

1

Ostfalia

Hochschule für angewandte Wissenschaften

Hochschule Braunschweig/Wolfenbüttel

Fakultät Maschinenbau

IMEC - Institut für Mechatronik

Bachelorarbeit

Development of a toolchain for

 the automated generation of digital

 maps for autonomous drive

Sergio Peral Garijo

Matrikelnummer: 70483485

Erste Prüferin: Prof. Dr.-Ing. Xiaobo Liu-Henke

Zweiter Prüfer: Prof. Dr.-Ing. Christoph Hartwig

Betreuer: Marian Göllner, M. Eng. & Taihao Li, M. Eng.

Abgabe: 05.03.2024

2

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used.

Furthermore, I declare that I have acknowledged the work of others by providing

detailed references of said work.

 I hereby also declare that my Thesis has not been prepared for another

examination or assignment, either wholly or excerpts thereof.

X

Signature

3

Abstract

This thesis presents a comprehensive exploration into the development of a

toolchain designed for the automated generation of digital environments tailored

for autonomous driving scenarios. Focused on the road network surrounding

Ostfalia Hochschule University as a case study, the aim of this research is to

create a digital representation that serves as a reliable foundation for testing and

refining autonomous vehicle algorithms.

The toolchain integrates various data sources, including OpenStreetMap for the

geographical data and GeoTIFF for the elevation data. Through specific designed

modules, the converter translates both geospatial data into the OpenDrive format.

The thesis contributes to the field by expanding the capabilities of autonomous

vehicle testing through automated digital environment generation. It bridges the

gap between geospatial data sources and advanced simulation requirements,

facilitating a seamless transition from raw data to a dynamic digital environment.

By providing a foundation for comprehensive and realistic simulations, this tool

chain contributes to the advancement of safe and efficient autonomous driving

solutions.

Keywords:

Autonomous driving, Toolchain development, Digital mapping, Automation, Sensor

fusion, Machine learning, Image processing, Computer Vision, LiDAR, Radar,

Localization, Mapping algorithms, Road network extraction, Data integration, High-

definition maps

4

Contents

1. INTRODUCTION ... 8

1.1 PROBLEM .. 9
1.2 CONTRIBUTION .. 11

2. OBJECTIVES .. 12

3. BACKGROUND AND MOTIVATION .. 13

4. LIMITATIONS .. 14

5. STATE OF THE ART .. 17

5.1. DATA COLLECTION.. 18
5.2. MAP FILE FORMAT .. 28
5.3. ELEVATION DATA .. 40
5.4. SOFTWARE TOOLS .. 43

6. APPROACH .. 47

6.1. MAP INFORMATION .. 47
6.2. ELEVATION INFORMATION ... 50
6.3. CONVERTER .. 52

6.3.1. Surface generation .. 57
6.3.2. Fitting method .. 64
6.3.3. Comparison of the order of the function ... 69
6.3.4. Generation of the OpenDrive file ... 73

6.4. COMPARATIVE ANALYSIS OF VIRTUAL AND REAL-WORLD ELEVATION DATA 77

7. REGULATIONS AND STANDARDS IN HD MAP GENERATION 84

7.1. REGULATIONS ... 84
7.1.1. ISO 26262-1:2018 ... 84
7.1.2. SAE J3016 .. 84
7.1.3. Local Regulations and Industry Guidelines ... 85

7.2. STANDARDS .. 85
7.2.1. ASAM OpenDRIVE ... 85

8. NEW LINES OF RESEARCH .. 86

9. CONCLUSIONS .. 87

10. REFERENCES .. 88

5

List of abbreviations

Abbreviation Full description

API Application Programming Interface

ASTER Advanced Spaceborne Thermal Emission and Reflection
Radiometer

DOF Degrees of Freedom

DEM Digital Elevation Model

GPS Global Positioning System

GDPR European Union's General Data Protection Regulation

GNSS Global Navigation Satellite System

HD map High-Definition map

IMU Inertial Measurement Units

LIDAR Light Detection and Ranging

NASA National Aeronautics and Space

NASADEM NASA Digital Elevation Model

MMS Mobile Mapping Systems

MIMO Multiple Input Multiple Output

OSM Open Street Maps

RADAR Radio Detection and Ranging

SLAM Simultaneous Localization and Mapping

6

SRTM Shuttle Radar Topography Mission

WGS64 World Geodetic System 1984

XML

Extensible Markup Language

SUMO Simulation of Urban MObility

List of Figures

Figure 1: Representation of the type of maps according to theri accuracy[8] 15
Figure 2: Representation of the measurement with LiDAR sensors ... 18
Figure 3:Aeva's FMCW LiDAR that can estimate velocities and predict trajectories (blue:

approaching | red: receding) .. 19
Figure 4: Sample of the real-time artificial vision camera with detected objects for autonomous

driving using Mobileye .. 20
Figure 5: Graphic representation of the GPS and IMU ... 21
Figure 6 Representation of the radar sensor .. 22
Figure 7: Waymo's Imaging RADAR [30] ... 23
Figure 8:Example of an MMS: a vehicle-mounted mobile mapping platform consisting of

different positioning and data collection sensors to generate an accurate georeferenced 3D

map of the environment. [23] ... 24
Figure 9: Radar fused with camera ... 25
Figure 10: Simplified diagram of early fusion technique .. 26
Figure 11: Simplified diagram of late fusion technique .. 27
Figure 12: Representation of the different components of an OSM file [35] 29
Figure 13: Example of a node[36] ... 30
Figure 14: Representation of nodes with different coordinates .. 31
Figure 15: Example of a way [38] .. 32
Figure 16: Example of a relation[39] ... 33
Figure 17: Structure of the OSM file[35] ... 34
Figure 18: Structure of OpenDrive file [15] ... 35
Figure 19 Timeline of the process ... 47
Figure 20: Selection of the studied area in OpenStreetMaps ... 48
Figure 21: Representation of the OSM map ... 48
Figure 22: Representation of the map nodes ... 48
Figure 23: Representation of the elevation data with PNG file .. 50
Figure 24: TIFF image of a small area in Niedersachsen ... 51
Figure 25: Diagram illustrating the data conversion process for generating OpenDrive maps .. 52
Figure 26: Diagram of the main tools .. 54
Figure 27: Diagram of the surface function .. 55
Figure 28: Comparison of some 1- and 2-dimensional interpolations .. 57
Figure 29 Results of 2D interpolation methods in a 2D respresentatrion 59
Figure 30 Results of the 2D interpolation methods in a 3D representation 59
Figure 31: Representation of bicubic interpolation [56] ... 62

7

Figure 32:Representation of a bicubic spline interpolation .. 63
Figure 33: Pseudocode of the algorithm for the computation of the bilinear interpolation 68
Figure 34: Representation of the surface with an 2nd order fitment ... 70
Figure 35: Representation of the surface with an 3th order fitment ... 70
Figure 36: Representation of the surface with an 4th order fitment ... 70
Figure 37: Representation of the surface with an 5th order fitment ... 70
Figure 38: Pseudocode of the algorithm for the generation of the surface 71
Figure 39: UML od the road class in OpenDrive maps .. 73
Figure 40:Pseudocode of the algorithm for the computation of the normalized coordinates for

bilinear interpolation .. 75
Figure 41: Colored topogrphic map of Wolfenbüttel from topographic-map.com [59] 77
Figure 42: Representation of the OpenDrive map on OpenDRIVE viewer [60] 78
Figure 43: Digital representation of the crossway between Ahlumer Straße and Neuer Weg .. 81
Figure 44: Topographic map of Wolfenbüttel of the crossway between Ahlumer Straße and

Neuer Weg .. 81
Figure 45: Digital representation of Ostfalia Hochschule Parking 1 ... 82
Figure 46: Topographic map of Ostfalia Hochschule Parking 1 .. 82
Figure 47: Digital representation of Ostfalia Hochschule Parking 2 ... 82
Figure 48: Topographic map of Ostfalia Hochschule Parking 2 .. 82
Figure 49: Digital representation of Am Exer Buildings .. 82
Figure 50: Topographic map of Am Exer Buildings ... 82

List of Tables

Table 1 Comparison of different sensor fusion types ... 27
Table 2 Comparison of the different data collection methods ... 28
Table 3: Representation of the values for a node in OSM [36] .. 31
Table 4: Comparison of OSM and OpenDRIVE format [2], [35], [36], [38], [39] 37
Table 5: Comparison between Open-Source and commercial solutions 40
Table 6: Comparison of the Elevation data Solutions [1] [2] [3] ... 43
Table 8 Comparison of 2D interpolation methods .. 59
Table 9 Comparation of the different fitting methods ... 66

8

1. Introduction

Autonomous driving technology requires extensive testing and validation before

it can be deployed on public roads. This is necessary to ensure that the system

can detect and respond to various driving scenarios and conditions, such as

changes in weather, road conditions, and traffic patterns.

However, testing autonomous driving systems in the real world can be time-

consuming, expensive, and potentially dangerous. To overcome these

challenges, researchers and engineers use digital environments for simulation to

test and validate autonomous driving technology. This digital environment

provides a virtual platform where researchers can create various driving

scenarios and conditions that the autonomous system may encounter in the real

world.

In a digital environment, researchers can also control various factors, such as the

weather, traffic density, and road conditions, to simulate different scenarios and

test the system's response. This allows for more efficient and cost-effective

testing, as well as the ability to test the system in a range of scenarios that might

be difficult or even impossible to replicate in the real world.

Moreover, the use of a digital environment also enables researchers to collect

and analyze large amounts of data generated during the testing process. This

data can be used to identify areas where the autonomous system needs

improvement and refine the system's performance in real-world situations.

In summary, a digital environment for simulation is essential for testing and

validating autonomous driving technology, as it allows for safe, efficient, and cost-

9

effective testing of autonomous systems in a wide range of driving scenarios and

conditions.

1.1 Problem

The problem that this thesis aims to solve is the inefficiency and limitations of

current methodologies for creating realistic models for road traffic from open-

source data.

Manual creation of these models is time-consuming, error-prone, and requires

significant technical expertise. Additionally, traditional 2D modeling techniques

lack the detail and accuracy of reality required for the development and testing of

autonomous vehicles.

Therefore, there is a need for an automated tool chain that can create highly

accurate and detailed 3D environment models for road traffic in a more efficient

and cost-effective manner. This will enable the development and testing of

autonomous vehicles to be conducted with greater accuracy and reliability,

leading to improved safety on our roads.

Level of detail

The level of detail of the OpenStreetMap related to specific features such as the

lanes, junctions or elevation is sometimes so poor that can be a problem for

autonomous driving.

This insufficient information about complex roads may be difficult for autonomous

vehicles to accurately interpret and navigate in those situations, potentially

leading to incorrect maneuvers or unsafe behavior.

10

Elevation in map dataset

The open-source map dataset provided by the OpenStreetMap community

typically lacks elevation information, although it can be manually added using the

"ele=*" tag. [1] Despite this augmentation, the depiction of elevation in these

maps frequently falls short of realism due to their node-based mapping structure.

This approach depicts roads as connections between discrete nodes, resulting in

a spiky and uneven representation of elevation.

This presents a notable limitation, as accurate elevation data is crucial for various

applications. To overcome this challenge, reliance on external datasets

containing elevation information becomes necessary.

Transitioning to the OpenDrive format doesn't entirely alleviate the need for

external elevation datasets. However, it offers a more promising solution by

utilizing geometrical representations of roads. [2] This results in a more realistic

portrayal of elevation, facilitating smoother transitions and a more accurate

depiction of terrain variations.

Elevation data errors

One of the primary challenges encountered when utilizing open-source elevation

data lies in its lack of accuracy, particularly in generating suitable digital

environments for autonomous vehicle simulation. The highest resolution offered

by any open-source solution typically stands at 1 arc second, translating to a

horizontal resolution of 30 meters. [3] However, this resolution often proves

insufficient, particularly in areas with significant elevation variations.

11

This limitation can result in undesirable errors, especially on uneven terrains

where large elevation changes occur. As a consequence, relying solely on open-

source elevation data for autonomous vehicle simulation may lead to

inaccuracies that compromise the effectiveness and reliability of the simulation

environment.

1.2 Contribution

The proposed toolchain will reduce the time and resources required for the

creation of environment models and will enable non-technical personnel to

participate in the modeling process due to the simplicity of the tool.

To accomplish this goal, it will use the existing open-source tools as the osm2xodr

converter [4] from GitHub developed by Jan-Hendrik Meusener and make some

modifications to get a proper digital environment for autonomous driving. The

contribution to this tool is to modify the generation of the elevation data because

the method used for the generation of the elevation was an unrealistic approach

bearing in mind that the source file for the elevation data was a png, with all the

limitations that this kind of format has for the storage of such a complex

representation.

Furthermore, the toolchain makes a significant contribution by developing a

methodology for implementing elevation data in digital environments. This

methodology involves generating a continuous surface that incorporates accurate

and detailed elevation information.

12

2. Objectives

The objectives of this bachelor thesis project are as follows:

1. Conduct a thorough literature review to identify existing methodologies for

creating environment models for road traffic and determine areas where

automation can be introduced.

2. Develop a tool chain that automates the creation of digital map models for

autonomous drive.

