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Abstract 

This thesis presents a comprehensive exploration into the development of a 

toolchain designed for the automated generation of digital environments tailored 

for autonomous driving scenarios. Focused on the road network surrounding 

Ostfalia Hochschule University as a case study, the aim of this research is to 

create a digital representation that serves as a reliable foundation for testing and 

refining autonomous vehicle algorithms. 

 

The toolchain integrates various data sources, including OpenStreetMap for the 

geographical data and GeoTIFF for the elevation data. Through specific designed 

modules, the converter translates both geospatial data into the OpenDrive format.  

 

The thesis contributes to the field by expanding the capabilities of autonomous 

vehicle testing through automated digital environment generation. It bridges the 

gap between geospatial data sources and advanced simulation requirements, 

facilitating a seamless transition from raw data to a dynamic digital environment. 

 

By providing a foundation for comprehensive and realistic simulations, this tool 

chain contributes to the advancement of safe and efficient autonomous driving 

solutions. 
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1. Introduction 

 

Autonomous driving technology requires extensive testing and validation before 

it can be deployed on public roads. This is necessary to ensure that the system 

can detect and respond to various driving scenarios and conditions, such as 

changes in weather, road conditions, and traffic patterns. 

 

However, testing autonomous driving systems in the real world can be time-

consuming, expensive, and potentially dangerous. To overcome these 

challenges, researchers and engineers use digital environments for simulation to 

test and validate autonomous driving technology. This digital environment 

provides a virtual platform where researchers can create various driving 

scenarios and conditions that the autonomous system may encounter in the real 

world. 

 

In a digital environment, researchers can also control various factors, such as the 

weather, traffic density, and road conditions, to simulate different scenarios and 

test the system's response. This allows for more efficient and cost-effective 

testing, as well as the ability to test the system in a range of scenarios that might 

be difficult or even impossible to replicate in the real world. 

 

Moreover, the use of a digital environment also enables researchers to collect 

and analyze large amounts of data generated during the testing process. This 

data can be used to identify areas where the autonomous system needs 

improvement and refine the system's performance in real-world situations. 

 

In summary, a digital environment for simulation is essential for testing and 

validating autonomous driving technology, as it allows for safe, efficient, and cost-
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effective testing of autonomous systems in a wide range of driving scenarios and 

conditions. 

 

1.1 Problem 

 

The problem that this thesis aims to solve is the inefficiency and limitations of 

current methodologies for creating realistic models for road traffic from open-

source data.  

 

Manual creation of these models is time-consuming, error-prone, and requires 

significant technical expertise. Additionally, traditional 2D modeling techniques 

lack the detail and accuracy of reality required for the development and testing of 

autonomous vehicles. 

 

Therefore, there is a need for an automated tool chain that can create highly 

accurate and detailed 3D environment models for road traffic in a more efficient 

and cost-effective manner. This will enable the development and testing of 

autonomous vehicles to be conducted with greater accuracy and reliability, 

leading to improved safety on our roads.  

 

Level of detail 

 

The level of detail of the OpenStreetMap related to specific features such as the 

lanes, junctions or elevation is sometimes so poor that can be a problem for 

autonomous driving.  

 

This insufficient information about complex roads may be difficult for autonomous 

vehicles to accurately interpret and navigate in those situations, potentially 

leading to incorrect maneuvers or unsafe behavior. 
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Elevation in map dataset 

 

The open-source map dataset provided by the OpenStreetMap community 

typically lacks elevation information, although it can be manually added using the 

"ele=*" tag. [1] Despite this augmentation, the depiction of elevation in these 

maps frequently falls short of realism due to their node-based mapping structure. 

This approach depicts roads as connections between discrete nodes, resulting in 

a spiky and uneven representation of elevation. 

 

This presents a notable limitation, as accurate elevation data is crucial for various 

applications. To overcome this challenge, reliance on external datasets 

containing elevation information becomes necessary. 

 

Transitioning to the OpenDrive format doesn't entirely alleviate the need for 

external elevation datasets. However, it offers a more promising solution by 

utilizing geometrical representations of roads. [2] This results in a more realistic 

portrayal of elevation, facilitating smoother transitions and a more accurate 

depiction of terrain variations. 

 

Elevation data errors 

 

One of the primary challenges encountered when utilizing open-source elevation 

data lies in its lack of accuracy, particularly in generating suitable digital 

environments for autonomous vehicle simulation. The highest resolution offered 

by any open-source solution typically stands at 1 arc second, translating to a 

horizontal resolution of 30 meters. [3] However, this resolution often proves 

insufficient, particularly in areas with significant elevation variations. 
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This limitation can result in undesirable errors, especially on uneven terrains 

where large elevation changes occur. As a consequence, relying solely on open-

source elevation data for autonomous vehicle simulation may lead to 

inaccuracies that compromise the effectiveness and reliability of the simulation 

environment. 

 

1.2 Contribution 

 

The proposed toolchain will reduce the time and resources required for the 

creation of environment models and will enable non-technical personnel to 

participate in the modeling process due to the simplicity of the tool. 

To accomplish this goal, it will use the existing open-source tools as the osm2xodr 

converter [4] from GitHub developed by Jan-Hendrik Meusener and make some 

modifications to get a proper digital environment for autonomous driving. The 

contribution to this tool is to modify the generation of the elevation data because 

the method used for the generation of the elevation was an unrealistic approach 

bearing in mind that the source file for the elevation data was a png, with all the 

limitations that this kind of format has for the storage of such a complex 

representation. 

Furthermore, the toolchain makes a significant contribution by developing a 

methodology for implementing elevation data in digital environments. This 

methodology involves generating a continuous surface that incorporates accurate 

and detailed elevation information. 
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2. Objectives 

 

The objectives of this bachelor thesis project are as follows: 

1. Conduct a thorough literature review to identify existing methodologies for 

creating environment models for road traffic and determine areas where 

automation can be introduced. 

2. Develop a tool chain that automates the creation of digital map models for 

autonomous drive. 

3. Conduct testing and validation of the tool chain to ensure its accuracy, 

reliability, and scalability. 

4. Evaluate the effectiveness of the tool chain in creating accurate and high-

quality environment models for road traffic. 

5. Analyze the advantages and limitations of the proposed tool chain 

compared to existing methodologies. 

6. Document the development process, including technical specifications, 

implementation details, and testing procedures. 

7. Demonstrate a comprehensive understanding of the field and make 

recommendations for future research in automated environment modeling 

for road traffic. 
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3. Background and motivation 

 

The development of autonomous driving technologies has gained significant 

attention and momentum in recent years. [5] The automotive industry has been 

investing heavily in research and development efforts to advance the capabilities 

and safety of autonomous vehicles. One critical aspect of autonomous driving is 

the accurate representation of the surrounding environment, particularly road 

traffic conditions. Creating environment models that capture the complex 

dynamics and interactions of various road users is essential for the successful 

deployment of autonomous vehicles.  

The above challenges and the growing demand for autonomous driving solutions 

have created a pressing need for an efficient and automated tool chain for the 

creation of environment models for road traffic. By developing such a tool chain, 

several benefits can be realized: 

 

• Efficiency and Cost Reduction: Automating the process of environment 

model creation will significantly reduce the time and effort required, 

allowing for quicker model generation and updates. This efficiency gain 

will lead to cost reductions in terms of manpower and resources. 

 

• Accuracy and Reliability: Automation minimizes the possibility of human 

errors and inconsistencies, resulting in more accurate and reliable 

environment models. This, in turn, enhances the safety and performance 

of autonomous driving systems. 

 

 

• Scalability and Adaptability: An automated tool chain can be easily scaled 

to handle larger datasets and accommodate different road traffic 

scenarios. As the automotive industry advances and expands, the tool 

chain can be adapted to incorporate new sensors, technologies, and data 

sources. 
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4. Limitations 

 

Accuracy and Precision 

 

Achieving high levels of map accuracy is a tough problem due to a variety of 

reasons, including sensor data quality, the ever-changing nature of road 

conditions, and the dynamic environment in which autonomous vehicles operate. 

[6] 

 

One of the biggest limitations on the accuracy of the maps is the data sensor 

variability. Autonomous vehicles rely on various sensors to collect data about the 

surroundings, [7] but these sensors can have inherent limitations, such as sensor 

noise and limited resolution among others. 

 

The biggest limitation on the precision is how the environment can replicate the 

real-life conditions of the road. Factors like road maintenance and temporary 

construction can alter the road infrastructure. These conditions can result in 

navigation errors and complications for autonomous vehicles. 
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Figure 1: Representation of the type of maps according to theri accuracy[8] 

 

As shown in Figure 1, the closest type of map to reality is the HD maps creation 

and generation are maintenance demanding and expensive. The maintenance of 

this kind of map is more complicated than the creation because HD map requires 

quality data that should be supplied quickly and cheaply. [9] A solution for this 

problem is to use less accurate maps such as MD maps, which are quite accurate 

for traffic, surrounding elements, and spatial accuracy but they have a reduced 

computational and economic cost. The MD divides the dense and complex 

information of HD into more manageable blocks and reduces the requirements 

for the system. [10] 

 

Data Volume and Storage 

 

The process of generating HD maps involves capturing and storing vast amounts 

of high-resolution data, the size of this data depends on the area of application, 

however, a general guideline is required 10MB per km2 [11]. In the case of the 

size of the map the guideline is that is required at least 10KB per Km of road. 

[15][16] This includes information about road geometry, lane marking, traffic signs 

and other intricate features. This information requires substantial storage 

capacity and computational resources. 
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Maintaining large volumes of map data and ensuring real-time updates can incur 

significant costs. These costs encompass data storage infrastructure, data 

transfer, and the computational power required for processing and maintaining 

these datasets. 

 

Localization Challenges 

 

Accurately localizing autonomous vehicles within a digital map can be intricate, 

especially in maps characterized by tall buildings that obstruct GPS signals or in 

regions with limited signal reception. Localization errors can have cascading 

effects on navigation, accentuating the need for precise positioning. 

 

The process of aligning sensor data with digital map data can be challenging, 

especially when dealing with complex intersections, irregular road geometries, or 

inaccuracies in map data. [9] Misalignment can result in erroneous localization. 

Addressing these challenges is critical to achieving precise and reliable vehicle 

localization within digital maps. 

 

Matching information with world coordinates when generating HD maps involves 

a process known as georeferencing alignment.[14] This process ensures that the 

data collected for the map corresponds to its real-world location. However, there 

are various challenges, such as the georeferencing algorithm, which aligns the 

sensor data with existing geographic coordinate systems, the reference data 

sources, which may have inaccuracies because they rely on GPS data. 
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5. State of the art 

 

The state of the art in developing digital environments for autonomous driving 

involves the use of advanced technologies such as sensor fusing, computer 

vision, and 3D modeling.  

Sensor fusion is the process of combining data from multiple sensors to create a 

unified and accurate view of the environment or an object. [15] This can involve 

different types of sensors such as lidar, radar, cameras, or GPS. The challenges 

of sensor fusion include dealing with the heterogeneity and complexity of sensor 

data, which may have different formats, resolutions, sampling rates, coordinate 

systems and error models. 

