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Resumen
La traducción automÆtica (MT, del inglØs Machine Translation) es un campo impor-

tante dentro del aprendizaje automÆtico, en el que el desarrollo de los modelos de len-
guaje grandes ha demostrado tener un gran potencial para mejorar los sistemas actuales
de traducción. Gracias a los modelos preentrenados que han aportado grandes empre-
sas tecnológicas como Meta, Mistral AI o Google, la traducción automÆtica multilingüe
ha experimentado una notable mejora en los œltimos aæos. En este contexto, este trabajo
evaluarÆ el rendimiento de los principales modelos de lenguaje grandes adaptados a ta-
reas especí�cas de traducción en distintos pares de lenguas. Para ello, se harÆ uso de la
infraestructura, datos y experiencia aportados por el grupo MLLP del VRAIN, adquiri-
dos en el marco de proyectos de investigación y transferencia tecnológica desarrollados
en los œltimos aæos.

Palabras clave: Aprendizaje AutomÆtico, Traducción AutomÆtica, modelo de lenguaje
grande
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Resum
La traducció automàtica (MT, de l’anglØs Machine Translation) Øs un camp important

dins de l’aprenentatge automàtic, en el qual el desenvolupament dels models de llen-
guatge grans ha demostrat tindre un gran potencial per a millorar els sistemes actuals
de traducció. Gràcies als models pre-entrenats que han aportat grans empreses tecno-
lògiques com a Meta, Mistralenca AI o Google, la traducció automàtica multilingüe ha
experimentat una notable millora en els œltims anys. En este context, este treball avaluarà
el rendiment dels principals models de llenguatge grans adaptats a tasques especí�ques
de traducció en diferents parells de llengües. Per a això, es farà œs de la infraestructura,
dades i experiŁncia aportats pel grup MLLP del VRAIN, adquirits en el marc de projectes
d’investigació i transferŁncia tecnològica desenvolupats en els œltims anys.

Paraules clau: Aprenentatge Automàtic, Traducció Automàtica, model de llenguatge
gran
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Abstract
Machine Translation (MT) is an important �eld within machine learning, where the

development of large language models has shown great potential to improve current
translation systems. Thanks to the pre-trained models provided by large technology com-
panies such as Meta, Mistral AI or Google, multilingual machine translation has experi-
enced a remarkable improvement in recent years. In this context, this work will evaluate
the performance of the main large language models adapted to speci�c translation tasks
in different language pairs. To this end, we will make use of data, technology, and ex-
pertise from the MLLP group of VRAIN, acquired within the framework of research and
technology transfer projects developed in recent years.

Key words: Machine Learning, Machine Translation, Large Language Model
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CHAPTER 1

Introduction

This work explores how state-of-the-art Large Language Models (LLMs) perform in Ma-
chine Translation (MT) tasks. For this purpose, we will adapt some of the most popular
LLMs and evaluate them using the standard metrics used in the �eld of MT.

In this chapter, we describe the motivation and the main objectives of the work, as
well as the key concepts that will be necessary for the reader to understand the rest of the
work.

1.1 Motivation

In today’s interconnected world, translation tools play an indispensable role in facilitat-
ing communication across linguistic barriers. Translation tools not only bridge language
gaps but also democratize access to information, empowering individuals worldwide to
have access to content in any language.

The exploration of MT through the adaptation of LLMs arises from a keen interest
in leveraging cutting-edge technologies to enhance translations’ quality. The decision of
using LLMs for this work is based on their proven performance in numerous Natural
Language Processing (NLP) tasks, as well as on their accessibility through pre-trained
models from leading technology companies. Furthermore, this work was carried out in
the context of a collaboration scholarship within the MLLP group.

1.2 Objectives

The main objectives of this work are the following:

1. To evaluate state-of-the-art MT encoder-decoder models.

2. To adapt and evaluate popular LLMs for MT.

3. To evaluate the in-context learning capabilities of LLMs for MT.

1.3 Document structure

This document is divided into 4 chapters. The current chapter provides the motivation
behind this work and its primary objectives, setting the stage for the subsequent chap-
ters. Chapter 2 introduces the reader to the essential concepts needed for keeping up

1



2 Introduction

with the experimentation chapters. It begins with an overview of Machine Learning
(ML) fundamentals and transitions to an exploration of the Transformer architecture and
LLMs. Chapter 3 describes the datasets used for training and evaluating the models,
then it summarizes the encoder-decoder translation models selected for the experimen-
tal phase, and concludes with the experimental setup as well as the results obtained for
each model. Chapter 4 focuses on the adaptation of decoder-only LLMs for MT, includ-
ing an overview of the models chosen, the differences with the experimental setup from
the previous chapter, the results obtained by adapting the models and by prompting
them with few-shots, and a comparison of these results with those obtained by encoder-
decoder models. Lastly, Chapter 5 summarizes the work done, highlights the objectives
that have been attained and concludes with the introduction of some future lines of work
and research.



CHAPTER 2

Background

2.1 Machine Learning

The expansive �eld of Arti�cial Intelligence (AI) is in charge of building systems that
enables computers and machines to simulate human intelligence and problem-solving
capabilities. Whereas ML is a subset of AI that learns to make decisions by �tting math-
ematical models to observed data. A popular de�nition of ML given by Tom Mitchell [5]
says the following:
"A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E."

Thus there exist many ML approaches, depending on the nature of the task T to be
solved, the performance measure P used to evaluate the model, and the nature of the
experience E from which the model will learn during training. At its core, ML operates
through statistical models, wherein the system’s learning process entails the exploration
of models that can generalize from a given dataset. This generalization enables the sys-
tem to predict and produce desired outputs when presented with new input data, thus
illustrating the essence of learning in ML.

ML tasks are typically classi�ed based on the nature of the output they generate. In
classi�cation tasks, the objective is to predict the output y from a prede�ned set of C
categories such that y 2 f1, . . . , Cg. Conversely, regression tasks aim to forecast outputs
y that belong to a continuous range, such as R.

Moreover, the training techniques used in ML can be classi�ed into two main meth-
ods, depending on what data is available during training. Supervised learning uses a full
set of labeled data during training, while in unsupervised learning the model is given un-
labeled data, being able to discover patterns and insights without any explicit guidance
or instruction.

In the context of this work, we will focus on adjusting pre-trained LLMs through
supervised learning, which is the most popular training method in NLP tasks.

2.1.1. Supervised Learning

The most popular training approach used in ML is supervised learning. This paradigm
involves learning a mapping function f : X ! Y , where X and Y respectively represent
the input and output spaces. The primary goal is to infer this mapping such that, given a
new input x 2 X , the function f can accurately predict the corresponding output y 2 Y .
The inputs, often referred to as features, are typically represented as �xed-dimensional

3



4 Background

vectors of numerical values. The outputs, also known as labels or targets, can be categor-
ical or continuous depending on the nature of the problem. The experience is given to
the model in the form of a setD = f(xn, yn)gN

n=1 containing input-output tuples, which is
known as the training set. Thus, the model is just a mathematical function f (x, q) whose
parameters q are often adjusted during the learning process, which usually consists in
minimizing a loss function L over the training set:

�q = arg minL(q)
q

(2.1)

In classi�cation problems, the goal of supervised learning is to automatically come up
with a model so as to reliably predict the labels for any given input. In these problems,
the performance can be measured in terms of the misclassi�cation rate on the training
set. This is known as 0-1 loss:

L(q) D=
1
N

N

å
n=1

I(yn 6= f (xn, q)) (2.2)

where I is the indicator function:

I(e) =

(
1 if e is true
0 if e is false

(2.3)

This loss function treats all errors equally, but in practice, some errors might be more
costly than others. Therefore, the most common loss function used for classi�cation prob-
lems is the Cross-Entropy loss, which measures the difference between the predicted
probability distribution and the ground truth distribution:

L(q) = �
C

å
c=1

yc log( �yc) (2.4)

In regression problems, the objective is to predict continuous values. The loss func-
tions typically used for this kind of problems are the Mean Square Error (MSE) and the
Mean Absolute Error (MAE):

MSE =
1
N

N

å
i=1

(yi � �yi)2 (2.5)

MAE =
1
N

N

å
i=1
jyi � �yij (2.6)

The minimization of the loss function during the training process is achieved using
optimization algorithms. Among the different optimization algorithms one of the most
commonly used is gradient descent. This technique iteratively updates the model pa-
rameters by moving in the direction that reduces the loss function. The gradient of the
loss function with respect to the model parameters indicates the direction and rate of the
steepest ascent. Since the objective is to minimize the loss, the parameters are updated,
in each iteration, in the opposite direction of the gradient:

qi = qi�1 � lrqL(q) (2.7)

where l is the learning rate, a hyperparameter that determines the step size of each up-
date.



2.2 Neural Networks 5

2.2 Neural Networks

Neural networks (NNs) are a cornerstone of modern ML, inspired by the biological NNs
present in animal brains. These computational models consist of layers of interconnected
nodes, or neurons, which process and transmit information. The architecture of NNs
allows them to learn complex patterns in data, making them suitable for a wide range of
tasks like image recognition or NLP.

A neural network (NN) is composed of an input layer, one or more hidden layers and
an output layer. Each layer consists of nodes and each node is connected to every node
in the subsequent layer. The connections between nodes have associated weights, which
are adjusted during training to optimize the network’s performance.

2.2.1. Perceptron

The Perceptron is one of the simplest and most fundamental types of neural networks,
introduced by Franck Rosenblatt in 1958 [6]. It serves as the building block for more
complex neural network architectures. As shown in Figure 2.1, the original Perceptron
consists of a single neuron that takes as input a vector of features x and outputs a single
value y. The output is computed by the following equation:

y = g(z) =

(
1 if z � 0
0 otherwise

(2.8)

z =
n

å
i=0

qixi = qtx (2.9)

where:

� x is an n-dimensional input vector of features, whose component x0 is usually �xed
to one.

� q is the vector containing the weights of the neuron. The weight q0 is also known as
bias.

� g(�) is an activation function used for selecting the class of the target.

Thus, the Perceptron is a linear classi�er, in other words, it is an algorithm that classi-
�es input by separating two classes with a straight line. The learning algorithm used for
adjusting the weights of the Perceptron can be summarized in the following steps:

1. Start by initializing the vector of weights to random values.

2. For each training sample xi, compute output �yi with the current vector of weights.

3. If the Perceptron makes an incorrect prediction, update the weights according to
the following formula:

qi = qi � l( �yt � yt)xt (2.10)

where l is the learning rate, �y is the predicted output and y is the actual output.

4. Repeat steps from 2 to 4 for a �xed number of epochs or until the model converges.
An epoch is one complete pass through the entire dataset.
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x2

x1

1

...

xn

åw2

w1

w0

...
wn

n
å

i=0
wixi

output

Inputs

Weights

Activation Function

Figure 2.1: Single-Layer Perceptron.1

The convergence of the Perceptron is only guaranteed if the two classes are linearly
separable. If the data is not linearly separable, the algorithm will not converge and the
weights will oscillate inde�nitely. The XOR Problem, introduced in the book Perceptrons
[7], is a classic example of a non-linearly separable problem, which consists in predicting
the output of XOR logic gates. This problem illustrates the inability of the Perceptron
to solve non-linearly separable problems. Figure 2.2 shows a representation of the XOR
problem, it can be seen that the two classes cannot be separated by a straight line.

x1

x2

(0, 1)

(1, 0)(0, 0)

(1, 1)

Figure 2.2: Graph representing the XOR problem with two classes. The colours of the dots repre-
sent their class.