3. Conduct testing and validation of the tool chain to ensure its accuracy,

reliability, and scalability.

4. Evaluate the effectiveness of the tool chain in creating accurate and high-

quality environment models for road traffic.

5. Analyze the advantages and limitations of the proposed tool chain

compared to existing methodologies.

6. Document the development process, including technical specifications,

implementation details, and testing procedures.

7. Demonstrate a comprehensive understanding of the field and make

recommendations for future research in automated environment modeling

for road traffic.

13

3. Background and motivation

The development of autonomous driving technologies has gained significant

attention and momentum in recent years. [5] The automotive industry has been

investing heavily in research and development efforts to advance the capabilities

and safety of autonomous vehicles. One critical aspect of autonomous driving is

the accurate representation of the surrounding environment, particularly road

traffic conditions. Creating environment models that capture the complex

dynamics and interactions of various road users is essential for the successful

deployment of autonomous vehicles.

The above challenges and the growing demand for autonomous driving solutions

have created a pressing need for an efficient and automated tool chain for the

creation of environment models for road traffic. By developing such a tool chain,

several benefits can be realized:

• Efficiency and Cost Reduction: Automating the process of environment

model creation will significantly reduce the time and effort required,

allowing for quicker model generation and updates. This efficiency gain

will lead to cost reductions in terms of manpower and resources.

• Accuracy and Reliability: Automation minimizes the possibility of human

errors and inconsistencies, resulting in more accurate and reliable

environment models. This, in turn, enhances the safety and performance

of autonomous driving systems.

• Scalability and Adaptability: An automated tool chain can be easily scaled

to handle larger datasets and accommodate different road traffic

scenarios. As the automotive industry advances and expands, the tool

chain can be adapted to incorporate new sensors, technologies, and data

sources.

14

4. Limitations

Accuracy and Precision

Achieving high levels of map accuracy is a tough problem due to a variety of

reasons, including sensor data quality, the ever-changing nature of road

conditions, and the dynamic environment in which autonomous vehicles operate.

[6]

One of the biggest limitations on the accuracy of the maps is the data sensor

variability. Autonomous vehicles rely on various sensors to collect data about the

surroundings, [7] but these sensors can have inherent limitations, such as sensor

noise and limited resolution among others.

The biggest limitation on the precision is how the environment can replicate the

real-life conditions of the road. Factors like road maintenance and temporary

construction can alter the road infrastructure. These conditions can result in

navigation errors and complications for autonomous vehicles.

15

Figure 1: Representation of the type of maps according to theri accuracy[8]

As shown in Figure 1, the closest type of map to reality is the HD maps creation

and generation are maintenance demanding and expensive. The maintenance of

this kind of map is more complicated than the creation because HD map requires

quality data that should be supplied quickly and cheaply. [9] A solution for this

problem is to use less accurate maps such as MD maps, which are quite accurate

for traffic, surrounding elements, and spatial accuracy but they have a reduced

computational and economic cost. The MD divides the dense and complex

information of HD into more manageable blocks and reduces the requirements

for the system. [10]

Data Volume and Storage

The process of generating HD maps involves capturing and storing vast amounts

of high-resolution data, the size of this data depends on the area of application,

however, a general guideline is required 10MB per km2 [11]. In the case of the

size of the map the guideline is that is required at least 10KB per Km of road.

[15][16] This includes information about road geometry, lane marking, traffic signs

and other intricate features. This information requires substantial storage

capacity and computational resources.

16

Maintaining large volumes of map data and ensuring real-time updates can incur

significant costs. These costs encompass data storage infrastructure, data

transfer, and the computational power required for processing and maintaining

these datasets.

Localization Challenges

Accurately localizing autonomous vehicles within a digital map can be intricate,

especially in maps characterized by tall buildings that obstruct GPS signals or in

regions with limited signal reception. Localization errors can have cascading

effects on navigation, accentuating the need for precise positioning.

The process of aligning sensor data with digital map data can be challenging,

especially when dealing with complex intersections, irregular road geometries, or

inaccuracies in map data. [9] Misalignment can result in erroneous localization.

Addressing these challenges is critical to achieving precise and reliable vehicle

localization within digital maps.

Matching information with world coordinates when generating HD maps involves

a process known as georeferencing alignment.[14] This process ensures that the

data collected for the map corresponds to its real-world location. However, there

are various challenges, such as the georeferencing algorithm, which aligns the

sensor data with existing geographic coordinate systems, the reference data

sources, which may have inaccuracies because they rely on GPS data.

17

5. State of the art

The state of the art in developing digital environments for autonomous driving

involves the use of advanced technologies such as sensor fusing, computer

vision, and 3D modeling.

Sensor fusion is the process of combining data from multiple sensors to create a

unified and accurate view of the environment or an object. [15] This can involve

different types of sensors such as lidar, radar, cameras, or GPS. The challenges

of sensor fusion include dealing with the heterogeneity and complexity of sensor

data, which may have different formats, resolutions, sampling rates, coordinate

systems and error models.

Computer vision algorithms can then analyze this data to identify and track

objects such as vehicles, pedestrians, and road signs. Some of the computer

vision algorithms used in Autonomous Vehicules are the object detection

algorithms, semantic segmentation, or instance segmentation. Object detection

algorithms are essential for identifying and locating objects within the vehicle’s

environment. [16] The semantic segmentation ones assign a class to each pixel

in an image, allowing the vehicle to understand the structure of the surrounding

environment. Lastly instance segmentation not only categorizes pixels into

classes but also differentiates between individual objects within the same class.

[17]

SLAM techniques are employed to create environment models in real-time while

simultaneously estimating the position and orientation of the sensor or vehicle.

By fusing sensor data, such as LiDAR, cameras, and inertial measurement units

(IMUs), SLAM algorithms reconstruct the environment and create a map.

18

Cloud computing and distributed processing have emerged as powerful tools for

environment model creation.[18] By leveraging the computational power and

scalability of cloud infrastructure, complex processing tasks, such as large-scale

point cloud processing and deep learning-based analysis, can be efficiently

performed. Cloud-based solutions provide flexibility, accessibility, and cost-

effectiveness for environment model generation.

Overall, the state of the art in developing digital environments for autonomous

driving involves the integration of multiple advanced technologies and

techniques, with the goal of creating highly accurate and reliable models of the

environment that can be used for testing and validation of autonomous driving

systems.

5.1. Data Collection

LiDAR

LiDAR (Light Detection and Ranging) is a commonly used technique for

environment data collection. LiDAR sensors emit laser beams and measure the

time it takes for the laser to return after hitting an object. This data is used to

generate precise three-dimensional point clouds, capturing detailed information

about the environment's geometry and structure.

Figure 2: Representation of the measurement with LiDAR sensors

19

A new kind of Lidar used in the automotive industry are the FMCW (Frequency

Modulated Continuous Wave) or 4D Lidar is a type of sensor that measures

distance using optical interference frequency.[19] It operates by continuously

transmitting a signal with a modulated frequency. When the signal reflects off an

object, the Lidar detects the reflected signal and compares it to the original,

allowing it to measure the distance and velocity of the object.

But however, it’s important to note that while FMCW Lidar has many advantages,

it also faces some challenges such as the cost of the components or the lateral

movements recognition.

Figure 3:Aeva's FMCW LiDAR that can estimate velocities and predict trajectories (blue: approaching | red:
receding)

Photogrammetry and Image-Based Data Collection

Photogrammetry and image-based data collection are essential techniques for

understanding the environment in autonomous driving. Photogrammetry uses

photos to create precise 3D models, while image-based data collection involves

cameras capturing real-time visual data. [20]

20

Photogrammetry analyzes overlapping images to measure distances, object

positions, and textures as shown in Figure 4. It excels at detailed terrain mapping

and urban maps, lane recognition, and making it valuable for creating complex

digital environments.

Figure 4: Sample of the real-time artificial vision camera with detected objects for autonomous driving using Mobileye

GPS and IMU Data Collection

GPS technology serves as a foundational data source for digital environment

generation in autonomous driving applications. It relies on a network of satellites

orbiting the Earth, with GPS receivers on autonomous vehicles precisely

calculating their geographic position. These receivers’ triangulate signals from

multiple satellites to determine latitude, longitude, and altitude coordinates,

forming the basis for mapping the vehicle’s location within the environment. [21]

While GPS offers extensive coverage and global positioning capabilities, its

accuracy and reliability can be influenced by various factors. In urban maps with

tall buildings or dense foliage, signal obstructions can lead to inaccuracies,

commonly known as the GPS multipath effect. [22] To address these limitations

21

and enhance accuracy, autonomous vehicles often incorporate multiple sensors,

including IMUs and odometry, [23] into their data collection systems. This sensor

fusion approach helps correct GPS inaccuracies and ensures a more reliable

digital environment.

IMUs excel at capturing rapid changes in vehicle motion, making them essential

for tasks like tracking vehicle dynamics, detecting abrupt maneuvers, and

maintaining accurate positioning when GPS signals are temporarily lost. These

units consist of accelerometers and gyroscopes, providing continuous

measurements of an autonomous vehicle's acceleration and angular velocity. [24]

For example, when an autonomous vehicle enters a tunnel or navigates through

urban environments with tall buildings, GPS signals may become temporarily

unreliable. IMUs step in to bridge these gaps in data, ensuring uninterrupted

vehicle tracking and localization.

However, IMUs are not without challenges. Over time, IMUs may experience

sensor drift, which can lead to positioning errors if not carefully calibrated and

compensated for. The time of experience this phenomenon depends on the

system developed, but for example in the case of the AUTOPIA Automatic Driving

systems they became a good response just on the first 5 minutes of drive test,

which is unacceptable for a commercial solution. [25]

Figure 5: Graphic representation of the GPS and IMU

22

In summary, GPS and IMU technologies play vital roles in data collection for

digital environment generation in autonomous driving. GPS provides global

positioning data, while IMUs offer real-time information about vehicle movement

and orientation. The synergy between these technologies, complemented by

careful calibration and sensor fusion, ensures the creation of highly accurate and

reliable digital maps. [26]

Radar Data Collection

Radar technology is a significant contributor to data collection for digital

environment generation in autonomous driving. Radar systems emit radio waves

or microwave signals and measure the time it takes for these signals to bounce

off objects and return to the sensor.

Figure 6 Representation of the radar sensor

Radar's strength lies in its ability to operate effectively in various weather

conditions, including rain, fog, and snow, as radio waves are less affected by

adverse weather than optical sensors. [27]

This type of sensors can detect objects at longer ranges than many other

sensors, making them particularly useful for detecting vehicles, pedestrians, and

obstacles at highway speeds. The technology comes in various forms, including

23

short-range radar for parking and blind spot detection, mid-range radar for

adaptive cruise control, and long-range radar for highway and urban scenarios.

[28]

However, radar technology does have limitations, such as the limited angular

resolution, being its azimuth angle is ± 75 ° horizontal and 12 ° vertical [29], and

the difficulty in distinguishing between closely spaced objects. To address these

challenges, advanced signal processing techniques and sensor fusion with other

sensors like cameras and LiDAR are employed to create a more comprehensive

digital environment.[29]

Other solution is the use of 4D Radars, this solution is based on the concept of

MIMO(Multiple Input Multiple Output) antennas. [19] For this type of technology

dozens of mini-antennas are sending waves all over the place, both horizontally

and vertically directions. In a normal 3D RADAR, it’s only done horizontally, this

type of technology lacks the height, and also has a pretty bad resolution. This

new technology also opens the door to detect obstacles and classify them

Figure 7: Waymo's Imaging RADAR [30]

In conclusion, radar technology plays an important role in data collection for the

construction of digital maps in the context of autonomous driving. It excels at

24

object detection, distance, and speed measurement, and works well in inclement

weather. [22] Integration with other sensor data improves the digital environment

perception system's comprehensiveness and reliability, which is critical for

enabling safe and effective autonomous driving.

Mobile Mapping Systems

MMS are typically mounted on vehicles and equipped with a combination of

advanced sensors, including LiDAR, cameras, GNSS, and IMUs. [8]

Figure 8:Example of an MMS: a vehicle-mounted mobile mapping platform consisting of different positioning and
data collection sensors to generate an accurate georeferenced 3D map of the environment. [23]

Mobile Mapping Systems are adept at capturing dynamic information about the

environment. As vehicles equipped with MMS sensors traverse different areas,

they continually update the digital map, allowing for real-time tracking of changes

in the environment, such as road conditions, construction activities, or new

infrastructure developments.[24]

25

While MMS offers numerous advantages, it is essential to address challenges

such as data volume management and processing complexity. The sheer volume

of data generated by MMS sensors can be substantial, necessitating robust data

storage and efficient processing pipelines to create and update digital maps

effectively.[23]

Sensor fusion

Sensor fusion is a technique commonly used in autonomous drive systems. This

technique merges the data from multiple sensors to build more accurate , reliable,

and robust world model for the car to navigate and behave more successfully.

Figure 9: Radar fused with camera

For the fusion of the sensor outcomes the most common type of algorithm for the

fusion is by abstraction level. Inside the abstraction level in the industry are three

different processes: Low-Level, Mid-Level, High-Level.