 

Computer vision algorithms can then analyze this data to identify and track 

objects such as vehicles, pedestrians, and road signs. Some of the computer 

vision algorithms used in Autonomous Vehicules are the object detection 

algorithms, semantic segmentation, or instance segmentation. Object detection 

algorithms are essential for identifying and locating objects within the vehicle’s 

environment. [16] The semantic segmentation ones assign a class to each pixel 

in an image, allowing the vehicle to understand the structure of the surrounding 

environment. Lastly instance segmentation not only categorizes pixels into 

classes but also differentiates between individual objects within the same class. 

[17] 

 

SLAM techniques are employed to create environment models in real-time while 

simultaneously estimating the position and orientation of the sensor or vehicle. 

By fusing sensor data, such as LiDAR, cameras, and inertial measurement units 

(IMUs), SLAM algorithms reconstruct the environment and create a map. 
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Cloud computing and distributed processing have emerged as powerful tools for 

environment model creation.[18] By leveraging the computational power and 

scalability of cloud infrastructure, complex processing tasks, such as large-scale 

point cloud processing and deep learning-based analysis, can be efficiently 

performed. Cloud-based solutions provide flexibility, accessibility, and cost-

effectiveness for environment model generation. 

 

Overall, the state of the art in developing digital environments for autonomous 

driving involves the integration of multiple advanced technologies and 

techniques, with the goal of creating highly accurate and reliable models of the 

environment that can be used for testing and validation of autonomous driving 

systems. 

 

5.1. Data Collection 
 

LiDAR 

 

LiDAR (Light Detection and Ranging) is a commonly used technique for 

environment data collection. LiDAR sensors emit laser beams and measure the 

time it takes for the laser to return after hitting an object. This data is used to 

generate precise three-dimensional point clouds, capturing detailed information 

about the environment's geometry and structure. 

 

Figure 2: Representation of the measurement with LiDAR sensors 
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A new kind of Lidar used in the automotive industry are the FMCW (Frequency 

Modulated Continuous Wave) or 4D Lidar is a type of sensor that measures 

distance using optical interference frequency.[19] It operates by continuously 

transmitting a signal with a modulated frequency. When the signal reflects off an 

object, the Lidar detects the reflected signal and compares it to the original, 

allowing it to measure the distance and velocity of the object. 

But however, it’s important to note that while FMCW Lidar has many advantages, 

it also faces some challenges such as the cost of the components or the lateral 

movements recognition. 

 

Figure 3:Aeva's FMCW LiDAR that can estimate velocities and predict trajectories (blue: approaching | red: 
receding) 

             

 

Photogrammetry and Image-Based Data Collection  

 

Photogrammetry and image-based data collection are essential techniques for 

understanding the environment in autonomous driving. Photogrammetry uses 

photos to create precise 3D models, while image-based data collection involves 

cameras capturing real-time visual data. [20]  
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Photogrammetry analyzes overlapping images to measure distances, object 

positions, and textures as shown in Figure 4. It excels at detailed terrain mapping 

and urban maps, lane recognition, and making it valuable for creating complex 

digital environments. 

 

 

 

Figure 4: Sample of the real-time artificial vision camera with detected objects for autonomous driving using Mobileye 

 

GPS and IMU Data Collection 

 

GPS technology serves as a foundational data source for digital environment 

generation in autonomous driving applications. It relies on a network of satellites 

orbiting the Earth, with GPS receivers on autonomous vehicles precisely 

calculating their geographic position. These receivers’ triangulate signals from 

multiple satellites to determine latitude, longitude, and altitude coordinates, 

forming the basis for mapping the vehicle’s location within the environment. [21]  

  

While GPS offers extensive coverage and global positioning capabilities, its 

accuracy and reliability can be influenced by various factors. In urban maps with 

tall buildings or dense foliage, signal obstructions can lead to inaccuracies, 

commonly known as the GPS multipath effect. [22] To address these limitations 
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and enhance accuracy, autonomous vehicles often incorporate multiple sensors, 

including IMUs and odometry, [23] into their data collection systems. This sensor 

fusion approach helps correct GPS inaccuracies and ensures a more reliable 

digital environment.  

 

IMUs excel at capturing rapid changes in vehicle motion, making them essential 

for tasks like tracking vehicle dynamics, detecting abrupt maneuvers, and 

maintaining accurate positioning when GPS signals are temporarily lost. These 

units consist of accelerometers and gyroscopes, providing continuous 

measurements of an autonomous vehicle's acceleration and angular velocity. [24] 

For example, when an autonomous vehicle enters a tunnel or navigates through 

urban environments with tall buildings, GPS signals may become temporarily 

unreliable. IMUs step in to bridge these gaps in data, ensuring uninterrupted 

vehicle tracking and localization. 

However, IMUs are not without challenges. Over time, IMUs may experience 

sensor drift, which can lead to positioning errors if not carefully calibrated and 

compensated for. The time of experience this phenomenon depends on the 

system developed, but for example in the case of the AUTOPIA Automatic Driving 

systems they became a good response just on the first 5 minutes of drive test, 

which is unacceptable for a commercial solution. [25] 

 

Figure 5: Graphic representation of the GPS and IMU 
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In summary, GPS and IMU technologies play vital roles in data collection for 

digital environment generation in autonomous driving. GPS provides global 

positioning data, while IMUs offer real-time information about vehicle movement 

and orientation. The synergy between these technologies, complemented by 

careful calibration and sensor fusion, ensures the creation of highly accurate and 

reliable digital maps. [26]  

 

Radar Data Collection 

 

Radar technology is a significant contributor to data collection for digital 

environment generation in autonomous driving. Radar systems emit radio waves 

or microwave signals and measure the time it takes for these signals to bounce 

off objects and return to the sensor. 

 

Figure 6 Representation of the radar sensor 

 

Radar's strength lies in its ability to operate effectively in various weather 

conditions, including rain, fog, and snow, as radio waves are less affected by 

adverse weather than optical sensors. [27] 

 

 

 

This type of sensors can detect objects at longer ranges than many other 

sensors, making them particularly useful for detecting vehicles, pedestrians, and 

obstacles at highway speeds. The technology comes in various forms, including 
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short-range radar for parking and blind spot detection, mid-range radar for 

adaptive cruise control, and long-range radar for highway and urban scenarios. 

[28] 

 

However, radar technology does have limitations, such as the limited angular 

resolution, being its azimuth angle is ± 75 ° horizontal and 12 ° vertical [29],  and 

the difficulty in distinguishing between closely spaced objects. To address these 

challenges, advanced signal processing techniques and sensor fusion with other 

sensors like cameras and LiDAR are employed to create a more comprehensive 

digital environment.[29] 

 

Other solution is the use of 4D Radars, this solution is based on the concept of 

MIMO(Multiple Input Multiple Output) antennas. [19] For this type of technology 

dozens of mini-antennas are sending waves all over the place, both horizontally 

and vertically directions. In a normal 3D RADAR, it’s only done horizontally, this 

type of technology lacks the height, and also has a pretty bad resolution. This 

new technology also opens the door to detect obstacles and classify them 

 

 

Figure 7: Waymo's Imaging RADAR [30] 

 

In conclusion, radar technology plays an important role in data collection for the 

construction of digital maps in the context of autonomous driving. It excels at 
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object detection, distance, and speed measurement, and works well in inclement 

weather. [22] Integration with other sensor data improves the digital environment 

perception system's comprehensiveness and reliability, which is critical for 

enabling safe and effective autonomous driving. 

 

Mobile Mapping Systems 

 

MMS are typically mounted on vehicles and equipped with a combination of 

advanced sensors, including LiDAR, cameras, GNSS, and IMUs. [8]  

 

 

Figure 8:Example of an MMS: a vehicle-mounted mobile mapping platform consisting of different positioning and 
data collection sensors to generate an accurate georeferenced 3D map of the environment. [23] 

 

Mobile Mapping Systems are adept at capturing dynamic information about the 

environment. As vehicles equipped with MMS sensors traverse different areas, 

they continually update the digital map, allowing for real-time tracking of changes 

in the environment, such as road conditions, construction activities, or new 

infrastructure developments.[24] 
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While MMS offers numerous advantages, it is essential to address challenges 

such as data volume management and processing complexity. The sheer volume 

of data generated by MMS sensors can be substantial, necessitating robust data 

storage and efficient processing pipelines to create and update digital maps 

effectively.[23] 

 

Sensor fusion 

Sensor fusion is a technique commonly used in autonomous drive systems. This 

technique merges the data from multiple sensors to build more accurate , reliable, 

and robust world model for the car to navigate and behave more successfully. 

 

Figure 9: Radar fused with camera 

For the fusion of the sensor outcomes the most common type of algorithm for the 

fusion is by abstraction level. Inside the abstraction level in the industry are three 

different processes: Low-Level, Mid-Level, High-Level. 

 

Low Level Sensor Fusion is about fusing the raw data coming for multiple 

sensors. For example, fusing point clouds coming from Lidar and pixels coming 

from cameras. This type of fusion was very hard to do until a few years ago, 

because the processing required is huge because at each millisecond, is possible 

to fuse hundreds of thousands of points with hundreds of thousands of pixels. 
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Figure 10: Simplified diagram of early fusion technique 

 

 

Early Fusion combines data, in the example Lidar point cloud and camera 

images, before processing it. It involves transforming Lidar data to 2D images 

applying deep learning as R-CNN or YOLO for object detection. [31] The Lidar 

sensor utilizes object detection by projecting 3D point clouds into 2D images and 

associating them with pixels. This method facilitates the algorithm's ability to 

identify objects within its field of view. 

 

Mid-level fusion enhances object detection by integrating independently detected 

objects from various sensors. For instance, if both a camera and radar detect an 

obstacle, their findings are fused to provide the most accurate estimation of the 

obstacle's position, class, and velocity. While the Kalman Filter is a common 

approach for such fusion, its reliance on sensor data poses a drawback; failure 

of any one sensor can compromise the entire fusion process. 
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Figure 11: Simplified diagram of late fusion technique 

 

In the Late Fusion approach Lidar and camera data are processed independently. 

This involves detecting and localizing objects in the 3D using Lidar data, while 

simultaneously conducting object detection in the 2D with camera data. 

Subsequently, the detected objects from the camera are projected onto 3D to 

align them with Lidar-detected objects. Finally, a union matching process is 

employed to merge the results from both sensors into a comprehensive and 

accurate final detection result. 

 

AV Application Fused Sensors Limitation without 
Fusion 

Advantages with Fusion 

Object Detection Lidar & Camera Night vision, 
illumination, low Lidar 
resolution 

Improved depth, extended 
range, and enhanced 
accuracy, robust perception 
in varied conditions 

Localization & 
Mapping 

GPS and Lidar Poor GPS in denied 
areas 

Continuous navigation, 
precise localization, 
enhanced mapping in diverse 
environments 

Positioning & 
Navigation 

Lidar Map, Camera 
and GPS 

GPS-denied areas, 
road marking 
limitations 

Accurate road marking 
detection, integration with HD 
maps, robust navigation 
capabilities 

Perception in Bad 
Weather 

Lidar, Camera, and 
Radar 

Limited performance 
in bad weather (fog, 
rain) 

All-weather solution for AVs, 
reliable operation in adverse 
weather conditions 

Table 1 Comparison of different sensor fusion types 

 

This table provides an overview of various data collection methods, highlighting their respective 

accuracies measurement times, distance of measurement and equipment costs. 
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Data Collection 
Method 

Accuracy 
(cm) 

Measurement time 
(ms) 

Distance of 
Measurement 
(m) 

Equipment Cost 
(€) 

LiDAR High 
(1-10) 

Fast 
(100-1000) 

0.2-150 10,000 - 100,000 

Camara Based Moderate 
(10-50) 

Fast 
(10-100) 

Up to 100 1,000 - 10,000 

GPS and IMU Moderate 
(100) 

Continuous N/A 100 - 1,000 

Radar  Moderate 
(20-50) 

Fast 
(10-100) 

Up to 200m 5,000 - 50,000 

Mobile Mapping 
Systems 

High 
(10-50) 

Continuous Up to 150m 50,000 - 500,000 

Table 2 Comparison of the different data collection methods 

 

In conclusion, in terms of performance the best solution for the data collection is the 

mobile mapping system, which is the combination of some of the previous methods. On 

the other hand, GPS and IMU or Camara based methods are a more affordable solution. 