2.2.2. Multi-Layer Perceptron

To address the limitations of the basic Perceptron, more advanced models have been
developed. The most popular one is the Multi-Layer Perceptron (MLP), which consists
of an input layer, one or more hidden layers and an output layer (see Figure 2.3). The
hidden layers enable the network to learn complex patterns between inputs and outputs.

1Adapted from https://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptro
n

https://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron
https://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron
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x0

x1

...

xD

y(1)
0

y(1)
1

...

y(1)
m(1)

. . .

. . .

. . . y(L)
0

y(L)
1

...

y(L)
m(L)

y(L+1)
1

y(L+1)
2

...

y(L+1)
C

input layer
1st hidden layer Lth hidden layer

output layer

Figure 2.3: Network graph of a (L + 1)-layer perceptron with D input units and C output units.
The lth hidden layer contains m(l) hidden units.2

In an MLP, each neuron in a given layer is fully connected to the neurons in the previ-
ous and subsequent layers, meaning that every neuron in one layer receives inputs from
all the neurons in the previous layer and sends its output to all neurons in the next layer.
The equation de�ned by a MLP with L layers can be expressed as:

yl
i = g

 
Ml�1

å
j=0

ql
ijy

l�1
j

!

, 1 � i � Ml , 2 � l � L (2.11)

y1
i = g

 
M0

å
j=0

q1
ijxj

!

, 1 � i � M1 (2.12)

where yl
i is the output of the ith node in layer l; ql

ij denotes the weight of the connection
that goes from the jth node of layer l � 1 to the ith of layer l; and Ml is the dimension of
layer l.

Activation functions g(�) introduce non-linearity into the MLP and allow it to deal
with non-linear decision boundaries. Some examples of activation functions are the ReLU
[8], the Sigmoid or the hyperbolic tangent.

The learning process of an MLP is typically carried out using the backpropagation al-
gorithm combined with an optimization technique such as gradient descent. The formula
for updating the weights of the network can be expressed as:

Dql
ij = �l

¶L(q)
¶ql

ij
(2.13)

2.2.3. Recurrent Neural Networks

An NN without loops, where the information can only �ow in one direction forming a
directed acyclic graph (DAG), is known as Feedforward NN (FNN). The main limitation
of this kind of networks is their inability to maintain context or memory of past inputs,
as each input is processed independently. To overcome this problem, Recurrent Neural

2Obtained from https://github.com/davidstutz/latex-resources/blob/master/tikz-multilaye
r-perceptron/multilayer-perceptron.tex

https://github.com/davidstutz/latex-resources/blob/master/tikz-multilayer-perceptron/multilayer-perceptron.tex
https://github.com/davidstutz/latex-resources/blob/master/tikz-multilayer-perceptron/multilayer-perceptron.tex
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Networks (RNNs) were introduced. This kind of NN translates an input sequence space
into an output sequence space in a manner that retains state information. Speci�cally,
the prediction yt at instant t is in�uenced by both the input xt and the system’s current
hidden state ht, which is updated over time, as the sequence is processed. Figure 2.4
shows a diagram of an RNN.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 2.4: Illustration of an RNN structure with hidden states and inputs.3

The main drawback of RNNs is that they struggle to capture long-term dependencies
in input sequences. During backpropagation, gradients are propagated from the last
neuron all the way to the �rst one. The repeated multiplication of gradients through the
hidden states can result in gradient vanishing or exploding, that is, gradients can become
extremely small or large.

In order to tackle these limitations, the Long-Short Term Memory (LSTM) networks
were introduced [9]. They are a type of RNN that introduce a more sophisticated archi-
tecture enabling them to maintain information over longer periods, making them partic-
ularly effective for tasks involving sequential data, such as NLP.

LSTM units typically consist of a memory cell along with an input gate, output gate,
and forget gate (see Figure 2.5). The memory cell retains values over time, while the three
gates manage the information �ow in and out of the cell. The input gate is responsible for
deciding what new information is stored in the cell’s current state. Conversely, the forget
gate determines what information is eliminated from the cell state. Lastly, the output
gate regulates what information from the cell state is used as the output.

2.3 Transformers

Transformers represent a revolution in the �eld of deep learning, particularly in NLP, by
introducing a powerful architecture that excels in handling sequential data and captur-
ing long-range dependencies. Unlike traditional RNN and their variants, transformers
rely on self-attention mechanisms that allow them to process all elements of a sequence
simultaneously, rather than sequentially. This innovation enables transformers to model
complex patterns and relationships within data.

Since they were initially used for MT, the original Transformer architecture consists
of an encoder-decoder structure (see Figure 2.6). The encoder takes a sequence as input
and transforms it into a state with �xed shape. This state is passed to the decoder, which
maps the encoded representation of the input to an output sequence.

3Obtained from https://tex.stackexchange.com/questions/494139/how-do-i-draw-a-simple-rec
urrent-neural-network-with-goodfellows-style

4Obtained from https://tex.stackexchange.com/questions/701738/gru-unit-cell-changing-fro
m-lstm-to-gru

https://tex.stackexchange.com/questions/494139/how-do-i-draw-a-simple-recurrent-neural-network-with-goodfellows-style
https://tex.stackexchange.com/questions/494139/how-do-i-draw-a-simple-recurrent-neural-network-with-goodfellows-style
https://tex.stackexchange.com/questions/701738/gru-unit-cell-changing-from-lstm-to-gru
https://tex.stackexchange.com/questions/701738/gru-unit-cell-changing-from-lstm-to-gru
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Figure 2.5: Architecture of an LSTM unit.4

2.3.1. Self-Attention

Self-attention, also known as scaled dot-product attention, is the mechanism that allows
the Transformer to capture long-range dependencies within data. The key intuition be-
hind using self-attention for sequence analysis lies in its ability to assign different impor-
tance weights to different parts of the input sequence. The self-attention process can be
described as follows:

1. Input embeddings: Each input token is �rst embedded into a continuous vector
space.

2. Query, Key and Value vectors: The input embedding xi, for each word i, is linearly
transformed into the query (Q), key (K) and value (V) vectors using learned weight
matrices WQ, WK, WV .

3. Attention scores: The attention score between a pair of tokens is computed as the
dot product of their query and key vectors. This score is then scaled by the square
root of the dimension of the key vectors,

p
dk and passed through a softmax func-

tion to obtain attention weights.

4. Weighted sum: Finally, the output for each query is calculated as the weighted sum
of the value vectors, where the weights are the attention scores computed in the
previous step.

Mathematically, the self-attention mechanism is expressed as follows:

Attention(Q, K, V) = softmax
�

QKT
p

dk

�
V (2.14)

2.3.2. Multi-Head Attention

In a single attention mechanism, each position in the input sequence attends to all other
positions, creating a single context vector for each position. While this approach is pow-
erful, it can be limiting because it compresses all the information into a single vector.
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Figure 2.6: Original Transformer architecture. Extracted from [1].

Multi-head attention addresses this limitation by employing multiple attention mech-
anisms, or "heads," in parallel. Each head operates on a different linear projection of
the queries, keys, and values, allowing the model to capture diverse features and de-
pendencies from various subspaces of the input data. Therefore, the main idea behind
multi-head attention is to enable the model to focus on different parts of the input simul-
taneously and from different perspectives.

Each head has its own set of learned weight matrices WQ, WK and WK and performs
scaled dot-product attention independently. Then, the outputs of all attention heads are
concatenated and then linearly transformed, using another weight matrix WO, to produce
the �nal output:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO (2.15)

where each head output is computed as:

headi = Attention(QWQ
i , KWK

i , VWV
i ) (2.16)

2.3.3. Transformer Architecture

The original Transformer model is composed of two main parts: the encoder and the
decoder. Both are built upon stacks of identical layers, but their roles and compositions
differ slightly.

The encoder’s primary function is to process the input sequence and generate a con-
tinuous representation of it. Each encoder layer consists of two sub-layers. The �rst is a
multi-head self-attention mechanism, while the second is a position-wise fully connected
FNN, which consists of two linear transformations with a ReLU activation in between.
The formula of the output produced by the FNN can be expressed as:

FNN = max(0, xW1 + b1)W2 + b2 (2.17)
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Additionaly, both sub-layers are wrapped with residual connections and layer nor-
malization to facilitate the training process.

The decoder, on the other hand, generates the output sequence by attending to both
the encoder’s output and the previous tokens in the output sequence. In addition to the
two sub-layers present in each encoder layer, the decoder includes a third sub-layer that
performs multi-head attention over the output of the encoder stack. Moreover, the de-
coder uses masked selft-attention to ensure that predictions for a given position depend
only on the previous outputs and not on any future token.

2.3.4. Word Embeddings and Positional Encoding

Word embeddings (WE) are the �rst step in transforming the raw input tokens into a
format that can be processed by the Transformer. They convert discrete tokens, such as
words or subwords, into continuous vectors of �xed dimensions. This allows the model
to capture semantic meanings and relationships between tokens.

However, embeddings do not contain information about the order of the tokens in
the sequence. Transformers, unlike RNNs, do not process tokens sequentially. Therefore,
positional encoding (PE) is used to inject information about the position of each token
x in the sequence. This is accomplished by adding a vector to each token embedding
containing the positional information:

Embedding(x) = WE + PE (2.18)

Positional encodings can be learnt or �xed [10]. The authors of the original Trans-
former considered a �xed approach that uses sinusoidal functions with different frequen-
cies:

PE(pos,2i) = sin

 
pos

10000
2i

dmodel

!

(2.19)

PE(pos,2i+1) = cos

 
pos

10000
2i

dmodel

!

(2.20)

where pos is the position of the token in the sequence, i is the dimension index and
dmodel is the dimension of the model embeddings.

The fusion of WE and PE unlocks the Transformer’s ability to comprehend sequences.
These mechanisms allow transformers to leverage both the semantic meaning and the
order of tokens, facilitating their application to a wide range of NLP tasks, such as MT,
sentiment analysis or text generation.

2.4 Large Language Models

The �eld of AI has been revolutionized by the emergence of foundation models. Founda-
tion models [11], a term coined by the Stanford Institute for Human-Centered AI (HAI),
refer to large-scale models trained on broad data that can be adapted to a wide range of
downstream tasks.

LLMs are a subset of foundation models, primarily focused on NLP. These models
are usually based on the Transformer architecture and are designed to understand and
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generate human language with a high degree of �uency and coherence. LLMs are char-
acterized by their massive scale, both in terms of the volume of training data and their
number of parameters.

Language is a prominent ability in humans that allows them to express and commu-
nicate. Machines, however, do not have that inherent ability of understanding and com-
municating in the form of human language. For this reason, language modeling (LM), a
critical component of NLP, is one of the most active areas of research within the vast �eld
of AI. In general, LM seeks to estimate the generative likelihood of word sequences, such
that missing tokens are predicted based on the predicted probabilities.