Low Level Sensor Fusion is about fusing the raw data coming for multiple

sensors. For example, fusing point clouds coming from Lidar and pixels coming

from cameras. This type of fusion was very hard to do until a few years ago,

because the processing required is huge because at each millisecond, is possible

to fuse hundreds of thousands of points with hundreds of thousands of pixels.

26

Figure 10: Simplified diagram of early fusion technique

Early Fusion combines data, in the example Lidar point cloud and camera

images, before processing it. It involves transforming Lidar data to 2D images

applying deep learning as R-CNN or YOLO for object detection. [31] The Lidar

sensor utilizes object detection by projecting 3D point clouds into 2D images and

associating them with pixels. This method facilitates the algorithm's ability to

identify objects within its field of view.

Mid-level fusion enhances object detection by integrating independently detected

objects from various sensors. For instance, if both a camera and radar detect an

obstacle, their findings are fused to provide the most accurate estimation of the

obstacle's position, class, and velocity. While the Kalman Filter is a common

approach for such fusion, its reliance on sensor data poses a drawback; failure

of any one sensor can compromise the entire fusion process.

27

Figure 11: Simplified diagram of late fusion technique

In the Late Fusion approach Lidar and camera data are processed independently.

This involves detecting and localizing objects in the 3D using Lidar data, while

simultaneously conducting object detection in the 2D with camera data.

Subsequently, the detected objects from the camera are projected onto 3D to

align them with Lidar-detected objects. Finally, a union matching process is

employed to merge the results from both sensors into a comprehensive and

accurate final detection result.

AV Application Fused Sensors Limitation without
Fusion

Advantages with Fusion

Object Detection Lidar & Camera Night vision,
illumination, low Lidar
resolution

Improved depth, extended
range, and enhanced
accuracy, robust perception
in varied conditions

Localization &
Mapping

GPS and Lidar Poor GPS in denied
areas

Continuous navigation,
precise localization,
enhanced mapping in diverse
environments

Positioning &
Navigation

Lidar Map, Camera
and GPS

GPS-denied areas,
road marking
limitations

Accurate road marking
detection, integration with HD
maps, robust navigation
capabilities

Perception in Bad
Weather

Lidar, Camera, and
Radar

Limited performance
in bad weather (fog,
rain)

All-weather solution for AVs,
reliable operation in adverse
weather conditions

Table 1 Comparison of different sensor fusion types

This table provides an overview of various data collection methods, highlighting their respective

accuracies measurement times, distance of measurement and equipment costs.

28

Data Collection
Method

Accuracy
(cm)

Measurement time
(ms)

Distance of
Measurement
(m)

Equipment Cost
(€)

LiDAR High
(1-10)

Fast
(100-1000)

0.2-150 10,000 - 100,000

Camara Based Moderate
(10-50)

Fast
(10-100)

Up to 100 1,000 - 10,000

GPS and IMU Moderate
(100)

Continuous N/A 100 - 1,000

Radar Moderate
(20-50)

Fast
(10-100)

Up to 200m 5,000 - 50,000

Mobile Mapping
Systems

High
(10-50)

Continuous Up to 150m 50,000 - 500,000

Table 2 Comparison of the different data collection methods

In conclusion, in terms of performance the best solution for the data collection is the

mobile mapping system, which is the combination of some of the previous methods. On

the other hand, GPS and IMU or Camara based methods are a more affordable solution.

5.2. Map file format

Open source

There are several open-source mapping options available for creating digital

maps. However, based on popularity and qualities, OSM and OpenDRIVE are

the best options. Both file formats are used to represent road networks in a digital

format, but they have some key differences.

OpenStreetMap (OSM)

29

OSM is a collaborative, open-source mapping platform that provides free and

editable geospatial data. This platform offers a large and detailed dataset of road

networks and related infrastructure. OSM data offers extensive information about

road layout, traffic laws, lane configurations, traffic signs, junctions, and other

critical features for effectively simulating road maps.

The files are created and maintained by a community of volunteers who use GPS

devices and other tools to collect information about roads and other features.[32]

Structure of the data

The data structure of an OSM file is based on a specific XML format designed to

store geospatial data. [33] OSM files contain information about various

geographic features, such as roads, buildings, points of interest, and more. The

structure of an OSM file can be categorized into three main components: nodes,

ways, and relations, as is shown in Figure 6. [34]

Figure 12: Representation of the different components of an OSM file [35]

Nodes

30

A node element represents a single point in space with a unique identifier and is

defined by its latitude and longitude coordinates, as shown in Figure 13.

Figure 13: Example of a node[36]

In an OSM file, nodes are typically used to represent specific locations or points

of interest, such as intersections, landmarks, or individual features like traffic

signs or trees.

Nodes may also have additional tags associated with them to provide further

descriptive information. [36] As an example of additional tags is the use of ele=*

tag and its subkeys to give the information of the elevation to the node. [1][37]

The structure of a node in an OpenStreetMap (OSM) file consists of several key

components that define its properties and attributes.[36] Each node represents a

specific point in space, identified by a unique identifier, as shown in Figure 8. The

structure of a node is as follows:

Node ID: Nodes have distinctive identifiers called node ids. Node ids on the

server are durable, therefore no matter how many times data are updated or

rectified, the allocated id of an existing node will not change. Unless a previous

node has been undeleted, deleted node ids must not be used again.

Latitude: Latitude coordinate in degrees (North of equator is positive) using the

standard WGS84 projection.

Longitude: Longitude coordinate in degrees (East of Greenwich is positive) using

the standard WGS84 projection.

Tags: Tags are key-value pairs that provide additional descriptive information

about the node allowing to label and categorize nodes for more specific and

meaningful representation of geographic features.

31

Figure 14: Representation of nodes with different coordinates

name value

Id 64-bit integer number (≥ 1)

lat decimal number ≥ −90.0000000 and ≤ 90.0000000 with 7 decimal places

lon decimal number ≥ −180.0000000 and ≤ 180.0000000 with 7 decimal places

tags A set of key/value pairs, with unique key

Table 3: Representation of the values for a node in OSM [36]

Ways

32

A way represents a collection of nodes that form a linear feature, such as a road,

path, or boundary. Ways are defined by an ordered list of node references, where

each reference corresponds to a node identifier, as sown in Figure 9. [38]

Figure 15: Example of a way [38]

Ways can also have various tags associated with them to provide additional

information, such as the type of road, speed limits, or lane configurations. The

structure of a way is as follows:

Way ID: Each way is given a distinct identification known as the way ID, much

like nodes are. This ID is used for linking and referencing reasons as well as to

distinguish the route from other dataset parts.

Node References: A way is defined by an ordered list of node references. Each

node reference corresponds to the unique identifier of a node that is part of the

way. These node references define the sequence and connectivity of nodes along

the path of the way, thus creating the linear feature. The order of node references

determines the spatial geometry of the way.

Tags: Ways can have tags associated with them to provide additional descriptive

information. Tags are key-value pairs that describe various attributes of the way,

such as its type, name, surface condition, speed limit, or any other relevant

characteristics. Tags help classify and categorize the way based on its attributes.

33

Relation

Relations enable the grouping of numerous nodes, ways, or other relations based

on a shared relationship or theme association. Relations are defined by a set of

members, each of which is identifiable by its type (node, way, or relation) and

matching identifier, as shown in Figure 10.[39]

Figure 16: Example of a relation[39]

Relations are frequently employed to represent complicated characteristics or

geographical connections such as multi-polygon borders, route relations, or

administrative boundaries. The structure of a way is as follows:

Relation ID: Each relation in an OSM file is assigned a unique identifier known as

the relation ID. This ID is used for referencing and linking purposes.

Members: A relation is defined by a collection of members, where each member

is identified by its type (node, way, or relation) and its corresponding identifier.

Members can be nodes, ways, or even other relations. The members define the

elements that are part of the relation and establish the relationship between them.

The order of members within a relation is not significant.

34

Roles: A role describes the specific function or purpose that the member plays

within the context of the relation. Each member in a relation can have an

associated role. For example, a member may have a role of "inner" or "outer" in

a relation representing a multi-polygon boundary.

Tags: Relations can also have tags associated with them to provide additional

descriptive information. Tags are key-value pairs that describe attributes of the

relation, rather than the individual members. Tags can provide information such

as the type of relation, a name, or any other relevant attributes.

Figure 17: Structure of the OSM file[35]

Summarizing OSM structure, this type of map consists of four main elements

such as nodes, ways, and relations, each represented by XML tags within the file

as represented in Figure 17.

Open DRIVE

Open DRIVE is a standardized file format used to represent road networks and

related information. This format is specifically designed to represent road

35

networks for use in autonomous driving simulations and other advanced driving

applications including information about traffic signs and signals, and other

infrastructure features that are important for autonomous driving systems. [40]

Structure of the data

The structure of an Open Drive file follows a hierarchical organization, consisting

of different levels that represent various aspects of road networks, as shown in

Figure 12.

Figure 18: Structure of OpenDrive file [15]

The structure can be categorized into six main aspects: road network level, road

level, lane level, object level and junction level.

Road Network Level: The road Network Level, which is the highest level, provides

the overarching framework for representing the entire road system. It includes the

overall characteristics and metadata of the road network, such as the reference

36

coordinate system, measurement units, and background data. This level

guarantees uniformity and consistency over the whole network representation.

Road Level: The road level focuses on individual road segments within the

network. Each road segment represents a specific stretch of roadway with its

unique identifier, name, length, and road type. This level captures the geometric

attributes of the road, including the centerline geometry, lane widths, lane count,

and information about the road's physical characteristics such as curvature and

elevation profile. It provides the foundation for accurately representing the shape

and layout of each road segment.

Lane level: The lane level goes into the qualities and attributes of specific lanes

within a road section. It defines lanes as separate entities, each one with its own

identifier, width, and attributes. Information at the lane level includes elements

like lane markings, lane limits, and lane kinds (such as driving, turning, or

shoulder lanes). This level allows the accurate representation of lane

configurations, ensuring the precise modeling of road infrastructure and

supporting lane-specific behavior in autonomous driving simulations.

Lane Section Level: The lane section level further refines the representation of

lanes by dividing them into sections along the road segment. It allows for the

modeling of variations in lane properties such as changes in width, slope, or lane

markings within a lane segment. By defining lane sections, the Open DRIVE

format accommodates accurate representation of lane characteristics and

facilitates the modeling of complex road geometries.

Object Level: The object level incorporates additional elements associated with

the road network, such as signs, traffic lights, barriers, or other objects of interest.

Objects are defined with their respective positions, dimensions, and attributes.

This level enables the placement of objects along the road segment, providing

contextual information about the road environment that influences autonomous

37

driving behavior. Objects can represent both static features and dynamic entities

like moving vehicles, pedestrians, or other dynamic traffic elements.

Junction Level: The junction level captures the complex interactions and

connections between different roads within the road network. It focuses on

modeling intersections, interchanges, roundabouts, or any other form of road

junctions. Junctions are defined with their geometry, traffic rules, and connections

between incoming and outgoing roads. This level provides a detailed

representation of the geometric layout, lane connectivity, traffic priorities, and

regulatory information necessary for accurate simulation and analysis of complex

road scenarios.

 OSM Open DRIVE

Data Source and Level of

Detail

Crowdsourced, varying detail

and accuracy

Standardized, detailed road

information

Standardization and

Industry Compatibility

Lack of strict standardization,

flexible

Standardized format, better

integration

Integration with Simulation

Environments

Requires additional processing

for simulation use

Designed for direct integration

with simulations

Lane Geometry and Traffic

Rules Representation

Limited representation, may

require additional work

Detailed lane geometry and

traffic rule information

Compatibility with

Autonomous Driving

Systems

Requires data preprocessing and

conversion

Direct compatibility with

autonomous systems

Support for Complex Road

Features

Inconsistent support for complex

features

Comprehensive support for

complex road attributes

Elevation Data Available but limited in detail and

coverage

Comprehensive elevation data

for road modeling

Table 4: Comparison of OSM and OpenDRIVE format [2], [35], [36], [38], [39]

In summary, OSM files are used to represent maps and routing information for

general-purpose applications, while OpenDRIVE files are designed specifically

for advanced driving simulations and autonomous driving applications.

OpenDRIVE files contain much more detailed information about the road

38

network, making them more suitable for use in applications that require precise

information about the road environment.

Commercial solutions

It is more difficult to determine the technical details of commercial solutions

because they usually reserve the information for customers only, however it is

true that mapping businesses are also working on HD map solutions.

NVIDIA DRIVE

NVIDIA DRIVE Mapping module is part of the NVIDIA End-to-End Autopilot

Systems solution. [41] It's a scalable system that incorporates a sensor suite,

software, and software APIs, as well as HD maps from mapping businesses. It

comprises of the following components:

• DRIVE Localization, which determines the precise 6-DOF location and

orientation of an autonomous vehicle inside an HD map with centimeter-

level precision.

• Drive Map stream for updating cloud-based HD maps with DRIVE

Perception Road characteristics.

HERE

HERE HD Live Map is part of the solution provided by Here Technologies. It

utilizes machine learning algorithms to validate map data in real-time, ensuring

its alignment with real-world conditions. [42] By analyzing a multitude of data

39

sources, such as satellite imagery and sensor data, the self-healing map system

continuously updates and refines the map accuracy.