 

5.2. Map file format 
 

Open source  

 

There are several open-source mapping options available for creating digital 

maps. However, based on popularity and qualities, OSM and OpenDRIVE are 

the best options. Both file formats are used to represent road networks in a digital 

format, but they have some key differences. 

 

OpenStreetMap (OSM) 
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OSM is a collaborative, open-source mapping platform that provides free and 

editable geospatial data. This platform offers a large and detailed dataset of road 

networks and related infrastructure. OSM data offers extensive information about 

road layout, traffic laws, lane configurations, traffic signs, junctions, and other 

critical features for effectively simulating road maps.  

 

The files are created and maintained by a community of volunteers who use GPS 

devices and other tools to collect information about roads and other features.[32]  

 

Structure of the data 

 

The data structure of an OSM file is based on a specific XML format designed to 

store geospatial data. [33] OSM files contain information about various 

geographic features, such as roads, buildings, points of interest, and more. The 

structure of an OSM file can be categorized into three main components: nodes, 

ways, and relations, as is shown in Figure 6. [34] 

 

 

Figure 12: Representation of the different components of an OSM file [35] 

 

 

 

 

 

Nodes 
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A node element represents a single point in space with a unique identifier and is 

defined by its latitude and longitude coordinates, as shown in Figure 13. 

 

Figure 13: Example of a node[36] 

 

In an OSM file, nodes are typically used to represent specific locations or points 

of interest, such as intersections, landmarks, or individual features like traffic 

signs or trees.  

Nodes may also have additional tags associated with them to provide further 

descriptive information. [36] As an example of additional tags is the use of ele=* 

tag and its subkeys to give the information of the elevation to the node. [1][37] 

The structure of a node in an OpenStreetMap (OSM) file consists of several key 

components that define its properties and attributes.[36] Each node represents a 

specific point in space, identified by a unique identifier, as shown in Figure 8. The 

structure of a node is as follows: 

Node ID: Nodes have distinctive identifiers called node ids. Node ids on the 

server are durable, therefore no matter how many times data are updated or 

rectified, the allocated id of an existing node will not change. Unless a previous 

node has been undeleted, deleted node ids must not be used again. 

Latitude: Latitude coordinate in degrees (North of equator is positive) using the 

standard WGS84 projection.  

Longitude: Longitude coordinate in degrees (East of Greenwich is positive) using 

the standard WGS84 projection.  

Tags: Tags are key-value pairs that provide additional descriptive information 

about the node allowing to label and categorize nodes for more specific and 

meaningful representation of geographic features.  
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Figure 14: Representation of nodes with different coordinates 

 

name  value 

Id 64-bit integer number (≥ 1) 

lat decimal number ≥ −90.0000000 and ≤ 90.0000000 with 7 decimal places 

lon decimal number ≥ −180.0000000 and ≤ 180.0000000 with 7 decimal places 

tags A set of key/value pairs, with unique key 

Table 3: Representation of the values for a node in OSM [36] 

 

 

 

 

 

 

 

 

 

 

 

Ways 
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A way represents a collection of nodes that form a linear feature, such as a road, 

path, or boundary. Ways are defined by an ordered list of node references, where 

each reference corresponds to a node identifier, as sown in Figure 9. [38]  

 

 

Figure 15: Example of a way [38] 

 

Ways can also have various tags associated with them to provide additional 

information, such as the type of road, speed limits, or lane configurations. The 

structure of a way is as follows: 

Way ID: Each way is given a distinct identification known as the way ID, much 

like nodes are. This ID is used for linking and referencing reasons as well as to 

distinguish the route from other dataset parts. 

 

Node References: A way is defined by an ordered list of node references. Each 

node reference corresponds to the unique identifier of a node that is part of the 

way. These node references define the sequence and connectivity of nodes along 

the path of the way, thus creating the linear feature. The order of node references 

determines the spatial geometry of the way. 

 

Tags: Ways can have tags associated with them to provide additional descriptive 

information. Tags are key-value pairs that describe various attributes of the way, 

such as its type, name, surface condition, speed limit, or any other relevant 

characteristics. Tags help classify and categorize the way based on its attributes. 
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Relation 

 

Relations enable the grouping of numerous nodes, ways, or other relations based 

on a shared relationship or theme association. Relations are defined by a set of 

members, each of which is identifiable by its type (node, way, or relation) and 

matching identifier, as shown in Figure 10.[39]  

 

 

Figure 16: Example of a relation[39] 

 

Relations are frequently employed to represent complicated characteristics or 

geographical connections such as multi-polygon borders, route relations, or 

administrative boundaries. The structure of a way is as follows: 

 

Relation ID: Each relation in an OSM file is assigned a unique identifier known as 

the relation ID. This ID is used for referencing and linking purposes. 

 

Members: A relation is defined by a collection of members, where each member 

is identified by its type (node, way, or relation) and its corresponding identifier. 

Members can be nodes, ways, or even other relations. The members define the 

elements that are part of the relation and establish the relationship between them. 

The order of members within a relation is not significant. 
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Roles: A role describes the specific function or purpose that the member plays 

within the context of the relation. Each member in a relation can have an 

associated role. For example, a member may have a role of "inner" or "outer" in 

a relation representing a multi-polygon boundary. 

 

Tags: Relations can also have tags associated with them to provide additional 

descriptive information. Tags are key-value pairs that describe attributes of the 

relation, rather than the individual members. Tags can provide information such 

as the type of relation, a name, or any other relevant attributes. 

 

 

Figure 17: Structure of the OSM file[35] 

Summarizing OSM structure, this type of map consists of four main elements 

such as nodes, ways, and relations, each represented by XML tags within the file 

as represented in Figure 17. 

 

 

Open DRIVE 

 

Open DRIVE is a standardized file format used to represent road networks and 

related information. This format is specifically designed to represent road 
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networks for use in autonomous driving simulations and other advanced driving 

applications including information about traffic signs and signals, and other 

infrastructure features that are important for autonomous driving systems. [40] 

 

Structure of the data 

 

The structure of an Open Drive file follows a hierarchical organization, consisting 

of different levels that represent various aspects of road networks, as shown in 

Figure 12.  

 

Figure 18: Structure of OpenDrive file [15] 

 

The structure can be categorized into six main aspects: road network level, road 

level, lane level, object level and junction level. 

 

Road Network Level: The road Network Level, which is the highest level, provides 

the overarching framework for representing the entire road system. It includes the 

overall characteristics and metadata of the road network, such as the reference 
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coordinate system, measurement units, and background data. This level 

guarantees uniformity and consistency over the whole network representation.  

 

Road Level: The road level focuses on individual road segments within the 

network. Each road segment represents a specific stretch of roadway with its 

unique identifier, name, length, and road type. This level captures the geometric 

attributes of the road, including the centerline geometry, lane widths, lane count, 

and information about the road's physical characteristics such as curvature and 

elevation profile. It provides the foundation for accurately representing the shape 

and layout of each road segment. 

 

Lane level: The lane level goes into the qualities and attributes of specific lanes 

within a road section. It defines lanes as separate entities, each one with its own 

identifier, width, and attributes. Information at the lane level includes elements 

like lane markings, lane limits, and lane kinds (such as driving, turning, or 

shoulder lanes). This level allows the accurate representation of lane 

configurations, ensuring the precise modeling of road infrastructure and 

supporting lane-specific behavior in autonomous driving simulations. 

 

Lane Section Level: The lane section level further refines the representation of 

lanes by dividing them into sections along the road segment. It allows for the 

modeling of variations in lane properties such as changes in width, slope, or lane 

markings within a lane segment. By defining lane sections, the Open DRIVE 

format accommodates accurate representation of lane characteristics and 

facilitates the modeling of complex road geometries. 

 

Object Level: The object level incorporates additional elements associated with 

the road network, such as signs, traffic lights, barriers, or other objects of interest. 

Objects are defined with their respective positions, dimensions, and attributes. 

This level enables the placement of objects along the road segment, providing 

contextual information about the road environment that influences autonomous 
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driving behavior. Objects can represent both static features and dynamic entities 

like moving vehicles, pedestrians, or other dynamic traffic elements. 

 

Junction Level: The junction level captures the complex interactions and 

connections between different roads within the road network. It focuses on 

modeling intersections, interchanges, roundabouts, or any other form of road 

junctions. Junctions are defined with their geometry, traffic rules, and connections 

between incoming and outgoing roads. This level provides a detailed 

representation of the geometric layout, lane connectivity, traffic priorities, and 

regulatory information necessary for accurate simulation and analysis of complex 

road scenarios. 

 

 OSM Open DRIVE 

Data Source and Level of 

Detail 

Crowdsourced, varying detail 

and accuracy 

Standardized, detailed road 

information 

Standardization and 

Industry Compatibility 

Lack of strict standardization, 

flexible 

Standardized format, better 

integration 

Integration with Simulation 

Environments 

Requires additional processing 

for simulation use 

Designed for direct integration 

with simulations 

Lane Geometry and Traffic 

Rules Representation 

Limited representation, may 

require additional work 

Detailed lane geometry and 

traffic rule information 

Compatibility with 

Autonomous Driving 

Systems 

Requires data preprocessing and 

conversion 

Direct compatibility with 

autonomous systems 

Support for Complex Road 

Features 

Inconsistent support for complex 

features 

Comprehensive support for 

complex road attributes 

Elevation Data Available but limited in detail and 

coverage 

Comprehensive elevation data 

for road modeling 

Table 4: Comparison of OSM and OpenDRIVE format [2], [35], [36], [38], [39] 

 

In summary, OSM files are used to represent maps and routing information for 

general-purpose applications, while OpenDRIVE files are designed specifically 

for advanced driving simulations and autonomous driving applications. 

OpenDRIVE files contain much more detailed information about the road 
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network, making them more suitable for use in applications that require precise 

information about the road environment. 

 

Commercial solutions  

 

It is more difficult to determine the technical details of commercial solutions 

because they usually reserve the information for customers only, however it is 

true that mapping businesses are also working on HD map solutions. 

 

NVIDIA DRIVE 

 

NVIDIA DRIVE Mapping module is part of the NVIDIA End-to-End Autopilot 

Systems solution. [41] It's a scalable system that incorporates a sensor suite, 

software, and software APIs, as well as HD maps from mapping businesses. It 

comprises of the following components:  

• DRIVE Localization, which determines the precise 6-DOF location and 

orientation of an autonomous vehicle inside an HD map with centimeter-

level precision.  