The evolution of language models has been marked by signi�cant advancements. It
began with statistical language models (SLMs), which utilized statistical approaches to
predict the likelihood of word sequences based on observed frequencies in training data.
Following SLMs, neural language models (NLMs) emerged, leveraging neural network
architectures to capture complex linguistic patterns. NLMs are trained on task-speci�c
data so as to solve speci�c tasks. In contrast, pre-trained language models (PLMs) are
task-agnostic, meaning that they are normally trained to solve general NLP tasks. Their
training and inference follow a pre-training and �ne-tuning approach, where models
�rst undergo a self-supervised training on extensive text corpora comprising typical NLP
problems and are then �ne-tuned with a small amount of task-speci�c labeled data.

NLMs are task-speci�c models, since they are trained on task-speci�c data. Pre-
trained language models (PLMs), unlike NLMs, are task-agnostic. Their training and
inference follow the pre-training and �ne-tuning paradigm, where models are trained in
a self-supervised setting on a large corpus of text for general NLP tasks, and then �ne-
tuned to speci�c tasks using small amounts of labeled task-speci�c data. Finally, LLMs
appeared as the latest milestone in the �eld of NLP. They mainly refer to transformer-
based NLMs that are trained on massive text data and contain tens to hundreds of billions
of parameters.

2.4.1. Types of architecture

LLMs can be broadly categorized based on their architecture into three main types:

� Encoder-decoder: They are also known as sequence-to-sequence models (Seq2Seq).
These models follow the original Transformer architecture presented in Section
2.3.3 and they are designed for transforming an input sequence into an output se-
quence. Examples of this type of model include Google’s T5 [12] and BART [13].

� Encoder-only: These models are primarily used for tasks that require a deep under-
standing of the input text, such as text classi�cation, sentiment analysis or named
entity recognition. A popular example of encoder-only models is BERT (Bidirec-
tional Encoder Representations from Transformers) [14]. BERT is designed to un-
derstand the context of words in a sentence by considering both the left and right
context, making it highly effective for tasks that require a nuanced understanding
of language.

� Decoder-only: They are also know as autoregressive models. These models gener-
ate sequences by predicting the next token in the sequence based on the previous
tokens, making them suitable for text generation tasks. Prominent examples of
decoder-only models are GPT [15] [16] [17] [18] and Llama [19] [20] families devel-
oped by OpenAI and Meta, respectively. In recent years, this type of models has
stood out above the rest, to such an extent that they have practically taken over the
term "LLM".



2.4 Large Language Models 13

� Mixture of Experts (MoE): These models are a variant of Transformer architecture
that consists of a certain number of neural networks, known as experts, and a gate
network or router, which determines which tokens are sent to which expert. This se-
lective activation of experts allows MoEs to allocate computational resources more
effectively, focusing on relevant experts for speci�c inputs while keeping the rest in-
active. These type of models gained popularity with the release of Mistral 7x8B [21].

2.4.2. Scalable Training Techniques

With the increasing trend of model and data sizes, the computational resources needed
for training LLMs are also increasing. This hinders the training and deployment of LLMs
to individuals or small companies with low computational resources. The main issues to
be resolved are: increasing training throughput and loading larger models into available
GPUs. To address the above two challenges, some approaches have been developed,
such as 3D parallelism and ZeRO.

3D parallelism is actually a combination of three parallel training techniques that al-
low the training of LLMs using multiple devices:

� Data parallelism: Each device contains a copy of the model, including model pa-
rameters and optimizer states. Subsequently, the training corpus is partitioned
among all the devices, with each device handling its allocated data independently.
Gradients are computed locally on each device and will be further aggregated to
obtain the gradients of the whole batch, ensuring synchronized updates to all the
copies of the model.

� Pipeline parallelism: The different layers of an LLM are distributed among multiple
devices. In the case of Transformer-based models, consecutive layers are allocated
to the same device in order to minimize the overhead of transmitting the computed
gradients or states among devices.

� Tensor parallelism: This technique distributes the computations of the model across
multiple devices by splitting tensors into non-overlapping pieces. These tensor
shards are processed in parallel and later combined to obtain the �nal result.

ZeRO [22] technique, on the other hand, aims to solve the data redundancy prob-
lem present in data parallelism. As previously mentioned, data parallelism replicates the
model parameters, optimizer states and model gradients across all the devices. ZeRO
aims to tackle this issue by partitioning the data across multiple devices, reducing mem-
ory consumption while retaining low communication costs and high computational gran-
ularity.

Additionally to these parallelization techniques, there are other common approaches
that are crucial for optimizing LLMs. Traditionally, NNs used to be trained using FP32,
but with the rapidly increasing number of parameters in LLMs, training with FP32 is
becoming very costly in time and memory. In order to tackle this issue, mixed-precision
training [23] was introduced, which stores the model weights in FP32 for retaining accu-
racy, but uses FP16 for performing computations during training and inference. Another
technique that allows for ef�cient training of LLMs is quantization, which focuses on con-
verting the parameters and activations of the model from high-precision formats, such as
FP32, to lower-precision representations, such as 8-bit [24] or 4-bit integers. This conver-
sion drastically reduces the model’s memory footprint and computational requirements
while maintaining performance close to high-precision formats, making it more feasi-
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ble to deploy LLMs on resource-constrained scenarios. These techniques are crucial in
making LLMs more accessible and ef�cient for practical applications.

2.4.3. Decoding strategies

Once the LLM has been pre-trained, the process of generating the output text is known
as decoding. Text generation starts by converting the input prompt into smaller parts (to-
kens), this process is known as tokenization. Then, the model processes these tokens and
generates logits, which are passed through a softmax function to obtain the probability
of each token of the vocabulary. The �nal step consists in selecting the next token based
on the computed probabilities following a certain decoding strategy. Different decoding
strategies have been proposed, being the following the most popular ones:

� Greedy search: This is the simplest and most straightforward strategy. At each
generation step, the token with the highest probability is selected. Although it is
fast, this strategy can overlook potentially better sequences that could arise from
selected tokens with slightly lower probabilities.

� Beam search: This strategy considers multiple potential token sequences at each
step, keeping track of the N most likely tokens, with N indicating the beam size.
This process continues until either the maximum sequence length is reached or an
end-of-sequence token is generated. The �nal output corresponds to the beam with
the highest cumulative probability. Although beam search is more likely to generate
coherent and contextually appropriate text than greedy search, it requires signi�-
cantly more computational resources due to the simultaneous evaluation of several
possible sequences.

� Top-k sampling: Limits the selection pool to the top-k most likely tokens. The prob-
abilities of these top-k tokens are re-normalized so they sum to 1. Finally, one of
these tokens is randomly selected based on the re-normalized probabilities previ-
ously computed.

� Top-p sampling: Unlike top-k sampling, which selects the top-k tokens based on
their probabilities, top-p sampling dynamically selects the smallest subset of tokens
whose cumulative probability exceeds a threshold p. From this set, a token is ran-
domly chosen based on the re-normalized probabilities of the tokens. This method
allows for greater adaptability and context sensitivity in the decoding process, since
the number of candidate tokens is dynamically adjusted at each generation step.

2.4.4. Prompting

Prompting refers to the process of providing an initial input or query to an LLM to guide
its text generation or task performance. LLMs can be prompted in various prompt setups.
Below, we will introduce the most used ones:

� Zero-shot prompting: The prompt does not contain any examples or demonstra-
tions. Large scale training makes these models capable of answering queries never
seen before without seeing any example.

� In-context learning (ICL): The prompt contains some input-output demonstration
pairs. This technique, also known as few-shot learning, allows pre-trained LLMs to
address new tasks without �ne-tuning the model. ICL’s ef�cacy was demonstrated
in the GPT-3 original paper [17].
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� Chain-of-thought (CoT): This prompting method helps LLMs perform complex rea-
soning tasks by breaking down the problem into a series of intermediate steps, thus
guiding the model towards the �nal answer [25].

� Self consistency: Presented in [26], it aims to improve CoT performance. The idea
is to sample multiple diverse reasoning paths and selecting the most consistent and
coherent answers.

� Tree of thought (ToT): This prompting technique tries to emulate human-like trial
and error decision-making [27]. It involves creating a hierarchical structure where
each branch represents a reasoning path consisting of intermediate steps towards
the solution of the problem. The model is able to self-evaluate the progress to de-
termine the next step by exploring the generated intermediate steps through looka-
head and backtracking [28].

2.4.5. Parameter Ef�cient Fine-Tuning

In recent years, the number of parameters in LLMs has increased drastically. There-
fore, traditional �ne-tuning, which involves updating all the parameters of a pre-trained
model, has become very costly in time and memory. Parameter-ef�cient �ne-tuning
(PEFT) [29] techniques aim to address these limitations by updating only a small sub-
set of the model’s parameters, thus reducing the computational cost while maintaining
a performance comparable to full-parameter �ne-tuning. A prominent technique in the
realm of PEFT is Low-Rank Adaptation (LoRA) [2].

The core idea behind LoRA is that large pre-trained models possess a "low intrinsic
dimension", this means that the full parameter space can be projected to a smaller dimen-
sional space. Lying on this idea, LoRA assumes that the weight updates produced during
�ne-tuning can be also represented by a low-rank matrix. This insight enables LoRA to
achieve faster training times and lower memory usage while producing more compact
model weights that are easier to store and share. In practical terms, LoRA modi�es a
pre-trained weight matrix W0 2 Rd�k by adding a low-rank update DW. This update is
expressed as the product of two smaller matrices, B 2 Rd�r and A 2 Rr�k, with r be-
ing signi�cantly smaller than both d and k. Thus, the update of the pre-trained weights
can be expressed as W0 + DW = W0 + BA. During the �ne-tuning process, the original
weights W0 are frozen and only A and B are trained. Typically, A is initialized using a
random Gaussian distribution, while B is initialized with zeros, ensuring that DW = BA
is zero at the start of training. In the forward pass, the input is multiplied by both W0 and
DW, which are then summed coordinate-wise, as shown in Figure 2.7. Additionally, DW
is scaled by a factor of a

r , where a is a scaling factor:

h = W0x + DWx = W0x +
a
r

BAx (2.21)

It is worth mentioning that LoRA can be applied to any subset of weight matrices in
an NN to reduce the number of trainable parameters. When applied to a Transformer,
LoRA is often focused on adapting the attention weights (Wq, Wk, Wv, Wo), while FNN
weights are kept frozen.

2.5 Machine Translation

The journey of MT began in the mid-20th century with the advent of the �rst computers.
The earliest attempts date back to the 1950s and were driven by the need for automated
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Figure 2.7: LoRA architecture. Extracted from [2].

translation during Cold War. In 1954, IBM and Georgetown University conducted the
Georgetown-IBM experiment [30], which successfully translated 60 Russian sentences
into English. Although limited in scope, this experiment demonstrated the potential of
computers to perform linguistic tasks.

These early translation systems relied on rule-based methods (RBMT), generating
translations by applying syntactic and grammatical rules to convert sentences from the
source language to the target language. Linguists and computer scientists collaborated
to develop extensive sets of linguistic rules and bilingual dictionaries. While these sys-
tems demonstrated successes, they struggled with idiomatic expressions and context-
dependent meanings.