Google Maps API

The Google Maps API is the solution provided by Google. It provides a robust

tool for enhancing High-Definition (HD) map generation in autonomous driving

applications. While not explicitly designed for this purpose, the API offers a rich

array of features that significantly contribute to the development and deployment

of HD maps for autonomous vehicles.

By providing access to extensive map data, including road networks and

landmarks, it serves as a foundational layer for detailed HD map creation,

encompassing vital information like road layouts, lane markings, and traffic signs.

Additionally, integration with Google Street View allows for the incorporation of

panoramic imagery, providing real-world visual context that aids in precise

navigation and object recognition, ultimately optimizing the effectiveness of

autonomous vehicle systems. [43]

40

 Open-Source Solutions Commercial Solutions

Data Source and Level of

Detail

Crowdsourced, varying detail

and accuracy

High level of detail and accuracy

Standardization and

Industry Compatibility

Lack of strict standardization,

flexible

Industry-standard formats and

protocols

Real-Time Updates and

Currency

Near real-time, potential delays Real-time updates and data

streaming

Integration with Simulation

Environments

Requires additional processing

for simulation use

Designed for direct integration

with simulations

Compatibility with

Autonomous Driving

Systems

Requires data preprocessing and

conversion

Optimized for autonomous

driving applications

Support for Complex Road

Features

Inconsistent support for complex

features

Detailed elevation data for

accurate road representation

Elevation Data Available but limited in detail and

coverage

Detailed elevation data for

accurate road representation

Cost Free Licensing costs

Table 5: Comparison between Open-Source and commercial solutions

5.3. Elevation data

Open-Source

NASADEM

NASADEM is a high-precision digital elevation model dataset developed by

NASA's Earth Science Division. Although is not explicitly designed for HD map

generation for autonomous driving as in the case of Google Maps API,

NASADEM provides very interesting elevation data that can be used in enhancing

the accuracy and detail of them.

41

The dataset offers precise elevation data for the Earth's surface, derived from a

combination of remote sensing instruments, including the Shuttle Radar

Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER).[44]

NASADEM's elevation data is essential for understanding environmental factors

like slope, aspect, and elevation zones. This information can be used in

conjunction with other data sources in HD maps to support eco-friendly driving

strategies, optimizing vehicle performance based on the terrain and

environmental conditions.

OpenTopography

OpenTopography is an open source tool developed by the University of California

San Diego to advance our understanding of the Earth’s surface, vegetation, and

built environment [45]. Again, the tool is not designed explicitly for autonomous

driving, but this technology offers valuable resources that can enhance the

precision and detail of HD maps, making it an asset for research and

development in this field.[46]

OpenTopography serves as a vast repository of high-resolution elevation data,

primarily derived from airborne LiDAR (Light Detection and Ranging) surveys.

These surveys employ laser technology to capture precise elevation

measurements, resulting in incredibly accurate and detailed topographic data.

For HD map generation, access to such high-quality elevation data is

fundamental.[47] As in the case of NASADEM data, the primary application of

OpenTopography's data is terrain modeling.

Although developing maps for the European market poses a challenge due to the

limited availability of topographic maps compared to the U.S. Unlike the extensive

data for the U.S., European regions lack equivalent topographic offerings. This

scarcity necessitates a nuanced approach, possibly involving alternative

geospatial datasets.

42

Commercial Solutions

Google Maps Elevation API

The Google Maps Elevation API is a versatile tool developed by Google. This tool

can enhance the precision and detail of High-Definition (HD) maps, particularly in

the context of elevation data and terrain modeling. As in the case of map

generation this tool was not originally designed for autonomous driving, but it

offers valuable features and data access that can significantly benefit map

developers and researchers in this field.

The API offers the potential for real-time elevation data retrieval, which can be

beneficial for dynamic map updates. This feature is particularly useful in

scenarios where elevation changes occur due to construction, road closures, or

natural events.

Google Maps Elevation API can be seamlessly integrated into various mapping

and GIS (Geographic Information System) platforms, streamlining the workflow

for HD map generation. This integration simplifies the process of incorporating

elevation data into the map creation pipeline.

In addition Google’s cloud infrastructure also supports the API, facilitating data

storage, processing, and accessibility. This cloud-based approach can be

advantageous for HD map generation, especially when managing and analyzing

large datasets.

43

Solution Data

Source

Aviability Coverage

Area

Resolution Cost

NASADEM SRTM,

ASTER

GDEM

Open-

Source

Global 30-90 m

[3]

Free

OpenTopogrphy Airborne

LiDAR,

Terrestrial

LiDAR

Open-

Source

Various

regions

(Mainly
US)

0.5m [48]-

90m [49]

Free

Google Maps

Elevation API

DEM

SRTM

Commercial Global 0.3-9m

[50]

0.05$/Requests[51]

Table 6: Comparison of the Elevation data Solutions [1] [2] [3]

5.4. Software tools

There are several software tools and platforms available that can simplify the

process of modeling streets for autonomous driving. The most developed projects

are CARLA, SUMO, and RoadRunner.

Open-Source

CARLA

CARLA is an open-source simulation platform designed primarily for the

development and testing of autonomous driving systems by the CVC in

Barcelona. While CARLA's primary focus is on simulating vehicle behavior and

interactions, it also contributes to the generation of digital maps crucial for

training, testing, and validating autonomous driving algorithms. [52]

CARLA provides a highly realistic 3D simulation environment, replicating real-

world road networks, urban landscapes, and diverse terrains. This rich and

immersive environment serves as the canvas for digital map generation.

44

The technology also simulates a variety of sensors commonly used in

autonomous vehicles, including LiDAR, cameras, radar, and GPS. These

sensors capture data within the virtual environment, which is subsequently used

to generate digital maps. Simulated sensors mirror their real-world counterparts,

enabling accurate data collection.

CARLA's dynamic weather and lighting system allows for the creation of digital

environments with varying conditions, such as different times of day, weather

patterns, and lighting scenarios. This versatility enables the simulation of

environments under diverse circumstances, essential for comprehensive HD map

generation.

It also enables users to annotate maps within the simulation environment.

Developers and researchers can add road markings, traffic signs, traffic lights,

and other essential features directly onto the digital environment. Unfortunately,

the tool does not annotate the elevation.

The software incorporates a realistic traffic simulation system, complete with AI-

controlled vehicles and pedestrians. This dynamic traffic environment allows for

the generation of maps that accurately represent complex traffic interactions and

scenarios. Users can create custom scenarios within CARLA, including

challenging driving situations, intersections, and urban maps. These scenarios

can be utilized to simulate and generate digital maps with specific attributes and

challenges.

SUMO

SUMO is an open-source, highly versatile traffic simulation platform primarily

designed for modeling and analyzing urban mobility scenarios developed by the

45

Institute of Transportation Systems. While its primary purpose is traffic simulation,

SUMO indirectly contributes to the generation of digital environments that are

essential for autonomous driving research, development, and testing. [53]

SUMO excels in simulating realistic traffic behavior, including vehicle

movements, interactions, and traffic flow within urban environments. This

capability provides a foundation for creating digital environments that closely

mimic real-world traffic conditions. This technology allows users to define intricate

road networks, complete with various road types, lanes, intersections, and traffic

control measures. These road networks serve as the basis for digital environment

generation, offering a high level of customization and realism.

The technology provides functionality for exporting simulation data, including

vehicle trajectories, traffic signals, and road network information. This exported

data serves as valuable input for HD map generation and digital environment

modeling.

SUMO can be integrated with various tools and software, including geographic

information systems (GIS) and traffic modeling software as CARLA software.

Users can define custom traffic scenarios and scenarios related to urban mobility

within SUMO. These scenarios can range from typical urban traffic conditions to

complex intersection interactions, providing a diverse range of digital

environments for testing and research.

SUMO offers visualization tools that allow users to view and analyze simulated

traffic and digital environments. This visualization aids in understanding traffic

dynamics and assessing the realism of the generated environments.

46

Commercial Solutions

RoadRunner

RoadRunner is a specialized software tool developed by Mathworks designed to

work within the MATLAB environment, primarily focusing on road network

generation and modeling. [54]

RoadRunner within MATLAB provides the capability to generate complex road

networks, including road geometries, lanes, intersections, and road segments.

These road networks serve as the fundamental structure for creating digital maps.

The technology also incorporates traffic flow modeling algorithms that simulate

realistic traffic behavior. This modeling includes vehicle movements, interactions,

and the flow of traffic within the generated road networks. The realism of traffic

flow contributes to the authenticity of the digital environment.

RoadRunner facilitates the export of simulation data, including vehicle

trajectories, traffic signals, and road network details. This exported data serves

as valuable input for HD map generation and digital environment modeling.

The software also provides visualization tools that allow users to view and

analyze simulated traffic, road networks, and digital environments. Visualization

aids in understanding traffic dynamics and assessing the realism of the generated

maps.

47

6. Approach

For the case study, the information used will be open source. Open-source

information refers to data, software, and resources that are freely available for

public use, modification, and distribution.

Open-source information provides a wide range of easily available and constantly

evolving resources. It enables us to take advantage of currently available open-

source software, datasets, and libraries that have been created and maintained

by the community. This allows us to concentrate on expanding and adapting

these resources to meet the unique requirements of the toolchain because it

saves us a substantial amount of time and effort during development.

Figure 19 Timeline of the process

6.1. Map information

The choice of OpenStreetMap (OSM) as the main data source for delivering map

data to the toolchain was chosen mainly because it was the unique open-source

solution available.

Map
information

Elevation
information

Merge map information and
elevation information

Generate a
map with
elevation

Validation and
Verification of the

model

48

The selected area for the map information will be the city of Wolfenbüttel, which

is in Lower Saxony, Germany. The geographical coordinates of this area are from

10.5240 E to 10.5678 E for the Longitude and from 52.1742 N to 52.2116 N for

the Latitude. This area has been selected due to is a well-known place for us

because the university campus is situated in this town.

Figure 20: Selection of the studied area in OpenStreetMaps

Figure 21: Representation of the OSM map

Before initiating any data treatment, a preliminary representation of the nodes is

generated from the designated area to gain insight into the functionality of the

OSM data.

Figure 22: Representation of the map nodes

49

Through this initial evaluation, a notable observation is made regarding the non-

uniform destitution of distances between individual nodes, as illustrated in Figure

22. This inconsistency in distance could stem from the method of data acquisition,

typically reliant on GPS sensors. Factors such as fluctuating vehicle speeds may

contribute to the irregular spacing between nodes. This discrepancy highlights a

potential challenge in accurately capturing and representing spatial data,

emphasizing the need for further analysis and potential corrective measures to

enhance data quality and reliability.

Initially, the OSM format was considered for the representation of the map data.

However, it became evident that this format was not optimal for storing data for

autonomous driving applications, primarily due to its node-based representation

of environments, which generated an spiky representation in some areas of the

roads due to the nodes are connected with straight lines. Following extensive

research, the OpenDRIVE format emerged as the most suitable alternative,

renowned for its specialized features tailored specifically for autonomous driving

needs and its widespread acceptance within the industry.

The OpenDRIVE format offers numerous advantages that position it as the

preferred choice for autonomous driving applications, as previously mentioned.

However, obtaining OpenDRIVE maps from third-party suppliers proved

impossible due to the lack of open-source solutions for this file format. As a result,

interest shifted to converters that could convert OSM format files to OpenDRIVE

format.

The initial attempt at conversion involved the CARLA simulator converter. [55]

While this tool successfully converted the map, it failed to generate the elevation

layer, prompting the need to explore alternative solutions. After thorough

investigation, osm2xodr emerged as the most suitable tool, meeting the

requirement for both map conversion and elevation layer generation.

50

6.2. Elevation information

The integration of elevation data provides accurate modeling of topography and

terrain features in the created digital environments. This allows us for a more

precise modeling of elevation variations such as hills or slopes, giving a realistic

environments for testing and verifying autonomous driving systems.

In handling elevation data, the osm2xodr tool initially relied on a conversion

process to generate the elevation data from a PNG file. However, such

conversions are susceptible to errors, potentially resulting in inaccuracies within

the elevation map, as seen on Figure 23. To address this issue, a more robust

solution is proposed: directly reading the source file and generating the grid from

the GeoTIFF format. This approach ensures greater accuracy and reliability in

the elevation mapping process.

Figure 23: Representation of the elevation data with PNG file

To implement this solution, the tool will utilize the rasterio library for Python. This

library provides comprehensive functionality for reading and processing

geospatial raster data, offering the possibility to the tool to extract elevation

information directly from the GeoTIFF file. By the use of this type of file and

accessing the source datan from a GeoTIFF file, the tool can enhance the

51

integrity and precision of the elevation map generation process, thereby

improving the overall quality of the output.

GeoTIFF (Geographic Tagged Image File Format) files were chosen for use in

the presented tool due to its inherent capability for handling and storing geospatial

data. They may keep georeferencing data and accompanying metadata for

multidimensional data like raster pictures. The GeoTIFF format stores raster data

by organizing it into a grid of pixels. Each pixel in the grid corresponds to a specific

location on the map surface.