• Drive Map stream for updating cloud-based HD maps with DRIVE 

Perception Road characteristics.  

 

 

 

HERE 

 

HERE HD Live Map is part of the solution provided by Here Technologies. It 

utilizes machine learning algorithms to validate map data in real-time, ensuring 

its alignment with real-world conditions. [42] By analyzing a multitude of data 
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sources, such as satellite imagery and sensor data, the self-healing map system 

continuously updates and refines the map accuracy.  

Google Maps API 

 

The Google Maps API is the solution provided by Google. It provides a robust 

tool for enhancing High-Definition (HD) map generation in autonomous driving 

applications. While not explicitly designed for this purpose, the API offers a rich 

array of features that significantly contribute to the development and deployment 

of HD maps for autonomous vehicles.  

By providing access to extensive map data, including road networks and 

landmarks, it serves as a foundational layer for detailed HD map creation, 

encompassing vital information like road layouts, lane markings, and traffic signs. 

Additionally, integration with Google Street View allows for the incorporation of 

panoramic imagery, providing real-world visual context that aids in precise 

navigation and object recognition, ultimately optimizing the effectiveness of 

autonomous vehicle systems. [43] 
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 Open-Source Solutions Commercial Solutions 

Data Source and Level of 

Detail 

Crowdsourced, varying detail 

and accuracy 

High level of detail and accuracy 

Standardization and 

Industry Compatibility 

Lack of strict standardization, 

flexible 

Industry-standard formats and 

protocols 

Real-Time Updates and 

Currency 

Near real-time, potential delays Real-time updates and data 

streaming 

Integration with Simulation 

Environments 

Requires additional processing 

for simulation use 

Designed for direct integration 

with simulations 

Compatibility with 

Autonomous Driving 

Systems 

Requires data preprocessing and 

conversion 

Optimized for autonomous 

driving applications 

Support for Complex Road 

Features 

Inconsistent support for complex 

features 

Detailed elevation data for 

accurate road representation 

Elevation Data Available but limited in detail and 

coverage 

Detailed elevation data for 

accurate road representation 

Cost Free Licensing costs  

Table 5: Comparison between Open-Source and commercial solutions 

 

5.3. Elevation data 
 

Open-Source 

 

NASADEM 

 

NASADEM is a high-precision digital elevation model dataset developed by 

NASA's Earth Science Division. Although is not explicitly designed for HD map 

generation for autonomous driving as in the case of Google Maps API, 

NASADEM provides very interesting elevation data that can be used in enhancing 

the accuracy and detail of them.  
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The dataset offers precise elevation data for the Earth's surface, derived from a 

combination of remote sensing instruments, including the Shuttle Radar 

Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER).[44] 

 

NASADEM's elevation data is essential for understanding environmental factors 

like slope, aspect, and elevation zones. This information can be used in 

conjunction with other data sources in HD maps to support eco-friendly driving 

strategies, optimizing vehicle performance based on the terrain and 

environmental conditions. 

OpenTopography 

 

OpenTopography is an open source tool developed by the University of California 

San Diego to advance our understanding of the Earth’s surface, vegetation, and 

built environment [45]. Again, the tool is not designed explicitly for autonomous 

driving, but this technology offers valuable resources that can enhance the 

precision and detail of HD maps, making it an asset for research and 

development in this field.[46] 

OpenTopography serves as a vast repository of high-resolution elevation data, 

primarily derived from airborne LiDAR (Light Detection and Ranging) surveys. 

These surveys employ laser technology to capture precise elevation 

measurements, resulting in incredibly accurate and detailed topographic data. 

For HD map generation, access to such high-quality elevation data is 

fundamental.[47] As in the case of NASADEM data, the primary application of 

OpenTopography's data is terrain modeling.  

  

Although developing maps for the European market poses a challenge due to the 

limited availability of topographic maps compared to the U.S. Unlike the extensive 

data for the U.S., European regions lack equivalent topographic offerings. This 

scarcity necessitates a nuanced approach, possibly involving alternative 

geospatial datasets. 
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Commercial Solutions 

 

Google Maps Elevation API 

 

The Google Maps Elevation API is a versatile tool developed by Google. This tool 

can enhance the precision and detail of High-Definition (HD) maps, particularly in 

the context of elevation data and terrain modeling. As in the case of map 

generation this tool was not originally designed for autonomous driving, but it 

offers valuable features and data access that can significantly benefit map 

developers and researchers in this field. 

The API offers the potential for real-time elevation data retrieval, which can be 

beneficial for dynamic map updates. This feature is particularly useful in 

scenarios where elevation changes occur due to construction, road closures, or 

natural events. 

Google Maps Elevation API can be seamlessly integrated into various mapping 

and GIS (Geographic Information System) platforms, streamlining the workflow 

for HD map generation. This integration simplifies the process of incorporating 

elevation data into the map creation pipeline. 

In addition Google’s cloud infrastructure also supports the API, facilitating data 

storage, processing, and accessibility. This cloud-based approach can be 

advantageous for HD map generation, especially when managing and analyzing 

large datasets. 
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Solution Data 

Source 

Aviability Coverage 

Area 

Resolution Cost 

NASADEM SRTM, 

ASTER 

GDEM 

Open-

Source 

Global 30-90 m 

[3] 

Free 

OpenTopogrphy Airborne 

LiDAR, 

Terrestrial 

LiDAR 

Open-

Source 

Various 

regions 

(Mainly 
US) 

0.5m [48]-

90m [49] 

Free 

Google Maps 

Elevation API 

DEM  

SRTM 

Commercial Global 0.3-9m 

[50] 

0.05$/Requests[51] 

Table 6: Comparison of the Elevation data Solutions [1] [2] [3] 

 

5.4. Software tools 
 

 

There are several software tools and platforms available that can simplify the 

process of modeling streets for autonomous driving. The most developed projects 

are CARLA, SUMO, and RoadRunner. 

Open-Source 

 

CARLA 

 

CARLA is an open-source simulation platform designed primarily for the 

development and testing of autonomous driving systems by the CVC in 

Barcelona. While CARLA's primary focus is on simulating vehicle behavior and 

interactions, it also contributes to the generation of digital maps crucial for 

training, testing, and validating autonomous driving algorithms. [52] 

 

CARLA provides a highly realistic 3D simulation environment, replicating real-

world road networks, urban landscapes, and diverse terrains. This rich and 

immersive environment serves as the canvas for digital map generation. 
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The technology also simulates a variety of sensors commonly used in 

autonomous vehicles, including LiDAR, cameras, radar, and GPS. These 

sensors capture data within the virtual environment, which is subsequently used 

to generate digital maps. Simulated sensors mirror their real-world counterparts, 

enabling accurate data collection. 

 

CARLA's dynamic weather and lighting system allows for the creation of digital 

environments with varying conditions, such as different times of day, weather 

patterns, and lighting scenarios. This versatility enables the simulation of 

environments under diverse circumstances, essential for comprehensive HD map 

generation. 

 

It also enables users to annotate maps within the simulation environment. 

Developers and researchers can add road markings, traffic signs, traffic lights, 

and other essential features directly onto the digital environment. Unfortunately, 

the tool does not annotate the elevation.  

 

The software incorporates a realistic traffic simulation system, complete with AI-

controlled vehicles and pedestrians. This dynamic traffic environment allows for 

the generation of maps that accurately represent complex traffic interactions and 

scenarios. Users can create custom scenarios within CARLA, including 

challenging driving situations, intersections, and urban maps. These scenarios 

can be utilized to simulate and generate digital maps with specific attributes and 

challenges. 

 

SUMO 

 

SUMO is an open-source, highly versatile traffic simulation platform primarily 

designed for modeling and analyzing urban mobility scenarios developed by the 



 

45 
 

Institute of Transportation Systems. While its primary purpose is traffic simulation, 

SUMO indirectly contributes to the generation of digital environments that are 

essential for autonomous driving research, development, and testing. [53] 

SUMO excels in simulating realistic traffic behavior, including vehicle 

movements, interactions, and traffic flow within urban environments. This 

capability provides a foundation for creating digital environments that closely 

mimic real-world traffic conditions. This technology allows users to define intricate 

road networks, complete with various road types, lanes, intersections, and traffic 

control measures. These road networks serve as the basis for digital environment 

generation, offering a high level of customization and realism. 

The technology provides functionality for exporting simulation data, including 

vehicle trajectories, traffic signals, and road network information. This exported 

data serves as valuable input for HD map generation and digital environment 

modeling. 

SUMO can be integrated with various tools and software, including geographic 

information systems (GIS) and traffic modeling software as CARLA software.  

Users can define custom traffic scenarios and scenarios related to urban mobility 

within SUMO. These scenarios can range from typical urban traffic conditions to 

complex intersection interactions, providing a diverse range of digital 

environments for testing and research. 

SUMO offers visualization tools that allow users to view and analyze simulated 

traffic and digital environments. This visualization aids in understanding traffic 

dynamics and assessing the realism of the generated environments. 
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Commercial Solutions 

 

RoadRunner 

 

RoadRunner is a specialized software tool developed by Mathworks designed to 

work within the MATLAB environment, primarily focusing on road network 

generation and modeling. [54] 

RoadRunner within MATLAB provides the capability to generate complex road 

networks, including road geometries, lanes, intersections, and road segments. 

These road networks serve as the fundamental structure for creating digital maps. 

The technology also incorporates traffic flow modeling algorithms that simulate 

realistic traffic behavior. This modeling includes vehicle movements, interactions, 

and the flow of traffic within the generated road networks. The realism of traffic 

flow contributes to the authenticity of the digital environment. 

RoadRunner facilitates the export of simulation data, including vehicle 

trajectories, traffic signals, and road network details. This exported data serves 

as valuable input for HD map generation and digital environment modeling. 

The software also provides visualization tools that allow users to view and 

analyze simulated traffic, road networks, and digital environments. Visualization 

aids in understanding traffic dynamics and assessing the realism of the generated 

maps.  
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6. Approach 

 

For the case study, the information used will be open source. Open-source 

information refers to data, software, and resources that are freely available for 

public use, modification, and distribution.  

Open-source information provides a wide range of easily available and constantly 

evolving resources. It enables us to take advantage of currently available open-

source software, datasets, and libraries that have been created and maintained 

by the community. This allows us to concentrate on expanding and adapting 

these resources to meet the unique requirements of the toolchain because it 

saves us a substantial amount of time and effort during development. 

 

 

Figure 19 Timeline of the process 

 

6.1. Map information 
 

The choice of OpenStreetMap (OSM) as the main data source for delivering map 

data to the toolchain was chosen mainly because it was the unique open-source 

solution available.  

Map 
information

Elevation 
information 

Merge map information and 
elevation information

Generate a 
map with 
elevation

Validation and 
Verification of the 

model
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The selected area for the map information will be the city of Wolfenbüttel, which 

is in Lower Saxony, Germany. The geographical coordinates of this area are from 

10.5240 E to 10.5678 E for the Longitude and from 52.1742 N to 52.2116 N for 

the Latitude. This area has been selected due to is a well-known place for us 

because the university campus is situated in this town. 

 

 
 

Figure 20: Selection of the studied area in OpenStreetMaps 

 

 

Figure 21: Representation of the OSM map 

 

 

Before initiating any data treatment, a preliminary representation of the nodes is 

generated from the designated area to gain insight into the functionality of the 

OSM data.  