The next signi�cant leap in MT came with the introduction of Statistical Machine
Translation (SMT) [31] in the 1990s by IBM researchers. The core idea behind SMT was to
treat translation as a probabilistic process, where the goal is to �nd the most likely trans-
lation for a given source sentence based on probabilities derived from large bilingual cor-
pora. SMT systems segmented sentences into smaller units called phrases, which were
then matched and translated based on their probability distributions. Unlike RBMT, SMT
does not require developers to manually input rules for each language. While SMT sig-
ni�cantly improved translation quality and scalability compared to RBMT approaches,
it still had its limitations. SMT struggled with long-range dependencies, context under-
standing and the need for extensive parallel corpora.

The advent of deep learning and NNs in the 2010s revolutionized the �eld of MT
with the rise of Neural Machine Translation (NMT). NMT systems make use of NNs to
learn the mapping from source to target language in an end-to-end manner. Unlike SMT,
which relies on separate components for translation and language modeling, NMT inte-
grates both of these processes into a single NN architecture. NMT models are typically
based on a encoder-decoder structure with RNNs [32], often enhanced with attention
mechanisms. The encoder processes the input sequence, converting it into a �xed-length
context vector that encapsulates the semantic meaning of the source text. The decoder
then generates the translated sequence, word by word, using the context vector. The at-
tention mechanism, introduced in 2014 [33], allows the model to dynamically focus on
different parts of the input sequence during the translation process, signi�cantly improv-
ing translation quality.

The introduction of the Transformer architecture marked another milestone in MT.
Transformers, with their self-attention mechanism and parallel processing capabilities,
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enabled the training of even more powerful and ef�cient NMT models, and eliminated
the need for recurrent structures, allowing for faster training and inference times. Cur-
rently, the MT models reporting the best results are those based on the original Trans-
former architecture.

The development of the Transformer not only enhance MT but also paved the way
for the rising of LLMs, characterized by their large number of parameters as well as
the massive datasets used in their training. LLMs excel in a variety of NLP tasks, this
is why they are starting to be used for MT, exhibiting impressive results. The results
of the WMT-23 shared task [34] indicated that GPT-4 with 5-shots can surpass models
speci�cally designed for MT.

2.5.1. Evaluation Metrics

Evaluating the quality of MT systems is crucial but poses several challenges. The best
way to measure the quality of these systems is to get them evaluated by professional
translators, who give a score for each translated sentence. However, human evaluation
is usually unfeasible since it is costly and requires signi�cant human labor. To overcome
this, several automatic evaluation metrics have been postulated. These metrics aim to
correlate as much as possible with human evaluation.

Postulating good automatic evaluation metrics is challenging since the quality of a
translation has a clear degree of subjectivity. Another important problem, that arises
when using these metrics, is that a given sentence may have multiple valid translations,
what makes translation an ambiguous task. Despite these limitations, automatic evalua-
tion metrics have become the standard way of evaluating and comparing MT systems.

Lexical-based metrics

This type of metrics are the earliest and most straightforward methods for evaluating
MT quality. These metrics primarily focus on measuring the similarity of the generated
translation and one or more reference translations at the word or phrase level. These
metrics focus on surface-level features, such as exact word matches, n-gram5 overlaps or
word order.

The most popular lexical-based metric for MT is BLEU (Bilingual Evaluation Under-
study) [35]. This metric is calculated based on a modi�ed n-gram precision pn of the
hypothesis and the reference. Precision is given by the proportion of n-grams in the hy-
pothesis that appear in the reference:

pn =
åp2hypothesis n-gram åp Countclip(n-gram)

åp2hypothesis n-gram åp Count(n-gram)
(2.22)

BLEU clips the match count of each n-gram to the maximum number of times that it
appears in the reference, ensuring that each n-gram is only counted once. To prevent the
system from favoring short translations, a brevity penalty is introduced to penalize the
predictions shorter than the reference:

BP =

8
<

:
1 if jhj > jrj

e
�

1� jrjjhj
�

if jhj � jrj
(2.23)

where jhj and jrj denote the lengths of the hypothesis and the reference, respectively.
5An n-gram is a sequence of n adjacent words, symbols or tokens within a given text
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Finally, the BLEU score is given by the geometric mean of the precisions computed
for n-grams of length ranging from 1 to N, with weights wn summing to one:

BLEU = BP � exp

 
N

å
n=1

wn log pn

!

(2.24)

where, normally, N = 4 and wn = 1/N.

The BLEU metric has been widely used for evaluating MT models due to its simplicity
and ease of use. It provides a single, easily interpretable score that has been shown to cor-
relate reasonably well with human judgment in many cases. However, BLEU has some
limitations: it only considers exact word matching and cannot count stems or synonyms.
For better interpreting the BLEU scores obtained in future chapters, we will follow the
guidelines adopted by the MT community: scores lower than 30 are considered as bad
translations, from 30 to 40 they are considered good translations, scores higher than 40
are said to be of high or very high quality, and those with scores higher than 60 are often
better than human translations.6

Some other examples of lexical-based metrics are Translation Edit Rate (TER) and
Character n-gram F-score (chrF). TER [36] quanti�es the minimum number of edit op-
erations7 required to convert the generated hypothesis into the reference translation.
On the other hand, chrF [37] evaluates the quality of the translations by computing F-
scores over character n-grams, rather than word n-grams as in BLEU. The results from
WMT19 metrics shared task showed that chrF correlates better with human evaluation
than BLEU [38].

Neural-based metrics

In recent years, neural-based metrics have emerged as a more sophisticated approach to
evaluating MT models. These metrics leverage use sentence embeddings to calculate the
difference between the generated sentence and the reference translation, or even between
the target sentence and the source sentence. Therefore, these metrics can consider seman-
tic similarity in words and sentence and, accordingly, they have been proved to have a
higher correlation with human judgement in general [39] [40].

Neural-based metrics can be broadly categorized into two types: reference-based and
reference-free metrics. The former ones rely on comparing the translated output against
one or more reference translations, while the latter assess the quality of the translation
based only on the source text and the output. Reference-based metrics are preferred by
researchers as they have shown to be more accurate [40]. Therefore, reference-free metrics
are normally used only when reference translations are unavailable or hard to obtain.

Among reference-based metrics, COMET (Crosslingual Optimized Metric for Evalu-
ation of Translation) [3] is the one that has been widely adopted by the scienti�c commu-
nity. Hence, it is the metric that will be used in future chapters, speci�cally, we will use
the COMET-22 model [41]. COMET makes use of a pre-trained XLM-RoBERTa model [42]
which has been trained on human-generated translation pairs so as to serve as a quality
score regressor. The architecture of the COMET model is illustrated in Figure 2.8. The
�rst step consists in converting the source, target and reference sentences into their em-
bedding vectors, which will be further passed through a trainable layer-wise attention
mechanism. Then, these embeddings are concatenated and average pooled to generate
embedding vectors h, s and r, which are used to obtain the following features: h � s, h

6This interpretation of BLEU scores has been obtained from https://cloud.google.com/translate/a
utoml/docs/evaluate

7The edit operations include insertion, deletion, substitution and shift

https://cloud.google.com/translate/automl/docs/evaluate
https://cloud.google.com/translate/automl/docs/evaluate
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� r, jh� sj, and jh� rj. Finally, this combined features are then concatenated to r and
h vectors to form a single vector that will serve as input for an FNN trained to mini-
mize the MSE. This FNN outputs a score between 0 and 1, which is typically scaled to
range from 0 to 100. Although COMET is harder to interpret than BLEU due to how
to it is computed, the MT community normally considers scores higher than 80 as high
quality translations.8 Other neural, reference-based metrics include BERTScore [43] and
BLEURT [44].

Quality Estimation (QE) is the task of automatically assigning a quality score to an
MT output without depending on reference translations. COMET also has a reference-
free variant called CometKiwi [45]. This metric adopts COMET training features along
with the predictor-estimator architecture of OpenKiwi [46].

Figure 2.8: COMET model architecture. Obtained from [3]

8More information about how to interpret MT metrics can be found on https://support.phrase.com/h
c/en-us/articles/12669609584156-Using-MT-Metrics

https://support.phrase.com/hc/en-us/articles/12669609584156-Using-MT-Metrics
https://support.phrase.com/hc/en-us/articles/12669609584156-Using-MT-Metrics




CHAPTER 3

Encoder-Decoder MT Models

In recent years, multilingual LLMs have become increasingly popular in the �eld of MT,
driven by the need for ef�cient, high quality translation systems capable of handling
different language pairs. One of the primary reasons for the rise of multilingual LLMs
is resource ef�ciency. Training separate models for each language pair is impractical
and resource-intensive. Multilingual LLMs offer a more ef�cient and uni�ed solution by
building models that can handle a wide range of languages. In this context, we will eval-
uate some of the most popular encoder-decoder models designed speci�cally for trans-
lation tasks. We will also �ne-tune some of these models in order to try improving the
quality of the translations.

3.1 Datasets

3.1.1. Evaluation sets

To examine the performance of the models, we have taken the test sets from the project
INTERACT-EUROPE1 and the dataset Europarl-ST [47]. INTERACT-EUROPE is a recent
project carried out by the group MLLP. The dataset consists of a series of videos from the
European School of Oncology (ESO), which were split into dev and test sets, with 3.5h
and 3.8h of speech, respectively. The videos were transcribed and translated by profes-
sional translators, resulting in a series of non-aligned translations from English to French,
Spanish, German and Slovene. On the other hand, Europarl-ST is a multilingual speech
translation corpus, also developed by the MLLP group, that contains paired audio-text
samples from and into 6 European languages, extracted from publicly available videos
of European Parliament debates. Due to time constraints, we only report results for En-
glish (en) to Spanish (es) and German (de) language directions. Table 3.1 shows the total
number of sentences for each language pair in the test sets, while Tables 3.2 and 3.3 show
representative examples from the INTERACT and Europarl-ST test sets, respectively. It
can be observed that sentences from INTERACT belong to the medical domain, while
Europarl-ST focuses on the parliamentary domain.

Table 3.1: Total number of sentence-level bitext for INTERACT and Europarl-ST test sets.

en! INTERACT Europarl-ST
es 1405 1267
de 1399 1253

1https://www.europeancancer.org/eu-projects/impact/interact-europe
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Table 3.2: Examples of English, Spanish and German translation triplets from the INTERACT
evaluation sets

English Spanish German
Antibody drug conjugates
are a very exciting new way
to deliver chemotherapy that
seems to be more effective
with reduced toxicity.

Los conjugados de antic-
uerpo y fÆrmaco son una
nueva forma muy interesante
de administrar quimioterapia
que parece ser mÆs e�caz con
una menor toxicidad.

Chemoimmunkonjugate sind
eine sehr interessante neue
Methode zur Verabreichung
der Chemotherapie, die wirk-
samer und weniger toxisch
zu sein scheint.

She wanted breast preserva-
tion, if possible, and the pre-
operative approach or neoad-
juvant systemic therapy was
given because, it’s recom-
mended, because her tumor
is large, and HER-2 positive
and ER/ PR negative.

Quería preservar la mama, si
era posible, y se optó por el
abordaje preoperatorio o ter-
apia sistØmica neoadyuvante
porque, estÆ recomendada,
porque su tumor es grande, y
HER-2 positivo y RE/RP neg-
ativo.

