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Resum
L’alt interés industrial en els processadors RISC-V de codi obert han generat la ne-

cessitat de nous components més complexos que puguen optimitzar al màxim les pres-
tacions dels processadors. Les caches compartides, generalment l’L2 en processadors
embeguts d’altes prestacions, són un dels components més crítics en els Sistemes en un
Chip (SoCs). No obstant això, encara que existeixen molts processadors RISC-V multinu-
cli, les implementacions de caches L2 actuals són generalment molt més simples que les
presents en processadors comercials.

Aquest projecte presenta les millores d’una cache L2 de codi obert, implementant
optimitzacions ben estudiades i presents en productes comercials per millorar les pres-
tacions de la cache. Concretament, es posa enfasi en la implementació de dues millores:
particionat basat en vies, i transferències no bloquejants. La cache ha sigut descrita en
RTL i prototipada i testejada en una FPGA. Els resultats mostren que aquesta nova cache
millora signicativament les prestacions i la qualitat de servei (QoS) dels sistemes multi-
nucli.

Paraules clau: Cache compartida, Particionat, Codi obert, Cache no bloquejant

Resumen
El alto interés industrial en los procesadores RISC-V de código abierto han generado

la necesidad de nuevos componentes más complejos que puedan optimizar al máximo las
prestaciones de los procesadores. Las caches compartidas, generalmente la L2 en proce-
sadores embebidos de altas prestaciones, son uno de los componentes más críticos en los
Sistemas en un Chip (SoCs). Sin embargo, aunque existen muchos procesadores RISC-V
multinúcleo, las implementaciones de caches L2 actuales son generalmente mucho más
simples que las que se encuentran en procesadores comerciales (COTS).

Este proyecto presenta la mejora de una cache L2 de código abierto, implementan-
do optimizaciones bien estudiadas y presentes en productos comerciales para mejorar
las prestaciones de la cache. En particular, se pone énfasis en la implementacion de dos
mejoras: particionado basado en vias y transferencias no bloqueantes. La cache ha sido
descrita en RTL y prototipada y testeada en una FPGA. Los resultados muestran que es-
ta nueva cache mejora signicativamente las prestaciones pico y la calidad de servicio
(QoS) en sistemas multinúcleo.

Palabras clave: Cache compartida, Particionado, Codigo abierto, Cache no bloqueante

Abstract
The high industrial interest in RISC-V open-source processor implementations has ex-

posed the need for new, more complex open-source supporting components to fully op-
timize the processors’ performance. Shared caches, normally the L2 in high-performance
embedded processors, are one of themost critical components in Systems-on-Chip (SoCs).
However, despite the existence of many open-source multicore RISC-V processors, cur-
rent open-source L2 implementations are generally much simpler than those found in
Common Off-The-Shelf (COTS) processors.

In this project, we improve an existing open-source L2 cache implementation by ap-
plying well-known optimizations widely used in proprietary products to improve the
performance of the cache. In particular, we tackle the implementation of two features:
way-partitioning and non-blocking transfers. The cache implementation is described in
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RTL and prototyped and tested on an FPGA. The results show that our cache modica-
tions signicantly improve both peak performance and Quality of Service (QoS) proper-
ties of multicore SoCs.

Key words: Shared-cache, Partitioning, Open-source, Non-blocking cache
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CHAPTER 1

Introduction

Traditionally, processor design has been developed in a closed-source environment dom-
inated by a few big companies such as ARM, Intel, AMD, IBM, or Qualcomm. Although
some efforts were made to dene open-source processor Instruction Set Architectures
(ISAs) such as SPARC [2], openRISC [3], and Berkeley’s RISC I and RISC II [4], they were
not really practically used, mainly due to their reduced support from the industry and
academia.

However, in recent years, the open-source software philosophy has reached the hard-
ware industry. The irruption of the RISC-V ISA has promoted the development of a
vast amount of new open-source processor implementations and increasingly complex
Systems-on-Chip (SoCs) designs. To some extent, RISC-V has fueled the development
of not only open-source Central Processing Unit (CPU) implementations but also new
supporting open-source Intellectual Property (IP) cores such as memory controllers, co-
processors, cache memories, and peripherals; providing essential and extended support
for these SoCs.

There is a high availability of open-source RISC-V cores [5–8]. Initial core develop-
ments have mostly focused on low-complexity CPU architectures for microcontroller-
based applications. However, the fast evolution of the open-source and RISC-V ecosys-
tem is currently aiming at increasingly ambitious use cases such as autonomous driv-
ing [9], machine learning [10], and genomics sequence alignment [11]. As more compu-
tation power is needed in SoCs, the number of cores is increased, putting a strain on the
shared resources of the system, mainly on the shared caches and the interconnect. This is
when the limitations of the existing supporting open-source IP cores come to light.

1.1 Motivation

Caches are one of the key elements in complex SoC designs since they facilitate minimiz-
ing data movements and relieve the programmer from the burden of explicitly handling
data allocation. Additionally, the design of shared caches is also crucial for safety-related
applications (e.g., autonomous driving) requiring strict performance guarantees. On the
one hand, shared caches are invaluable to ensure multicore performance scalability, but
on the other hand, they are also one of the major sources of contention in most multicore
SoC designs.

Although much effort has been made to improve cache performance since the irrup-
tion of multicore processors in the industry, resulting in many interesting design propos-
als, the available open-source caches do not offer much more than a basic functionality.
Therefore, there is a necessity for an open-source high-performance cache t for state-of-
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2 Introduction

the-art SoCs that aim to solve complex problems. To do so, the cache must provide good
multicore performance and be scalable. Ideally, the cache must also have some sort of
QoS mechanism that also makes it suitable for real-time systems.

Additionally, reusability is one of the key advantages of open-source projects over
proprietary ones. Extending an existing project instead of creating a module from scratch
saves developing time and resources, and leads to better, more complete results. For this
reason, most open-source projects, including this one, surge as an extension to previous
open designs.

1.2 Objectives

The scope of this project is the creation of an open-source shared-cache implementation
t for high-performance embedded systems, and equipped with fundamental features
not available in other open-source implementations. To reach this goal, and based on the
necessities outlined in the previous section, the following objectives have been set out:

• The component must be open-source

• The cachemust provide performance guarantees, providing some sort of QoSmech-
anism

• The component must exhibit good performance in multicore systems

• The cache must be scalable

We will extend and modify an open-source cache to achieve these objectives. First,
we will survey the current open-source cache designs in the market and choose the most
appropriate baseline cache design, Gaisler’s L2C-Lite. In this work, this baseline design
will be analyzed in-depth and extended with the following main features:

• Modularize the design, adding a standalone frontend component

• Optimize the design proposed by Gaisler, simplifying states and saving clock cycles
where possible

• Change the cache implementation to a non-blocking design, more t for multicore
systems

• Implement partitioning to reduce inter-core evictions and provide more determin-
ism when needed

The project’s open-source nature must be considered during the design phase, ac-
knowledging that adaptability and ease of use are vital for its success. Thus, our main
design considerations were:

• Modularity: We aimed to make the design as modular as possible, providing exi-
bility to maximize its usability in the future.

• Congurability: We want to maximize congurability to make it suitable for low
and high-end systems.

• Simplicity: To maximize the system’s possible extendability, each of the modules
must be simple and easily understandable.



1.3 Why are caches needed? 3

1.3 Why are caches needed?

Component miniaturization, based on Moore’s law, led to huge advancements in both
processors and memories [12]. However, while the CPU design focus was to optimize
for throughput, the memory design focused on capacity. Thus, the performance gap
between memory and processor widened (see Figure 1.1). Even if the end of Moore’s law
and Dennard’s scaling law has caused the stagnation of processors’ performance since
the mid-2000s [13], the performance gap still exists; thus, solutions to lower the penalty
of memory accesses are still needed.

Source: Computer Architecture: A Quantitative Approach, 6th edition [14]

Figure 1.1: Processor and main memory (RAM) performance gap evolution since 1980

The main property used to bridge the processor-memory gap is the locality principle
[15]. This principle states that a computer program tends to reuse data and instructions
recently used. This is strongly related to the 90/10 law, which states that, generally, "90%
of the execution time of a computer program is spent executing 10% of the code" [14] [16]. Two
main types of locality are especially relevant:

• Temporal locality: A memory location recently accessed is likely to be accessed
again in the near future

• Spatial locality: Nearby memory locations tend to be referenced closely in time

Taking advantage of the locality principle, the cost-effective alternative to reduce
memory access times is implementing a memory hierarchy by combining different mem-
ory technologies, trading off speed for capacity. In a usual memory hierarchy (see gure
1.2), the higher levels comprise high-speed, small, volatile, and high-cost (per bit) mem-
ories. On the other hand, the lower levels are composed of big, non-volatile, and cheap
memories but offer lower speeds. Due to the locality principle, the higher levels are much
more likely to be accessed than the lower ones, signicantly improving the average mem-
ory access times. In most computer architectures, the memory hierarchy is transparent to
the programmer, giving the false illusion of a unied big and fast memory.

Caches are the small on-chip SRAM memories that lie (logically) between the proces-
sor and main memory. Caches are automatically managed by hardware and are essential
to boost the system’s performance by providing fast memory access.

In current systems, multiple levels of cache memories, generally two levels in embed-
ded systems and three in COTS processors, are used to optimize performance.
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Source: Computer Systems: A Programmer’s Perspective [17]

Figure 1.2: An example of a memory hierarchy

1.4 Cache memories

Figure 1.3 shows the structure of a typical cache. In a cache, words are stored in blocks,
called cachelines, four or eight words long, to fully take advantage of spatial locality. The
data index, also known as offset, of the address, indicates the word to be accessed inside
of a block.

In a memory address, the set index, or just index, determines the location of a block
in the cache. The location of the cache line depends on the mapping scheme: if the set
index indicates only one cache line, the mapping is direct; if the block can be found in any
cache line, the mapping is fully associative; and nally, if the set index selects a subset
of all cache lines, the mapping is set-associative, with this approach the cache is divided
into equal sets, where each set is called way. A cache hit is determined by comparing the
address’ tag with the tag of all the possible block locations. If there is a match, there is a
hit; otherwise, there is a miss, so a cache line must be evicted, and the block where the
data is located must be brought from the next memory level. If the cache mapping is not
direct, a replacement policy must choose a line that needs to be evicted.