 

 

Figure 22: Representation of the map nodes 
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Through this initial evaluation, a notable observation is made regarding the non-

uniform destitution of distances between individual nodes, as illustrated in Figure 

22. This inconsistency in distance could stem from the method of data acquisition, 

typically reliant on GPS sensors. Factors such as fluctuating vehicle speeds may 

contribute to the irregular spacing between nodes. This discrepancy highlights a 

potential challenge in accurately capturing and representing spatial data, 

emphasizing the need for further analysis and potential corrective measures to 

enhance data quality and reliability. 

 

Initially, the OSM format was considered for the representation of the map data. 

However, it became evident that this format was not optimal for storing data for 

autonomous driving applications, primarily due to its node-based representation 

of environments, which generated an spiky representation in some areas of the 

roads due to the nodes are connected with straight lines. Following extensive 

research, the OpenDRIVE format emerged as the most suitable alternative, 

renowned for its specialized features tailored specifically for autonomous driving 

needs and its widespread acceptance within the industry. 

 

The OpenDRIVE format offers numerous advantages that position it as the 

preferred choice for autonomous driving applications, as previously mentioned. 

However, obtaining OpenDRIVE maps from third-party suppliers proved 

impossible due to the lack of open-source solutions for this file format. As a result, 

interest shifted to converters that could convert OSM format files to OpenDRIVE 

format. 

 

The initial attempt at conversion involved the CARLA simulator converter. [55] 

While this tool successfully converted the map, it failed to generate the elevation 

layer, prompting the need to explore alternative solutions. After thorough 

investigation, osm2xodr emerged as the most suitable tool, meeting the 

requirement for both map conversion and elevation layer generation. 
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6.2. Elevation information 
 

The integration of elevation data provides accurate modeling of topography and 

terrain features in the created digital environments. This allows us for a more 

precise modeling of elevation variations such as hills or slopes, giving a realistic 

environments for testing and verifying autonomous driving systems. 

 

In handling elevation data, the osm2xodr tool initially relied on a conversion 

process to generate the elevation data from a PNG file. However, such 

conversions are susceptible to errors, potentially resulting in inaccuracies within 

the elevation map, as seen on Figure 23. To address this issue, a more robust 

solution is proposed: directly reading the source file and generating the grid from 

the GeoTIFF format. This approach ensures greater accuracy and reliability in 

the elevation mapping process. 

 

 

Figure 23: Representation of the elevation data with PNG file 

 

To implement this solution, the tool will utilize the rasterio library for Python. This 

library provides comprehensive functionality for reading and processing 

geospatial raster data, offering the possibility to the tool to extract elevation 

information directly from the GeoTIFF file. By the use of this type of file and 

accessing the source datan from a GeoTIFF file, the tool can enhance the 
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integrity and precision of the elevation map generation process, thereby 

improving the overall quality of the output. 

GeoTIFF (Geographic Tagged Image File Format) files were chosen for use in 

the presented tool due to its inherent capability for handling and storing geospatial 

data. They may keep georeferencing data and accompanying metadata for 

multidimensional data like raster pictures. The GeoTIFF format stores raster data 

by organizing it into a grid of pixels. Each pixel in the grid corresponds to a specific 

location on the map surface. 

 

Figure 24: TIFF image of a small area in Niedersachsen 

 

For the case of study, the selected area will cover a larger portion of Lower 

Saxony due to it being the option which fitted the best to the requirements. The 

resolution of the selected information was 1arc-second (approximately 30m). 

 

In conclusion, transitioning from PNG conversions to direct GeoTIFF file reading 

ensures precision using tools like rasterio. GeoTIFF's capability in storing 

geospatial data provides detailed surface analysis. The chosen study area 

encompasses a significant portion of Lower Saxony, with a 1 arc-second 

resolution (approximately 30 meters). Overall, this approach enhances the 

realism and accuracy of digital environments for autonomous driving system 

validation. 
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6.3. Converter 
 

Converting data between different formats is a step needed to the generation of 

the OpenDrive map. The conversion mainly is focused in two parts: the translation 

of the map data and the annotation of the elevation to the map file. 

The converter is specifically designed to extract detailed information about the 

road network from the OSM file. This includes essential elements such as roads, 

lanes, intersections, and other pertinent features necessary for accurate 

representation. Simultaneously, it retrieves elevation data from the GeoTIFF file, 

ensuring precise terrain height information is captured and integrated seamlessly 

into the map. 

 

 

Figure 25: Diagram illustrating the data conversion process for generating OpenDrive maps 

 

Map Data Translation 

 

The successful conversion of map data from OSM to OpenDrive depends on 

comprehending the profound differences in data structure, semantics, and 

purpose that distinguish these two formats.  

 

According to chapter 5, in OpenStreetMaps the data is structured around nodes, 

ways and relations, where nodes represent individual geographical points, ways 

are ordered lists of nodes that define linear features like roads and relations 

represent grouping of nodes, ways and other relations. 
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On the other hand, OpenDrive is a more sprecialized format which focuses on 

accurately representing road shapes, lane setups, signs, and other essential 

factors. The core structure of OpenDrive relies on well-defined mathematical 

equations and geometrical principles. Roads are precisely described using 

mathematical formulas that capture curves, slopes, and other geometric traits. 

Lanes are thoughtfully integrated into these equations, allowing us to specify lane 

widths, positions, and road markings precisely. The way different road segments 

connect is seamlessly woven together using principles from graph theory. 

 

The conversion approach entails a comprehensive data mapping procedure in 

which road segments from OSM data are found and turned into drivable lanes 

inside the OpenDrive schema. This necessitates extracting essential road 

geometry details, such as lane widths, offsets, and curvature, to preserve the 

fidelity of the simulation. Moreover, attributes from OSM, such as road names, 

speed limits, and lane types, must be meticulously mapped to their corresponding 

counterparts in the OpenDrive format. 

 

Elevation Annotation 

 

Beyond the translation of map data, another critical dimension on the conversion 

process relate to the annotation of elevation information onto the OpenDrive map. 

Elevation data plays a pivotal role in generating realistic road profiles and 

gradients, which are essential for simulating accurate vehicle behavior, such as 

braking and acceleration responses. 

The elevation annotation process involves sourcing accurate elevation data from 

specialized sources, such as digital elevation models (DEMs).  

 

Understanding the nuanced differences in data structure, semantics and purpose 

between these formats is crucial for executing a successful conversion. By 
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precisely translating map data and annotation elevation information, the resulting 

OpenDrive map creates a solid platform for simulating complicated driving 

scenarios. 

 

The converter, developed using functional programming techniques in Python, 

consists of modular components working collaboratively to process, transform, 

and seamlessly integrate OSM and elevation data into a unified OpenDrive 

representation. 

 

 

Figure 26: Diagram of the main tools 
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osmParsing Module 

The osmParsing module provides the foundation for the converter's functionality. 

It is dedicated to parsing the complex OSM XML data and extracting relevant 

road network information. This module deciphers OSM elements including roads, 

lanes, intersections, and attributes. 

 

surface Module 

The surface module assumes the role of interfacing with GeoTIFF elevation data. 

This module reads and interprets the elevation information stored within GeoTIFF 

file. By systematically processing the GeoTIFF data, it constructs a surface a 

surface representation that accurately captures terrain height variations.  

 

Figure 27: Diagram of the surface function 

 

 

Creation of the grid 
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Creating a grid is necessary to establish a spatial coordinate system for the input 

data. The grid assigns coordinates to each data point, enabling interpolation, 

spatial analysis, and visualization. It provides a structured framework to organize, 

analyze, and represent spatial data accurately. 

The process of creating the 2D grid involves obtaining the spatial bounds of the 

input data and generating a set of coordinates that span this spatial extent. This 

is accomplished using the src.bounds attribute and the numpy.linspace function. 

The src.bounds attribute provides the minimum and maximum values of the x-

coordinate (x_min, x_max) and y-coordinate (y_min, y_max) that define the 

spatial extent of the data.  

A set of points must be defined along the x and y directions that span the spatial 

bounds. This is achieved by using the numpy.linspace function, which generates 

a sequence of evenly spaced values within a specified interval. 

To the x-coordinate direction the starting point of the sequence(‘start’) is defined 

as ‘x_min’, the ending point of the sequence(‘stop’) is defined as ‘x_max’, and the 

number of points (‘num’) as the number of pixels or grid points in the input data. 

This generates a 1D array x with equally spaced points along the x-direction. 

To the y-coordinate direction the starting point of the sequence(‘start’) is defined 

as ‘y_min’, the ending point of the sequence(‘stop’) is defined as ‘y_max’, and the 

number of points (‘num’) as the number of pixels or grid points in the input data. 

This generates a 1D array x with equally spaced points along the y-direction. 

The two 1D arrays, x and y represent the coordinates of the grid points along the 

x and y directions respectively. Each element in these arrays corresponds to a 

specific pixel or data value in the input data. 

To construct the 2D grid will be used the ‘numpy.meshgrid’ function. This function 

takes the 1D arrays x and y as input and returns two 2D matrices, ‘xi’ and ‘yi’. 

 

The ‘xi’ matrix is created by replicating the elements of the x array along the y-

direction, resulting in a matrix where each row corresponds to the x values at a 

specific y-coordinate. 
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The ‘yi’ matrix is created by replicating the elements of the y array along the x-

direction, resulting in a matrix where each column corresponds to the y values at 

a specific x-coordinate. 

Together, they define a 2D coordinate system that spans the spatial extent of the 

input data, allowing for further computations and interpolation. 

 

6.3.1. Surface generation 
 

Interpolation 

 

Interpolation methods are utilized to estimate values between known data points. 

In the case of study interpolation is needed to create a smooth and continuous 

surface representation based on the input data. The three main methods used 

for this kind of interpolation are: nearest neighbor interpolation, bilinear 

interpolation, and bicubic spline interpolation. 

To accurately interpolate the data and retrieve the result of z based on x and y 

values, a 2D interpolation method was employed. This method enables 

simultaneous interpolation across both the x and y dimensions, ensuring a 

comprehensive assessment of the data. 

 

Figure 28: Comparison of some 1- and 2-dimensional interpolations 

 

Nearest Neighbor Interpolation 
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Nearest neighbor interpolation is a simple and computationally efficient method 

used to estimate values between data points on a grid. It involves selecting the 

value of the nearest data point as the estimate for a target point. This technique 

is straightforward to implement and preserves the original data values, but it may 

result in a blocky or pixelated appearance due to its piecewise constant nature. 

Nearest neighbor interpolation is commonly used in applications where 

computational efficiency is critical, but it may not provide the highest level of 

accuracy or smoothness.  

 

Bilinear Interpolation 

Bilinear interpolation improves upon nearest neighbor interpolation by 

incorporating the surrounding data points to estimate values within a grid. It uses 

a weighted average of the neighboring four data points, considering the distance 

between the target point and these points. Bilinear interpolation produces 

smoother results than nearest neighbor interpolation and preserves linear trends 

in the data. This method is widely employed in image resizing, computer graphics, 

and spatial analysis applications. While bilinear interpolation provides better 

visual quality than nearest neighbor interpolation, it may not capture complex 

variations or sharp changes in the data. 