Sie wollte, wenn möglich,
die Brust erhalten, und der
präoperative Ansatz oder die
neoadjuvante systemische
Therapie waren angezeigt,
denn sie werden empfohlen,
weil ihr Tumor groß, HER-2
positiv und ER/PR negativ
ist.

But indeed, it turns out when
you look at additional subset
analyses, the patients who re-
ceive taxanes may have done
better than patients receiving
gemcitabine and carboplatin,
although, the trial wasn’t
powered to look at subsets.

Pero, de hecho, resulta que
cuando miras otros anÆlisis
de subgrupos, las pacientes
que reciben taxanos pueden
haber tenido mejores resul-
tados que las pacientes que
reciben gemcitabina y carbo-
platino, aunque el ensayo no
tenía la potencia su�ciente
para examinar subgrupos.

Aber in der Tat stellt sich
heraus, wenn man zusät-
zliche Subgruppen-Analysen
ansieht, dass es Patientinnen,
die Taxane erhalten haben,
möglicherweise besser geht
als Patientinnen, die Gem-
citabin und Carboplatin
erhalten haben, auch wenn
die Studie nicht für eine Sub-
gruppenanalyse ausgelegt
war.

There’s an ongoing phase
II trial looking at doxoru-
bicin induction based on the
higher response shown here
with a tiny dose of dox-
orubicin induction and then
nivolumab as a single agent.

Hay un ensayo de fase II
en curso que analiza la
inducción con doxorubic-
ina tomando como base
la respuesta mÆs alta que
se muestra aquí con una
pequeæa dosis de inducción
de doxorubicina y luego
nivolumab en monoterapia.

Es läuft eine Phase-II-Studie,
in der die Induktion mit Dox-
orubicin auf der Grundlage
des hier mit einer winzi-
gen Dosis Doxorubicin zur
Induktion gezeigten stärk-
eren Ansprechens und dann
Nivolumab als Einzelwirk-
stoff untersucht wird.



3.1 Datasets 23

Table 3.3: Examples of English, Spanish and German translation triplets from the Europarl-ST
evaluation sets

English Spanish Gerrman
Madam President, the reso-
lution on the situation in Be-
larus reveals what Brussels
and Minsk could do in order
not to lose the momentum for
improving their relations.

Seæora Presidenta, la res-
olución sobre la situación
en Bielorrusia revela lo que
Bruselas y Minsk podrían
hacer para no a�ojar el ritmo
en la mejora de sus rela-
ciones.

Frau Präsidentin! Aus der
Entschließung über die
Situation in Belarus geht
hervor, was man in Brüssel
und Minsk unternehmen
könnte, damit die Dynamik
zur Verbesserung ihrer
Beziehung nicht verloren
geht.

As a result of excellent work
within the Commission and
the working party, the prac-
tical solutions included in
the proposed revised agree-
ment bring major improve-
ments in legislative proce-
dure and planning, parlia-
mentary scrutiny, obligations
to provide information, and
the Commission’s presence in
Parliament.

Como resultado del excelente
trabajo que se ha llevado a
cabo en la Comisión y en el
grupo de trabajo, las solu-
ciones prÆcticas incluidas en
el acuerdo revisado que se
ha propuesto aportan mejo-
ras importantes en la plan-
i�cación y el procedimiento
legislativo, en el estudio par-
lamentario, en las obliga-
ciones de facilitar informa-
ción y en la presencia de la
Comisión en el Parlamento.

Dank der hervorragen-
den Arbeit, die innerhalb
der Kommission und der
Arbeitsgruppe geleistet
wurde, führen die prak-
tischen Lösungen, die in
der vorgeschlagenen über-
arbeiteten Vereinbarung
enthalten sind, zu deutlichen
Verbesserungen in den Bere-
ichen Gesetzgebungsver-
fahren und Planung, par-
lamentarische Prüfung,
Informationsp�ichten sowie
Präsenz der Kommission im
Parlament.

Since 1989, the Council of Eu-
rope, which has already been
mentioned in our debate, has
played a magni�cent role in
setting standards for free and
unbiased public media in Eu-
rope.

Desde 1989 el Consejo de
Europa, que ya se ha men-
cionado en nuestro debate, ha
realizado una magní�ca labor
en el establecimiento de nor-
mas que nos permitan tener
medios pœblicos de comuni-
cación libres y sin sesgos ide-
ológicos en Europa.

Seit 1989 spielt der Europarat,
der in unserer Debatte bere-
its erwähnt wurde, bei der
Festlegung von Standards für
freie und objektive öffentlich-
rechtliche Medien in Europa
eine herausragende Rolle.

Article 215 clearly states
that the Council only has
to inform the European
Parliament on the measures
adopted, as opposed to
the former procedure that
implied the consultation of
Parliament on such matters.

El artículo 215 establece clara-
mente que el Consejo sólo
debe informar al Parlamento
Europeo sobre las medidas
adoptadas, frente al ante-
rior procedimiento que in-
cluía la celebración de con-
sultas con el Parlamento so-
bre esas cuestiones.

Artikel 215 besagt eindeutig,
dass der Rat das Europäische
Parlament lediglich über die
Verabschiedung von Maß-
nahmen zu informieren hat,
entgegen der früheren Vorge-
hensweise, die in solchen
Fällen eine Anhörung des
Parlaments vorsah.
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3.1.2. Training sets

The datasets used for �ne-tuning the models for en ! fes, deg language directions, con-
tain data from various corpus: Medline-WMT222, which includes abstracts and case re-
ports from the Medline3 database used in the WMT22 Biomedical Task [48]; Europarl-ST,
already introduced in the previous section; and MuST-C [49], which is a multilingual
speech translation corpus comprising several hundred hours of audio recordings from
English TED Talks that were automatically aligned at the sentence level with their man-
ual transcriptions and translations. Table 3.4 displays the total number of sentences and
words for each language direction.

Table 3.4: Training corpora for en! es, de language pairs.

en! Sentences Words
Source Target

es 442.5 K 9.2 M 9.7 M
de 361.2 K 7.1 M 6.7 M

3.2 Encoder-Decoder Models

Among the different types of architectures, the ones that excel above the rest in MT are
the encoder-decoder translation models. In this context, we introduce the models that
we are going to evaluate. Some of these models have also been �ne-tuned in order to
compare the results with the base models.

3.2.1. Google Translate

Google Translate4 is one of the most widely used MT services, offering translation capa-
bilities for over 100 languages. Its architecture, shown in Figure 3.1 has changed signi�-
cantly over the years. When it was released by Google in 2006, it was based on SMT. In
2016, Google made a signi�cant improvement by shifting to NMT [50]. The latest big step
was in 2018, when Google Translate was updated to a newer hybrid architecture consist-
ing of a transformer encoder and an RNN decoder, introducing attention mechanisms.
Since these systems are proprietary, there exists little information about model architec-
ture details, training settings or number of models. However, as it is a free and accessible
translation service that is widely used over the world, we have tested its performance
and used it as a reference when evaluating other architectures.

3.2.2. Helsinki

The University of Helsinki has been launching a bunch of Transformer-based MT models
in recent years [51]. They utilize Marian-NMT [52], a free NMT framework written in
C++ that is the backbone of the Microsoft Translator system. The models are trained
on freely available parallel corpora collected in the large bitext dataset OPUS [53]. The
architecture is based on a standard transformer setup with 6 self-attentive layers in both
the encoder and decoder, and 8 attention heads in each layer as well as a SentencePiece
tokenizer. Currently, the project provides over 1000 pre-trained, bilingual or multilingual,

2https://github.com/biomedical-translation-corpora/corpora
3https://www.nlm.nih.gov/databases/download/pubmed_medline.html
4https://translate.google.com/

https://github.com/biomedical-translation-corpora/corpora
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://translate.google.com/
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Figure 3.1: Google Translate model architecture.5

translation models that are free to download and use. For this work, we will focus on
the bilingual models for en ! es and en ! de language directions. The English to
German model has been trained on almost 900M of parallel sentences, while the English
to Spanish model was trained on over 1B translation pairs.

3.2.3. NLLB

No Language Left Behind (NLLB) [54] is a collection of multilingual MT models devel-
oped by Meta with the purpose of enhancing MT across a wide range of languages, with
a particular focus on low-resource ones. This ambitious initiative aims at reducing lin-
guistic barriers and fostering global inclusivity in digital communication by covering 202
languages, comprising a total of 40,602 language directions.

The different variants of NLLB architecture contain 600M, 1.3B and 3.3B parameters.
All of these models are traditional encoder-decoder Transformer architectures featuring
Pre-LN6. There is also a bigger variant which follows a Sparsely Gated MoE architecture,
replacing the dense FNN sublayer with an MoE sublayer in every forth Transformer layer.
In order to improve the performance of the models, different training strategies have been
employed:

� Curriculum learning: It consists in training the model on simpler tasks �rst and
progressively introduce more complex tasks.

� Data augmentation: Techniques such as back-translation and synthetic data gen-
eration were employed to augment the training data. Back-translation involves
translating monolingual data from the target language into the source language to
create synthetic parallel sentences.

� Multilingual tokenization: A shared SentencePiece vocabulary of subwords is used
across all languages. Sharing subwords across languages allows for transfer learn-

5Obtained from https://www.lavivienpost.com/google-translate-and-transformer-model/
6Pre-LN refers to Pre-Layer Normalization, which places the layer normalization inside the residual

blocks

https://www.lavivienpost.com/google-translate-and-transformer-model/
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ing. This approach allows the model to share linguistic insights across languages,
signi�cantly boosting the performance for low-resource languages.

3.2.4. MADLAD-400

MADLAD-400, released by Google, is a manually audited, general domain 3T token
monolingual dataset that comprises a total of 419 languages. In order to validate their
dataset, the Google team trained multilingual MT models of various sizes: 3B, 7.2B and
10.7B parameters. All the models’ parameters are shared across language pairs and a
SentencePiece Model is used, shared on both the encoder and decoder side. For training
the models, both supervised parallel data and the monolingual MADLAD-400 dataset
following masked Seq2Seq pre-training (MASS) [55] have been used.

3.3 Experimental setup

A series of experiments were conducted to evaluate the performance of the aforemen-
tioned models on INTERACT and Europarl-ST test sets. Our purpose is to assess the
performance of these models when translating from English to Spanish and German. In
addition to evaluating the base models, we also adapted some of these models for both
language directions using LoRA, so as to evaluate the effectiveness of this PEFT method.

This experiment was conducted using the VRAIN7 high-performance computing (HPC)
cluster which consists of 3 nodes, with 8 NVIDIA A40 GPUs per node, and another 3
nodes containing 8 NVIDIA A30 GPUs each. These GPUs have a total of 48 and 24 GBs
of VRAM, respectively.

With respect to the software used, we utilized the Hugging Face framework, which
contains several ML libraries. In this case, we made use of the Transformers library8,
which offers a wide range of pre-trained models and tools that facilitate their training
and deployment for different NLP tasks. Additionally, we used the PEFT library9 for
�ne-tuning the models using LoRA.

