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Abstract: Local regulations control the additional runoff produced by urbanization processes. Sustain-
able urban drainage systems can mitigate the issues associated with increased runoff by employing
infiltration basins, detention ponds, wet ponds, and constructed wetlands. Traditionally, the Water
Level Pool Routing Method, which relies on an implicit calculation scheme, has been used to calculate
outflow hydrographs in reservoirs. In this research, an explicit scheme for the Water Level Pool
Routing Method has been developed. The proposed model is applied to a case study where the
reservoir has a surface area of 9.12 hectares. The influence of weir width and the discharge coefficient
is also analyzed. Additionally, the variation in time step does not significantly affect the response
of the proposed model, demonstrating its adequacy as a novel method. The proposed model is
compared to the traditional method, yielding similar results in an analyzed ornamental reservoir
(low percentage reduction in peak flow). However, a case study with experimental data reveals
that the proposed model provides better accuracy than the traditional method. In addition, the
proposed model is more efficient as it reduces computational time compared to the implicit scheme
(conventional method). Finally, the proposed model is simplified for small watersheds by applying
the rational method for computing an inflow hydrograph.

Keywords: level pool; implicit scheme; mathematical model; routing; case study

1. Introduction

Reservoirs serve as permanent or temporary storage systems that regulate peak flows,
making it essential to have a straightforward tool for their analysis. These structures are
commonly used to reduce the maximum water flows of inflow hydrographs in engineering
projects such as dams [1], sustainable urban drainage systems [2], and others. A suitable
reservoir routing technique is required for computing an outflow hydrograph [3,4], which
depends on discharge hydraulic structures [5,6], the relation of storage versus water level,
and an inflow hydrograph.

Outflow hydrographs can be estimated using hydraulic or hydrological routing tech-
niques [7–9]. Hydraulic routing methods can be applied regardless of the shapes and
longitudinal slopes of reservoirs, as the numerical solution is derived using the Saint-
Venant equations [10–12], which consider local and convective accelerations and friction
slopes. To achieve accurate numerical resolution, reservoirs should be divided with an
appropriate selection of spatial and time steps. The larger the spatial steps, the greater
the computational time required during simulations. Consequently, hydraulic methods
demand more computational time compared to hydrological methods.

When reservoirs can be considered with a circular surface area, and the inverted
elevation along them remains practically constant, the water surface elevation tends to be
uniform within the reservoirs, forming what is known in the literature as a water level
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pool [9,13]. Under this assumption, outflow hydrographs can be estimated using hydro-
logical routing methods. However, if large reservoirs have significant longitudinal slopes,
then, hydrological routing methods are unsuitable for computing outflow hydrographs.

Typically, reservoirs are modeled using hydrological methods since they do not cover
large surface areas. Nematollahi et al. (2001) [9] proposed analytical and numerical
solutions using different shapes of inflow hydrographs. Some investigations have presented
the disadvantages of employing the numerical resolution of Laurenson–Pilgrim, fourth-
order Runge–Kutta, and fixed-order Cash–Karp methods [14], where the time step should
be carefully selected to avoid computational problems. Guang et al. (2009) [15] developed a
Runge–Kutta–Fehlberg-Reverse method for routing reservoir floods. Several authors have
created many schemes for numerical resolution for reservoir routing considering different
shapes of inflow hydrographs [16]. Other studies have focused on the numerical resolution
of risk analysis in reservoir routings considering different conditions [16]. These numerical
resolutions are based on implicit scheme methods for reservoir routings.

An explicit scheme was recently proposed by the authors for channel routing [17],
which simplifies calculations compared to the traditional methods known as Kinematic
Wave [18], Muskingum [19], and Muskingum–Cunge [20,21] This method saves compu-
tational time compared to traditional ones, as conventional methods employ an implicit
scheme for computing an outflow hydrograph using three formulations (water-surface-
elevation–storage relation, weir discharge rating curve, and storage–outflow function) [9].
In contrast, the proposed model uses only one equation for this computation: the hydraulic
head over a weir crest.

