancia en la actualidad.

ETS Enginyeria Informàtica
Camí de Vera, s/n. 46022. València
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

• ODS 12. Producción y consumo responsables: El entrenamiento de modelos de
aprendizaje automático es un proceso extremadamente costoso, tanto en
términos materiales como en energéticos. Se estima que los modelos más
grandes de la actualidad pueden llegar a utilizar 25.000 GPUs de manera
continua durante 90-100 días, por ello es crucial saber cómo aprovechar estos
enormes modelos para evitar volver a entrenar otros.

Adicionalmente, de manera secundaria podemos identificar que también se cumplen
los ODS Paz, Justicia e Instituciones Sólidas (ODS 16), Alianzas para Lograr los
Objetivos (ODS 17) y Reducción de las Desigualdades (ODS 10).

En el caso de las ODS 16 y ODS 17, la traducción automática en streaming puede
facilitar el diálogo y la cooperación internacional, promoviendo la paz y el
entendimiento entre diferentes culturas y naciones. La capacidad de superar barreras
lingüísticas puede fomentar alianzas globales más efectivas y la implementación de
proyectos y políticas que requieren la cooperación de múltiples partes interesadas a
nivel global.

En cuanto a la ODS 10, la traducción automática en streaming puede reducir las
desigualdades al proporcionar acceso equitativo a información y servicios para
personas que hablan diferentes idiomas. Esto es especialmente relevante en regiones
con gran diversidad lingüística y en comunidades marginadas, y permitiría la
realización de proyectos de inclusión social y económica basados en la accesibilidad
lingüística.

En conclusión, la traducción automática en streaming, y particularmente enfocada a
través de la adaptación de LLMs, tiene un impacto significativo en múltiples ODS,
promoviendo un mundo más conectado, accesible y energéticamente eficiente. La
implementación y el desarrollo continuo de esta tecnología no solo mejoran la
comunicación global, sino que también contribuyen al progreso social, económico,
tecnológico y educativo a nivel mundial. Para maximizar estos beneficios, es crucial
seguir invirtiendo en innovación tecnológica y fomentar colaboraciones
internacionales que apoyen estos objetivos.

ETS Enginyeria Informàtica
Camí de Vera, s/n. 46022. València
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Document structure

	Background
	Machine Learning
	Supervised Learning
	Shallow Neural Networks
	Deep Neural Networks

	Transformers
	Self-attention
	Transformer model & natural language processing

	Large Language Models
	Distributed training
	Parameter Efficient Fine-Tuning & LoRA
	Quantization

	Neural Machine Translation
	Streaming Machine Translation

	Adaptation for offline MT
	Multilingual Encoder-Decoder Models
	No Language Left Behind (NLLB)

	Datasets
	Evaluation datasets
	Training datasets
	Data processing pipeline

	Offline experimentation on NLLB
	Evaluation on adapted NLLB

	Adaptation for streaming MT
	Streaming MT
	Policy
	Document-level MT & Prefix Training
	Segmentation-Free Architecture
	Evaluation

	Datasets
	Data processing pipeline

	Experiments on NLLB - Setup
	Model Training
	SegFree Architecture

	Experiments on NLLB - Cased NLLB
	Results - Cased NLLB

	Expriments on NLLB - Lowercased NLLB

	Conclusions
	Objectives achieved
	Future work

	Bibliography
	Additional figures
	Results on multilingual reverse models
	Results on LoRA rank and additional data experiments for the uncased model

	Appendix: Sustainable Development Goals