For training the LoRAs, the datasets introduced in Section 3.1.2 were utilized for �ne-
tuning the models on en ! fes, deg translation directions. The LoRa hyperparameters
chosen are displayed in Table 3.5 and remained consistent for all the experiments. All the
models were loaded in BFloat16 [56], a shortened version of FP32, to reduce their mem-
ory size. Moreover, the libraries Accelerate10 and FSDP [57] were utilized to distribute the
training over the 8 GPUs of one node, considerably reducing the training time and allow-
ing for larger batch sizes. Speci�cally, a per-device batch size of 4 was utilized for train-
ing, as well as a gradient accumulation of 4. The per-device batch size combined with
gradient accumulation and FSDP resulted in an effective batch size of 128. To reduce the
training and inference times, FlashAttention-2 [58] was utilized for all supported models.
It is a faster and more memory-ef�cient implementation of the attention mechanism that
employs several optimization techniques to address the quadratic memory requirement
issue present in the standard attention mechanism.

All the data was preprocessed using the default tokenizer of each model and sen-
tences exceeding 512 tokens were eliminated. The decoding strategy used for inference

7https://vrain.upv.es
8https://huggingface.co/docs/transformers/index
9https://huggingface.co/docs/peft/index

10https://huggingface.co/docs/accelerate/index

https://vrain.upv.es
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/accelerate/index
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Table 3.5: LoRA hyperparameters used for �ne-tuning the models

Hyperparameter Value

Optimizer AdamW [59]
Warm up steps 100
LR schedule Linear

Epochs 3
Initial learning rate 2e-4
Target modules Q, K, V, O
LoRa rank rQ = rK = rV = rO = 16
LoRA a 32
LoRA dropout 0.05

Trainable parameters 0.2-0.4%

is beam_search with size 4 and early stopping. Then, the hypothesis generated by the
models for the evaluation sets (Section 3.1.1) were evaluated on BLEU and COMET-22.

3.4 Experimental results

Table 3.6 presents the BLEU and COMET scores for the INTERACT test set, categorized
by the language direction and the usage of LoRA. Focusing on en ! es, we can af�rm
that all models produce high quality translations since all of them have BLEU scores
above 55 and COMET scores above 85. On the other hand, the translations for en ! de
can be considered of good quality as approximately half of the models reach at least a
BLEU score of 40 and a COMET score above 80. Looking at COMET, which tends to
be better aligned with human judgements than BLEU, it can be observed that the best
model is Google Translate, followed by NLLB-3.3 adapted with LoRA. Although Google
Translate has been used as a reference, since it is a free and widely-used translation tool,
it is unfair to compare it with other models as we have no information about its number
of parameters and its training data.

Table 3.6: BLEU and COMET scores for encoder-decoder models on INTERACT test set

INTERACT: en! es, de
Spanish German

Model LORA BLEU COMET BLEU COMET

Google Translate No 56.7 87.6 40.5 86.5
Helsinki-500M No 55.6 85.4 37.2 80.9
Madlad-3B No 55.8 85.7 43.4 83.5

NLLB-600M No 55.3 86.1 37.3 82.2
NLLB-1.3B No 55.9 86.2 39.3 82.9
NLLB-3.3B No 56.3 86.3 41.1 83.5

NLLB-600M Yes 56.0 86.4 38.2 83.0
NLLB-1.3B Yes 57.2 87.1 41.2 84.5
NLLB-3.3B Yes 58.8 87.5 43.1 85.2

In terms of scale, the results for NLLB models show that bigger models lead to better
results, as it could be expected. More speci�cally, NLLB-3.3 outperforms NLLB-600 by
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1.0 BLEU points and 0.3 on COMET for en ! es, while the differences for en ! de are of
3.8 on BLEU and 1.3 on COMET.

Analyzing the effect of LoRA, a performance boost can be observed for all models
in both language directions. It can also be noted that the improvements achieved with
LoRA tend to be bigger than those obtained by scaling the model. For en ! es, the
results report an improvement of 2.2 on BLEU and 1.2 on COMET, while the differences
for en! de are of 2.0 BLEU points and 1.7 on COMET for the NLLB-3.3 model.

In order to validate the results obtained for the INTERACT test set, the same models
have been tested on the Europarl-ST test set. The results, shown in Table 3.7, have been
found to be very similar to those from INTERACT, exhibiting high quality for en ! es
with all models surpassing 46 on BLEU and 88 on COMET, while the results for en! de
indicate a slightly worse performance as none of them reaches the score of 40 on BLEU.

Table 3.7: BLEU and COMET scores for encoder-decoder models on Europarl-ST test set

Europarl-ST : en! es, de
Spanish German

Model LORA BLEU COMET BLEU COMET

Google Translate No 48.1 89.8 34.4 89.3
Helsinki-500M No 46.9 89.0 35.8 87.3
Madlad-3B No 49.0 89.2 38.9 88.5

NLLB-600M No 44.4 88.6 31.4 86.8
NLLB-1.3B No 46.2 89.0 33.4 87.4
NLLB-3.3B No 47.3 89.4 35.1 88.1

NLLB-600M Yes 46.7 88.7 35.3 87.6
NLLB-1.3B Yes 48.0 89.3 37.2 88.3
NLLB-3.3B Yes 49.0 89.4 38.5 88.8

3.5 Conclusions

The experimental results presented in this chapter indicate that transformer-based MT
models can generate excellent translations for high-resource language pairs. Between the
two target directions tested in the experiment, it can be seen that all the models tend to
perform better when translating into Spanish than into German. The reason behind this
could be the fact that German is a more complex language than Spanish.

For English to Spanish translation, it has been demonstrated that all tested models can
achieve state-of-the-art results, even the smaller ones. Therefore, if someone wanted to
deploy a NMT system for this language pair with limited resources, a good option would
be to take a "small" model and, if possible, �ne-tune it with a PEFT method like LoRA
to adapt the model for the task domain. For the case of English to German translation,
it would be better to opt for one of the bigger models, such as NLLB-3.3 or Madlad.
We can also observe that Google Translate outperforms the rest of the models in terms
of COMET, positioning as one of the best translation systems freely available. Another
key aspect is that, if many language directions have to be covered, a resource-ef�cient
solution is to use a multilingual model, since deploying one bilingual model for each
language pair would be very costly. Moreover, multilingual models can enhance their
performance through transfer learning. By training on a diverse set of languages, these
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models can learn common linguistic structures and patterns, which can then be applied
across different languages.

This experiment also re�ects the ef�cacy of LoRA as a PEFT method. It demonstrates
that adjusting only a small subset of parameters, the model can obtain notable gains
in performance. This ability to incrementally enhance model performance is crucial for
practical deployment scenarios, where rapid adaptation to new languages is necessary.
Another notable but obvious �nding is that increasing the size of the models enhances
their ability to generate more accurate translations. This aligns with the trend in NMT
research, where increasing model size often correlates with better performance.





CHAPTER 4

Adaptation of LLMs for MT

Decoder-only LLMs have recently demonstrated impressive capabilities in text genera-
tion and reasoning. Due to their increasing popularity, some studies have investigated
their performance on MT tasks [60] [61] [62]. Figure 4.1 illustrates the evolution of the
most popular LLMs over the past �ve years. In this context, some of the most popular
publicly available decoder-only LLMs were �ne-tuned using LoRA. Then, the obtained
results are compared with those obtained in the previous chapter for encoder-decoder
architectures. This comparison will determine whether decoder-only LLMs can produce
state-of-the-art results when adapted to MT. Additionally, we examine the performance
of the base models when prompted with different number of shots in order to evaluate
their ICL capabilities. In the current and future chapters the term LLM will be used to
refer only to decoder-only LLMs.

Figure 4.1: Schema of the evolution of selected LLMs over the past �ve years. Coloured branches
indicate different alignment stages. Obtained from [4].

31
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4.1 Decoder-Only LLMs

4.1.1. Llama

Llama is a series of open-source LLMs developed by Meta and designed to push the
boundaries of NLP understating and generation. This family of models utilizes a decoder-
only structure (see Figure 4.2)with the following key features:

� Root Mean Square (RMS) [63] pre-normalization: Replaces LayerNorm with a more
ef�cient normalization technique that regularizes the summed inputs simply ac-
cording to the RMS value.

� Rotary Positional Embeddings (RoPE) [64]: Positional information is encoded fo-
cusing on the relative distances within tokens. RoPE is applied speci�cally to the
query and key vectors in the attention mechanism calculations thus adjusting at-
tention strengths based on the proximity of tokens. This approach has been shown
to better generalize to longer context windows [65].

� KV-Cache (KVC): Enhances memory ef�ciency during inference by storing keys
and values from previous computations, thus, reducing redundant computations.
However, this come at the cost of increasing the memory requirements, since the
KVC size grows linearly with the context length.

� Grouped Query Attention (GQA) [66]: This technique addresses the memory bot-
tleneck, introduced by KVC, by grouping keys and values across attention heads.
GQA signi�cantly accelerates inference times and reduces the needed cache size.

� SwiGLU activation function [67]: Merges sigmoid gating with linear units to out-
perform traditional ReLU activations. This method, optimizes performance by se-
lectively allowing information �ow in neural networks.

Figure 4.2: Llama model architecture.1

1Obtained from https://github.com/hkproj/pytorch-llama-notes/blob/main/LLaMA_Final.pdf

https://github.com/hkproj/pytorch-llama-notes/blob/main/LLaMA_Final.pdf
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For our study, we are going to measure the translation capabilities of Llama2 and
Llama3 models. Architecturally, both models are almost identical. The most notable
differences are summarized in Table 4.1. Regarding multilingualism, 89.7% of Llama2’s
training data is in English, 0.17% in German and 0.13% in Spanish. In the case of Llama3,
the only information currently available is that over 5% of its training dataset belongs to
high-quality non-English data covering over 30 languages.

Table 4.1: Main differences between Llama2 and Llama3

Model Context Length Tokenizer Vocabulary Length Human Annotations Training Tokens

Llama2 4K SentencePiece 32K 1M 2T
Llama3 8K TikToken-based 128K 10M+ 15T+

4.1.2. Gemma

Google also developed their own open LLM, called Gemma [68], based on their private
model Gemini [69]. Its architecture is based on the transformer decoder with improve-
ments including multi-query attention (MQA) [70], RoPE embeddings, GeGLU [67] acti-
vation function and RMS normalization. Regarding the training process of the model, the
only available information is that it has been trained on 6T tokens of primarily English
data and it has not been trained for state-of-the-art performance on multilingual tasks.

4.1.3. Falcon

Falcon [71] is another popular family of publicly available LLMs created by the Technol-
ogy Innovation Institute (TII). They follow a modi�ed decoder-only Transformer archi-
tecture. The most important modi�cations are: RoPE embeddings, GQA, vanilla GeLU
activation function, parallel attention and FNN layers [72] and removal of biases from
linear layers [73]. The Falcon models have been trained on the Re�nedWeb dataset [74],
which was enhanced and extended with curated corpora. Accordingly, these models
have been trained only on European latin languages, with English as the predominant
language.

4.1.4. Mistral

Mistral is a collection of LLMs, released by Mistral AI, with several model variants. Dis-
regarding instruction-tuned models, Mistral AI offers a decoder-only model [75] as well
as a MoE [21]. For this work, we will focus solely on the decoder-only model, which has
7B parameters. This model, based on the Transformer decoder, leverages GQA for faster
inference, coupled with sliding window attention (SWA). SWA limits the attention span
of each token to a �xed size window around it, reducing the computational complexity
and making the model more ef�cient. Mistral model has a window size of 4096. Informa-
tion about the training process is mostly not publicly available, we only know that it was
trained on English data. Figure 4.3 shows a representation of the Mistral architecture.