This research presents the development of an explicit scheme for reservoir routing
considering a hydrological or lumped analysis. The numerical resolution of the proposed
model is conducted using Newton’s binomial theorem [22] and considering a rectangular
weir as a discharge outlet. The resolution is also performed for small watersheds by apply-
ing the rational method, which can be used to determine the percentage of attenuation in
a selected reservoir. A case study located in Cartagena de Indias, Colombia, is presented
to show the proposed model’s advantages. The proposed model is compared with the
traditional reservoir methods named the water level pool [11], where both methods practi-
cally give the same outflow hydrographs for the different analyzed scenarios considering
a reservoir for ornamental purposes. During the validation stage, the proposed model
demonstrates better accuracy than the traditional method, using the input data provided
by De Martino et al. (2012) [23] as the case study. Experimental data are important for
calibration purposes considering steady and unsteady flow conditions [24,25].

2. Materials and Methods

This section presents the damping effect generated by a reservoir when an inflow
hydrograph is passing through it. A rectangular weir is considered as the discharge
structure. Figure 1a,b describe inflow (QI) and outflow (QO) hydrographs in a reservoir for
the times t and t + ∆t, respectively. An analyzed reservoir maintains a constant surface area
and a horizontal water surface. Figure 1c illustrates a schematic of an inflow hydrograph,
where a linear increasing trend for demonstration purposes has been considered. This
trend can vary in shape based on the morphometric characteristics of watersheds. A frontal
view of an uncontrolled rectangular overflow is presented in Figure 1d.

2.1. Proposed Model
2.1.1. Assumptions

The proposed model has the following assumptions:

• A horizontal water surface is considered in a reservoir.
• The conservation of mass equation is used for considering inflow and outflow hydrographs.
• The discharge curve is evaluated using a rectangular weir.
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ship between 𝑄ூ,௧ା∆௧ and 𝑄ை,௧ା∆௧ at time 𝑡 + ∆𝑡; (c) water flow hydrograph; and (d) rectangular 
weir. 
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Figure 1. Components of a system: (a) relationship between QI,t and QO,t at time t; (b) relationship
between QI,t+∆t and QO,t+∆t at time t + ∆t; (c) water flow hydrograph; and (d) rectangular weir.

2.1.2. General Governing Equations

When considering the inflow volume of water (VI) into a reservoir over intervals of
duration ∆t and comparing it to the outflow volume (VO) within the same time interval,
the following relationship can be established:

VI =
QI,t + QI,t+∆t

2
∆t (1)

VO =
QO,t + QO,t+∆t

2
∆t (2)

where QI = inflow hydrograph occurring at times t and t + ∆t, and QO = outflow hydro-
graph occurring at times t and t + ∆t.

By applying the conservation of mass equation, Equation (3) can be derived, which
serves to calculate the increase or decrease in water surface (∆h) within a reservoir for a
time interval (∆t):

A∆h
2

∆t
= QI,t + QI,t+∆t − QO,t − QO,t+∆t (3)

where A = surface area.
The outlet discharge depends on the selected hydraulic structure, such as a morning

glory spillway, drop inlet spillway, culvert structure, or controlled and uncontrolled ogee
crest [1]. In this case, the outlet discharge is represented by a rectangular weir. Thus,

QO = Cbh3/2 (4)

where C = discharge coefficient, b = width of weir crest measured perpendicular to the
main direction of the flow, and h = hydraulic head measured over a weir crest.

The discharge coefficient depends on several factors: the hydraulic head measured
over a weir crest, the relationship between the crest and ideal nappe shapes, tailwater
conditions, downstream submergence, and the sloping upstream face.

In order to determine the values of an outflow hydrograph at times t and t + ∆t in
relation to water surface levels h and ∆h, the following procedure is employed:

QO,t = Cbh3/2 (5)
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QO,t+∆t = Cb
(

h + ∆h)3/2 (6)

Utilizing Newton’s binomial theorem and disregarding terms beyond the third, the
computation proceeds as follows:

QO,t+∆t = Cb( h + ∆h)
3
2 = Cb

(
h3/2 +

3
2

h1/2∆h + . . . + ∆hn
)
≈ Cb

(
h3/2 +

3
2

h1/2∆h
)

(7)

where n = power of the final term in the binomial theorem
Substituting Equation (7) into Equation (3) and arranging the terms yields:

∆h =
QI,t + QI,t+∆t − 2Cbh3/2

3
2 Cbh1/2 + 2A

∆t
(8)

2.2. Solution for Small Watersheds

The computation of inflow hydrographs for small watersheds can be established
considering a triangular hydrograph, as shown in Figure 2. The peak flow (Qp) is occurring
at peak time (Tp), while the base time (Tb) depends on the value of Tp. The value of Tb in
mountainous basins results in a shorter hydrograph duration compared to that of normal
gravel rivers.
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The direct runoff volume of the triangular hydrograph can be determined by evalu-
ating the excess rainfall (P) over a watershed with a drainage area Ac. Subsequently, the
peak flow can be expressed as follows:

Qp =
2AcP

Tb
(9)

If Equation (9) is reformulated with Ac in hectares (ha), P in millimeters (mm), and Tp
in hours (h), it takes the following form:

Qp =
AcP

180Tb
(10)

The dimensionless peak flow (qu) is given as follows:

qu =
Qp

Cb
=

AcP
180TbCb

(11)
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2.3. Methodology

The objective of this research is to develop an Explicit Water Level Pool Method
(EWLPM) for reservoir routing, which can be used as a new approach for practical applica-
tions. The proposed methodology consists of five steps, as illustrated in Figure 3.
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Figure 3. Methodology.

The input data for the case study are defined in Section 3. The proposed methodology
can be applied to reservoir routing in any watershed, representing a general development.
The EWLPM was developed as presented in Section 2. The implicit scheme was simulated
using the traditional method, Implicit Water Level Pool Routing (IWLPR). Sections 4 and 5
present a comparison and discussion of the results of the EWLPM and IWLPM.

3. Case Study

The case study was obtained from a report conducted by Ecociencias for the Environ-
mental Agency of the area, known as CARDIQUE (Corporación Autónoma del Canal del
Dique) [26]. Figure 4 illustrates the general location of the city of Cartagena de Indias, as
well as the location of the neighborhood Barcelona de Indias (Figure 4a). The reservoir is
situated within the neighborhood of Barcelona de Indias, encompassing a surface area of
9.12 ha (Figure 4b). Additionally, aerial photographs numbered 000009, 000010, 000011,
000012, 000013, 000047, 000048, 000049, 000050, 000051, 000064, 000065, and 000066 from
flight C-2714 and photographs numbered 000064, 000065, and 000066 from flight C-2722,
taken in 2004, were sourced from the Agustín Codazzi Geographic Institute (IGAC) [27].
Cartographic maps numbered 23-II-A, 23-I-D, 23-II-C, 23-II-D, 23-I-D, 23-III-B, 23-II-C,
23-III-D, 23-IV-A, and 23-IV-A at a scale of 1:25,000 were also utilized (Figure 4c).

The case study is in Cartagena, specifically in the northern region, between the entrance
to the neighborhood of Manzanillo del Mar and parallel to the road known as Vía del Mar.
According to the topography of the area, it is observed that the watershed has a drainage
area of 1388 ha. The watershed discharge is perpendicular to the road Vía del Mar.

The selected rainfall intensities ranged from 82.5 to 125.9 mm/h for the four sub-
basins of the case study, considering a return period of 100 years. The outflow hydrograph
was computed for a 100-year return period, which was determined at the entrance of the
reservoir in the project’s technical report [28]. Figure 5 shows the results of the inflow
hydrograph. The peak flow is 97.72 m3/s, which occurs at 1.5 h. The base time of the inflow
hydrograph is 4.3 h.
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According to the results of the topography and bathymetry of the reservoir, it currently
has an average depth of 1.95 m. The crest of the outlet structure is located at 2.50 m a.s.l.
The outlet weir has a width of 80 m.
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Figure 5. Inflow hydrograph.