Bicubic Spline Interpolation 

Bicubic spline interpolation is a more sophisticated technique that achieves even 

higher accuracy and smoothness compared to bilinear interpolation. It constructs 

a smooth surface representation by fitting cubic polynomials to the surrounding 

data points within a grid. Bicubic spline interpolation considers 16 neighboring 

data points and employs a system of linear equations to determine the 

coefficients of the bicubic polynomial. This method provides a visually pleasing 

interpolation with continuous gradients and can capture intricate variations in the 

data. However, bicubic spline interpolation requires more computational 

resources than nearest neighbor or bilinear interpolation due to the increased 

complexity of the mathematical calculations involved. 
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Figure 29 Results of 2D interpolation methods in a 2D respresentatrion 

 

Figure 30 Results of the 2D interpolation methods in a 3D 
representation 

 

 Nearest Neighbor 
Interpolation 

Bilinear Interpolation Bicubic Spline 

Interpolation 

Interpolation 
Quality 

Provides a piecewise 
constant approximation. 

Produces a piecewise 
linear approximation. 

Provides a smooth and 
continuous surface 
representation. 

Accuracy Low accuracy Moderate accuracy High accuracy 

Smoothness Can result in irregular 
surfaces, as it assigns the 
value of the nearest data 
point without considering 
neighboring points. 

Can result in less 
smoothness, as it connects 
adjacent points with 
straight lines, leading to 
abrupt changes in slope 

Provides a smooth surface 
approximation by 
employing cubic 
polynomials and ensuring 
continuity up to the second 
derivative 

Handling 
Missing Data 

Cannot handle missing data. 
Missing points are skipped, 
leading to gaps in the 
interpolated surface. 

Cannot handle missing 
data. Missing points are 
skipped, leading to gaps in 
the interpolated surface. 

Can handle missing data by 
incorporating neighboring 
points within the local 
region for interpolation. 

Computational 
Complexity 

Involves straightforward 
calculations, as it directly 
assigns the value of the 
nearest data point. 

Involves simpler 
calculations, as it computes 
the weighted average of 
neighboring data points. 

Involves more complex 
calculations, as it requires 
solving a system of 
equations to determine the 
polynomial coefficients. 

Extrapolation Cannot extrapolate beyond 
the original data boundaries. 
Interpolation is limited to the 
range of available data. 

Cannot extrapolate beyond 
the original data 
boundaries. Interpolation 
is limited to the range of 
available data. 

Can extrapolate beyond the 
original data boundaries, 
providing plausible 
estimates based on the 
fitted surface 
representation. 

Applications Commonly used in cases 
where preserving the original 
data values without 
interpolation is sufficient or 
when computational 
efficiency is the main 
concern. 

Commonly used in simple 
data visualization tasks and 
basic spatial analysis where 
computational efficiency is 
prioritized over accuracy. 

Widely used in computer 
graphics, image processing, 
GIS, scientific data analysis, 
and other fields where 
smooth and accurate 
surface representations are 
essential. 

Table 7 Comparison of 2D interpolation methods 
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In summary, nearest neighbor interpolation is a simple and efficient method but 

may result in blocky artifacts. Bilinear interpolation offers smoother results by 

considering the surrounding data points, while bicubic spline interpolation 

provides the highest level of accuracy and smoothness by fitting cubic 

polynomials to a larger neighborhood of data points. 

 

After comparing the different interpolation methods, it has been decided to utilize 

bicubic spline interpolation for creating the surface. Bicubic spline interpolation is 

a powerful technique that offers smoothness and accuracy. It extends cubic 

spline interpolation to two dimensions, providing a continuous and differentiable 

surface that closely fits the given data while minimizing oscillations. This choice 

ensures robustness and high-quality results in the interpolation process. 

 

Bicubic interpolation shows up as a powerful and appropriate method for 

generating elevation surfaces due to its unique characteristics that align with the 

goals of the toolchain: 

Smoothness and Continuity  

Bicubic spline interpolation generates a smooth and continuous surface 

representation. It captures gradual changes in the data and avoids abrupt 

transitions between neighboring points. This property is crucial when creating a 

fitted surface to accurately represent the underlying data. 

 

Interpolation Accuracy 

Bicubic spline interpolation tends to provide higher accuracy compared to linear 

interpolation methods, especially when the underlying data has subtle variations 

or noise. By employing a more sophisticated mathematical approach, bicubic 

spline interpolation can better approximate the true values between data points. 

 

Derivative Continuity 
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Bicubic spline interpolation ensures continuity of the interpolated surface's first 

and second derivatives. This property is advantageous in applications where 

derivatives of the surface, such as slope or curvature, are important for further 

analysis or visualization. 

Compatibility with Grid Data 

The bicubic spline interpolation method is well-suited for gridded data, which is 

the case in this function. It operates effectively on regular grids, allowing for 

interpolation at any point within the grid using neighboring data points. This 

property makes it suitable for working with raster data such as topographic maps.  

 

Mathematical Foundation 

Bicubic interpolation's mathematical foundation lies in the formulation of a 

continuous surface through a set of cubic polynomials. The interpolated surface 

f(x,y) can be expressed as: 

𝑓(𝑥, 𝑦) = ∑  

3

𝑖=0

∑ 

3

𝑗=0

𝑎𝑖𝑗𝑥
𝑖𝑦𝑗  

Equation 1: Equation of the interpolated surface 

 

Where: 

i, j: Indices that range from 0 to 3, representing the terms in the bicubic 

polynomial. 

aᵢⱼ: Coefficients that need to be determined for accurate interpolation. 

xⁱ: Powers of x corresponding to the current term i in the polynomial. 

yʲ: Powers of y corresponding to the current term j in the polynomial. 
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Figure 31: Representation of bicubic interpolation [56] 

 

The primary challenge in bicubic interpolation is determining the 16 coefficients 

(aᵢⱼ) that will accurately describe the elevation surface between known data 

points. These coefficients encapsulate the information needed to create a smooth 

and continuous surface. The process of determining these coefficients is the 

heart of the interpolation technique. 

 

This procedure yields a surface f(x,y) on the area of 

 

𝑓(𝑥, 𝑦) = [𝑥3    𝑥2    𝑥    1]

[
 
 
 
𝑎3,3    𝑎3,2    𝑎3,1    𝑎3,0

𝑎2,3    𝑎2,2    𝑎2,1    𝑎2,0

𝑎1,3    𝑎1,2    𝑎1,1    𝑎1,0

𝑎0,3    𝑎0,2    𝑎0,1    𝑎0,0]
 
 
 

[

𝑦3

𝑦2

𝑦
1

] 

Equation 2: Function for the determination of the interpolated surface 

 

𝑓(𝑥, 𝑦) = ∑  

3

𝑖=0

∑ 

3

𝑗=0

𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

∂𝑥𝑓(𝑥, 𝑦) = ∑  

3

𝑖=1

∑ 

3

𝑗=0

𝑖𝑎𝑖𝑗𝑥
𝑖−1𝑦𝑗

∂𝑦𝑓(𝑥, 𝑦) = ∑  

3

𝑖=0

∑ 

3

𝑗=1

𝑗𝑎𝑖𝑗𝑥
𝑖𝑦𝑗−1

∂𝑥𝑦𝑓(𝑥, 𝑦) = ∑  

3

𝑖=1

∑ 

3

𝑗=1

𝑖𝑗𝑎𝑖𝑗𝑥
𝑖−1𝑦𝑗−1

 

 

Equation 3: Partial derivative expressions for the computation of the surface 
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These derivatives provide insights into the surface's curvature and rate of change 

in both x and y directions. Equations that involve finite differences or explicit 

mathematical formulas are used to compute these derivatives. 

 

For the computation of the bicubic spline interpolation as shown in Figure X the 

equations used will be finite difference approximations for calculating partial 

derivatives. 

 

 

 

Figure 32:Representation of a bicubic spline interpolation 

 

∂𝑥𝑓(𝑥, 𝑦) = [𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥 − 1, 𝑦)]/2
∂𝑦𝑓(𝑥, 𝑦) = [𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦 − 1)]/2

∂𝑥𝑦𝑓(𝑥, 𝑦) = [𝑓(𝑥 + 1, 𝑦 + 1) − 𝑓(𝑥 − 1, 𝑦) − 𝑓(𝑥, 𝑦 − 1) + 𝑓(𝑥, 𝑦)]/4
 

Equation 4: Partial equations for the computation of the bicubic spline interpolation 
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By utilizing finite difference equations, we can obtain valuable insights into the 

behavior of the interpolated surface and use these approximations to refine the 

coefficients in the bicubic spline interpolation process, resulting in a more 

accurate representation of the elevation surface. 

 

This step is performed in the code by utilizing the ‘RectBivariateSpline’ class from 

the ‘scipy.interpolate’ module. 

 

 

 

6.3.2. Fitting method 
 

Fitting a function to a surface involves determining a mathematical model or 

equation that approximates the relationship between the independent variables 

(denoted as x and y) and the dependent variable (denoted as z) within a two-

dimensional space. 

 

The primary goal of surface fitting is to capture and represent the underlying 

connections, trends, and patterns present in the data points. This process 

enables extrapolation beyond observed data to make predictions or to produce a 

smooth representation of the surface. Achieving this involves selecting an 

appropriate mathematical model that accurately reflects the data. 

 

Several methods can be employed to find the optimal solution when fitting a 

function to a surface. These techniques aim to determine the model's parameters 

or coefficients that minimize the difference between the fitted surface and the 

observed data points. Commonly used methods include the least squares 

method, polynomial fitting, and spline interpolation. Each method offers unique 

advantages and is selected based on the specific characteristics of the data and 

the desired outcome. 
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Least Squares Optimization 

Least squares optimization is a widely used method for fitting a function to a 

surface. It involves minimizing the sum of the squares of the differences between 

the fitted surface values and the corresponding observed data points. This 

approach provides a robust and balanced fit by considering all data points and 

giving more weight to larger discrepancies. The optimization process adjusts the 

parameters or coefficients of the function to iteratively reduce the objective 

function, resulting in the best-fitting solution. [57] 

 

Polynomial Fitting 

Polynomial fitting is a popular technique for approximating a surface with a 

polynomial function. The degree of the polynomial determines the complexity of 

the model and the number of coefficients to be determined. The coefficients are 

estimated by solving a system of linear equations using the least squares method 

or other numerical techniques. Polynomial fitting allows for flexible modeling of 

various surface shapes and can be extended to higher dimensions. [58] 

 

Spline Interpolation 

Spline interpolation is another powerful method for fitting a function to a surface. 

It involves constructing a smooth and continuous surface representation based 

on the observed data points. Various types of splines, such as cubic splines or 

B-splines, can be used to approximate the surface. The spline interpolation 

process determines the optimal coefficients or control points by solving a system 

of linear equations or applying optimization techniques to minimize the 

interpolation error. 
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Method Advantages Disadvantages Computational 

Requirements 

Least 

Squares 

Fitting 

Provides an optimal fit according to 

the least squares criterion. 

 

May struggle with complex 

surfaces exhibiting non-

polynomial behavior. 

Moderate 

computational 

requirements 

Effective in handling noise or errors 

in the data. 

 

Requires defining an 

appropriate objective function. 

Can be applied to various types of 

functions. 

Polynomial 

Fitting 

Versatile technique that can capture 

various trends and patterns in the 

data. 