A direct mapping approach is the simplest but suffers the most from conict misses:
misses where the cache has available space, but the corresponding set is full. This hap-
pens because a block can only be allocated in one space of the cache; this can have a
signicant impact on a program’s performance if multiple memory locations with con-
icting set indexes are accessed repeatedly. On the other hand, a fully associative scheme
gets rid of conict misses; however, the comparison logic to determine whether the access
is a hit or not, usually found in the critical path, is much more complex, which results in
either a very large response time (higher latency) or in a reduced cache size, leading to
more capacity misses. This is why, normally, all caches are set-associative, ranging from
4-16 ways, to reduce conict misses without sacricing latency as much. The associativ-
ity of the cache is one of the main design decisions a computer architect must make when
designing a cache.
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Source: ARM System Developer’s Guide: Designing and Optimizing System Software [18]

Figure 1.3: Structure of a 4-way set associative cache with 256 cache lines, with a write-back policy

A write operation to the cache can be handled in different ways. If there is a hit, the
data can either be written to both the cache and the next level, known as write through;
or the data can be written to the cache marking that it has been modied (using a dirty
bit), and wait until it is evicted to be written to the next level, known as write-back. In
case of a miss, the block referenced by the write operation can be brought to the cache,
write-allocate; or not, write-not-allocate. Normally, write-through caches also implement
a write-not-allocate policy, and write-back caches implement write-allocate. The write-
through policy is simpler to implement and eases the addition of coherency in the system
(if needed), but it exhibits signicantly worse performance.

1.4.1. Replacement policies

In set-associative caches, selecting a replacement policy is one of the most important
aspects of cache design. Ideally, the evicted cache line should be the one that will be used
the latest in the future; this is the theoretically optimal replacement policy, also known
as Bélády’s optimal replacement policy (OPT). However, the application of this policy is
virtually impossible. Therefore, other replacement policies that approximate as much as
possible to the optimal case must be formulated.

LRU

Least Recently Used (LRU) is one of the most popular replacement policies; it approx-
imates OPT when the recent past is a good prediction for the future, and it is highly
popular in page memory implementations [19]. LRU takes advantage of the temporal
locality of data by replacing the cache line that was not accessed for the longest time.
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Its implementation consists of setting up log2(Ways) bits in each way in a set, which
indicates the order in which the ways were last accessed. When the line is accessed, the
order of all the ways is updated. When an eviction is needed, the way with the lowest
count is chosen to be replaced.

The main drawback of the LRU policy is its high hardware implementation cost, un-
feasible in caches with more than eight ways.

pLRU

To adapt LRU to systems where its implementation would result in very expensive, new
policies that approximate LRU but with a lower hardware cost appeared. This policies
are called pseudo-LRU (pLRU).

One of the most common pLRU implementations consists of building a binary tree,
where the leaves represent the ways of the cache. This policy receives the name of Binary
Tree pLRU (BT-pLRU). BT-pLRU approximates an LRU policy by constructing a tree of
sizeWays− 1 bits for each cache set. Today, it is highly popular in cache implementations
due to its signicant area improvements with a negligible performance loss with respect
to LRU.

The value of each node in the tree indicates where the pLRU leaf is located: A ’0’
means it is down the left sub-tree and a ’1’ down the right sub-tree. The tree representa-
tion is stored in a vector where the root node is the Least Signicant Bit (LSB), then its left
child (LSB+1) and right child (LSB+2), and so on. To nd the pLRU cache line, the tree
must be traversed following the directions given by the nodes until reaching a leaf node.
To update a node, indicating that it is the most recently used, all of the bits in the path to
said node must point to the opposite sub-tree (e.g., if the MRU leaf node path is 0b001,
that pLRU tree path must be updated to 0b110). [20]

1.4.2. Modern caches in multicore systems

As outlined in the previous sections, multiple levels of cache are used in usual multicore
systems. In these designs, the last level of cache (LLC) is usually shared between all
the cores to optimize performance while saving hardware resources. Figure 1.4 shows a
cache hierarchy of a modern SoC.

Modern shared cache designs for high-performance embedded SoCS have to meet
two main properties in terms of performance: peak performance and guaranteed perfor-
mance (a.k.a QoS). That is, a cache design should signicantly boost the performance of
the SoC design and, in the context of a multicore with multiple execution threads, we
additionally have to ensure that the impact of co-runners activity does not signicantly
degrade the performance of your task. Unfortunately, the use of shared resources by co-
running tasks can signicantly affect the application’s performance. By using techniques
such as isolation or prioritization, this interference can be reduced, ensuring QoS.

In addition, many optimizations are done to the basic design visited in gure 1.3 to
improve the throughput of the cache; consequently improving the overall performance
of the system. One of the most common optimizations found in modern shared caches
is a non-blocking implementation, also known as a lockup-free cache. In a normal cache,
when a transaction results in amiss, the component stalls andwaits until the request done
to the backend has nished before continuing. This is especially detrimental in shared
caches because a cache miss causes interference in the rest of cores trying to access the
shared resource. With a non-blocking implementation, cache hits can still be servedwhile
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Source: Trusted Execution Environments [21]

Figure 1.4: Modern eight-core x86-64 SoC cache hierarchy

a backend memory access is being handled in the background; signicantly boosting
performance by reducing inter-core interference.

1.5 Report Structure

This report is structured as follows: Chapter 2 will introduce the basic concepts needed
to understand the extensions done to the cache, overview the state-of-the-art, and survey
the available open-source caches. Chapter 3 will explore thoroughly the baseline cache
design chosen, characterizing the component and explaining its internal functionality.
Next, chapter 4 talks about the extensions done to the cache, emphasizing the implemen-
tation of the non-blocking cache and the partitioning scheme for both pLRU and random
replacement policies. Finally, chapter 5 will talk about the testing environment, how the
cache was veried, and show the performance improvements caused by the changes.
Chapter 6 concludes the project and evaluates the outlined objectives.





CHAPTER 2

State of the art

This chapter will rst explore the main technologies used in current cache designs, fo-
cusing on the standard interconnection buses, and how QoS is usually tackled in modern
caches. After having explored the basic concepts necessary to understand the design of
a cutting-edge cache, we will scout the available open-source caches in the market, ana-
lyze why a new product is needed, and choose the most adequate existing design for its
posterior modication.

2.1 Cache standard interfaces

Using a standard interface is key to achieving a portable and reusable design. This is why
this is one of the main features we are aiming for in our desired cache design.

2.1.1. AMBA AHB

ARM’s Advanced Microcontroller Bus Architecture (AMBA) is an open standard highly
popular for interconnecting high-performance SoCs [22].

AHB is amulti-master, multi-slave bus with a centralized arbiter. It uses a single chan-
nel with a pipelined address and data operation, allowing only one active transaction at a
time. Furthermore, AHB only supports one outstanding request per master at once, thus
not allowing out-of-order transaction completions.

AHB transfers

AHB transfers are composed of two phases: an address and control phase, which lasts
for one cycle; and a data phase, requiring as many cycles as needed.

Figure 2.1 shows an AHB multitransfer operation. First, a request from A starts by
sending the address and control data. In the next cycle, the response to A is given by the
slave, by writing the data into the HRDATA bus and setting HREADY high. In this same cycle,
another request, B, is in the bus, so the slave must buffer its control data to respond in the
next cycle. In cycle three, the slave needs more time to produce a response, so the HREADY
signal is set low; this extends the data phase of B for another cycle as well as the address
phase of the next incoming request, C. Then, B’s response is ready so it is written into the
bus in the following cycle. Finally, the response to C is ready in cycle ve, in the same
way as A’s.

9
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Source: AMBA specication 2.0 [22]

Figure 2.1: AHB multiple transfer example

AHB splits

There are some cases where the slave needs several cycles to produce a response, e.g.
where the slave must access data from another component. As in AHB a request must
remain in the bus until a response is given, this would block the entire interconnect,
which severely affects performance in multicore settings.

AHB 2.0 offers a special response to deal with this case: split transfers. Split responses
are dened in the specication as follows:

[The split response is used when] "The transfer has not yet completed success-
fully. The bus master must retry the transfer when it is next granted access to
the bus. The slave will request access to the bus on behalf of the master when
the transfer can complete." [22]

By using this response, we can grant access to the bus to another master while the
transfer is being processed in the background. The master who receives this response
will not try to access the bus again until the slave allows it. Once the transfer is complete,
the slave must assert the corresponding bit, according to the master number, in the split
completion bus (HSPLIT). This will indicate to the master that it can access the bus again.
It must be noted that the access to the bus is not immediately granted to this master, it
will have to be arbitrated again.

2.1.2. AMBA AXI

AMBA’s Advanced eXtensible Interface (AXI) is a point-to-point protocol highly popular
in current interconnection implementations. It denes ve main channels for communi-
cation between two nodes: the Write Address (AW), Write Data (W), and Write Response
(B) for write operations; and the Read Address (AR) and Read Data (R) for read oper-
ations (see gure 2.2). The multichannel approach that AXI uses helps to improve the
bandwidth of the interfaces, as read and write operations can be simultaneous.
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Source: Introduction to AMBA AXI4 [23]

Figure 2.2: AMBA AXI4 channels

Furthermore, as opposed to AHB, AXI allows multiple outstanding transactions as
well as out-of-order transaction completions, making easier the implementation of com-
ponents such as non-blocking caches.

2.2 Cache QoS mechanisms: Partitioning

In recent years, effort has been put into the development of QoS mechanisms in order to
tackle the inter-core interference found in multicore systems. One of the most common
QoS schemes found in high-end commercial products is partitioning.

Partitioning has been shown to be an effective technique for reducing core interference
in shared caches [24]. It removes inter-task eviction interference by restricting the evic-
tion capacity of each thread/task. As a result, higher throughput and Quality-of-Service
(QoS) can be achieved. Furthermore, partitioning is key in safety and real-time multicore
systems to reduce unpredictability by assigning an exclusive cache space for each critical
task, removing inter-core evictions. Initially, partitioning was exclusively implemented
in high-end SoCs designed for HPC applications. Currently, it is being increasingly used
in other domains, such as mobile or personal computer-oriented chips.

Intel supports partitioning through their Cache Allocation Technology (CAT) [25].
They introduce an intermediary abstraction called Classes of Service (CLOS), into which
they group different threads and applications sharing the same cache space (gure 2.3).
Then, the CLOS cache space can be congured to t the applications’ needs. Intel CAT is
part of their Intel Resource Director Technology (RDT) feature set, present in their high-
end server-oriented chips, such as the 4th and 5th generation Xeon lineup [26].