4. Results

The proposed model was applied to perform a water level pool routing in the reservoir
situated in the neighborhood of Barcelona de Indias, Cartagena (Colombia), as outlined
in Section 3. The analysis incorporated the following data: discharge coefficient (C) 1.42,
a weir width (b) of 80 m, and a reservoir surface area (A) of 9.12 ha. A time step (∆t) of
0.1 h was used during simulations. The analysis was carried out with the crest elevation
considered at 2.50 m a.s.l. The inflow hydrograph is illustrated in Figure 4. Figure 6
displays the outcomes of applying the proposed model in this study. The peak value of
the outflow hydrograph is 92.58 m3/s (occurring at 1.8 h). The highest water level in the
reservoir reaches 0.872 m, which is calculated concerning the crest elevation. The total
discharge occurs over a period exceeding 5 h. Appendix A shows the numerical results
for the case study, where maximum values are highlighted in gray. An explanation of all
columns is presented below in Appendix A. This simulation is identified as a baseline since
it is compared to other ones in the following sections.
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A sensitivity analysis was conducted to ascertain the influence of weir width (b) and
discharge coefficient (C) when the proposed model is applied. The variation in parameters
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is shown in Table 1, while the obtained results of the outflow hydrograph are presented in
Figure 7.

Table 1. Range of parameters.

Parameter Units
Range

From To

Weir width (b ) m 20 120
Discharge coefficient (C ) - 1.42 1.86
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As expected, the weir width significantly influences the outflow hydrograph, as
depicted in Figure 7a. The greater the weir width, the higher the maximum value of the
outflow hydrograph, which implies a lower capacity for flood control. For instance, with a
weir width of 120 m, a peak flow of 93.97 m3/s is reached, close to the inflow hydrograph’s
maximum value (97.72 m3/s). In contrast, when a weir width of 20 m is selected, the
reservoir can reduce the maximum value of the inflow hydrograph by 19.4%, achieving a
peak value of 78.73 m3/s. The selection of weir width also influences the occurrence of peak
times for the outflow hydrograph. The narrower the weir width, the higher the peak times
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obtained. Figure 7b illustrates the results obtained by varying the discharge coefficient of
the weir between 1.42 and 1.86. In this case, no significant variations are detected since
the purpose of the reservoir is ornamental and not intended for flow reduction as the weir
width is 80 m, and the outflow hydrograph is not reduced in a high percentage as shown in
Figure 5. Based on the higher value of the discharge coefficient, the maximum values of the
outflow hydrograph are computed. The discharge coefficient does not significantly affect
the results, as the weir’s large width produces a low percentage of reduction in the peak
inflow hydrographs.

5. Discussion
5.1. Proposed Model

This section focuses on two aspects: (i) varying the time step for running the analyzed
parameters in the baseline simulation; and (ii) comparing the proposed model’s results
with the traditional method for performing a water level pool routing in the case study.

The time step ranged from 0.05 to 0.5 h; the results are depicted in Figure 8. A linear
interpolation was used to compute the inflow hydrograph, adjusting for the varying time
steps, as shown in Figure 4. This interpolation method was also applied to calculate
the outflow hydrograph, ensuring consistency in the time step used for computations.
Most simulations tend to produce a similar outflow hydrograph in comparison to the
baseline simulation. The worst results were obtained using a time step of 0.5 h, as this
represents a high time step in comparison to the values of the inflow hydrograph. This
is of utmost importance since time steps should be suitably selected. However, the peak
flow for a time step of 0.5 h was 92.53 m3/s (occurring at 2 h), which can be compared to
the peak flow reached in the baseline simulation of 92.58 m3/s (occurring at 1.8 h). This
robust performance of the proposed model confirms its potential impact in the field of
hydrological modeling.
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The IWLPM was applied to validate the proposed model. The numerical resolution of
IWLPM requires the solution of the two following formulations:

• The conservation of mass equation given by

St+∆t − St =
QI,t+∆t + QI,t

2
∆t − QO,t+∆t + QO,t

2
∆t (12)

where S = storage in a reservoir.
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• The storage–outflow function expressed as follows:

2S
∆t

+ QO (13)

Applying IWLPM requires computing the water-surface-elevation–storage relation,
the weir discharge rating curve, and the storage–outflow function. These were calculated
using the data for the baseline problem (see Section 4). The results are presented in Figure 9.
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Figure 10 compares the EWLPM (proposed model) and the IWLPM. The results
confirm that the proposed model is suitable for simulating water level pool routing since
both outflow hydrographs are similar. EWLPM is easier to implement compared to the
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IWLPM and requires less computational time. For this practical application, the IWLPM
takes around 0.04 s, while the EWLPM takes values lower than 0.01 s.
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Figure 10. Comparison of the outflow hydrograph considering the explicit (proposed model) and
implicit methods for water level pool routing.