 

Can result in overfitting if the 

degree of the polynomial is too 

high. 

Low computational 

requirements 

Allows control over the complexity 

of the fit through the degree of the 

polynomial. 

May not accurately capture 

complex surface behavior. 

 

Spline 

Interpolation 

Effective in capturing complex 

variations in the data. 

May require additional 

computational resources 

compared to simpler methods 

Higher 

computational 

requirements 

Provides a visually pleasing fit with 

smooth transitions between 

adjacent data points. 

Requires careful selection of 

spline parameters. 

Table 8 Comparation of the different fitting methods 

 

The chosen approach for fitting the data is the least squares method. This method 

serves to determine the coefficients of a polynomial function that best align with 

the given dataset. Through the least squares optimization technique, the primary 

goal is to identify these coefficients in a manner that minimizes the disparity 

between the predicted values generated by the polynomial function and the actual 

data points. 

The objective is to determine the polynomial coefficients that provide the best 

possible fit to the data. By minimizing the discrepancy between the predicted 

values and the observed data points, the least squares optimization aims to find 

the coefficients that yield the most accurate representation of the underlying 

relationship between the variables. 

The least squares method is well-suited for this purpose. It aims to minimize the 

sum of the squared differences between the predicted values of the polynomial 
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function and the actual data points on the finer grid. By minimizing the squared 

residuals, the method provides an optimal fit that reduces the overall error 

between the fitted surface and the observed data. 

 

Implementation 

The ‘least_squares’ function is called to perform the least squares optimization. 

It takes several arguments: the error function (error_func), the initial coefficient 

values (initial_coeffs), and the flattened data (x_flat, y_flat, z_flat). 

The ‘error_func’ is defined as a function that quantifies the difference between 

the predicted values of the polynomial function and the observed data points. This 

error function computes the residual, which represents the discrepancy between 

the polynomial fit and the actual data. 

Concurrently, an initial guess for the polynomial coefficients is provided using the 

‘initial_coeffs’ variable. These initial values serve as the starting point for the 

optimization process. 

The ‘least_squares’ optimization algorithm iteratively adjusts the polynomial 

coefficients to minimize the error function. By minimizing the sum of squared 

differences between the predicted polynomial values and the actual data points, 

it finds the optimal values for the coefficients that provide the best fit to the data. 

Once the optimization process is completed, the result contains the optimal 

values for the polynomial coefficients. These coefficients represent the 

parameters of the fitted polynomial function that provides the best approximation 

to the data. 

In conclusion, this approach enables the derivation of a polynomial function that 

accurately represents the underlying relationship between the variables, 

improving the understanding and modeling of the data. 
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𝑚𝑥 ∈  {
𝑥𝐿

𝑥𝐿+1
  {

ℎ𝑥𝐿

ℎ𝑥𝐿+1

ℎ𝑥𝐿 − ℎ𝑥𝐿+1

𝑥𝐿 − 𝑥𝐿+1
 

Equation 5: Calculation of the slope between two adjacent points on x coordinates 

 

𝑚𝑦 ∈  {
𝑦𝐿

𝑦𝐿+1
  {

ℎ𝑦𝐿

ℎ𝑦𝐿+1

ℎ𝑦𝐿 − ℎ𝑦𝐿+1

𝑦 − 𝑦𝐿+1
 

Equation 6:Calculation of the slope between two adjacent points on y coordinates 

 

∆𝑥 = 𝑥𝐿 − 𝑖𝑛𝑡(𝑥𝐿) 

Equation 7: Differential of x 

∆𝑦 = 𝑦𝐿 − 𝑖𝑛𝑡(𝑦𝐿) 

Equation 8: Differential of y 

 

ℎ𝑒𝑖𝑔𝑡ℎ = [
ℎ𝑥

ℎ𝑦
]  =  [

𝑚𝑥 ∗ ∆𝑥 + ℎ𝑥𝐿

𝑚𝑦 ∗ ∆𝑦 + ℎ𝑦𝐿
] 

Equation 9:  Linear interpolation between two points 

 

Methodology  

The developed algorithm employs bilinear interpolation for computing the height 

value. This interpolation method is chosen for its effectiveness and accuracy in 

approximating the height between four neighboring points in a grid. 

 

 

Figure 33: Pseudocode of the algorithm for the computation of the bilinear interpolation 
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6.3.3. Comparison of the order of the function 

 

Comparing the orders of functions used for surface fitting is crucial for 

understanding both the complexity and accuracy of the model employed to 

represent the surface. The selection of an appropriate order aims to strike a 

delicate balance, seeking the most precise mathematical depiction while avoiding 

overfitting and excessive computational demands. 

 

Higher-order functions hold promise for capturing intricate data patterns with 

greater fidelity. However, they also introduce the risk of overfitting, where the 

model becomes overly attuned to the training data, hindering its ability to 

generalize to new observations. Conversely, lower-order functions offer simplicity 

but may lack the capacity to capture the full complexity of the data, resulting in 

underfitting. 
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Figure 34: Representation of the surface with an 2nd 
order fitment 

 

Figure 35: Representation of the surface with an 3th 
order fitment 

 

 

Figure 36: Representation of the surface with an 4th 
order fitment 

 

Figure 37: Representation of the surface with an 5th 
order fitment 

 

 

Upon comparing the orders of functions depicted in the provided figures, a 

discernible difference becomes apparent. In the case at hand, a fourth-order 

function emerged as the preferred solution. It strikes an optimal balance, offering 

sufficient precision to capture the intricate geography while mitigating the risk of 

overfitting and conserving computational resources. 
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Figure 38: Pseudocode of the algorithm for the generation of the surface 

 

The algorithm outlined serves as a fundamental component in the generation of 

elevation surfaces. With the requirement of a TIFF file containing elevation data, 

the algorithm begins by initializing variables to define the boundaries of the 

elevation map. These variables encompass the horizontal and vertical extents, 

delineating the region over which the surface will be generated. 

 

Utilizing spline interpolation, specifically the RectBivariateSpline method, the 

algorithm constructs a smooth surface representation of the elevation data. This 

interpolation technique ensures that the generated surface accurately captures 

the underlying terrain features while mitigating the effects of noise or irregularities 

present in the data. 
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Following the spline interpolation, the algorithm proceeds to generate a fine 

meshgrid, refining the resolution of the surface representation. This finer grid 

facilitates more precise evaluation of the elevation values, essential for achieving 

high-fidelity surface reconstructions. 

 

Subsequently, the algorithm evaluates the spline interpolation on the fine 

meshgrid, yielding elevation values across the specified region. These values 

serve as the basis for fitting a polynomial function, aimed at capturing the 

underlying trends and variations in the elevation data. 

 

The process of polynomial fitting involves minimizing the error between the 

calculated polynomial and the actual elevation values. Leveraging least squares 

optimization, the algorithm iteratively adjusts the polynomial coefficients to 

achieve the best possible fit to the data. This optimization technique ensures that 

the fitted surface closely aligns with the observed elevation data, enhancing the 

accuracy and reliability of the generated surface. 

 

Upon obtaining the optimal polynomial coefficients, the algorithm calculates the 

fitted surface, synthesizing the polynomial function with the fine meshgrid 

coordinates. This step yields a comprehensive representation of the terrain, 

characterized by smooth transitions and accurately captured features. 

 

Finally, the algorithm concludes by returning the fitted surface as the output, 

providing a valuable resource for subsequent analyses and applications. By 

integrating advanced interpolation and polynomial fitting techniques, the 

algorithm facilitates the generation of elevation surfaces that are both precise and 

reliable. 
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6.3.4. Generation of the OpenDrive file 
 

 

As mentioned in chapter 5, the OpenDrive format follows a hierarchical structure 

with each level serving a specific pourpuse in describing the road environment 

for autonomous vehicles. 

At the top of the hierarchy, we have as a foundation for the file the road level. 

This provides the overall characteristics of the roads. These road definitions act 

as the starting point, forming the basis for the entire representation. For a better 

understanding of the concept the structure of the roads is represented in Figure 

39. 

 

 

Figure 39: UML of the road class in OpenDrive maps 
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As we move down the hierarchy, we encounter the lanes. Lanes are like individual 

lanes on a real-world road. They encompass crucial details like lane width, road 

markings, and even whether a lane supports certain driving behaviors. Think of 

lanes as the distinct paths that vehicles can travel on within the virtual road 

network. 

In our virtual road system, there are also places where lanes intersect and interact 

– much like intersections. Just as real-world junctions enable vehicles to change 

paths, our virtual junctions define how lanes connect and how vehicles can 

navigate from one lane to another. These junctions ensure a seamless flow of 

traffic in the digital environment. 

But the aim of this thesis is to focus on the generation of the elevation profile. For 

this part of the file, we will focus on the elevationProfile element inside the road 

class. 

The elevation profile in OpenDrive format is defined by a cubic equation with the 

following mathematical formula: 

𝑒𝑙𝑒𝑣(𝑑𝑠) = 𝑎 + 𝑏 ∗ 𝑑𝑠 + 𝑐 ∗ 𝑑𝑠2 + 𝑑 ∗ 𝑑𝑠3 

Equation 10: Polynomial function used to model elevation variation 

 

where: 

 

elev is the elevation at a given position. 

 

a,b,c,d are polynomial coefficients. 

 

ds is the distance along the reference line 

between the start of a new elevation 

element and the given position. 
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The ds value restarts at 0 for each element. The absolute position of an 

elevation value is computed using the following equation: 

 

𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡 + 𝑑𝑠 

Equation 11: Calculation of a new position s based on the initial position 

 

where: 

s is the absolute position in the 

reference line coordinate system. 

sstart is the start position of the element on 

the reference line coordinate system. 

 

 

Figure 40:Pseudocode of the algorithm for the computation of the normalized coordinates for bilinear interpolation 

 

 

The provided algorithm is a key component in the complex process of adding 

elevation data to an HD map.  

 

The algorithm starts with a precondition check, which ensures the presence of a 

valid topographic map ('topomap'). This thorough procedure checks for errors 

caused by data incompleteness or corruption. By certifying the map's integrity, 

the technique lays the groundwork for future recovery of reliable elevation data. 
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Followed the variable `minRemoved` acts as a dynamic switch, indicating 

whether certain minimum values have been omitted from the dataset. Leveraging 

this adaptive mechanism, the algorithm showcases its versatility, adeptly 

maneuvering through varied datasets and scenarios with finesse and accuracy. 

 

The algorithm's core goal is to compute normalized coordinates, which are 

required for further interpolation procedures. When'minRemoved' returns false, 

the algorithm uses special formulas to generate 'f x lookup' and 'f y lookup'. These 

calculations intelligently scale the input coordinates ('x' and 'y') to match the map's 

dimensions. This normalization procedure is critical, since it ensures consistency 

in the depiction of elevation data over the whole map canvas. 

Conversely, when the presence of deleted minimum values is recognized 

('minRemoved' is true), the method adjusts its calculations. It dynamically adjusts 

the normalization algorithms to account for the changed dataset features, 

assuring elevation representation integrity in the absence of specific data points. 

This adaptability demonstrates the algorithm's ability to smoothly accommodate 

varied datasets and developing settings. 