Figure 24: TIFF image of a small area in Niedersachsen

For the case of study, the selected area will cover a larger portion of Lower

Saxony due to it being the option which fitted the best to the requirements. The

resolution of the selected information was 1arc-second (approximately 30m).

In conclusion, transitioning from PNG conversions to direct GeoTIFF file reading

ensures precision using tools like rasterio. GeoTIFF's capability in storing

geospatial data provides detailed surface analysis. The chosen study area

encompasses a significant portion of Lower Saxony, with a 1 arc-second

resolution (approximately 30 meters). Overall, this approach enhances the

realism and accuracy of digital environments for autonomous driving system

validation.

52

6.3. Converter

Converting data between different formats is a step needed to the generation of

the OpenDrive map. The conversion mainly is focused in two parts: the translation

of the map data and the annotation of the elevation to the map file.

The converter is specifically designed to extract detailed information about the

road network from the OSM file. This includes essential elements such as roads,

lanes, intersections, and other pertinent features necessary for accurate

representation. Simultaneously, it retrieves elevation data from the GeoTIFF file,

ensuring precise terrain height information is captured and integrated seamlessly

into the map.

Figure 25: Diagram illustrating the data conversion process for generating OpenDrive maps

Map Data Translation

The successful conversion of map data from OSM to OpenDrive depends on

comprehending the profound differences in data structure, semantics, and

purpose that distinguish these two formats.

According to chapter 5, in OpenStreetMaps the data is structured around nodes,

ways and relations, where nodes represent individual geographical points, ways

are ordered lists of nodes that define linear features like roads and relations

represent grouping of nodes, ways and other relations.

53

On the other hand, OpenDrive is a more sprecialized format which focuses on

accurately representing road shapes, lane setups, signs, and other essential

factors. The core structure of OpenDrive relies on well-defined mathematical

equations and geometrical principles. Roads are precisely described using

mathematical formulas that capture curves, slopes, and other geometric traits.

Lanes are thoughtfully integrated into these equations, allowing us to specify lane

widths, positions, and road markings precisely. The way different road segments

connect is seamlessly woven together using principles from graph theory.

The conversion approach entails a comprehensive data mapping procedure in

which road segments from OSM data are found and turned into drivable lanes

inside the OpenDrive schema. This necessitates extracting essential road

geometry details, such as lane widths, offsets, and curvature, to preserve the

fidelity of the simulation. Moreover, attributes from OSM, such as road names,

speed limits, and lane types, must be meticulously mapped to their corresponding

counterparts in the OpenDrive format.

Elevation Annotation

Beyond the translation of map data, another critical dimension on the conversion

process relate to the annotation of elevation information onto the OpenDrive map.

Elevation data plays a pivotal role in generating realistic road profiles and

gradients, which are essential for simulating accurate vehicle behavior, such as

braking and acceleration responses.

The elevation annotation process involves sourcing accurate elevation data from

specialized sources, such as digital elevation models (DEMs).

Understanding the nuanced differences in data structure, semantics and purpose

between these formats is crucial for executing a successful conversion. By

54

precisely translating map data and annotation elevation information, the resulting

OpenDrive map creates a solid platform for simulating complicated driving

scenarios.

The converter, developed using functional programming techniques in Python,

consists of modular components working collaboratively to process, transform,

and seamlessly integrate OSM and elevation data into a unified OpenDrive

representation.

Figure 26: Diagram of the main tools

55

osmParsing Module

The osmParsing module provides the foundation for the converter's functionality.

It is dedicated to parsing the complex OSM XML data and extracting relevant

road network information. This module deciphers OSM elements including roads,

lanes, intersections, and attributes.

surface Module

The surface module assumes the role of interfacing with GeoTIFF elevation data.

This module reads and interprets the elevation information stored within GeoTIFF

file. By systematically processing the GeoTIFF data, it constructs a surface a

surface representation that accurately captures terrain height variations.

Figure 27: Diagram of the surface function

Creation of the grid

56

Creating a grid is necessary to establish a spatial coordinate system for the input

data. The grid assigns coordinates to each data point, enabling interpolation,

spatial analysis, and visualization. It provides a structured framework to organize,

analyze, and represent spatial data accurately.

The process of creating the 2D grid involves obtaining the spatial bounds of the

input data and generating a set of coordinates that span this spatial extent. This

is accomplished using the src.bounds attribute and the numpy.linspace function.

The src.bounds attribute provides the minimum and maximum values of the x-

coordinate (x_min, x_max) and y-coordinate (y_min, y_max) that define the

spatial extent of the data.

A set of points must be defined along the x and y directions that span the spatial

bounds. This is achieved by using the numpy.linspace function, which generates

a sequence of evenly spaced values within a specified interval.

To the x-coordinate direction the starting point of the sequence(‘start’) is defined

as ‘x_min’, the ending point of the sequence(‘stop’) is defined as ‘x_max’, and the

number of points (‘num’) as the number of pixels or grid points in the input data.

This generates a 1D array x with equally spaced points along the x-direction.

To the y-coordinate direction the starting point of the sequence(‘start’) is defined

as ‘y_min’, the ending point of the sequence(‘stop’) is defined as ‘y_max’, and the

number of points (‘num’) as the number of pixels or grid points in the input data.

This generates a 1D array x with equally spaced points along the y-direction.

The two 1D arrays, x and y represent the coordinates of the grid points along the

x and y directions respectively. Each element in these arrays corresponds to a

specific pixel or data value in the input data.

To construct the 2D grid will be used the ‘numpy.meshgrid’ function. This function

takes the 1D arrays x and y as input and returns two 2D matrices, ‘xi’ and ‘yi’.

The ‘xi’ matrix is created by replicating the elements of the x array along the y-

direction, resulting in a matrix where each row corresponds to the x values at a

specific y-coordinate.

57

The ‘yi’ matrix is created by replicating the elements of the y array along the x-

direction, resulting in a matrix where each column corresponds to the y values at

a specific x-coordinate.

Together, they define a 2D coordinate system that spans the spatial extent of the

input data, allowing for further computations and interpolation.

6.3.1. Surface generation

Interpolation

Interpolation methods are utilized to estimate values between known data points.

In the case of study interpolation is needed to create a smooth and continuous

surface representation based on the input data. The three main methods used

for this kind of interpolation are: nearest neighbor interpolation, bilinear

interpolation, and bicubic spline interpolation.

To accurately interpolate the data and retrieve the result of z based on x and y

values, a 2D interpolation method was employed. This method enables

simultaneous interpolation across both the x and y dimensions, ensuring a

comprehensive assessment of the data.

Figure 28: Comparison of some 1- and 2-dimensional interpolations

Nearest Neighbor Interpolation

58

Nearest neighbor interpolation is a simple and computationally efficient method

used to estimate values between data points on a grid. It involves selecting the

value of the nearest data point as the estimate for a target point. This technique

is straightforward to implement and preserves the original data values, but it may

result in a blocky or pixelated appearance due to its piecewise constant nature.

Nearest neighbor interpolation is commonly used in applications where

computational efficiency is critical, but it may not provide the highest level of

accuracy or smoothness.

Bilinear Interpolation

Bilinear interpolation improves upon nearest neighbor interpolation by

incorporating the surrounding data points to estimate values within a grid. It uses

a weighted average of the neighboring four data points, considering the distance

between the target point and these points. Bilinear interpolation produces

smoother results than nearest neighbor interpolation and preserves linear trends

in the data. This method is widely employed in image resizing, computer graphics,

and spatial analysis applications. While bilinear interpolation provides better

visual quality than nearest neighbor interpolation, it may not capture complex

variations or sharp changes in the data.

Bicubic Spline Interpolation

Bicubic spline interpolation is a more sophisticated technique that achieves even

higher accuracy and smoothness compared to bilinear interpolation. It constructs

a smooth surface representation by fitting cubic polynomials to the surrounding

data points within a grid. Bicubic spline interpolation considers 16 neighboring

data points and employs a system of linear equations to determine the

coefficients of the bicubic polynomial. This method provides a visually pleasing

interpolation with continuous gradients and can capture intricate variations in the

data. However, bicubic spline interpolation requires more computational

resources than nearest neighbor or bilinear interpolation due to the increased

complexity of the mathematical calculations involved.

59

Figure 29 Results of 2D interpolation methods in a 2D respresentatrion

Figure 30 Results of the 2D interpolation methods in a 3D
representation

 Nearest Neighbor
Interpolation

Bilinear Interpolation Bicubic Spline

Interpolation

Interpolation
Quality

Provides a piecewise
constant approximation.

Produces a piecewise
linear approximation.

Provides a smooth and
continuous surface
representation.

Accuracy Low accuracy Moderate accuracy High accuracy

Smoothness Can result in irregular
surfaces, as it assigns the
value of the nearest data
point without considering
neighboring points.

Can result in less
smoothness, as it connects
adjacent points with
straight lines, leading to
abrupt changes in slope

Provides a smooth surface
approximation by
employing cubic
polynomials and ensuring
continuity up to the second
derivative

Handling
Missing Data

Cannot handle missing data.
Missing points are skipped,
leading to gaps in the
interpolated surface.

Cannot handle missing
data. Missing points are
skipped, leading to gaps in
the interpolated surface.

Can handle missing data by
incorporating neighboring
points within the local
region for interpolation.

Computational
Complexity

Involves straightforward
calculations, as it directly
assigns the value of the
nearest data point.

Involves simpler
calculations, as it computes
the weighted average of
neighboring data points.

Involves more complex
calculations, as it requires
solving a system of
equations to determine the
polynomial coefficients.

Extrapolation Cannot extrapolate beyond
the original data boundaries.
Interpolation is limited to the
range of available data.

Cannot extrapolate beyond
the original data
boundaries. Interpolation
is limited to the range of
available data.

Can extrapolate beyond the
original data boundaries,
providing plausible
estimates based on the
fitted surface
representation.

Applications Commonly used in cases
where preserving the original
data values without
interpolation is sufficient or
when computational
efficiency is the main
concern.

Commonly used in simple
data visualization tasks and
basic spatial analysis where
computational efficiency is
prioritized over accuracy.

Widely used in computer
graphics, image processing,
GIS, scientific data analysis,
and other fields where
smooth and accurate
surface representations are
essential.

Table 7 Comparison of 2D interpolation methods

60

In summary, nearest neighbor interpolation is a simple and efficient method but

may result in blocky artifacts. Bilinear interpolation offers smoother results by

considering the surrounding data points, while bicubic spline interpolation

provides the highest level of accuracy and smoothness by fitting cubic

polynomials to a larger neighborhood of data points.

After comparing the different interpolation methods, it has been decided to utilize

bicubic spline interpolation for creating the surface. Bicubic spline interpolation is

a powerful technique that offers smoothness and accuracy. It extends cubic

spline interpolation to two dimensions, providing a continuous and differentiable

surface that closely fits the given data while minimizing oscillations. This choice

ensures robustness and high-quality results in the interpolation process.

Bicubic interpolation shows up as a powerful and appropriate method for

generating elevation surfaces due to its unique characteristics that align with the

goals of the toolchain:

Smoothness and Continuity

Bicubic spline interpolation generates a smooth and continuous surface

representation. It captures gradual changes in the data and avoids abrupt

transitions between neighboring points. This property is crucial when creating a

fitted surface to accurately represent the underlying data.

Interpolation Accuracy

Bicubic spline interpolation tends to provide higher accuracy compared to linear

interpolation methods, especially when the underlying data has subtle variations

or noise. By employing a more sophisticated mathematical approach, bicubic

spline interpolation can better approximate the true values between data points.

Derivative Continuity

61

Bicubic spline interpolation ensures continuity of the interpolated surface's first

and second derivatives. This property is advantageous in applications where

derivatives of the surface, such as slope or curvature, are important for further

analysis or visualization.

Compatibility with Grid Data

The bicubic spline interpolation method is well-suited for gridded data, which is

the case in this function. It operates effectively on regular grids, allowing for

interpolation at any point within the grid using neighboring data points. This

property makes it suitable for working with raster data such as topographic maps.

Mathematical Foundation

Bicubic interpolation's mathematical foundation lies in the formulation of a

continuous surface through a set of cubic polynomials. The interpolated surface

f(x,y) can be expressed as:

𝑓(𝑥, 𝑦) = ∑  

3

𝑖=0

∑ 

3

𝑗=0

𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

Equation 1: Equation of the interpolated surface

Where:

i, j: Indices that range from 0 to 3, representing the terms in the bicubic

polynomial.

aᵢⱼ: Coefficients that need to be determined for accurate interpolation.

xⁱ: Powers of x corresponding to the current term i in the polynomial.

yʲ: Powers of y corresponding to the current term j in the polynomial.

62

Figure 31: Representation of bicubic interpolation [56]

The primary challenge in bicubic interpolation is determining the 16 coefficients

(aᵢⱼ) that will accurately describe the elevation surface between known data

points. These coefficients encapsulate the information needed to create a smooth

and continuous surface. The process of determining these coefficients is the

heart of the interpolation technique.