AMD also offers partitioning support through their Platform Quality of Service ex-
tensions (PQoS), available for their zen3, zen3+, and zen4 chips. They offer a very similar
interface to the one offered by Intel, where the L3 cache space can be distributed among
the cores using Classes of Service (COS). [29]

Finally, ARM’s approach to partitioning is a bit different than Intel and ARMs. They
also use an intermediary construct, which they call partition scheme IDs. The main dif-
ference is their way-based approach, where the cache space is divided by the number of
ways. ARM not only offers partitioning in its high-end desktop processors, such as the
Cavium ThunderX, but it is also implementing it in its newmobile state-of-the-art lineup,
as the Artix-A720 chipset. [30]
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Source: Intel Corporation [27]

(a) CLOS denition

Source: Intel Corporation [28]

(b) Mapping of CLOS to cache space

Figure 2.3: Intel CAT mechanism

Although partitioning is slowly becoming a fundamental feature in many-core sys-
tems, commercial companies such as ARM, Intel, or AMD hide their microarchitectural
implementation; so, even if it has been proven to be an effective technique to improve
both QoS and throughput, not much information is found about how to implement it in
RTL.

2.3 Open-source existing caches

As of today, most modern open-source SoCs make use of cache modules. In this section,
we survey the most popular, and high-performance open-source caches in the industry,
outlining their most prominent features, as well as their limitations.

All of the designs we are going to study are intended for its use in real hardware
systems, SoCs for the most part. In general, hardware is described using specialized
languages, called Hardware Description Languages (HDL). The two most popular HDLs
are Verilog (and its extension SystemVerilog) and VHDL; both are based on low-level pro-
gramming languages, C and ADA, respectively. In recent years, some high-level HDLs,
especially Chisel, introduced by UC Berkeley in 2012, have gained popularity. However,
they have been used mostly in educational environments and have not yet reached the
industry, mainly due to the difculty of integration in non-Chisel environments. This is
why Chisel designs are not included in this analysis.

2.3.1. PoC Cache

The "Piles of Cores" (PoC) library, developed by the "Technische Universität Dresden", is
a project that develops open-source IP cores, described in VHDL, for their reusability in
any kind of project [31]. The PoC library is licensed under the Apache License Version
2.0.

The PoC library has different cache implementations, but we will only look into the
most complete one: PoC.cache.cpu. This module offers a very lightweight implementation
of a cache memory. The cache associativity can be congured to be direct-associative, set-
associative, or fully associative. It offers a LRU replacement policy and congurable ways
and way-size.

However, the PoC cache is very limited. It implements a write-through and no-write-
allocate policy without a write-buffer, worsening multicore performance signicantly.
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Additionally, both frontend and backend interfaces are native, hampering its portability
to other systems. Therefore, we consider that PoC is not good enough for the necessities
found in current SoCs.

2.3.2. IOb-Cache

Source: IOb-Cache: A High-Performance Congurable Open-Source Cache [32]

Figure 2.4: IOb-Cache top-level module diagram

The IOb-Cache is a Verilog open-source highly congurable cache developed by IObun-
dle for their open-source RISC-V-based SoC: IOb-SoC.

This cache can be set up as either an L1 or L2 cache, it offers an AXI backend interface
and implements three different replacement policies: LRU, BT-pLRU, and MRU-pLRU.

On the other hand, IOb-Cache does not support a standard frontend interface, dif-
culting the reusability of the module; it uses a write-through and write-not-allocate pol-
icy, that, even with a write-through buffer, puts a strain on main memory and hinders
scalability; and it doesn’t implement any non-blocking mechanism.

Although IOb-Cache offers a good simple cache module that is highly congurable
for its use in very diverse systems, its lack of scalability results in poor performance in
multicore systems. Thus, this cache does not t our needs.

2.3.3. HPDcache

Currently, there exist more open-source L1 cache designs available than L2 ones. One
alternative could be using a high-performance congurable L1 cache and adapting it to
be used as an L2.

In this context, the HPDCache developed by OpenHW appears as an interesting al-
ternative [33]. OpenHW is a non-prot organization that develops open-source IP cores
and modules for their use in other projects. HPDCache is used in open SoC designs such
as OpenHW’s CV6 core.
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Source: HPDcache: Open-Source High-Performance L1 Data Cache for RISC-V Cores [33]

Figure 2.5: HPDcache microarchitectural overview

HPDCache is an L1 cache that offers a non-blocking pipeline with up to 128 MSHRs,
with a write-through and write-no-allocate policy and a write buffer. The cache associa-
tivity and size can be congured at compilation time. The design also includes a cong-
urable hardware prefetcher that can improve the cache’s throughput.

The main drawback of L1 designs is that they are not thought for shared environ-
ments. As such, they lack the necessary frontend features necessary for their use in
multicore systems. In the case of the HPDCache, the frontend bus implements a xed
priority mechanism in which a static priority must be set between the cores connected to
it at compilation time. Also, the line size is limited to 32b, which must be changed for its
use as an L2.

2.3.4. OpenPiton

OpenPiton is an open-source manycore research framework created by Princeton Univer-
sity [34]. OpenPiton includes a high-performance L2 cache in its framework for their pro-
cessor implementations. OpenPiton’s cache exhibits good multicore performance thanks
to its 8-entry MSHR, allowing it to have up to 8 outstanding misses. It implements a
write-back and write-allocate policy and offers a pseudo-LRU replacement policy. Both
cache size and associativity can be congured.

Although OpenPiton offers great performance, its reusability is quite difcult, and
requires modifying signicantly the original design. Firstly, their L2 cache is designed
to be distributed. Then, their L2 implements a native bus in its backend and frontend.
In essence, the component is highly coupled to their SoC, making portability to other
projects costly.

2.3.5. L2C-Lite

The GRLIB IP library [35, 36], developed by Frontgrade Gaisler, offers multiple com-
ponents for the implementation of complete SoCs. This library contains modular and
reusable plug & play IP cores that make adding extensions to an existing system efcient
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and cost-effective. The GRLIB open-source version of this library comes with a GNU
GPLv2 license for academic and prototyping purposes.

L2C-Lite is their open-source L2 lightweight cache controller. It offers a high con-
gurability, implements standard buses (AHB and AXI), and uses a write-back, write-
allocate policy. Furthermore, two different replacement policies can be congured at
compile time: pRandom or BT-pLRU.

However, its multicore performance is quite limited due to the blocking nature of the
cache, even with asynchronous backend writing support. This restricts the scalability of
the systems implementing it.

2.3.6. Comparison

Table 2.1 resumes the cache comparison. This table shows how the available open-source
caches in the market, are not t for the proposed problem. Thus, to address our needs,
we decided to extend the functionality of one of the caches.

PoC Cache IOb-Cache HPDcache OpenPiton L2C-Lite

HDL VHDL Verilog SystemVerilog Verilog VHDL

Congurability Medium High High Medium High

Standard

Interfaces
No AXI4 in backend

AXI5 backend
adapter available

No
AHB in frontend

AHB & AXI in backend

Portability Medium-Low Medium Medium Low Medium-High

Write policies
Write-through w/o

write buffer
Write-through

with write buffer
Write-through

with write buffer
Write-back Write-back

Replacement

policies
LRU pLRU pLRU pLRU pRandom or pLRU

Non blocking

features
None None up to 128 MSHR 8-entry MSHR

Asynchronous backend
write

Multicore

performance
Low Low Not supported High Medium-Low

QoS mechanisms None None None None None

Table 2.1: Available open-source caches comparison

The L2C-Lite was considered the most complete alternative, due to its high cong-
urability and portability, as well as a quite complete design feature-wise, which could be
easily upgradable.





CHAPTER 3

Baseline Design Analysis

In this chapter, we will delve deeper into the previously introduced design of the L2C-
lite module, outlining its limitations and understanding its structure for the upcoming
modications to the design.

3.1 Conguration

One of the most prominent features of the L2C-lite open-source cache is its high cong-
urability. It allows designers to choose the cache associativity, way size, line size, endian-
ness, replacement policy, and the backend bus and width. This exibility makes it usable
in both low and high-end embedded systems. Table 3.1 summarizes the component’s
conguration options.

Parameter Values

Ways 1,2,4,8,16,32

Line size 32,64B

Way size 1,4,8... 1024KiB

Endianness little endian, big endian

Replacement policy pRandom, BT-pLRU

Backend interface AHB2.0,AXI4

Backend bus width 32,64,128B

Table 3.1: L2C-Lite Parameters

3.2 L2C architecture

The architecture of the L2C-Lite module is formed by three different components, shown
in gure 3.1. First, we nd a control component, that interacts with the frontend inter-
face, which is hardcoded into the module, and handles the Finite State Machine (FSM).
The memory module contains the logic surrounding the SRAM, provided by Gaisler’s
SYNCRAM_2P IP core. Finally, we nd a backendmodule that implements a detachedmem-
ory interface. This module is also a Gaisler IP Core, called Generic Bus Master (GBM).
L2C-Lite exclusively uses AHB 2.0 on its frontend. For the backend, the L2C-Lite cache
enables the use of either AHB 2.0 or AXI.

The L2C-Lite design is quite modular; however, the frontend could also be detached
from the main functionality of the component, making the design even more portable,

17
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Figure 3.1: L2C-Lite top level module diagram

exible, and extendable in the future. This is one of the design aspects that will be tackled
in our extension.

Control

As aforementioned, the control module manages the state machine of the cache depend-
ing on the inputs given by the frontend bus and the current state of the cache module.
The internal registers of the cache are located here: a status register, an access and hit
performance counters, and a ush enable register.

The control module can be considered as the main module of Gaisler’s cache. It is re-
sponsible for handling both frontend and backend interfaces, using AHB and bm buses; it
communicates to thememmodule with the ctrl bus, passing all the necessary information
to ensure the correct functionality of the component; and it handles the state machines
and internal registers. This results in a very high-complexity module, with many func-
tionalities, that complicates its modication.

Figure 3.2 shows the FSM of the component. The states of the l2c-lite cache are:

• IDLE → The idle state samples the frontend bus and changes the state of the cache
to serve a request if needed. If the request is valid, and it wants to access the cache
memory, the state is changed to either READ or WRITE, depending on the type of op-
eration. If the address is not cachable, a direct memory operation will be needed,
then the next state will be either DIRECT_READ or DIRECT_WRITE. Finally, if the re-
quest targets the cache internal registers, the transfer is handled by the idle state. In
the special case that the ush bit is set, the cache moves to the FLUSH state.