The Root Mean Square Error (RMSE) and the R-squared (R2) were calculated to check
the adequacy of the proposed model, using the following formulas:

RMSE =

√
1
N
(QO,PM − QO,IWLPM)2 (14)

where QO,PM = computed values of the outflow hydrograph using the proposed model
(EWLPM), QO,IWLPM = calculated values of the outflow hydrograph using IWLPM, and
N = total number of analyzed water flows of the outflow hydrograph.

R2 = 1 − RSS
TSS

(15)

where RSS = sum of squares of residual (QO,PM and QO,IWLPM), and TSS = total sum of
squares of the analyzed variable QO. The obtained values of RMSE and R2 are 0.16 m3/s
and 0.9999, respectively. These results confirm that the proposed model can be used as an
alternative method for computing water level pool routing.

Figure 11 presents the dispersion graph related to the outflow hydrograph. The
proposed model (EWLPM) can replicate the results of the IWLPM, as most computed
values align with the orange line, indicating a suitable adjustment.

5.2. Solution for Small Watersheds

For this specific solution, the authors have considered Tb = 2.67Tp[13]. Equation (16),
which defines the final shape of outflow hydrographs, can be used to establish a practical
solution for small watersheds. This Equation can compute the variation in the water surface
level over the crest of a weir and its corresponding water flow.

Substituting Equation (11) into Equation (8), the following is obtained:

∆h =
qu,t + qu,t+∆t − 2h3/2

3
2 h1/2 + 200

36 K
(16)

where K = parameter that defines the percentage of reduction in an outflow hydrograph,
which depends on surface area, width of a weir, discharge coefficient, and time step.
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The parameter K is expressed as follows:

K =
A

Cb∆t
(17)

Figure 12 shows the results based on the proposed methodology. The parameter
K was varied from 1 to 20 to compare different percentages of reduction in outflow hydro-
graphs. This variation is a function of the surface area of a reservoir, weir width, discharge
coefficient, and time step.
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5.3. Validation

The validation of the proposed model using experimental data was conducted with
measurements by De Martino et al. (2012) [23]. The hydraulic system comprises a gate
valve to control the inflow hydrograph, a reservoir with a surface area of 29.12 m2, and
a flood gate for outflow discharge. The inflow hydrograph was generated and recorded
within the reservoir system. The stage-area curve, accounting for a floodplain, was used for
analysis, implying that Configuration 1 from De Martino et al. (2012) [23] was analyzed.

The outlet discharge occurred through a floodgate system with a width (B0) of 0.45 m
and a gate height (z) of 0.05 m. For the discharge structure, a gate discharge coefficient (C0)
of 0.645 was employed, as this value was determined during the calibration process [23].
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Considering the outflow discharge structure, the hydraulic modeling utilized an orifice
discharge approach:

QO,t = C0B0z
√

2gh (18)

Following a similar procedure to that described in Section 2.1, it is possible to demon-
strate that the change in the water surface can be computed as follows:

∆h =
QI,t + QI,t+∆t − 2C0B0z

√
2gh

1
2 C0B0z

√
2gh−

1
2 + 2A

∆t

(19)

The measured inflow and outflow hydrographs are presented in Figure 13. Addi-
tionally, the proposed model, utilizing Equation (19), was compared with the traditional
implicit scheme for computing the outflow hydrograph, also shown in Figure 13. The
results indicate that the explicit method (proposed model) provides superior results com-
pared to the implicit method, as it predicts the peak outflow more accurately and better
captures the hydrograph patterns.
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5.4. Limitations of the Proposed Model

This section presents the limitations of the EWLPM as follows: (i) it cannot be applied
to large surface areas where longitudinal bed slopes can produce a non-water surface pool
level; (ii) for outlet discharge structures other than rectangular weirs, Equation (8) needs to
be reformulated as presented in Section 5.3; and (iii) rain-runoff models must be applied to
compute inflow hydrographs.