This procedure yields a surface f(x,y) on the area of

𝑓(𝑥, 𝑦) = [𝑥3 𝑥2 𝑥 1]

[

𝑎3,3 𝑎3,2 𝑎3,1 𝑎3,0

𝑎2,3 𝑎2,2 𝑎2,1 𝑎2,0

𝑎1,3 𝑎1,2 𝑎1,1 𝑎1,0

𝑎0,3 𝑎0,2 𝑎0,1 𝑎0,0]

[

𝑦3

𝑦2

𝑦
1

]

Equation 2: Function for the determination of the interpolated surface

𝑓(𝑥, 𝑦) = ∑  

3

𝑖=0

∑ 

3

𝑗=0

𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

∂𝑥𝑓(𝑥, 𝑦) = ∑  

3

𝑖=1

∑ 

3

𝑗=0

𝑖𝑎𝑖𝑗𝑥
𝑖−1𝑦𝑗

∂𝑦𝑓(𝑥, 𝑦) = ∑  

3

𝑖=0

∑ 

3

𝑗=1

𝑗𝑎𝑖𝑗𝑥
𝑖𝑦𝑗−1

∂𝑥𝑦𝑓(𝑥, 𝑦) = ∑  

3

𝑖=1

∑ 

3

𝑗=1

𝑖𝑗𝑎𝑖𝑗𝑥
𝑖−1𝑦𝑗−1

Equation 3: Partial derivative expressions for the computation of the surface

63

These derivatives provide insights into the surface's curvature and rate of change

in both x and y directions. Equations that involve finite differences or explicit

mathematical formulas are used to compute these derivatives.

For the computation of the bicubic spline interpolation as shown in Figure X the

equations used will be finite difference approximations for calculating partial

derivatives.

Figure 32:Representation of a bicubic spline interpolation

∂𝑥𝑓(𝑥, 𝑦) = [𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥 − 1, 𝑦)]/2
∂𝑦𝑓(𝑥, 𝑦) = [𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦 − 1)]/2

∂𝑥𝑦𝑓(𝑥, 𝑦) = [𝑓(𝑥 + 1, 𝑦 + 1) − 𝑓(𝑥 − 1, 𝑦) − 𝑓(𝑥, 𝑦 − 1) + 𝑓(𝑥, 𝑦)]/4

Equation 4: Partial equations for the computation of the bicubic spline interpolation

64

By utilizing finite difference equations, we can obtain valuable insights into the

behavior of the interpolated surface and use these approximations to refine the

coefficients in the bicubic spline interpolation process, resulting in a more

accurate representation of the elevation surface.

This step is performed in the code by utilizing the ‘RectBivariateSpline’ class from

the ‘scipy.interpolate’ module.

6.3.2. Fitting method

Fitting a function to a surface involves determining a mathematical model or

equation that approximates the relationship between the independent variables

(denoted as x and y) and the dependent variable (denoted as z) within a two-

dimensional space.

The primary goal of surface fitting is to capture and represent the underlying

connections, trends, and patterns present in the data points. This process

enables extrapolation beyond observed data to make predictions or to produce a

smooth representation of the surface. Achieving this involves selecting an

appropriate mathematical model that accurately reflects the data.

Several methods can be employed to find the optimal solution when fitting a

function to a surface. These techniques aim to determine the model's parameters

or coefficients that minimize the difference between the fitted surface and the

observed data points. Commonly used methods include the least squares

method, polynomial fitting, and spline interpolation. Each method offers unique

advantages and is selected based on the specific characteristics of the data and

the desired outcome.

65

Least Squares Optimization

Least squares optimization is a widely used method for fitting a function to a

surface. It involves minimizing the sum of the squares of the differences between

the fitted surface values and the corresponding observed data points. This

approach provides a robust and balanced fit by considering all data points and

giving more weight to larger discrepancies. The optimization process adjusts the

parameters or coefficients of the function to iteratively reduce the objective

function, resulting in the best-fitting solution. [57]

Polynomial Fitting

Polynomial fitting is a popular technique for approximating a surface with a

polynomial function. The degree of the polynomial determines the complexity of

the model and the number of coefficients to be determined. The coefficients are

estimated by solving a system of linear equations using the least squares method

or other numerical techniques. Polynomial fitting allows for flexible modeling of

various surface shapes and can be extended to higher dimensions. [58]

Spline Interpolation

Spline interpolation is another powerful method for fitting a function to a surface.

It involves constructing a smooth and continuous surface representation based

on the observed data points. Various types of splines, such as cubic splines or

B-splines, can be used to approximate the surface. The spline interpolation

process determines the optimal coefficients or control points by solving a system

of linear equations or applying optimization techniques to minimize the

interpolation error.

66

Method Advantages Disadvantages Computational

Requirements

Least

Squares

Fitting

Provides an optimal fit according to

the least squares criterion.

May struggle with complex

surfaces exhibiting non-

polynomial behavior.

Moderate

computational

requirements

Effective in handling noise or errors

in the data.

Requires defining an

appropriate objective function.

Can be applied to various types of

functions.

Polynomial

Fitting

Versatile technique that can capture

various trends and patterns in the

data.

Can result in overfitting if the

degree of the polynomial is too

high.

Low computational

requirements

Allows control over the complexity

of the fit through the degree of the

polynomial.

May not accurately capture

complex surface behavior.

Spline

Interpolation

Effective in capturing complex

variations in the data.

May require additional

computational resources

compared to simpler methods

Higher

computational

requirements

Provides a visually pleasing fit with

smooth transitions between

adjacent data points.

Requires careful selection of

spline parameters.

Table 8 Comparation of the different fitting methods

The chosen approach for fitting the data is the least squares method. This method

serves to determine the coefficients of a polynomial function that best align with

the given dataset. Through the least squares optimization technique, the primary

goal is to identify these coefficients in a manner that minimizes the disparity

between the predicted values generated by the polynomial function and the actual

data points.

The objective is to determine the polynomial coefficients that provide the best

possible fit to the data. By minimizing the discrepancy between the predicted

values and the observed data points, the least squares optimization aims to find

the coefficients that yield the most accurate representation of the underlying

relationship between the variables.

The least squares method is well-suited for this purpose. It aims to minimize the

sum of the squared differences between the predicted values of the polynomial

67

function and the actual data points on the finer grid. By minimizing the squared

residuals, the method provides an optimal fit that reduces the overall error

between the fitted surface and the observed data.

Implementation

The ‘least_squares’ function is called to perform the least squares optimization.

It takes several arguments: the error function (error_func), the initial coefficient

values (initial_coeffs), and the flattened data (x_flat, y_flat, z_flat).

The ‘error_func’ is defined as a function that quantifies the difference between

the predicted values of the polynomial function and the observed data points. This

error function computes the residual, which represents the discrepancy between

the polynomial fit and the actual data.

Concurrently, an initial guess for the polynomial coefficients is provided using the

‘initial_coeffs’ variable. These initial values serve as the starting point for the

optimization process.

The ‘least_squares’ optimization algorithm iteratively adjusts the polynomial

coefficients to minimize the error function. By minimizing the sum of squared

differences between the predicted polynomial values and the actual data points,

it finds the optimal values for the coefficients that provide the best fit to the data.

Once the optimization process is completed, the result contains the optimal

values for the polynomial coefficients. These coefficients represent the

parameters of the fitted polynomial function that provides the best approximation

to the data.

In conclusion, this approach enables the derivation of a polynomial function that

accurately represents the underlying relationship between the variables,

improving the understanding and modeling of the data.

68

𝑚𝑥 ∈ {
𝑥𝐿

𝑥𝐿+1
 {

ℎ𝑥𝐿

ℎ𝑥𝐿+1

ℎ𝑥𝐿 − ℎ𝑥𝐿+1

𝑥𝐿 − 𝑥𝐿+1

Equation 5: Calculation of the slope between two adjacent points on x coordinates

𝑚𝑦 ∈ {
𝑦𝐿

𝑦𝐿+1
 {

ℎ𝑦𝐿

ℎ𝑦𝐿+1

ℎ𝑦𝐿 − ℎ𝑦𝐿+1

𝑦 − 𝑦𝐿+1

Equation 6:Calculation of the slope between two adjacent points on y coordinates

∆𝑥 = 𝑥𝐿 − 𝑖𝑛𝑡(𝑥𝐿)

Equation 7: Differential of x

∆𝑦 = 𝑦𝐿 − 𝑖𝑛𝑡(𝑦𝐿)

Equation 8: Differential of y

ℎ𝑒𝑖𝑔𝑡ℎ = [
ℎ𝑥

ℎ𝑦
] = [

𝑚𝑥 ∗ ∆𝑥 + ℎ𝑥𝐿

𝑚𝑦 ∗ ∆𝑦 + ℎ𝑦𝐿
]

Equation 9: Linear interpolation between two points

Methodology

The developed algorithm employs bilinear interpolation for computing the height

value. This interpolation method is chosen for its effectiveness and accuracy in

approximating the height between four neighboring points in a grid.

Figure 33: Pseudocode of the algorithm for the computation of the bilinear interpolation

69

6.3.3. Comparison of the order of the function

Comparing the orders of functions used for surface fitting is crucial for

understanding both the complexity and accuracy of the model employed to

represent the surface. The selection of an appropriate order aims to strike a

delicate balance, seeking the most precise mathematical depiction while avoiding

overfitting and excessive computational demands.

Higher-order functions hold promise for capturing intricate data patterns with

greater fidelity. However, they also introduce the risk of overfitting, where the

model becomes overly attuned to the training data, hindering its ability to

generalize to new observations. Conversely, lower-order functions offer simplicity

but may lack the capacity to capture the full complexity of the data, resulting in

underfitting.

70

Figure 34: Representation of the surface with an 2nd
order fitment

Figure 35: Representation of the surface with an 3th
order fitment

Figure 36: Representation of the surface with an 4th
order fitment

Figure 37: Representation of the surface with an 5th
order fitment

Upon comparing the orders of functions depicted in the provided figures, a

discernible difference becomes apparent. In the case at hand, a fourth-order

function emerged as the preferred solution. It strikes an optimal balance, offering

sufficient precision to capture the intricate geography while mitigating the risk of

overfitting and conserving computational resources.

71

Figure 38: Pseudocode of the algorithm for the generation of the surface

The algorithm outlined serves as a fundamental component in the generation of

elevation surfaces. With the requirement of a TIFF file containing elevation data,

the algorithm begins by initializing variables to define the boundaries of the

elevation map. These variables encompass the horizontal and vertical extents,

delineating the region over which the surface will be generated.

Utilizing spline interpolation, specifically the RectBivariateSpline method, the

algorithm constructs a smooth surface representation of the elevation data. This

interpolation technique ensures that the generated surface accurately captures

the underlying terrain features while mitigating the effects of noise or irregularities

present in the data.

72

Following the spline interpolation, the algorithm proceeds to generate a fine

meshgrid, refining the resolution of the surface representation. This finer grid

facilitates more precise evaluation of the elevation values, essential for achieving

high-fidelity surface reconstructions.

Subsequently, the algorithm evaluates the spline interpolation on the fine

meshgrid, yielding elevation values across the specified region. These values

serve as the basis for fitting a polynomial function, aimed at capturing the

underlying trends and variations in the elevation data.

The process of polynomial fitting involves minimizing the error between the

calculated polynomial and the actual elevation values. Leveraging least squares

optimization, the algorithm iteratively adjusts the polynomial coefficients to

achieve the best possible fit to the data. This optimization technique ensures that

the fitted surface closely aligns with the observed elevation data, enhancing the

accuracy and reliability of the generated surface.

Upon obtaining the optimal polynomial coefficients, the algorithm calculates the

fitted surface, synthesizing the polynomial function with the fine meshgrid

coordinates. This step yields a comprehensive representation of the terrain,

characterized by smooth transitions and accurately captured features.

Finally, the algorithm concludes by returning the fitted surface as the output,

providing a valuable resource for subsequent analyses and applications. By

integrating advanced interpolation and polynomial fitting techniques, the

algorithm facilitates the generation of elevation surfaces that are both precise and

reliable.

73

6.3.4. Generation of the OpenDrive file

As mentioned in chapter 5, the OpenDrive format follows a hierarchical structure

with each level serving a specific pourpuse in describing the road environment

for autonomous vehicles.

At the top of the hierarchy, we have as a foundation for the file the road level.

This provides the overall characteristics of the roads. These road definitions act

as the starting point, forming the basis for the entire representation. For a better

understanding of the concept the structure of the roads is represented in Figure

39.

Figure 39: UML of the road class in OpenDrive maps

74

As we move down the hierarchy, we encounter the lanes. Lanes are like individual

lanes on a real-world road. They encompass crucial details like lane width, road

markings, and even whether a lane supports certain driving behaviors. Think of

lanes as the distinct paths that vehicles can travel on within the virtual road

network.

In our virtual road system, there are also places where lanes intersect and interact

– much like intersections. Just as real-world junctions enable vehicles to change

paths, our virtual junctions define how lanes connect and how vehicles can

navigate from one lane to another. These junctions ensure a seamless flow of

traffic in the digital environment.

But the aim of this thesis is to focus on the generation of the elevation profile. For

this part of the file, we will focus on the elevationProfile element inside the road

class.