• READ → The read state implements a read operation to the cache. First, if the
backend is busy, wait cycles are introduced. If the requested block is not in the
cache, the access will be a miss and the data must be fetched from the next memory
module; so the next state is set to BACKEND_READ. If the access is a hit, the data given
by the memory module through the ctrl bus is copied to the frontend bus, which
nishes the operation. If the next request is a read burst operation to the same
memory block, the next state is set to R_INCR, otherwise, it is set to IDLE.

• WRITE→ In a similar way as in the read state, after checking if the backend is free,
if the access is a miss, the next state is set to BACKEND_READ. If it is a hit, one cycle of
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Figure 3.2: L2C-Lite FSM. Write and read states are grouped to improve readability

delay is introduced to complete the read-modify-write sequence. The next state is
set to W_INCR if the next request is a write burst to the same memory block; else, the
cache moves to the IDLE state.

• BACKEND_READ → This state does a read operation to the next memory level to
obtain the data needed to complete either a read or write operation. The bm bus is
used to do so. The cache waits until the data is ready. Once ready, the fetched data
is written into the cache and the state moves to either READ or WRITE depending on
the transfer type.

• DIRECT_READ → A read operation to the next memory level is done in the same
way as in the backend read state, but instead of sending the data tomemorymodule
to write it into the cache memory, the data is written to the frontend bus. Once
nished, the cache moves to the IDLE state.

• DIRECT_WRITE→ Issues a write request to the next memory level and waits until
the transaction is conrmed. Then, the next state is set to IDLE.

• FLUSH → The cache invalidates all of the availble lines. The cache waits until the
memory module indicates that the ush operation has nished, then goes to IDLE.
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• R_INCR → This state writes into the frontend bus the requested data available in
the ctrl bus because of the previous read operation. If the next operation is a read
burst accessing the same block, the state of the cache will not change. Otherwise, it
is set to IDLE.

• W_INCR → The cache either keeps its state if the next operation is also a write
burst to the same block, or moves to IDLE. In this case, a delay cycle is not needed
because the previously read data can be reused.

The control module contains another state machine containing the necessary logic
to implement the asynchronous writes to the next memory level (gure 3.3). This FSM
has two states: IDLE and BACKEND_WRITE. The backend moves to the backend write state
when, after a miss to the cache, a dirty line is evicted and the new line is being written
into the data memory. The logic needed to do this write operation to memory is the same
as the one used in the direct write transfers, writing the request into the bm bus, and
waiting until the transfer is conrmed.

Eviction flag

set?

Backend

busy?

Write

Finished?

IDLE

BACKEND

WRITE Y

N

Y

NN

Y

Based on diagram in [37]

Figure 3.3: L2C-Lite backend nite state machine

Memory

L2C-Lite implements write-back and write-allocate policies. It comprises two types of
memories: One data memory, which holds the cache lines; and one tag memory, in which
the tag, the line owner, and the valid and dirty bits are stored. Each way has its own
separate tag and data memories. These memories are dual-port, allowing one read and
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one write operation per cycle. However, L2C-Lite only allows one operation (either write
or read) at a time. This will be optimized in the new version of the cache.
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Figure 3.4: L2C-Lite hit ow
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Figure 3.5: L2C-Lite miss ow

L2C-Lite is a blocking cache, only supporting processing one request at a time. A
request to the cache starts with a parallel tag lookup, checking whether the access is a hit
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or a miss. A hit read takes one cycle, and a write operation takes two cycles due to the
read-modify-write sequence (gure 3.4). When a miss occurs, the cache will wait until
the backend is free (if needed) and until the backend read operation ends, not processing
any new possible upcoming requests. However, the cache offers asynchronous backend
writes, allowing cache hits to be served while an evicted line gets written to the next
memory level. Figure 3.5 summarizes the miss ow of the component.

The replacement policy implementation is found in the memory module. In the cur-
rent design, changing the replacement policy can only be done at runtime. The ran-
dom policy consists of a simple wrapping counter that represents the way to be replaced.
On the other hand, the pLRU replacement policy is implemented in two functions, one
chooses the line to evict in case of a miss, and the other one updates the pLRU tree in case
of a hit.
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Figure 3.6: L2C-Lite ush mechanism ow diagram

The ushing mechanism in the cache invalidates all of the cache lines. As write-back
is the write policy being used, the dirty lines must be written back to the next memory
level. Figure 3.6 shows the ow of the ush state of the cache. Two counters, one that
keeps track of the cache way, and another one that keeps track of the index, are being
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used. All of the cache lines are visited, invalidating them, and writing them to the next
memory level if needed.

3.3 Methodology

All of Gaisler’s synchronous, single-clock modules are based on the two-process hard-
ware description methodology. This methodology helps to reduce the number of errors
when describing a component and, thus, helps to reduce the development time.

This methodology denes that each synchronous entity (VHDL le) must comprise
only two processes. The rst one must contain all of the combinational logic, which does
not depend on the clock. The second process must contain the sequential logic, that is,
the description of the registers of the component. Furthermore, the system’s registers are
dened in records, which makes adding or modifying signals much easier and prevents
errors such as not setting default values, causing undesired ip-ops; or missing signals
in the sensitivity list, which can cause the synthesis tools to incorrectly reduce necessary
logic. [38]

This methodology is crucial to understand the VHDL code in the L2C-Lite module
and to extend the module effectively. In addition, this approach will be followed for the
rest of the new modules created to provide future functionality in the module.





CHAPTER 4

Architectural design &

implementation

This chapter explains in detail the changes done to the original design to achieve a more
modular, scalable, and t design for multicore systems; emphasizing the implementation
of the non-blocking and partitioning mechanisms, central to this work. We call our new
extended design L2C-Lite+, and will refer to it as such.

This new design has been publicly published under the same license as L2C-Lite, the
GNU GPLv2 license. It can be found in: https://github.com/Dar0k/L2C-Lite-plus.

4.1 Revisited cache architecture

Figure 4.1: L2C-Lite+ architecture top view.
In yellow: new modules; in green: modied modules

To achieve a more modular and exible design, we revisited the existing cache archi-
tecture, shown in gure 4.1. The main change made to the architecture was the addition
of a frontend module. This new addition isolates the bus implementation, previously
hardcoded into the internal cache operation, which makes swapping the frontend bus to
a different technology much more effortless. Not only that; it also facilitates the mod-
ication of the request and response mechanism for further extensions. Furthermore,
this signicantly reduced the complexity of the previous control and memory modules,
making the new version more simple and comprehensible.
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Our new frontend implementation keeps supporting only AHB 2.0, whose requests
are translated into a less complex native bus that ts the needs of the cache. However, the
addition of the frontend module enables the seamless integration of other more powerful
interfaces such as AXI.

4.2 Frontend

The frontend module was designed to be as simple as possible, allowing future exten-
sions and optimizations if needed. This module handles both requests and responses of
the AHB slave interface. The requests are translated from AHB into a simpler bus, the
cache-frontend bus: cf. This bus implementation contains only the necessary informa-
tion for the correct operation of the cache, simplifying the control and memory modules.
Tables 4.1 and 4.2 show the cf bus signals’ description.

Signal name Size in bits Description

Valid 1
Indicates whether the request must
be served (’1’) or ignored (’0’)

Write 1
Indicates whether the operation
is a read (’0’) or a write (’1’)

Transfer_size 3
Indicates the size of the transfer.
AHB’s transfer sizes, dened in
the HSIZE vector are being used [22]

Addr 32
Indicates the operation’s target
address

IO_request 1
Indicates whether the access
is directed to memory (’0’) or
to internal registers (’1’)

Master 4
Indicates the cpu or peripheral
that made the request

Write_data AHBDW
Bus where the data for write operations
is located

Table 4.1: Frontend to cache bus (c) signals’ description

Signal name Size in bits Description

Resp 2

Cache response signal. Four different
signals are available: Wait ("00") when
more time is needed to obtain a response,
Ready ("01") when the transfer ends,
and then miss_accept ("10") and miss_deny ("11")
to support non-blocking backend transfers

Read_data Linesize
Returns the requested read data from
memory

Fetch ready 1
Indicates when the previous backend transfer
has ended (’1’), and the backend gets freed

Table 4.2: Cache to frontend bus (cfo) signals’ description

The frontend unrolls AHB’s pipelined address/data phases (section 2.1.1), maintain-
ing in the cf bus the current request at all times. A MUX is used to drive the requests
into the cache. When the cache indicates that the previous request has ended ( through
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the response signal), the next request is selected in the MUX, saving one cycle. This is
necessary in order to pipeline the request/response mechanism that we implemented in
the cache, which will be explained in detail in the following sections. Figure 4.2 shows
the physical implementation of the frontend mechanism explained above.

DFF

CE

AHB slave input
Translate AHB to

cache-frontend

interface

D

M
U
X

CF_RESP

CF_RESP ==

READY

CF_in

Figure 4.2: Frontend pipeline unrolling physical implementation

4.3 Control module

In this section, we introduce the contributions done to the control module of the cache.

4.3.1. Non-blocking implementation

In our cache design, we changed the blocking implementation of the original L2C-lite
into a hit-under-miss approach, in which we can keep serving hits as they come, but only
have one outstanding request into the backend. This implementation required chang-
ing signicantly the cache’s access ow. To support this, the cache response has been
extended to include two new cases: MISS_ACCEPT and MISS_DENY. As in the original ver-
sion, the rst action that is performed when a memory request enters the cache is looking
up the tag, which will decide whether the transaction results in a hit or a miss. The cache
behavior for serving hits has not been modied signicantly. However, the miss ow
has been notably altered. In our implementation, a miss transfer is only processed if the
backend is free. Otherwise, a MISS_DENY response is given, indicating to the frontend that
the transfer must be retried later.

Once the backend is free, if the incoming request is a read miss, the cache gives a
MISS_ACCEPT response. This indicates that the request has been made to the next memory
level, and a signal will be made active once the data is received. Once the data is received,
the transfer is completed by writing the response into the frontend bus. At the same time,
this upcoming data is written into the cache’s memory.

On the other hand, when a write miss request comes (and the backend is free), it gets
accepted, giving an OKAY response, indicating that the transfer has been completed. The
cache saves the write data, and launches a request to the backend. Once the data is back,
it is modied according to the write operation and written into the cache. As the data has
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Figure 4.3: L2C-Lite+ miss ow

been modied, the dirty bit is set. Further accesses to this line while it is being fetched
frommemory won’t cause a problem as they will result in a miss and will be denied until
the backend is free, when the operation has ended.