4.2 Experimental setup

The translation capabilities of the aforementioned LLMs have been evaluated on the same
test sets as the encoder-decoder models of the previous chapter. For this experiment, Lo-
RAs have been trained, for each model and each language direction, using the same hy-
perparameters shown in Table 3.5. Inference hyperparameters were also kept consistent
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Figure 4.3: Mistral model architecture.2

to those chosen for encoder-decoder models, i.e., beam search with beam size of 4. The
ICL capabilities of the models were also studied by varying the amount of source-target
pairs added to the prompt.

The experimental setup is similar to the one described in the previous chapter. One
difference is that the models were quantized to 4 bits using the bitsandbytes library3

due to the memory limitations of the available GPUs. Additionally, the data was for-
matted following the prompt template from Figure 4.4, which can be divided into an
[INSTRUCTION ] that tells the model the task that it has to accomplish, a [SHOTS ] list
containing zero or more translation examples and a [PHRASE ] representing the input
sentence to be translated. The curly braces indicate a substitution by the correspond-
ing value. Source and target language names are obtained by retrieving the language
name, given the language code, using the langcodes4 library. For training the LoRAs,
the training data was formatted following the template without any shots and with the
reference translation concatenated to the prompt. Studies show that the selection of an
adequate prompt template greatly impacts the performance of the models [60]. However,
it has been observed that the best template for MT depends on the model and even on
the translation direction considered. Ideally, different template alternatives should have
been tested to determine which one is the best for each model and each language pair,
but this would be a very costly task in terms of time and computational resources. There-
fore, we opted for using the same template for all cases, this template showed promising
results on average for all models.

Since LLMs are larger in size, the batch size was reduced to 2 so they can �t in the
GPUs. Consequently, the gradient accumulation was increased to 8 to maintain an ef-
fective batch size of 128. Due to computational limitations and to compare models with
similar number of parameters, we only considered LLMs of around 7 billion parameters.

2https://github.com/hkproj/mistral-llm-notes/blob/main/Slides.pdf
3https://pypi.org/project/bitsandbytes/
4https://pypi.org/project/langcodes/

https://github.com/hkproj/mistral-llm-notes/blob/main/Slides.pdf
https://pypi.org/project/bitsandbytes/
https://pypi.org/project/langcodes/
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[PROMPT ] ! [INSTRUCTION ]([SHOTS ])*[PHRASE ]

[INSTRUCTION ] ! Translate from {src_lang} to {tgt_lang}:\n
([SHOTS ])* ! {src_lang}: {src_phrase} = {tgt_lang}: {tgt_phrase}\n
[PHRASE] ! {src_lang}: {src_phrase} = {tgt_lang}:

Figure 4.4: Prompt template for LLMs.

4.3 Experimental results

Tables 4.2 and 4.3 show the results obtained for each �ne-tuned model and each language
direction. Although the results differ slightly between models, it can be clearly observed
that the model leading to the best results, for both language directions and both test sets,
is Llama3. In the case of en ! es, it can be seen that the generated translations for every
model are of high quality, with around 50 of BLEU and 86 of COMET for INTERACT
test set, and around 46 of BLEU and 89 of COMET in the case of Europarl-ST. On the
other hand, the translations obtained for all tested models for en! de can be considered
of good quality since, although their COMET surpass 80 points, their BLEU scores are
below 40 for both test sets.

Table 4.2: BLEU and COMET scores for �ne-tuned decoder-only models on INTERACT test set.

INTERACT: en! es, de
Spanish German

Model BLEU COMET BLEU COMET

Llama3-8B 52.1 86.3 36.1 84.2
Mistral-7B 50.6 86.2 34.7 83.8
Llama2-7B 51.0 86.2 33.5 83.4
Gemma-7B 50.8 85.8 34.7 83.9
Falcon-7B 49.5 86.0 33.4 83.1

Table 4.3: BLEU and COMET scores for �ne-tuned decoder-only models on Europarl-ST test set.

Europarl-ST: en! es, de
Spanish German

Model BLEU COMET BLEU COMET

Llama3-8B 47.5 89.5 35.6 88.5
Mistral-7B 46.8 89.5 34.5 88.4
Llama2-7B 46.7 89.3 34.6 88.3
Gemma-7B 46.6 89.2 34.5 88.2
Falcon-7B 46.0 89.1 33.5 87.6

For the next part of the experiment, we studied the ICL capabilities of Llama3 base
model by prompting it with a number of shots ranging from 0 to 5 following the prompt
template of Figure 4.4. Due to time constraints, only the Llama3 model was evaluated
solely on INTERACT test set, since it is the LLM that showed the best performance
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among all those tested. The shots added to the template were randomly extracted from
the training data. A more re�ned shot selection approach would be to select sentences
that are similar to the input sentence to be translated, this could be done by retrieving
the shots using a k-nearest-neighbors (kNN) search. However, some studies show that
input-relevant shots does not lead to a signi�cant improvement on MT, achieving on par
performance with random selection in many cases [61].

An important detail to take into account is that, when prompting base models, they
often generate more than one possible translations. Therefore, the model outputs were
cleaned to consider only the �rst generated translation, which normally is the best one.

The results, displayed in Table 4.4, show that few-shot prompting can lead to slightly
better results than zero-shot prompting, although it is not always the case. In the case of
en! es, we can see an improvement of 1.2 on BLEU and 0.3 on COMET for 3-shots when
compared with 0-shot. On contrary, it can be observed a downgrade of 0.5 on BLEU for
en ! de when passing from 0 to 5-shots, although the COMET score is improved by 1.5.
Overall, we noted that when incrementing the number of shots, the COMET scores tend
to maintain or improve slightly, while the BLEU scores sometimes improve, but other
times they degrade. Consequently, we could state that in this case, few-shot prompt-
ing does not exhibit many advantages over zero-shot prompting since the differences in
scores are not signi�cant and do not follow a predictable pattern. Comparing these re-
sults with those previously obtained for LLMs adapted with LoRA, it can be seen that
there is a clear gap in performance, being the �ne-tuned models those with higher scores.

Table 4.4: BLEU and COMET scores for Llama3 base model with few-shot prompting on INTER-
ACT test set.

INTERACT: en! es, de
Spanish German

Shots BLEU COMET BLEU COMET

0 46.5 84.6 30.7 80.4
1 46.6 84.8 31.1 81.5
2 46.5 84.9 30.7 81.6
3 47.7 85.1 30.4 81.7
4 46.1 84.9 30.8 81.9
5 47.6 85.1 30.2 81.9

After trying to improve the quality of the translations generated by the LLMs through
the usage of LoRA and few-shot prompting, we tried to mix both techniques to see if
the scores of the translations could improve by taking the advantages from both meth-
ods at the same time. Therefore, we selected the already trained LoRA for Llama3 and
prompted it with different amount of shots. The results, shown in Table 4.5, indicate
that instead of improving, the quality of the translations degrades. This suggests that the
�ne-tuning process hinders the ICL capabilities of the model as the model gets biased to
follow the prompt template it has been �ne-tuned on. Particularly, the difference between
0-shot and 5-shots for en! es is of 4.2 on BLEU and 1.3 on COMET.

Although LoRA is a very powerful method for adapting a model to a downstream
task, the few-shot capabilities of LLMs can be very bene�cial for ef�cient adaptation on
new domains not seen during LoRA training. In order to recover few-shot performance,
we introduce prompts with few-shot examples in the LoRA training process. Each sam-
ple from the training set is added a number of shots ranging from 0 to 5, in such a way
that each number of shots appears equally during training. The shots are extracted ran-
domly from a small example pool previously separated from the training data. LoRA
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Table 4.5: BLEU and COMET scores for Llama3 zero-shot �ne-tuned model prompted with few-
shots on INTERACT test set.

INTERACT: en! es, de
Spanish German

Shots BLEU COMET BLEU COMET

0 52.1 86.3 36.1 84.2
1 50.2 85.7 33.4 83.3
2 49.7 85.6 33.1 82.9
3 48.4 85.2 32.6 82.8
4 48.1 85.1 32.4 82.5
5 47.9 85.0 31.3 82.1

was trained for Llama3 following this methodology, and then we prompted the LoRA
model with few-shots examples. The results, gathered in Table 4.6, show that the model
trained with in-context example recovered its ICL capabilities. This behaviour can be
noted because the scores across the different number of shots slightly differ. For en ! es
the biggest difference is of 0.9 on BLEU and 0.3 on COMET between 1 and 5-shots. It can
also be seen that the scores for every number of shots are very similar to those previously
obtained with LoRA for zero-shot prompting (see Table 4.2).

Table 4.6: BLEU and COMET scores for Llama3 adapted for few-shot prompting.

INTERACT: en! es, de
Spanish German

Shots BLEU COMET BLEU COMET

0 51.9 86.2 36.0 84.2
1 52.1 86.3 35.5 84.0
2 51.2 85.9 35.8 84.1
3 51.6 86.1 35.5 84.1
4 51.6 86.0 35.2 83.8
5 51.2 85.9 35.2 83.9

4.4 Comparison with encoder-decoder models

In this section, the best models from each chapter are compared in order to study the
differences between both types of architectures. The selected models are NLLB-3.3B and
Llama3, both adapted with LoRA. Google Translate was not included in this comparison
since it would be unfair due to the lack of information about its architecture and train-
ing details. Table 4.7 summarizes the best results obtained in each chapter among all the
publicly available models that were tested. The results clearly show that NLLB-3.3 out-
performs Llama3 in both language directions and both metrics. Focusing on en! es, the
score differences between Llama3 and NLLB-3.3 adapted with LoRA are of 6.7 on BLEU
and 1.2 on COMET, while the differences for en ! de are of 7.0 on BLEU and 1.0 on
COMET for INTERACT test set.

In order to make visible the differences between the translations generated by Llama3
and NLLB-3.3, we will inspect some examples of translations produced by these mod-
els. Table 4.8 gathers some source sentences along with the reference translation and the
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Table 4.7: Results for best adapted models of each type of architecture on INTERACT test set.

INTERACT: en! es, de
Spanish German

Model LoRA BLEU COMET BLEU COMET

NLLB-3.3B Yes 58.8 87.5 43.1 85.2
Llama3-8B Yes 52.1 86.3 36.1 84.2

translations generated by each model. We only considered translations into Spanish so
we can understand the translated sentences and analyze them manually. Looking at the
�rst example, it can be noted that Llama3 tends to produce longer outputs, this can be
seen when it translated "Thank you" to "Muchas gracias". This behaviour has been ob-
served to be usual during the whole experiment with other examples such as translating
"Yes" into "Sí, claro que sí" or "Thanks" into "Gracias a ustedes".

Table 4.8: Translation examples generated by Llama3 and NLLB-3.3 along with the corresponding
source and references sentences

Source Hopefully, we will in the future.
Reference Con suerte, lo haremos en el futuro.
NLLB-3.3B Con suerte, lo haremos en el futuro. (BLEU: 100)
Llama3-8B Esperemos que en el futuro podamos hacerlo. (BLEU: 19.5)

Source Thank you, Nuria, for this excellent talk, very inspiring, I would say.
Reference Gracias, Nuria, por esta excelente charla, muy inspiradora, diría.
NLLB-3.3B Gracias, Nuria, por esta excelente charla, muy inspiradora, diría yo.