The elevation profile in OpenDrive format is defined by a cubic equation with the

following mathematical formula:

𝑒𝑙𝑒𝑣(𝑑𝑠) = 𝑎 + 𝑏 ∗ 𝑑𝑠 + 𝑐 ∗ 𝑑𝑠2 + 𝑑 ∗ 𝑑𝑠3

Equation 10: Polynomial function used to model elevation variation

where:

elev is the elevation at a given position.

a,b,c,d are polynomial coefficients.

ds is the distance along the reference line

between the start of a new elevation

element and the given position.

75

The ds value restarts at 0 for each element. The absolute position of an

elevation value is computed using the following equation:

𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡 + 𝑑𝑠

Equation 11: Calculation of a new position s based on the initial position

where:

s is the absolute position in the

reference line coordinate system.

sstart is the start position of the element on

the reference line coordinate system.

Figure 40:Pseudocode of the algorithm for the computation of the normalized coordinates for bilinear interpolation

The provided algorithm is a key component in the complex process of adding

elevation data to an HD map.

The algorithm starts with a precondition check, which ensures the presence of a

valid topographic map ('topomap'). This thorough procedure checks for errors

caused by data incompleteness or corruption. By certifying the map's integrity,

the technique lays the groundwork for future recovery of reliable elevation data.

76

Followed the variable `minRemoved` acts as a dynamic switch, indicating

whether certain minimum values have been omitted from the dataset. Leveraging

this adaptive mechanism, the algorithm showcases its versatility, adeptly

maneuvering through varied datasets and scenarios with finesse and accuracy.

The algorithm's core goal is to compute normalized coordinates, which are

required for further interpolation procedures. When'minRemoved' returns false,

the algorithm uses special formulas to generate 'f x lookup' and 'f y lookup'. These

calculations intelligently scale the input coordinates ('x' and 'y') to match the map's

dimensions. This normalization procedure is critical, since it ensures consistency

in the depiction of elevation data over the whole map canvas.

Conversely, when the presence of deleted minimum values is recognized

('minRemoved' is true), the method adjusts its calculations. It dynamically adjusts

the normalization algorithms to account for the changed dataset features,

assuring elevation representation integrity in the absence of specific data points.

This adaptability demonstrates the algorithm's ability to smoothly accommodate

varied datasets and developing settings.

Post normalization, the algorithm seamlessly transitions to the conversion phase,

where it elegantly transforms the floating-point normalized coordinates into

integer indices (`x_lookup` and `y_lookup`). These indices serve as navigational

beacons, efficiently guiding the subsequent retrieval of elevation data from the

HD map. The precision of this conversion process is pivotal, ensuring seamless

compatibility with array indexing and facilitating expedited data access and

manipulation operations.

In summation, the algorithm assumes a pivotal role in the intricate orchestration

of furnishing elevation data to an HD map. Its adaptive nature, coupled with the

precision in computing normalized coordinates and seamless data retrieval

mechanisms, culminate in the creation of meticulous and accurate terrain

77

representations. Seamlessly integrated into the HD map ecosystem, the

algorithm underpins a plethora of geographic and navigational applications,

fortifying their reliability and efficacy in real-world scenarios.

6.4. Comparative analysis of virtual and real-world

elevation data

Elevation Map Preparation

The real-world elevation map utilized in this analysis comes from the webpage

FloodMap.net. This website offers a range of geographical data, including

elevation maps that vividly depict varying elevations through a color-coded

scheme. For the purpose of this study, the elevation map specifically pertains to

the geographic region of Wolfenbüttel.

Figure 41: Colored topogrphic map of Wolfenbüttel from topographic-map.com [59]

78

Virtual Model Output Inspection

To retrieve the elevation data from the virtual model, we relied on the

libOpenDrive library, accessible via a GitHub repository. This comprehensive

library offers a range of functionalities for parsing OpenDrive files and extracting

diverse geographical and topographical data, including elevation details. The

primary aim was to leverage the OpenDrive viewer module within the library,

enabling to engage with and visualize the elevation values of the virtual model

more effectively.

Figure 42: Representation of the OpenDrive map on OpenDRIVE viewer [60]

The OpenDrive viewer offered not only visualize the elevation data itself but also

to simultaneously represent the corresponding x, y, and z coordinates. This

dynamic visualization enhanced our understanding of the elevation distribution

and its relationship to geographic positioning within our chosen area of study.

Using the tool's interactive interface, navigation through the virtual model's

representation was facilitated, allowing for the identification of particular

geographic points of interest, including Am Exer, Neuer Weg, and Jahnstraße.

Utilizing the OpenDrive viewer, elevation data corresponding to these points was

accurately extracted, providing a detailed overview of the virtual model's elevation

outputs.

This extraction method not only visualized elevation values but also

contextualized them with geographical coordinates. By accurately capturing

79

elevation data from selected points, we established a solid foundation for

subsequent visual comparisons and manual assessments of the virtual model's

representation.

Visual Comparison

The visual comparison entails placing the elevation representation of the virtual

model and the real-world elevation map side by side for direct scrutiny. This

allows for an immediate and comprehensive assessment of how the virtual

model's elevation outputs correspond to the elevation representation in reality.

By juxtaposing these representations, we can identify areas of agreement and

divergence more effectively.

During the visual comparison, our attention is directed towards observing regions

where the virtual model's elevation representation aligns closely with the real-

world elevation map, as well as regions where noticeable differences become

apparent. These areas of alignment and discrepancies serve as essential

markers for evaluating the accuracy and fidelity of the virtual model's elevation

outputs.

To gain a deeper understanding of the comparison, we pay particular attention to

distinctive features within the elevation representations. The main focus of the

case study is to ensure that the Salzdahlumstaße road has a constant gradient

from Neuer Weg to Am Exer. These distinctive feature can provide valuable

insights into how well the virtual model captures the nuanced topographical

characteristics of the real-world terrain.

80

Manual Annotation

The manual annotation process serves as a meticulous means to highlight and

document variations in elevation representation. By incorporating notations,

comments, or markings, we aim to precisely delineate the regions of interest

where differences are evident. This manual annotation provides a tangible record

of our observations, aiding in the subsequent analysis and interpretation of the

comparison results.

During the visual comparison, we pay particular attention to areas where

differences emerge between the virtual model's elevation representation and the

real-world elevation map. These differences can manifest as discrepancies in

elevations, terrain contours, or topographical characteristics. We manually

annotate these areas, marking them with relevant notations, comments, or visual

cues to pinpoint the locations and extent of differences.

In addition to indicating the presence of differences, we strive to assess the

magnitude and nature of these variations. This entails considering whether

differences are consistent across multiple points, indicative of systematic biases,

or if they occur sporadically, indicating unexpected variations. By

comprehensively analyzing the nature of differences, we gain insights into

potential factors influencing the alignment between the virtual model and reality.

The manual annotations and markings created during this process serve as a

tangible record of our visual observations. These annotations become invaluable

assets for subsequent analysis, enabling us to identify trends, patterns, and

potential correlations in the discrepancies between the virtual model's elevation

representation and the real-world elevation map.

As we conduct the visual comparison, we meticulously note and document our

observations. Both areas of agreement and differences are recorded, along with

any notable patterns or trends identified during the comparison. These notations

form the foundation for subsequent analysis and conclusions.

81

Results and Analysis

Record the insights gained from the visual comparison process. Document

observations, patterns, and discrepancies that stand out. Note any areas where

the virtual model's elevation representation closely matches the real-world

elevation map and areas where differences are more pronounced.

Error Patterns

Identify any consistent error patterns that arise from the comparison. These could

include systematic overestimation or underestimation of elevations, misalignment

of features, or unexpected variations in elevation.

RoadId z_virtual z real

404 92 85

37 96 96

51 99 100

266 99 127

Figure 43: Digital representation of the crossway
between Ahlumer Straße and Neuer Weg

Figure 44: Topographic map of Wolfenbüttel of the
crossway between Ahlumer Straße and Neuer Weg

82

Figure 45: Digital representation of Ostfalia Hochschule
Parking 1

Figure 46: Topographic map of Ostfalia Hochschule
Parking 1

Figure 47: Digital representation of Ostfalia Hochschule
Parking 2

Figure 48: Topographic map of Ostfalia
Hochschule Parking 2

Figure 49: Digital representation of Am Exer Buildings

Figure 50: Topographic map of Am Exer
Buildings

Implications and Validation

Assessment of Accuracy

When comparing our virtual model to real-world elevation data, we noticed

some differences, especially in the area of Am Exer. The virtual model

consistently showed lower elevations than what actually exists.

83

This means that while our model is mostly accurate, there are areas where it

needs improvement, especially in accurately representing elevations. To make

our model more reliable, we need to figure out why these discrepancies occur

and find ways to fix them. This might involve using better algorithms or getting

more accurate data.

In summary, while our virtual model is good in most places, we need to keep

working on it to ensure it's accurate everywhere, especially in places like Am

Exer.

The manual visual comparative analysis presented in this chapter offers a unique

perspective on evaluating elevation data from a virtual model. By directly

engaging with the data. While manual comparison requires careful observation

and interpretation, it provides valuable insights that complement automated

methods and enhance the assessment of virtual modeling techniques.

84

7. Regulations and Standards in HD Map

Generation

In the pursuit of safe and reliable autonomous driving systems, the creation and

utilization of High Definition (HD) maps have emerged as a critical component.

The generation of accurate and up-to-date HD maps requires adherence to a

range of regulations and standards to ensure functional safety, interoperability,

and consistency. This chapter delves into the regulatory and standardization

landscape surrounding HD map generation for autonomous driving, examining

key norms that guide the industry toward the realization of safe and efficient self-

driving vehicles.

7.1. Regulations

7.1.1. ISO 26262-1:2018

ISO 26262-1:2018, [61] an internationally recognized standard, focuses on

functional safety for road vehicles. It delineates processes and requirements to

manage functional safety risks inherent in electrical and electronic systems within

vehicles, including those involved in autonomous driving. This section explores

the applicability of ISO 26262 to HD map generation systems, highlighting how

safety concerns are addressed to ensure robust and dependable HD map data.

7.1.2. SAE J3016

SAE J3016 [62] classifies driving automation into six levels, from Level 0 (no

automation) to Level 5 (full automation). HD maps play a pivotal role in the higher

levels of automation, where vehicles must possess a comprehensive

understanding of their environment. This portion of the chapter explores the

importance of HD map data in enabling advanced levels of autonomy and how

85

SAE J3016 categorization guides the integration of HD maps in autonomous

driving systems.

7.1.3. Local Regulations and Industry Guidelines

Autonomous driving and HD map generation are subject to evolving regional

regulations and industry guidelines. This section investigates the role of

regulatory bodies like the U.S. National Highway Traffic Safety Administration

(NHTSA) and the European Union in shaping norms for autonomous vehicles.

Additionally, the application of industry-specific norms such as the Automotive

Safety Integrity Level (ASIL) process is examined to ensure safety and adherence

to rigorous standards.

7.2. Standards

7.2.1. ASAM OpenDRIVE

ASAM OpenDRIVE stands as a significant standard for road and lane data

representation. It provides an open and standardized XML format for describing

road networks and environments, a fundamental necessity for HD map

generation. This section delves into how ASAM OpenDRIVE facilitates the

consistent representation of road geometries and environments, enabling

autonomous vehicles to comprehend their surroundings accurately.

86

8. New lines of research

As the field of autonomous driving rapidly evolves, the demand for cutting-edge

tools and methodologies to simulate and evaluate autonomous vehicle behavior

within complex environments intensifies.

Integration of Real-Time Sensor Data

One interesting path is the incorporation of real-time sensor data into the created

digital environments. Research in this direction entails developing techniques to

seamlessly fuse virtual and real data, allowing for more accurate validation of

autonomous systems. Exploring the challenges and opportunities of integrating

dynamic sensor data within the toolchain can contribute to more robust and

realistic simulations.

Generation of digital environments

Current tools struggle to accurately capture the complexities of junctions, leading

to errors in navigation systems and autonomous vehicle simulations. This new

research could explore better algorithms for modeling junction geometry and

topology, incorporate realistic traffic behavior simulation, and leverage machine

learning for junction detection and classification. Additionally, involving human

feedback and crowdsourced data could help improve junction representations.

87

9. Conclusions

In conclusion, the development of a toolchain for the automated generation of

digital maps for autonomous drive represents a significant advancement in the

field of autonomous vehicle technology.

Through the integration of the elevation data, this toolchain not only offers a

streamlined and efficient solution for creating high-definition maps, essential for

safe and reliable autonomous navigation, but also fullfills the gap in the research

world due to there wasn’t any study related with the annotation of the elevation

on OpenDRIVE maps.

As autonomous driving continues to evolve, this toolchain serves as a

foundational framework, enabling further advancements in autonomous vehicle

technology and paving the way for a future of safer and more efficient

transportation systems.

88

10. References

[1] U. Spiegelhalter, “Annotating OpenStreetMap data with elevation data”.

[2] “ASAM OpenDRIVE.” Accessed: Oct. 22, 2023. [Online]. Available:

https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e54

42e29e93f6693d1cccd

[3] NASA JPL, “NASADEM Merged DEM Global 1 arc second V001.” NASA EOSDIS

Land Processes Distributed Active Archive Center, 2020. doi:

10.5067/MEASURES/NASADEM/NASADEM_HGT.001.