In both reads and writes there are some common extra actions being made to ensure
that the mechanism works as intended. Once the evicted line has been chosen, its valid
bit is set to ’0’. If the evicted line is dirty, the write request to memory will be made
immediately after the miss request data gets back, having priority over other misses.
Finally, in order to write the data back into the cache after it gets back from the backend,
some information, such as the address and the owner, must be saved in buffers to update
the tag accordingly. Figure 4.3 summarizes the non-blocking mechanism changes.

If a miss is coming back from the backend while a write hit operation is taking place
we need to set some type of priority, as both operations request to write to the cache si-
multaneously. In this case, writing the miss to the cache will have priority over serving
the hit, resulting in a wait cycle being inserted into the write hit transaction.

Frontend adaptation

The design of the non-blocking mechanism has been made keeping in mind the different
possible frontend implementations, and it has been tried to make it as portable as possi-
ble. For example, proper MSHR registers could be set up in the frontend, which can send
the next miss transfer as soon as the backend gets freed.

Our frontend implementation uses AHB, a blocking bus, in which the next transfer
cannot be served until a response for the previous one has been given. Thus, adding
MSHRs to the frontend would not be as benecial. Our solution makes use of AHB’s split
responses. This special response unlocks the bus and sleeps themaster until it is explicitly
re-activated by making use of the HSPLIT vector. When a MISS_ACCEPT or MISS_DENY

response comes from the cache, the frontend layer sends a split response to the master.
Then, the bus gets freed to be able to serve new requests. Once the requested (read) data
returns from the backend, the frontend awakens all of the slept masters.
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One thing to consider is that, in AHB, once a master gets awakened it must compete
again for access to the bus. Then, it is possible that in read miss transactions the fetched
data from the backend gets modied or even evicted from the cache before the requesting
master can read it. This can lead to errors or cyclic dependencies that prevent the core
from advancing. To solve this, we added a miss buffer for each master to the frontend.
This buffer, of size linesize+ 1, holds the last fetched data from the backend and a valid
bit. When the fetched data returns from the backend, it is written into the cache and for-
warded to the frontend, where it gets saved in the buffer corresponding to the requesting
master, and the valid bit is set. When a master accesses the cache, if its miss buffer’s valid
bit is set to 1, the frontend returns the corresponding data from the miss buffer and resets
the valid bit.

It must be kept in mind that with this implementation, a read miss transfer is more ex-
pensive than before, as now, on top of the miss base latency, the master must compete to
access the bus to read the data. However, this could be avoided by using a non-blocking
bus. This would improve the cache throughput and not affect the transfers’ latency. How-
ever, we decided to make this trade-off to improve multicore performance.

4.3.2. Optimizing for AHB: Pipelining requests and responses

To fully optimize the throughput using AHB, we pipelined the request and response
mechanism, taking advantage of AHB’s implementation, where the response to the cur-
rent request is made while the next request is available in the bus.

Then, now, instead of always passing through the IDLE state, if another valid request
is ready in the bus, the next state is calculated just at the end of the previous transaction,
saving one cycle in the case of back-to-back transfers. Otherwise, the cache will still move
to the IDLE state.

Even if this optimization is not as useful in single-core environments, as idle cycles are
usually found between requests; in multicore systems, where the interconnect pressure
is much higher, most requests are back-to-back, making the saved cycle noticeable. This
functionality has been implemented in a separate function that is called at the end of each
of the states, simplifying the code signicantly. The implementation of this function can
be seen in listing 4.1.

1 func t ion s ta teAfterResponse ( s i gna l frontend : in cf_out_type )
2 re turn s t a t e_ type i s
3 begin
4 i f frontend . va l id = ’1 ’ then
5 i f frontend . IO_request = ’0 ’ then −− Request to cache data
6 i f frontend . wri te = ’0 ’ then −− Read
7 i f i s _ cachab le ( frontend . addr (31 downto 28) , cached ) then
8 re turn READ_S ;
9 e l s e

10 re turn DIRECT_READ_S ;
11 end i f ;
12 e l s e −− Write
13 i f i s _ cachab le ( frontend . addr (31 downto 28) , cached ) then
14 re turn WRITE_S ;
15 e l s e
16 re turn DIRECT_WRITE_S ;
17 end i f ;
18 end i f ;
19 e l s e −− IO request
20

21 i f frontend . wri te = ’0 ’ then
22 re turn IO_READ_S ;
23 e l s e
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24 re turn IO_WRITE_S ;
25 end i f ;
26 end i f ;
27 e l s e −− Not va l id
28 re turn IDLE_S ;
29 end i f ;
30 end funct ion sta teAf terResponse ;

Listing 4.1: Function to calculate next state after operation has ended

4.3.3. Simplifying the state machine

Some changes were made to the state machine to implement the non-blocking cache and
the pipelining mechanism explained above. Two new states were added, and three were
removed, simplifying the state machine overall. Figure 4.4 shows the new main cache
FSM after the changes.
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Figure 4.4: L2C-Lite+ main FSM

The two newly added states were IO_READ and IO_WRITE. These states enclose the
functionality to access and modify the cache internal registers, previously held in the
IDLE state. This makes the IDLE state smaller and easier to understand as now only one
main function is done in each state.

On the other hand, some other states were removed. Two of them were the R_INCR

and W_INCR states, which gave support to burst operations. As the cache now does not
add an idle cycle between requests, an N read burst (hit) operation can be served in N
cycles. Thus, the additional logic is not necessary now, and the states can be removed. In
the next section, we will explain the changes made to provide one-cycle write operations;
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this means that the write burst state will also no longer save any cycles, and thus, it can
be removed.

Finally, the BACKEND_READ state was moved to the backend state machine to support
non-blocking backend read operations. This extends the backend FSM as it can be seen
in gure 4.5.
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Figure 4.5: L2C-Lite+ backend nite state machine

4.4 Memory module

This section talks about the contributions made to the memory module of the cache.

4.4.1. Simultaneous read and writes

The previous cache design did not take full prot from the underlying two-port memory
because, even if simultaneous read and write operations to the memory were possible,
only one of them was done at the same time.
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This optimization makes write-hit operations last one cycle instead of two. When a
write request starts, in cycle zero, a read operation to the cache is initiated. In the next
cycle, cycle one, the memory returns the data, the tag is checked, and if it matches, the
data is modied accordingly. Finally, the write operation is prepared to be effectuated at
the end of the cycle. If the next request requires reading from the cache, a reading request
to the memory is prepared to be done simultaneously with the write.

One of the cases that must be considered is when writing and reading operations are
being made simultaneously to the same memory address. The SYNCRAMmodule being
used did not guarantee that the result would be correct. Thus, extra logic is being used
to bypass the write data into the reading port when the address matches.

4.4.2. Random replacement policy update

As was discussed in the baseline design, the random replacement policy could be im-
proved, as the replacement could be undesired when access to the cache follows a certain
pattern. In addition, the policy had to be revisited in order to implement partitioning
over it.

The new implementation is enclosed in a new module, called randomWayReplacement,
containing the logic that selects the next way to evict. This implementation is based on
a Linear Feedback Shift Register (LFSR), a shift register whose output only depends on
its previous state. It provides a pseudo-random output, which eventually repeats; the
larger the number of bits, the longer the cycle length. Figure 4.6 shows the maximum
cycle length depending on the number of bits being used.

Source: EEtimes: Linear Feedback Shift
Registers (LFSRs) [39]

Figure 4.6: LFSR maximum length of loop and needed XOR taps depending on the number of
bits

In our case, an 8-bit LFSR is being used, where the output of bits 1,2,3 and 7 is being
"XORed" and being used as the input to the shift register. With respect to the previous
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mechanism, the perceived "randomness" of the component is much higher, preventing
excessive replacements in a subset of ways due to certain access patterns much more
unlikely.

1 −− GENERATES RANDOM NUMBER WITH 8−BIT LFSR
2 randomNumberGen : process ( clk , l f s r )
3 begin
4

5 i f ( r i s ing_edge ( c lk ) ) then
6

7 fo r i in 1 to 7 loop
8 l f s r ( i ) <= l f s r ( i −1) ;
9 end loop ;

10

11 end i f ;
12

13 l f s r ( 0 ) <= l f s r ( 1 ) xor ( l f s r ( 2 ) xor ( l f s r ( 3 ) xor l f s r ( 7 ) ) ) ;
14 randomNumber <= to_ in t ege r ( unsigned ( l f s r (0 to 7 ) ) ) ;
15

16 end process ;

Listing 4.2: LFSR random number generation

4.4.3. Partitioning

To partition L2C-lite+ we have followed a way-based partitioning approach. This tech-
nique segments the cache into way-size sections and assigns them to one or more masters
(usually CPU cores), who will be the only ones allowed to allocate lines in that section.
Our design is inuenced by Intel’s Cache Allocation Technology (CAT) [25], introduced
in section 2.2. In a similar way, we dene four different groups into which the busmasters
(either cores or peripherals) can be mapped. Each group has associated bitmasks repre-
senting the cache space into which its corresponding masters can allocate data. Both the
mapping ofmasters to groups and themodication of bitmasks can be done at runtime by
anymaster by writing into the cache’s Conguration and Status Registers (CSRs), provid-
ing a exible design that can t the user’s needs and allowing software-dened dynamic
partitioning policies to be implemented. Our partitioningmechanism implementation al-
lows to dene either overlapped bitmasks, better for performance, or isolated bitmasks,
better for safety. A group can also be restricted of allocating lines into the L2 by assigning
them 0 ways. This will cause them to do direct-memory operations instead.

Allowing the partitioningmechanism to be easily changed by software opens the door
to other dynamic partitioning approaches that can build on top of the hardware imple-
mentations and adapt to the state of the cache to fully optimize the performance of the
available hardware.

pRandom

No information was found about the implementation details of partitioning over a ran-
dom replacement policy, so a novel approach was taken. The previous modularization of
the random way selection, explained in section 4.4.2, signicantly easied the design and
implementation of this mechanism.