6. Conclusions

The Water Level Pool Routing Method has been utilized to understand the movement
of an inflow hydrograph within a reservoir, ultimately determining the corresponding
outflow hydrograph. This method can be applied to spillways, wetlands, ponds, and
similar hydraulic structures. Traditionally, the technique involves an implicit numerical
resolution scheme.

This research presents the development of an Explicit Water Level Pool Routing
Method with a numerical resolution that avoids numerical stability issues. The proposed
model uses straightforward equations and does not demand significant computational
resources. It can be employed to determine an appropriate weir width in a reservoir based
on its function and the desired reduction percentage in the outflow hydrograph. Although
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the proposed model was developed with a rectangular weir (an economical solution for
urban areas), it can be extended to different hydraulic structures.

The efficiency of the proposed model is demonstrated in a practical case study of a
reservoir near Barcelona de Indias, Cartagena (Colombia), with a surface area of 9.1 ha.
All numerical calculations are provided, enabling engineers to readily apply the proposed
model. The model’s performance is evaluated by varying the weir width and discharge
coefficient. Notably, changes in the time step do not significantly alter the results, affirming
the robustness of the proposed model. A comparison with the traditional method (implicit
resolution scheme) reveals that both methods exhibit similar behaviors in the analyzed
outflow hydrograph.

Furthermore, the proposed model is adapted for small watersheds, where a triangular
unit inflow hydrograph is used to compute outflow hydrographs. The model takes into
account the reservoir’s surface area, weir width, discharge coefficient, and time step,
providing a comprehensive tool for water resource management in these areas.

The model for small watersheds presented in this research corresponds to a specific
scenario but can be extended to accommodate any morphometric characteristics of basins.

Future research should focus on developing practical formulas for different shapes of
inflow hydrographs for small watersheds, such as the modified rational method.
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Nomenclature
The following abbreviations were used in this manuscript:
A: surface area of a reservoir (m2)
Ac: drainage area of a watershed (ha)
b: Weir width (m)
C: discharge coefficient of a weir
h: hydraulic head measured over the weir crest (m)
K: parameter that defines the percentage of reduction in an outflow hydrograph
n : power of the final term in the binomial theorem (-)
N: total number of analyzed water flows of an outflow hydrograph (-)
S: storage in a reservoir (m3)
t: time (s)
Tb: base time of a hydrograph (s)
Tp: peak time of a hydrograph (s)
tb: base time of a hydrograph (s)
P: amount of precipitation (mm)
RMSE : Root Mean Square Error (m3/s)
R2: R-squared (-)
RSS: sum of squares of residual (m6/s2)
qu: dimensionless peak flow (-)
QI : inflow hydrograph (m3/s)
QO: outflow hydrograph (m3/s)
Qp: peak flow (m3/s)
TSS: total sum of squares of the analyzed variable (m6/s2)
VI : inflow volume of water (m3)
VO: outflow volume of water (m3)
∆t: time step (s)
∆h: variation in water surface (m)



Water 2024, 16, 2042 15 of 16

Appendix A

Table A1. Numerical results for the case study.

t (h) [1] QI (m3/s) [2] h (m) [3] ∆h (m) [4] QO (m3/s) [5]

0 0.00 0 0.0055 0.0000
0.1 2.79 0.006 0.0159 0.046
0.2 5.58 0.021 0.0249 0.357
0.3 8.37 0.046 0.0350 1.133
. . . . . . . . . . . . . . .
1.4 88.87 0.7334 0.0676 71.232
1.5 97.72 0.800 0.0472 81.318
1.6 96.03 0.847 0.0198 88.619
1.7 94.34 0.867 0.0053 91.741
1.8 92.65 0.872 −0.0065 92.580
. . . . . . . . . . . . . . .
5.0 0.00 0.049271 −0.0046 1.242

Notes: column [1] represents the time; column [2] is the inflow hydrograph (Figure 4); column [3] is computed as
ht+∆t = ht + ∆ht; column [4] is calculated using Equation (8); and column [5] is computed using Equation (5). The
numbers highlighted in color indicate the maximum values.
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