[4] J.-H. Meusener, “JHMeusener/osm2xodr.” Feb. 29, 2024. Accessed: Mar. 03, 2024.

[Online]. Available: https://github.com/JHMeusener/osm2xodr

[5] C.-Y. Chan, “Advancements, prospects, and impacts of automated driving systems,” Int.

J. Transp. Sci. Technol., vol. 6, no. 3, pp. 208–216, Sep. 2017, doi: 10.1016/j.ijtst.2017.07.008.

[6] K. Jo and M. Sunwoo, “Generation of a Precise Roadway Map for Autonomous Cars,”

IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 925–937, Jun. 2014, doi:

10.1109/TITS.2013.2291395.

[7] R. Vivacqua, R. Vassallo, and F. Martins, “A Low Cost Sensors Approach for Accurate

Vehicle Localization and Autonomous Driving Application,” Sensors, vol. 17, no. 10, p. 2359,

Oct. 2017, doi: 10.3390/s17102359.

[8] R. Liu, J. Wang, and B. Zhang, “High Definition Map for Automated Driving:

Overview and Analysis,” J. Navig., vol. 73, no. 2, pp. 324–341, Mar. 2020, doi:

10.1017/S0373463319000638.

[9] D. Pannen, M. Liebner, W. Hempel, and W. Burgard, “How to Keep HD Maps for

Automated Driving Up To Date,” in 2020 IEEE International Conference on Robotics and

Automation (ICRA), Paris, France: IEEE, May 2020, pp. 2288–2294. doi:

10.1109/ICRA40945.2020.9197419.

[10] “How medium-definition maps help navigate dynamic roads - GPS World,” GPS World

- The Business and Technology of Global Navigation and Positioning. Accessed: Oct. 29, 2023.

[Online]. Available: https://www.gpsworld.com/how-medium-definition-maps-help-navigate-

dynamic-roads/

[11] X. Wang et al., “HD Map Construction and Update System for Autonomous Driving in

Open-Pit Mines,” IEEE Syst. J., pp. 1–12, 2023, doi: 10.1109/JSYST.2023.3317288.

[12] H. Wang, C. Xue, Y. Zhou, F. Wen, and H. Zhang, “Visual Semantic Localization

based on HD Map for Autonomous Vehicles in Urban Scenarios,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA), 2021, pp. 11255–11261. doi:

10.1109/ICRA48506.2021.9561459.

[13] T. Qin, Y. Zheng, T. Chen, Y. Chen, and Q. Su, “A Light-Weight Semantic Map for

Visual Localization towards Autonomous Driving,” in 2021 IEEE International Conference on

Robotics and Automation (ICRA), 2021, pp. 11248–11254. doi:

10.1109/ICRA48506.2021.9561663.

89

[14] M. Bäumker and F. Heimes, “New Calibration and Computing Method for Direct

Georeferencing of Image and Scanner Data Using the Position and Angular Data of an Hybrid

Inertial Navigation System,” Proc. OEEPE Workshop Integr. Sens. Orientat., Jan. 2002.

[15] M. Barsi and A. Barsi, “BUILDING OPENDRIVE MODEL FROM MOBILE

MAPPING DATA,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLIII-B4-2021,

pp. 9–14, Jun. 2021, doi: 10.5194/isprs-archives-XLIII-B4-2021-9-2021.

[16] “What Is Object Detection?” Accessed: Mar. 03, 2024. [Online]. Available:

https://de.mathworks.com/discovery/object-detection.html

[17] G. Csurka, “An Efficient Approach to Semantic Segmentation,” Int. J. Comput. Vis.,

vol. 95, pp. 198–212, Nov. 2011, doi: 10.1007/s11263-010-0344-8.

[18] S. A. Bello et al., “Cloud computing in construction industry: Use cases, benefits and

challenges,” Autom. Constr., vol. 122, p. 103441, Feb. 2021, doi:

10.1016/j.autcon.2020.103441.

[19] “4D LiDARs vs 4D RADARs — Why the LiDAR vs RADAR comparison is more

relevant today than ever,” Welcome to The Library! Accessed: Mar. 03, 2024. [Online].

Available: https://www.thinkautonomous.ai/blog/fmcw-lidars-vs-imaging-radars/

[20] R. Zhang and K. Cai, “The Application of Edge Computing in High-Definition Maps

Distribution,” Sep. 2020, pp. 116–121. doi: 10.1145/3425329.3425333.

[21] V. Ilci and C. Toth, “High Definition 3D Map Creation Using GNSS/IMU/LiDAR

Sensor Integration to Support Autonomous Vehicle Navigation,” Sensors, vol. 20, no. 3, 2020,

doi: 10.3390/s20030899.

[22] I. Bilik, O. Longman, S. Villeval, and J. Tabrikian, “The Rise of Radar for Autonomous

Vehicles: Signal Processing Solutions and Future Research Directions,” IEEE Signal Process.

Mag., vol. 36, no. 5, pp. 20–31, Sep. 2019, doi: 10.1109/MSP.2019.2926573.

[23] M. Elhashash, H. Albanwan, and R. Qin, “A Review of Mobile Mapping Systems:

From Sensors to Applications,” Sensors, vol. 22, no. 11, Art. no. 11, Jan. 2022, doi:

10.3390/s22114262.

[24] D. Tosic, S. Tuttas, L. Hoegner, and U. Stilla, “FUSION OF FEATURE BASED AND

DEEP LEARNING METHODS FOR CLASSIFICATION OF MMS POINT CLOUDS,” Int.

Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-2/W16, pp. 235–242, Sep. 2019, doi:

10.5194/isprs-archives-XLII-2-W16-235-2019.

[25] F. Poggenhans, N. O. Salscheider, and C. Stiller, “Precise Localization in High-

Definition Road Maps for Urban Regions,” in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Madrid: IEEE, Oct. 2018, pp. 2167–2174. doi:

10.1109/IROS.2018.8594414.

[26] J. Rebut, A. Ouaknine, W. Malik, and P. Perez, “Raw High-Definition Radar for Multi-

Task Learning,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), New Orleans, LA, USA: IEEE, Jun. 2022, pp. 17000–17009. doi:

10.1109/CVPR52688.2022.01651.

[27] Y. Zhang, A. Carballo, H. Yang, and K. Takeda, “Perception and sensing for

autonomous vehicles under adverse weather conditions: A survey,” ISPRS J. Photogramm.

Remote Sens., vol. 196, pp. 146–177, Feb. 2023, doi: 10.1016/j.isprsjprs.2022.12.021.

90

[28] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and Sensor Fusion

Technology in Autonomous Vehicles: A Review,” Sensors, vol. 21, no. 6, Art. no. 6, Jan. 2021,

doi: 10.3390/s21062140.

[29] J. Kim, D. S. Han, and B. Senouci, “Radar and Vision Sensor Fusion for Object

Detection in Autonomous Vehicle Surroundings,” in 2018 Tenth International Conference on

Ubiquitous and Future Networks (ICUFN), Prague: IEEE, Jul. 2018, pp. 76–78. doi:

10.1109/ICUFN.2018.8436959.

[30] “A fog blog: Understanding a challenge inherent to driving in San Francisco,” Waymo.

Accessed: Mar. 03, 2024. [Online]. Available: https://waymo.com/blog/2021/11/a-fog-blog

[31] “9 Types of Sensor Fusion Algorithms,” Welcome to The Library! Accessed: Mar. 03,

2024. [Online]. Available: https://www.thinkautonomous.ai/blog/9-types-of-sensor-fusion-

algorithms/

[32] A. Basiri, P. Amirian, and P. Mooney, “Using Crowdsourced Trajectories for

Automated OSM Data Entry Approach,” Sensors, vol. 16, no. 9, Art. no. 9, Sep. 2016, doi:

10.3390/s16091510.

[33] F.-J. Behr, P. A.P., M. Ngigi, M. Zimmermann, and M.(Editors), Geoinformation for a

better World. 2011.

[34] P. Mooney and M. Minghini, “A review of OpenStreetMap data,” Mapp. Citiz. Sens.,

pp. 37–59, 2017.

[35] “OSM data model | OpenGeoEdu.” Accessed: Oct. 22, 2023. [Online]. Available:

https://learn.opengeoedu.de/en/opendata/vorlesung/freiwillig-erhobene-

daten/openstreetmap/datenmodell

[36] “Node - OpenStreetMap Wiki.” Accessed: Oct. 22, 2023. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Node

[37] “Altitude - OpenStreetMap Wiki.” Accessed: Nov. 07, 2023. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Altitude

[38] “Way - OpenStreetMap Wiki.” Accessed: Oct. 22, 2023. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Way

[39] “Relation - OpenStreetMap Wiki.” Accessed: Oct. 22, 2023. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Relation

[40] A. Diaz-Diaz, M. Ocana, A. Llamazares, C. Gomez-Huelamo, P. Revenga, and L. M.

Bergasa, “HD maps: Exploiting OpenDRIVE potential for Path Planning and Map Monitoring,”

in 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany: IEEE, Jun. 2022, pp.

1211–1217. doi: 10.1109/IV51971.2022.9827297.

[41] “NVIDIA DRIVE Sim,” NVIDIA Developer. Accessed: Nov. 19, 2023. [Online].

Available: https://developer.nvidia.com/drive/simulation

[42] “HERE HD Live Map | Autonomous Driving System | Platform | HERE.” Accessed:

Nov. 19, 2023. [Online]. Available: https://www.here.com/platform/HD-live-map

[43] “Google Maps Platform,” Google for Developers. Accessed: Nov. 19, 2023. [Online].

Available: https://developers.google.com/maps

91

[44] N. Earth Science Data Systems, “NASADEM: Creating a New NASA Digital Elevation

Model and Associated Products | Earthdata.” Accessed: Oct. 22, 2023. [Online]. Available:

https://www.earthdata.nasa.gov/esds/competitive-programs/measures/nasadem

[45] “About | OpenTopography.” Accessed: Nov. 19, 2023. [Online]. Available:

https://opentopography.org/about

[46] “Getting Started | OpenTopography.” Accessed: Oct. 22, 2023. [Online]. Available:

https://opentopography.org/start

[47] “OpenTopography - Data Catalog.” Accessed: Oct. 22, 2023. [Online]. Available:

https://portal.opentopography.org/dataCatalog

[48] OpenTopography, “Quantifying Channel Change in a Steep Coastal Stream, CA 2022,”

2023, doi: 10.5069/G9TD9VJF.

[49] OpenTopography, “Copernicus GLO-90 Digital Surface Model,” 2021, doi:

10.5069/G9028PQB.

[50] S.-H. Han, J.-D. Lee, and H.-B. Ahn, “Geospatial data Acquisition Using the Google

Map API,” Int. J. Contents, vol. 8, no. 1, pp. 55–60, Mar. 2012, doi:

10.5392/IJoC.2012.8.1.055.

[51] “Elevation API Usage and Billing | Google for Developers.” Accessed: Nov. 19, 2023.

[Online]. Available: https://developers.google.com/maps/documentation/elevation/usage-and-

billing

[52] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open

Urban Driving Simulator,” in Proceedings of the 1st Annual Conference on Robot Learning,

PMLR, Oct. 2017, pp. 1–16. Accessed: Nov. 19, 2023. [Online]. Available:

https://proceedings.mlr.press/v78/dosovitskiy17a.html

[53] “SUMO Documentation.” Accessed: Oct. 22, 2023. [Online]. Available:

https://sumo.dlr.de/docs/index.html

[54] “RoadRunner Documentation - MathWorks Deutschland.” Accessed: Oct. 22, 2023.

[Online]. Available:

https://de.mathworks.com/help/roadrunner/index.html?s_tid=srchtitle_site_search_1_RoadRunn

er&s_tid=mwa_osa_a

[55] “Generate maps with OpenStreetMap - CARLA Simulator.” Accessed: Mar. 03, 2024.

[Online]. Available: https://carla.readthedocs.io/en/latest/tuto_G_openstreetmap/

[56] M. Simão, P. Neto, and O. Gibaru, “Taking Advantage of Data Dimensionality

Reduction for Dynamic Gesture Recognition from Incomplete Data,” Aug. 2016.

[57] E. W. Weisstein, “Least Squares Fitting.” Accessed: Mar. 03, 2024. [Online]. Available:

https://mathworld.wolfram.com/

[58] A. Kaw and J. Paul, “Spline Interpolation Method”.

[59] “Wolfenbüttel topographic map, elevation, terrain,” Topographic maps. Accessed: Mar.

04, 2024. [Online]. Available: https://en-zw.topographic-map.com/map-

p6pdn/Wolfenb%C3%BCttel/

[60] “Online OpenDRIVE Viewer.” Accessed: Mar. 03, 2024. [Online]. Available:

https://odrviewer.io/

92

[61] 14:00-17:00, “ISO 26262-1:2011,” ISO. Accessed: Mar. 04, 2024. [Online]. Available:

https://www.iso.org/standard/43464.html

[62] “SAE J3016 automated-driving graphic.” Accessed: Mar. 04, 2024. [Online]. Available:

https://www.sae.org/site/news/2019/01/sae-updates-j3016-automated-driving-graphic