The basic idea behind our design is using the random number generation provided
by the LFSR to shift a pointer each cycle that indicates the way, W, to be replaced. The
remainder of the division of LFSR with the number of ways provides the new position of
the pointer; this is a cheap operation as the number of ways must be a multiple of two.
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Then, partitioning bitmasks dened by the user are used to determine which ways each
owner can evict. If the partitioning bitmask in position W is ’1’, that is, the master can
evict in that line, a signal that indicates the last chosen way is updated. When a line has
to be replaced using the random replacement policy, the line in the last chosen way is the
one evicted.

Although this design has not been proven theoretically, its practical implementation
works well as the way selection has been observed to be (relatively) uniform.

1 waySelect ion : process ( clk , rs tn , enable )
2 va r i ab l e wayPointer : i n t ege r := 0 ;
3 begin
4

5 i f r s tn = ’0 ’ then
6 bitmask_array <= ( others => ( others => ’ 1 ’ ) ) ;
7 lastWay <= ( others => ways ) ;
8

9 e l s i f r i s ing_edge ( c lk ) and enable = ’1 ’ then
10

11 i f wri te = ’1 ’ then
12

13 −− WRITES BITMASK AND SETS LAST WAY TO UNDEFINED
14 bitmask_array ( b i tmask_se lec t ) <= bitmask_write ;
15 lastWay ( b i tmask_se lec t ) <= ways ;
16

17 e l s e
18 −− UPDATES POINTER POSITION
19 wayPointer := wayPointer + randomNumber ;
20 wayPointer := wayPointer rem ways ;
21

22 −− UPDATES LAST WAY IF POINTER IS SELECTING VALID WAY
23 fo r i in 0 to numBitmasks − 1 loop
24

25 i f bitmask_array ( i ) ( wayPointer ) = ’1 ’ then
26 lastWay ( i ) <= wayPointer ;
27 end i f ;
28 end loop ;
29 end i f ;
30 end i f ;
31 end process ;

Listing 4.3: Random partitioning mechanism

pLRU

Our implementation of the partitioning mechanism is based on the design proposal by
Kedzierski, Kamil, et al. [1]. They propose extending the replacement algorithm with
two vectors of bits per way, pLRU_left and pLRU_right of sizeWays− 1 (see Figure 4.7).
Each bit in these vectors is associated with a parent node of the binary eviction tree and
can force the direction of the search down the left or right subtree. If the bit in the left
vector is set to ’1’, that would mean that no ways are assigned to that master in the right
sub-tree, so the search must continue down the left sub-tree. Likewise, if the bit in the
right vector is set to ’1’, the search must continue down the right sub-tree. If the bit is
set to ’0’ in both the right and left vectors, we must check the node’s value indicating
the sub-tree in which LRU way is located (behaving as a normal BT-pLRU scheme). We
added one special case to this design: setting both left and right bits in the root node to ’1’
represents that the master has no ways assigned, leading to a direct-memory operation.

To implement this policy, the update and eviction pLRU functions had to be modied
(see listing 4.4). In the update function, the path to the visited node is only updated in
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Source: Adapting Cache Partitioning Algorithms to
Pseudo-LRU Replacement Policies [1]

Figure 4.7: pLRU partitioning implementation proposed in [1], we call up and down vectors, left
and right, respectively, following more standard tree representations

the parts of the tree in which the owner can access ways. In this way, we ensure that the
node accessing cannot interfere in the eviction order in ways they do not own. On the
other hand, in the eviction function, the search is restricted to the ways that the owner
has the power to evict, as explained before.

1 −−−− PROCEDURE DESCRIPTION :
2 −− Updates the pLRU b i t s to ind i c a t e which was the most recen t access .
3 procedure pLRU_update ( va r i ab l e pLRU_data_out : out s td_ log i c _vec to r (0 to ways

− 2 ) ;
4 va r i ab l e pLRU_data : in s td_ log i c _vec to r (0 to ways

− 2 ) ;
5 va r i ab l e h i t_ index : in in t ege r range 0 to ways − 1 ;
6 va r i ab l e pLRU_left : in s td_ log i c _vec to r (0 to ways −2) ;
7 va r i ab l e pLRU_right : in s td_ log i c _vec to r (0 to ways −2) ) i s
8 va r i ab l e index : in t ege r range 0 to ways − 1 :=

hi t_ index ;
9 begin

10 pLRU_data_out := pLRU_data ;
11 index := h i t_ index / 2 + (ways/2 − 1) ;
12 i f ( pLRU_left ( index ) = ’0 ’ and pLRU_right ( index ) = ’ 0 ’ ) then
13 i f ( h i t_ index rem 2) = 0 then
14 pLRU_data_out ( index ) := ’ 0 ’ ;
15 e l s e
16 pLRU_data_out ( index ) := ’ 1 ’ ;
17 end i f ;
18 end i f ;
19 f o r i in 1 to log2ex t (ways − 1) loop
20 i f ( index rem 2) = 0 then
21 index := index/2 − 1 ;
22 i f ( pLRU_left ( index ) = ’0 ’ and pLRU_right ( index ) = ’ 0 ’ ) then
23 pLRU_data_out ( index ) := ’ 1 ’ ;
24 end i f ;
25 e l s e
26 index := index /2;
27 i f ( pLRU_left ( index ) = ’0 ’ and pLRU_right ( index ) = ’ 0 ’ ) then
28 pLRU_data_out ( index ) := ’ 0 ’ ;
29 end i f ;
30 end i f ;
31 end loop ;
32 end pLRU_update ;
33

34 −−−− PROCEDURE DESCRIPTION :
35 −− Traverses the pLRU t r e e to f ind the " Least r e c en t l y used " index .
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36 procedure pLRU_evict ( va r i ab l e pLRU_data : in s td_ log i c _vec to r (0 to ways − 2) ;
37 va r i ab l e output_index : out in t ege r range 0 to ways ;
38 va r i ab l e pLRU_left : in s td_ log i c _vec to r (0 to ways − 2) ;
39 va r i ab l e pLRU_right : in s td_ log i c _vec to r (0 to ways − 2) )
40 i s
41 va r i ab l e index : in t ege r range 0 to ways := 0 ;
42

43 begin
44 i f pLRU_left ( 0 ) = ’1 ’ and pLRU_right ( 0 ) = ’1 ’ then
45 output_index := ways ; −− CPU HAS NO WAYS ASSIGNED
46 e l s e
47

48 fo r i in 1 to log2ex t (ways − 1) loop
49 i f ( pLRU_data ( index ) = ’0 ’ and pLRU_left ( index ) = ’ 0 ’ ) or pLRU_right (

index ) = ’1 ’ then
50 index := 2 * index + 1 + 1 ;
51 e l s e
52 index := 2 * index + 1 ;
53 end i f ;
54 end loop ;
55

56 i f ( pLRU_data ( index ) = ’0 ’ and pLRU_left ( index ) = ’ 0 ’ ) or pLRU_right (
index ) = ’1 ’ then

57 output_index := 2 * ( index − (ways/2 − 1 ) ) + 1 ;
58 e l s e
59 output_index := 2 * ( index − (ways/2 − 1) ) ;
60 end i f ;
61 end i f ;
62 end pLRU_evict ;

Listing 4.4: pLRU partitioning RTL implementation

4.5 Conguration and Status Registers (CSRs)

New internal registers were added to the cache to see the component’s state and control
it at runtime. Apart from the partitioning-related registers, already explained in the pre-
vious section, new performance counters were added to the cache to see the behavior of
the cache in more detail under certain conditions. Two new performance counters have
been added: a dirty eviction counter that keeps track of the backend writes being done to
the next memory level, and a replacement counter per way, especially useful to monitor the
effect of partitioning setups. Additionally, now the replacement policy is congurable at
runtime instead of at compile time by writing into the cache conguration register.

Most of the registers are still located in the control module, but the ones related to par-
titioning have been implemented in the memory module. However, the existing register
interface remains unchanged for the programmer: access to the CSRs can be achieved by
reading and writing to the cache address + the corresponding offset. Table 4.3 summa-
rizes the CSRs of the module. A full explanation of the registers’ structure and options is
available in the technical specication, in Appendix B.
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AHB address offset Register

0x00 Flush enable register

0x04 Access counter

0x08 Miss counter

0x0C Cache conguration

0x10 Dirty eviction counter

0x14-0x20 Group 0-3 random partitioning bitmask

0x24-0x30 Group 0-3 pLRU left partitioning vector

0x34-0x40 Group 0-3 pLRU right partitioning vector

0x44 Master to group register

0x48 Way 0 replacement counter

0x4C Way 1 replacement counter

... ...

0x48 + N*4 Way N replacement counter

Table 4.3: L2C-Lite+: Cache updated registers. N stands for the way number.





CHAPTER 5

Evaluation

5.1 Testing environment & conguration

To evaluate the L2C-lite performance we have built a 6-core SoC with an architecture
similar to the one proposed in SELENE [40], shown in gure 5.1, which implements
GRLIB’s NOEL-V cores. NOEL-V is a high-performance embedded processor built for
safety-related applications. Our conguration of the core is a pipelined, dual-issue, in-
order processor with a private 4-way 16KB L1$ implementing a write-through policy. Six
symmetrical cores were used.

Figure 5.1: Testing environment simplied top view

Both L2C-Lite and the improved L2C-Lite+ will be (separately) plugged as shared L2
caches into the SELENE SoC in order to obtain metrics. Both cache congurations will be
4-way, 512KBwith 64B line size. The cores can access the L2 using a 128b-wide shared bus
implementing the AHB 2.0 bus. The L2 connects to a DDR4 SDRAM using a 128b-wide
AXI4 bus.

5.2 Verication

To verify a module of this complexity, many tests are needed to ensure that the behav-
ior exhibited by the component is correct for any access pattern. This is a really hard
problem, widely studied, and any commercial company that develops hardware has
a dedicated team, the verication team, that is in charge of ensuring the system’s cor-
rect functionality. In our case, verication was achieved using simulation and emulating
tools.

39
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Simulation is key in the design of hardware components. It allows, in an easy and fast
way, the developer to see what is happening inside the component by showing how the
internal signals change over time depending on the stimuli provided by the testbench.
This is a fundamental step in the development of hardware, as implementing a nal
testable product is expensive both nancially and time-wise. However, it must always
be kept in mind that the behavior observed simulation is not always the same as the
one exhibited by the nal physical component, which can be caused due to an incorrect
description or timing problems. In VHDL development, either Siemens’ ModelSim or
Xilinx Vivado are usually used to simulate designs. In this project, ModelSim is being
used.