 

Post normalization, the algorithm seamlessly transitions to the conversion phase, 

where it elegantly transforms the floating-point normalized coordinates into 

integer indices (`x_lookup` and `y_lookup`). These indices serve as navigational 

beacons, efficiently guiding the subsequent retrieval of elevation data from the 

HD map. The precision of this conversion process is pivotal, ensuring seamless 

compatibility with array indexing and facilitating expedited data access and 

manipulation operations. 

 

In summation, the algorithm assumes a pivotal role in the intricate orchestration 

of furnishing elevation data to an HD map. Its adaptive nature, coupled with the 

precision in computing normalized coordinates and seamless data retrieval 

mechanisms, culminate in the creation of meticulous and accurate terrain 
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representations. Seamlessly integrated into the HD map ecosystem, the 

algorithm underpins a plethora of geographic and navigational applications, 

fortifying their reliability and efficacy in real-world scenarios. 

 

 

6.4. Comparative analysis of virtual and real-world 

elevation data  
 

Elevation Map Preparation 

 

The real-world elevation map utilized in this analysis comes from the webpage 

FloodMap.net. This website offers a range of geographical data, including 

elevation maps that vividly depict varying elevations through a color-coded 

scheme. For the purpose of this study, the elevation map specifically pertains to 

the geographic region of Wolfenbüttel. 

 

  

Figure 41: Colored topogrphic map of Wolfenbüttel from topographic-map.com [59] 
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Virtual Model Output Inspection 

 

To retrieve the elevation data from the virtual model, we relied on the 

libOpenDrive library, accessible via a GitHub repository. This comprehensive 

library offers a range of functionalities for parsing OpenDrive files and extracting 

diverse geographical and topographical data, including elevation details. The 

primary aim was to leverage the OpenDrive viewer module within the library, 

enabling to engage with and visualize the elevation values of the virtual model 

more effectively. 

 

Figure 42: Representation of the OpenDrive map on OpenDRIVE viewer [60] 

 

The OpenDrive viewer offered not only visualize the elevation data itself but also 

to simultaneously represent the corresponding x, y, and z coordinates. This 

dynamic visualization enhanced our understanding of the elevation distribution 

and its relationship to geographic positioning within our chosen area of study. 

Using the tool's interactive interface, navigation through the virtual model's 

representation was facilitated, allowing for the identification of particular 

geographic points of interest, including Am Exer, Neuer Weg, and Jahnstraße. 

Utilizing the OpenDrive viewer, elevation data corresponding to these points was 

accurately extracted, providing a detailed overview of the virtual model's elevation 

outputs. 

This extraction method not only visualized elevation values but also 

contextualized them with geographical coordinates. By accurately capturing 
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elevation data from selected points, we established a solid foundation for 

subsequent visual comparisons and manual assessments of the virtual model's 

representation. 

 

Visual Comparison 

 

The visual comparison entails placing the elevation representation of the virtual 

model and the real-world elevation map side by side for direct scrutiny. This 

allows for an immediate and comprehensive assessment of how the virtual 

model's elevation outputs correspond to the elevation representation in reality. 

By juxtaposing these representations, we can identify areas of agreement and 

divergence more effectively. 

 

During the visual comparison, our attention is directed towards observing regions 

where the virtual model's elevation representation aligns closely with the real-

world elevation map, as well as regions where noticeable differences become 

apparent. These areas of alignment and discrepancies serve as essential 

markers for evaluating the accuracy and fidelity of the virtual model's elevation 

outputs. 

To gain a deeper understanding of the comparison, we pay particular attention to 

distinctive features within the elevation representations. The main focus of the 

case study is to ensure that the Salzdahlumstaße road has a constant gradient 

from Neuer Weg to Am Exer. These distinctive feature can provide valuable 

insights into how well the virtual model captures the nuanced topographical 

characteristics of the real-world terrain. 
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Manual Annotation 

 

The manual annotation process serves as a meticulous means to highlight and 

document variations in elevation representation. By incorporating notations, 

comments, or markings, we aim to precisely delineate the regions of interest 

where differences are evident. This manual annotation provides a tangible record 

of our observations, aiding in the subsequent analysis and interpretation of the 

comparison results. 

During the visual comparison, we pay particular attention to areas where 

differences emerge between the virtual model's elevation representation and the 

real-world elevation map. These differences can manifest as discrepancies in 

elevations, terrain contours, or topographical characteristics. We manually 

annotate these areas, marking them with relevant notations, comments, or visual 

cues to pinpoint the locations and extent of differences. 

In addition to indicating the presence of differences, we strive to assess the 

magnitude and nature of these variations. This entails considering whether 

differences are consistent across multiple points, indicative of systematic biases, 

or if they occur sporadically, indicating unexpected variations. By 

comprehensively analyzing the nature of differences, we gain insights into 

potential factors influencing the alignment between the virtual model and reality. 

The manual annotations and markings created during this process serve as a 

tangible record of our visual observations. These annotations become invaluable 

assets for subsequent analysis, enabling us to identify trends, patterns, and 

potential correlations in the discrepancies between the virtual model's elevation 

representation and the real-world elevation map. 

As we conduct the visual comparison, we meticulously note and document our 

observations. Both areas of agreement and differences are recorded, along with 

any notable patterns or trends identified during the comparison. These notations 

form the foundation for subsequent analysis and conclusions. 
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Results and Analysis 

 

Record the insights gained from the visual comparison process. Document 

observations, patterns, and discrepancies that stand out. Note any areas where 

the virtual model's elevation representation closely matches the real-world 

elevation map and areas where differences are more pronounced. 

 

Error Patterns 

 

Identify any consistent error patterns that arise from the comparison. These could 

include systematic overestimation or underestimation of elevations, misalignment 

of features, or unexpected variations in elevation. 

 

RoadId z_virtual z real 

404 92 85 

37 96 96 

51 99 100 

266 99 127 

 

 

 

 
Figure 43: Digital representation of the crossway 
between Ahlumer Straße and Neuer Weg 

 
Figure 44: Topographic map of Wolfenbüttel of the 
crossway between Ahlumer Straße and Neuer Weg 
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Figure 45: Digital representation of Ostfalia Hochschule 
Parking 1 

 
Figure 46: Topographic map of Ostfalia Hochschule 
Parking 1 

 
 

 
Figure 47: Digital representation of Ostfalia Hochschule 
Parking 2 

 
Figure 48: Topographic map of Ostfalia 
Hochschule Parking 2 

 
 

 
Figure 49: Digital representation of Am Exer Buildings 

 
Figure 50: Topographic map of Am Exer 
Buildings 

 
 

Implications and Validation 

 

Assessment of Accuracy 

 

When comparing our virtual model to real-world elevation data, we noticed 

some differences, especially in the area of Am Exer. The virtual model 

consistently showed lower elevations than what actually exists. 
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This means that while our model is mostly accurate, there are areas where it 

needs improvement, especially in accurately representing elevations. To make 

our model more reliable, we need to figure out why these discrepancies occur 

and find ways to fix them. This might involve using better algorithms or getting 

more accurate data. 

 

In summary, while our virtual model is good in most places, we need to keep 

working on it to ensure it's accurate everywhere, especially in places like Am 

Exer. 

 

 

The manual visual comparative analysis presented in this chapter offers a unique 

perspective on evaluating elevation data from a virtual model. By directly 

engaging with the data. While manual comparison requires careful observation 

and interpretation, it provides valuable insights that complement automated 

methods and enhance the assessment of virtual modeling techniques. 
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7. Regulations and Standards in HD Map 

Generation 

 

In the pursuit of safe and reliable autonomous driving systems, the creation and 

utilization of High Definition (HD) maps have emerged as a critical component. 

The generation of accurate and up-to-date HD maps requires adherence to a 

range of regulations and standards to ensure functional safety, interoperability, 

and consistency. This chapter delves into the regulatory and standardization 

landscape surrounding HD map generation for autonomous driving, examining 

key norms that guide the industry toward the realization of safe and efficient self-

driving vehicles. 

 

7.1. Regulations 
 

7.1.1. ISO 26262-1:2018 
 

ISO 26262-1:2018, [61] an internationally recognized standard, focuses on 

functional safety for road vehicles. It delineates processes and requirements to 

manage functional safety risks inherent in electrical and electronic systems within 

vehicles, including those involved in autonomous driving. This section explores 

the applicability of ISO 26262 to HD map generation systems, highlighting how 

safety concerns are addressed to ensure robust and dependable HD map data. 

 

7.1.2. SAE J3016 
 

SAE J3016 [62] classifies driving automation into six levels, from Level 0 (no 

automation) to Level 5 (full automation). HD maps play a pivotal role in the higher 

levels of automation, where vehicles must possess a comprehensive 

understanding of their environment. This portion of the chapter explores the 

importance of HD map data in enabling advanced levels of autonomy and how 
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SAE J3016 categorization guides the integration of HD maps in autonomous 

driving systems. 

 

7.1.3. Local Regulations and Industry Guidelines 
 

Autonomous driving and HD map generation are subject to evolving regional 

regulations and industry guidelines. This section investigates the role of 

regulatory bodies like the U.S. National Highway Traffic Safety Administration 

(NHTSA) and the European Union in shaping norms for autonomous vehicles. 

Additionally, the application of industry-specific norms such as the Automotive 

Safety Integrity Level (ASIL) process is examined to ensure safety and adherence 

to rigorous standards. 

 

7.2. Standards 
 

7.2.1. ASAM OpenDRIVE 
 

ASAM OpenDRIVE stands as a significant standard for road and lane data 

representation. It provides an open and standardized XML format for describing 

road networks and environments, a fundamental necessity for HD map 

generation. This section delves into how ASAM OpenDRIVE facilitates the 

consistent representation of road geometries and environments, enabling 

autonomous vehicles to comprehend their surroundings accurately. 

 

  



 

86 
 

8. New lines of research 

 

As the field of autonomous driving rapidly evolves, the demand for cutting-edge 

tools and methodologies to simulate and evaluate autonomous vehicle behavior 

within complex environments intensifies.  

 

Integration of Real-Time Sensor Data 

 

One interesting path is the incorporation of real-time sensor data into the created 

digital environments. Research in this direction entails developing techniques to 

seamlessly fuse virtual and real data, allowing for more accurate validation of 

autonomous systems. Exploring the challenges and opportunities of integrating 

dynamic sensor data within the toolchain can contribute to more robust and 

realistic simulations. 

Generation of digital environments 

 

Current tools struggle to accurately capture the complexities of junctions, leading 

to errors in navigation systems and autonomous vehicle simulations. This new 

research could explore better algorithms for modeling junction geometry and 

topology, incorporate realistic traffic behavior simulation, and leverage machine 

learning for junction detection and classification. Additionally, involving human 

feedback and crowdsourced data could help improve junction representations. 
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9. Conclusions 

 

In conclusion, the development of a toolchain for the automated generation of 

digital maps for autonomous drive represents a significant advancement in the 

field of autonomous vehicle technology.  

 

Through the integration of the elevation data, this toolchain not only offers a 

streamlined and efficient solution for creating high-definition maps,  essential for 

safe and reliable autonomous navigation, but also fullfills the gap in the research 

world due to there wasn’t any study related with the annotation of the elevation 

on OpenDRIVE maps.  

 

As autonomous driving continues to evolve, this toolchain serves as a 

foundational framework, enabling further advancements in autonomous vehicle 

technology and paving the way for a future of safer and more efficient 

transportation systems.  
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