For this project, the SELENE testbench allowed us to perform full system simulations
in both single-core and multicore environments. This testbench allowed us to simulate
real (simple) code. An example of the code being used to verify the system is shown in
listing 5.1. This code veries the correct functionality of the internal registers of the cache,
executes code in multiple cores, makes use of partitioning, and launches a testbench that
accesses the L2, doing both read and write hits and misses. This was the main code used
for simulation to ensure everything was working correctly.

1

2 i n t main ( )
3 {
4 v o l a t i l e char * memorySpace = malloc ( s i z eo f ( char ) *L2_WAY_SIZE*L2_ACCESSES * 6 ) ;
5

6 f o r ( i n t i = 0 ; i < 6 ; i ++)
7 {
8 po in te r s [ i ] = memorySpace+ i *L2_WAY_SIZE * 3 ;
9 # i f d e f DEBUG

10 p r i n t f ( " Po in ter of core %d : %p\n" , i , po in te r s [ i ] ) ;
11 # endi f
12 }
13

14

15 # i f d e f PARTITIONING
16 pa r t i t i on i ng (PLRU) ;
17 # endi f
18

19 //tes tA l lB i tmasks ( ) ;
20

21 countersReset ( ) ; // Reset performance counters
22 setupSecondaryCores ( 6 ) ; //S t a r t secondary cores
23

24 mainCoreTestbench ( ) ; // Execute tes tbench
25

26 f o r ( i n t i = 1 ; i < 22 ; i ++) //Pr in t a l l cache r e g i s t e r s
27 {
28 readReg (BASE_ADDRESS + i * 4 ) ;
29 }
30

31 re turn 0 ;
32 }

Listing 5.1: Example of verication code

5.3 FPGA prototyping

After the component was veried in simulation, the system was emulated in an FPGA.
The SoC was implemented in an AMD’s Virtex UltraScale+ VCU118 FPGA, and results
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were obtained using bare-metal applications. To launch the different workloads in the
SoC the GRMON debug monitor was used.

GRMON is Gaisler’s own debug monitor built to verify their cores. It connects to the
System Under Test (SUT) with a debug link using either UART, Ethernet, or JTAG debug
interfaces. GRMON allows to easily launch code in the SoC cores, change the system
conguration, and see the internal state of the components.

GRMON’s ability to see the content of memory, insert breakpoints, observe the con-
tent of the registers at all times, and print the instruction trace makes testing and debug-
ging code for the designed SoC fast and effective.

In this work, GRMON was used to test the cache design in the FPGA board, debug
the component, and launch the evaluation workloads that will be discussed in the next
sections.

5.4 Partitioning evaluation

We have developed a resource-stressing kernel to validate the cache partitioning imple-
mentation. This benchmark uses two cores that access the same cache set. One of them,
the victim, is performing hits to the L2 memory, while the other one, the aggressor, is
performing misses. Then, we measure the performance and observe the execution time
ination. However, it is important to keep in mind that since both cores are also using
other shared resources, mainly the bus, the execution time ination is not only the re-
sult of inter-task evictions but a combination of the contention suffered across the whole
SoC. Thus, to validate we are able to remove inter-task interference effectively we have
employed the SafeSU [41] contention monitoring unit. The SafeSU allows us to mea-
sure the contention that occurs in the interconnect. Then, if the execution time ination
we observed in the end-to-end execution measurement is greater than the contention
measurements provided by the SafeSU this means there we are suffering from inter-task
evictions. Note that in this controlled experiment we were able to remove other sources
of contention by pre-loading data in the shared cache.

Figure 5.2: Weighed slowdown on victim’s execution time of a L2 hit synthetic benchmark with
an aggressor causing inter-core evictions

Figure 5.2 shows the results of this test. On the left side, we have the bars representing
the shared cache results and on the right side, we have the partitioned cache results.
The two bars of the shared cache show that the victim’s execution time ination cannot
be explained by the amount of contention measured (in blue) with the SafeSU in the
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interconnect. The execution time slowdown is around 9X, whereas the slowdown that
can be justied with the SafeSU is only 5X. However, when we activate the partitioning
we see that the observed slowdown is almost negligible and close to 1 (no contention). It
is important to mention that the contention monitored in the shared cache was observed
at the interconnect, but is actually a consequence of the cache behavior. When the cache
is not partitioned the high amount of misses that need to be served causes the shared
resource to be blockedmost of the time. As we can see in the partitioned cache results, the
contention due to interconnect activity is quite low, which was expected since arbitration
contention is generally lower than end-point contention.

5.5 Performance evaluation

To test the performance of the nonblocking capabilities implemented in L2C-lite+, we
used EEMBC’s Coremark-pro benchmark [42], which is highly popular for measuring
embedded architectures’ performance. We are executing Coremark-Pro in bare-metal,
using one core as a victim, which will run integer benchmarks since there is no open-
source oating point unit in GRLIB, and the rest of cores will act as aggressors, causing
contention in the cache by executing L2 read and write miss stress workloads. One of the
stress workloads being used is shown in listing 5.2.

1 void cache_access ( v o l a t i l e char * puntero , i n t o f f s e t , i n t l a r g e_o f f s e t , i n t
num_acceses )

2 {
3 f o r ( i n t t = 0 ; t < L1_ACCESSES ; t ++)
4 {
5 i n t k = 0 ;
6 fo r ( i n t i = 0 ; i < num_acceses ; i ++)
7 {
8 f o r ( i n t j = 0 ; j < L2_ACCESSES ; j ++)
9 {

10 puntero [ t *32+k+ j * l a r g e _ o f f s e t ] ;
11 }
12 k += o f f s e t ;
13 }
14 }
15 }
16

17 // mhartid represen t s the CPU unique id
18 void secondaryCoreTestbench ( i n t mhartid )
19 {
20 v o l a t i l e char * my_pointer = po in te r s [ mhartid ] ;
21

22 while ( 1 )
23 {
24 cache_h i t ( my_pointer , L1_WAY_SIZE , L2_WAY_SIZE , L2_ACCESSES ) ;
25 }
26

27 }

Listing 5.2: Read miss stress workload code running in aggressors

A TCL script, which can be seen in listing 5.3, is being used to congure the cache and
launch the tests into the cache through GRMON.

1

2 s e t cores 6
3 s e t reps 3
4 s e t benchmarks " c jpeg− ro s e7−pre se t . r i s cv c o r e . r i s c v par se r−125k . r i s cv

s h a− t e s t . r i s c v "
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5

6 cpu d i sab l e 1
7 cpu d i sab l e 2
8 cpu d i sab l e 3
9 cpu d i sab l e 4

10 cpu d i sab l e 5
11

12 fo r { s e t i 0 } { $ i < $cores } { i n c r i } {
13

14 cpu enable $ i
15 puts " $ i cores "
16

17 f o r { s e t t 0 } { $ t < [ l l eng th benchmarks ] } { i n c r t } }
18 fo r { s e t j 0 } { $ j < $reps } { i n c r j } {
19

20 puts [ l index $benchmarks $ t ]
21 load [ l index $benchmarks $ t ]
22 run
23 wmem 0 x f f f f 0 0 0 0 1 #Flush cache
24

25 }
26 }
27 e x i t

Listing 5.3: Tcl code used to obtain performance results

The test results can be seen in gure 5.3. This graph shows how L2C-Lite+ sig-
nicantly reduces the interference between cores in all cases, even with very memory-
intensive aggressors. Our improvement in the parser-125k benchmark is not as high as
in the rest of the cases; this is due to the fact that this benchmark is memory-bound and
causes many misses in the L2. Misses in the cache still suffer from interference, as only
one request is processed in the backend at a time. One of the reasons why the changes are
so signicant is because of the write-through policy used in the L1 caches. This causes
many write-hit accesses into the cache, making the effect of a miss very signicant to the
rest of the cores sharing the cache.

The slowdown in the original cache is even worse in the case of write miss aggressors
because dirty evictions stress the cache’s backend even further, blocking the cache for
longer. The effect of write miss aggressors in the new cache is still visible in the memory-
bounded benchmarks, such as parser-125k, where the slowdown is increased by around
1.6X due to the increased backend demand.

Table 5.1 quanties the performance improvement of the new cache in multicore en-
vironments. We calculate the speedup as the quotient between the slowdowns before
and after the changes. We obtain an average speedup of 13.5X for non-memory-bound
benchmarks, and a 90% improvement formemory-bound benchmarks in the case of read-
miss aggressors; and an average speedup of 18.5X for non-memory-bound benchmarks
and an improvement of 75% for memory-bound benchmarks in the case of write-miss
aggressors.
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(a) Read miss aggressors

(b) Write miss aggressors

Figure 5.3: Weighed slowdown comparison of cache performance based on the number of aggres-
sors (A) doing read and write miss transactions to the L2 before (L2C-Lite) and after the changes

(L2C-Lite+). The victim core is running EEMBC coremark-pro integer benchmarks.

Aggessor

Operation
Application Isolated 1 Aggressor 2 Aggressors 3 Aggressors 4 Aggressors 5 Aggressors

Read miss

Cjpeg-rose7-preset 0,99 1,35 7,963 10,836 14,359 16,103

Core 1,001 1,122 4,731 6,701 9,41 11,283

Parser-125k 0,703 1,219 1,885 1,959 2,048 1,913

Sha-test 1,006 1,41 6,496 8,826 11,668 13,346

Write miss

Cjpeg-rose7-preset 0,99 2,68 8,116 13,034 17,467 21,529

Core 1,001 1,67 5,194 8,73 12,547 16,051

Parser-125k 0,703 1,506 1,517 1,618 1,697 1,751

Sha-test 1,006 2,552 6,686 10,619 14,271 17,823

Table 5.1: Single-thread performance speedup based on number of aggressors doing read and
write miss operations in the shared cache



CHAPTER 6

Conclusion

In this project, we expose the need for new, more powerful open-source components to
meet the demand requirements of state-of-the-art applications. In this context, an exten-
sion to an existing L2 cache that tackles both peak and guaranteed performance needs in
large multi-core systems has been presented. The effect of the new additions has been
tested with benchmarks that exhibit the cache behavior in extreme cases. We prove that
in the improved L2 cache, the performance penalty of sharing the cache is almost elimi-
nated in the case of regular workloads and greatly reduced for memory-intensive ones.

The main contributions made to the cache were:

• Transforming the design to a non-blocking cache, imrpovingmulticore performance

• Include a partitioning mechanism to improve the QoS of the system for both ran-
dom and pLRU policies

• Simplied the state machine and optimized the performance of both the AHB bus
interface and the operations to the cache memory

• Modularized the design, including a frontend detachable interface making the de-
sign easily portable to other systems

• Improved the random replacement policy with a better randomizer preventing un-
necessary evictions caused by specic memory access patterns

• Included new performance counters that provide a better view of what is happen-
ing inside of the component in real time, and providing the possibility of switching
the replacement policy from random to prlu

As it stands, our cache provides an easy-to-use, high-performance solution for mul-
ticore systems with unique features in the open-source domain, such as partitioning. Fi-
nally, this cache has been used in the SELENE project and will be part of the upcoming
project ISOLDE.

6.1 Objective evaluation

This section evaluates the objectives dened in the section 1.2:

• The component must be open-source: The L2C-Lite+ design extends Gaisler’s
open-source design, and as such, it is licensed under the GNU GPLv2 license.
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• The cache must provide performance guarantees, providing some sort of QoS

mechanism: Our cache offers performance guarantees through the presented way-
based partitioning mechanism. This mechanism has been explained and veried;
its effect on performance has been quantied and its exible design allows for an
easy usage to improve performance in any system with this cache.

• The componentmust exhibit good performance inmulticore systems: The cache’s
multicore performance has been greatly improved thanks to the non-blocking de-
sign, which has been proven to be a fundamental feature in shared cache designs.

• The cache must be scalable: The cache’s great congurability makes it t for any
type of system. In addition, the non-blocking cache architecture has been shown
to almost eliminate the penalty of sharing the cache, making it t for SoCs with a
higher core count.

As explained, all of the set objectives dened at the start of the project have been
clearly reached, and as such, if we focus on the main goal of the project: "Creating an
open-source shared-cache implementation t for high-performance embedded systems", we can
afrm that the scope of the project has been achieved.

Finally, other aspects such as the portability, modularity, and simplicity of the design
have also been improved, and as such, they have improved the cache’s ease of use and
expanded the potential reusability of the project.

6.2 Relation to the degree studies

This project is strongly related to the computer architecture subjects taken during the
computer architecture degree: Computer organization (ETC), computer architecture and
engineering (AIC) and advanced architectures (AAV). This work talks about a microar-
chitectural implementation to improve a system’s performance using techniques studied
during the degree. Cache memories were introduced in ETC and AIC, the shared re-
sources problem was explored in more detail in AAV, where partitioning as a QoS mech-
anism to hide the system’s co-runners effect is introduced.

On the other hand, this project has shown a physical implementation. As such, the
high-level components typically used in computer architecture coursesmust be described
in some way, and using a correct methodology and tools. All of this was seen in the De-
sign of Digital Systems (DDS) course. Furthermore, the low-level logic andmemory com-
ponents needed to implement these high-level designs must be understood to effectively
verify and debug the design, mainly seen in computer fundamentals (FCO).

Finally, many other concepts and tools learned in the degree have been used during
the development of this project: programming languages such as C, python, or assembly;
knowledge about software licenses such as the GPLv2 license; or the knowledge of Linux
and bash to launch, format and obtain nal results.

6.3 Future work

Despite the great improvements in performance shown in this project, further extensions
to the design could be done to improve performance:

• AXI frontend support: AHB has been shown to be a very limiting frontend inter-
face. For example, if the cache is going to be used in systems with Out of Order



6.3 Future work 47

(OoO) processors, AHB does not provide out-of-order transfer support, defeating
the entire purpose of an OoO architecture. Additionally, AHB’s active transfer re-
sponsemechanism signicantly affects in some cases the performance of single-core
workloads, and can affect the determinism of the component. Providing support
in the frontend for AXI would solve all of these problems, and would help to po-
tentially boost the performance of the component and easy the addition of new
functionality to the cache.

• Multiple outstanding backend transfers: As it stands, the backend only supports
one outstanding transfer. When using AXI in the backend, the system could be
optimized to launch multiple backend transfers at a time, reducing the interference
shown in the memory-intensive workloads and improving the throughput of the
system.

• Prefetcher: A prefetcher would help reduce the misses done in the cache, effectively
boosting the throughput of the system. A very simple prefetcher could consist of,
when requesting a block from main memory, also requesting the next block, taking
advantage of the spatial locality of a normal program.

• Timings: Currently, the cache module is very tight on timings for a frequency of
100Mhz, as the tag lookup and response are being done in the same cycle. This in-
creases the critical path, and prevents the cache from being implemented in higher-
frequency systems. The main solution would be to separate the tag lookup and
response into two different states; however, this would increase the latency of the
component.
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APPENDIX A

Relation to Sustainable

Development Goals

Sustainable Development Goals High Medium Low
Not

applicable

SDG 1. No poverty ✓

SDG 2. Zero hunger ✓

SDG 3. Good health and well-being ✓

SDG 4. Quality education ✓

SDG 5. Gender equality ✓

SDG 6. Clean water and sanitation ✓

SDG 7. Affordable and clean energy ✓

SDG 8. Decent work and economic growth ✓

SDG 9. Industry, innovation and infrastructure ✓

SDG 10. Reduced inequalities ✓

SDG 11. Sustainable cities and communities ✓

SDG 12. Responsible consumption and production ✓

SDG 13. Climate action ✓

SDG 14. Life below water ✓

SDG 15. Life on land ✓

SDG 16, Peace, justice and strong institutions ✓

SDG 17. Partnerships for the goals ✓

We consider that this project is specially related to SDG 8 and 9. This work has pre-
sented an innovative solution to improve the performance of the industries’ computing
devices. Furthermore, the presence of open-source components is vital to building pro-
totypes, potentially reducing a project’s economic cost.

We can also relate it to SDG 4 due to the project’s open-source nature, which can be
used in educational environments. For example, this project could help to study how to
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implement a cache in RTL or how partitioning improves the performance and QoS in real
systems.

Finally, we see some relation to SDGs 7, 11, and 12 due to the improvement in per-
formance by optimizing an existing design, providing more computing power using the
same resources.
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Technical documentation

B.1 Conguration and Status Registers (CSRs)

B.1.1. 0x00: Flush Enable Register

RESERVED

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

F

31:1 → RESERVED
0 → Flush enable (F). Write 1 to initiate cache ush[w]

B.1.2. 0x04: Access Counter Register

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

ACCESS COUNTER

31:0 → Access counter. Write 0 to clear counter[r/w]

B.1.3. 0x08: Miss Counter Register

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

MISS COUNTER

31:0 → Miss counter. Write 0 to clear counter [r/w]
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B.1.4. 0x0C: Status Register

RES RES

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

REPL WAYS LINE-SIZE WAY-SIZE

31:30 → Replacement policy(REPL), 0 = Pseudo random, 1 = Pseudo LRU [r/w]
29:28 → Reserved
27:20 → Multi-way conguration (WAYS), Associativity -1 [r]
19:16 → LINE-SIZE [r]

0 : 16B
1 : 32B
2 : 64B
3 : 128B
4 : 256B

15:14 → Reserved
13:0 → WAY-SIZE - Size in KiB [r]

B.1.5. 0x10: Dirty Eviction Counter Register

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

DIRTY EVICTION COUNTER

31:0 → Dirty eviction counter. Write 0 to clear counter [r/w]

B.1.6. 0x14-0x20: Group Random Partitioning Bitmask Registers

There are 4 registers of this type, one for each partitioning group. Writing a ’1’ into bit
N, allows that group (the one whose register we are writing to) to allocate lines in way
N.

For instance, assuming the cache is 4-way set associative the register would be as fol-
lows:

RESERVED

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

BITMASK

3 → Way 3 allocation. ’1’ Enables allocation of new lines. ’0’ Disables allocation.
[r/w]

2 → Way 2 allocation. ’1’ Enables allocation of new lines. ’0’ Disables allocation.
[r/w]

1 → Way 1 allocation. ’1’ Enables allocation of new lines. ’0’ Disables allocation.
[r/w]

0 → Way 0 allocation. ’1’ Enables allocation of new lines. ’0’ Disables allocation.
[r/w]
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B.1.7. 0x24-0x30: Group pLRU Left Partitioning Vector Registers

There are 4 registers of this type, one for each partitioning group. Writing a ’1’ into bit
N, forces the search down the left sub-tree when searching on node N. The length of these
registers isW− 1, beingW the total number of ways. The root node is located on theMSB.

Assuming a 4-way set associative cache:

RESERVED

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

LEFT

2 → Root node force left. ’1’ Force left. ’0’ Not force.[r/w]
1 → Node 1 force left. ’1’ Force left. ’0’ Not force.[r/w]
0 → Node 0 force left. ’1’ Force left. ’0’ Not force.[r/w]

B.1.8. 0x34-0x40: Group pLRU Right Partitioning Vector Registers

There are 4 registers of this type, one for each partitioning group. Writing a ’1’ into bit
N, forces the search down the right sub-tree when searching on node N. The length of these
registers isW− 1, beingW the total number of ways. The root node is located on theMSB.

Assuming a 4-way set associative cache:

RESERVED

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

RIGHT

2 → Root node force right. ’1’ Force right. ’0’ Not force.[r/w]
1 → Node 1 force right. ’1’ Force right. ’0’ Not force.[r/w]
0 → Node 0 force right. ’1’ Force right. ’0’ Not force.[r/w]

B.1.9. 0x44: Master To Group Register

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0

31:30 → Master 15 group.[r/w]
29:28 → Master 14 group. [r/w]
27:26 → Master 13 group. [r/w]
25:24 → Master 12 group. [r/w]
23:22 → Master 11 group. [r/w]
21:20 → Master 10 group. [r/w]
19:18 → Master 9 group. [r/w]
17:16 → Master 8 group. [r/w]
15:14 → Master 7 group. [r/w]
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13:12 → Master 6 group. [r/w]
11:10 → Master 5 group. [r/w]
9:8 → Master 4 group. [r/w]
7:6 → Master 3 group. [r/w]
5:4 → Master 2 group. [r/w]
3:2 → Master 1 group. [r/w]
1:0 → Master 0 group. [r/w]

Assigning group to master: Writing the group number into the corresponding master
bits assigns that group to that master. For instance, writing 0xc0000001 into the register
would assign master 15 to group 3, master 0 to group 1 and the rest of masters to group 0

B.1.10. 0x48-0x48+N*4: Way Replacement Counter Register

There are as many counters as ways in the cache.

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

WAY REPLACEMENT COUNTER

31:0 → Way replacement counter. Write 0 to clear counter [r/w]