(BLEU: 86.7)
Llama3-8B Nuria, muchas gracias por esta charla excelente, muy inspiradora,

diría yo. (BLEU: 33.9)

Source So, it has to be robust to the patient variations, and also to the treatment
delivery.

Reference Por lo tanto, tiene que ser robusto para las variaciones de los pacientes,
y tambiØn para la administración del tratamiento.

NLLB-3.3B Por lo tanto, tiene que ser robusto para las variaciones de los pacientes,
y tambiØn para la entrega del tratamiento. (BLEU: 87.8)

Llama3-8B Entonces, tiene que ser robusto a las variaciones del paciente, y tambiØn
a la administración del tratamiento. (BLEU: 38.43)

From the �rst and second examples, it can be noted that sometimes Llama3 changes
the structure of the sentences by swapping the order of the words. This behaviour has
been found to be common in decoder-only LLMs. This can lead to a general degrada-
tion of the BLEU metric since, for these cases, the overlapping between the generated
translations and the references will be very low. However, these translations could be
correct in spite of their low BLEU scores as one sentence can have many correct transla-
tions. Actually, this is the reason why neural-based metrics, such as COMET, emerged
for MT. COMET’s ability to evaluate the translations by also focusing in the meaning
of the words, could be the reason why the differences in BLEU between both types of
architectures are more signi�cant than the differences in COMET.

An interesting example to analyze is the third in Table 4.8. In this example, it can
be observed that although NLLB-3.3 outperforms Llama3 by far in terms of BLEU, one
could say that the most accurate translation is the one provided by Llama3, since it trans-
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lates "delivery" into "administración", while NLLB-3.3 translates it into "entrega", which
could be considered as incorrect given the context of the word in the source sentence.
This exempli�es the challenges that appear when evaluating and comparing MT models.
From all these examples, it can be noted that encoder-decoder models tend to generate
more literal translations, while decoder-only LLMs are prone to generate longer transla-
tions introducing extra words that do not add any information, and also to change the
order of the words compared to the source sentence. Although this phenomena normally
degrades metrics, specially BLEU, this does not necessarily mean that the translations are
worse in quality.

4.5 Conclusions

This chapter studied the application of LoRA and few-shot prompting techniques to
LLMs for MT, offering valuable insights into their ef�cacy. LoRAs were trained for each
model and each language direction to make a comparison between models of similar size.
These experiments demonstrate the ef�cacy of LoRA as a lightweight adaptation tool for
adapting LLMs to downstream tasks. It has been clearly re�ected that the LLM that per-
forms best for both language pairs is Llama3, although the performance gap between
models is not very signi�cant. This means that for high-resource language directions any
large enough model can achieve competitive results.

We then evaluated the ICL capabilities of LLMs by showing them translation exam-
ples added to the prompt during inference. The results for this prompt-tuning technique
show an slightly improvement in terms of COMET, although the BLEU scores some-
times degrade. It can be observed that the performance gains obtained through few-shot
prompting are insigni�cant when compared with those obtained with LoRA. This illus-
trates the ef�cacy of LoRA as an adaptation tool that does not require vast amounts of
data and computational resources. After that, we demonstrated that models adapted in
a zero-shot scenario perform worse when prompted with few-shots, since the bias im-
posed by LoRA diminishes the ICL capabilities of the model, which can be recovered by
adding examples with few-shots during the �ne-tuning process. However, it can be seen
that the best results obtained with this type of architecture are those belonging to LoRA
adaptation for zero-shot prompting. Therefore, there are no reasons to perform few-shot
prompting since it does not seem to provide better results and the inference time is con-
siderably increased as the number of shots increases.

Finally, the best results from both experimental chapters have been compared in order
to give a comparison between both types of architectures. From this results it can be con-
cluded that, although decoder-only LLMs can produce good translations, they still lag
behind encoder-decoder translation models, which achieve a notably better performance
with much less parameters. Nonetheless, after analyzing some translation examples pro-
duced by NLLB-3.3 and Llama3, it can be seen that decoder-only LLMs can produce high
quality translations that obtain low scores in MT metrics, as they are able to produce
more diverse and less literal translations than encoder-decoder models.





CHAPTER 5

Conclusions

This work explored the performance of state-of-the-art LLMs for MT tasks. The research
involved evaluating and adapting some of the most popular open source translation
models as well as some decoder-only LLMs for en ! fes, deg translation directions.
The performance of the models was evaluated using standard metrics in the �eld of MT.
From the experimental results it can be concluded that encoder-decoder models designed
speci�cally for translation are the models obtaining the highest scores, while requiring
much less parameters than decoder-only LLMs. Following this, the best and easiest op-
tion for deploying an state-of-the-art translation system for high-resource languages is
to opt for a pre-trained encoder-decoder MT model, which can be greatly enhanced by
ef�ciently adapting it to a speci�c language direction using LoRA.

5.1 Objectives achieved

� A number of state-of-the-art MT encoder-decoder models have been evaluated on
different domains, particularly on the medical and parliamentary domains. The
results gave us an idea of the performance achieved by modern NMT models.

� Selected popular decoder-only LLMs have been adapted and assessed on the same
aforementioned domains. Among the tested models, it was found that Llama3 ob-
tained the highest scores in both metrics and both language directions. The results
obtained indicated that decoder-only LLMs can achieve competitive results for MT
when adapted with LoRA, although they still lag a bit behind encoder-decoder
models.

� In-context learning capabilities of LLMs for MT have been tested on the domains
considered for adaptation. From the results obtained, it was concluded that few-
shot prompting did not lead to signi�cant improvements in the quality of the trans-
lations. It was found to be impractical since the computational resources needed
increased with the number of shots.

5.2 Future work

While the current research has provided valuable insights into the capabilities of LLMs
in MT, there are several promising areas for future work that could further enhance the
effectiveness and applicability of these models.

One signi�cant area for future exploration is the translation of low-resource languages.
It has been shown that all pre-trained models that have been tested achieve from good
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to high quality translations when translating from English into Spanish and German.
However, we suspect that LLMs would struggle with low-resource languages since they
are mostly trained on English and other European languages. There are over 7000 lan-
guages in the world, so many languages lack suf�cient annotated data for training robust
MT models. Future research could focus on leveraging transfer learning and data aug-
mentation techniques to improve the performance of LLMs in translating low-resource
languages.

Another promising direction is the utilization of larger models. Due to computational
limitations, only models of up to 8 billion tokens were evaluated. It was observed that
the performance of NLLB model improved as the number of parameters increased. Re-
cently, many massive LLMs, such as GPT-4 [18], BLOOM [76] or PaLM-2 [77], have been
developed containing hundreds of billions of parameters, which have demonstrated im-
pressive capabilities across several NLP tasks, including MT. Future research could in-
vestigate the adaptation of these massive models speci�cally for MT tasks. Furthermore,
studying the trade-offs between model size, computational resources, and translation
performance could provide valuable insights for deploying these massive models in prac-
tical applications.

In order to further improve the quality of translations generated by LLMs, some
promising prompting strategies could be explored. Prompting strategies involve design-
ing speci�c prompts for guiding the LLM to a better translation. Techniques like Chain-
of-Dictionary [78] have shown remarkable potential to produce more accurate and con-
textually appropriate translations. Other strategies like systematic self-re�nement [79],
aim to improve the performance of LLMs by feeding back the generated translations to
the model with information about how they can be improved, so the translation is re�ned
by correcting possible grammatical or contextual errors.

Another exciting avenue for future work is the application of LLMs in real-world
scenarios, such as streaming MT. With the increasing popularity of streaming platforms,
there is a necessity for MT systems that can generate translations on-the-�y for contin-
uous input streams. Streaming translation involves translating text or speech in real-
time, which presents unique challenges in terms of latency, accuracy, and context reten-
tion. Future research could explore the development of specialized LLMs optimized for
streaming scenarios, capable of handling continuous input and producing high-quality
translations with minimal delay. Additionally, integrating these models with real-time
automatic speech recognition (ASR) systems could pave the way for robust and accu-
rate live translation services, bene�ting areas such as international communication, live
broadcasting, and multilingual customer support.
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ANEXO

OBJETIVOS DE DESARROLLO SOSTENIBLE

Grado de relaci�on del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenible Alto Medio Bajo No

procede

ODS 1. Fin de la pobreza. X

ODS 2. Hambre cero. X

ODS 3. Salud y bienestar. X

ODS 4. Educaci�on de calidad. X

ODS 5. Igualdad de g�enero. X

ODS 6. Agua limpia y saneamiento. X

ODS 7. Energ��a asequible y no contaminante. X

ODS 8. Trabajo decente y crecimiento econ�omico. X

ODS 9. Industria, innovaci�on e infraestructuras. X

ODS 10. Reducci�on de las desigualdades. X

ODS 11. Ciudades y comunidades sostenibles. X

ODS 12. Producci�on y consumo responsables. X

ODS 13. Acci�on por el clima. X

ODS 14. Vida submarina. X

ODS 15. Vida de ecosistemas terrestres. X

ODS 16. Paz, justicia e instituciones s�olidas. X

ODS 17. Alianzas para lograr objetivos. X
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Re
exi�on sobre la relaci�on del TFG/TFM con los ODS y con el/los ODS m�as
relacionados.

El TFG presentado tiene una relaci�on signi�cativa con varios de los Objetivos de Desarrollo
Sostenible (ODS) de la Agenda 2030 propuestos por la Organizaci�on de las Naciones Unidas
(ONU). A continuaci�on, se muestra una re
exi�on sobre c�omo este trabajo contribuye a algunos
de estos objetivos.

La relaci�on m�as directa y signi�cativa de este TFG es con el ODS 4 Educaci�on de calidad ,
que se enfoca en garantizar una educaci�on inclusiva, equitativa y de calidad. El desarrollo de
sistemas de traducci�on autom�atica capaces de generar traducciones de una calidad similar a
las traducciones manuales realizadas por traductores expertos, elimina las barreras ling•u��sticas,
facilitando el acceso a informaci�on y recursos educativos independientemente de su idioma nativo.

La relaci�on de este TFG con elODS 3 Salud y bienestar se mani�esta principalmente a trav�es
del impacto que las tecnolog��as avanzadas de traducci�on autom�atica pueden tener en el �ambito
de la salud y el bienestar. La traducci�on precisa y e�ciente de informaci�on m�edica es crucial para
asegurar que profesionales de la salud, investigadores y pacientes tengan acceso a informaci�on
vital sin barreras ling•u��sticas. Al mejorar las herramientas de traducci�on autom�atica, este TFG
contribuye a la accesibilidad de estudios cl��nicos, gu��as m�edicas, y material educativo sobre salud
en m�ultiples idiomas, permitiendo que la informaci�on cr��tica est�e al alcance de todos.

El ODS 8 Trabajo decente y crecimiento econ�omico busca promover el crecimiento
econ�omico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente
para todos. Las mejoras en las tecnolog��as de traducci�on autom�atica tienen un impacto positivo
en la productividad y e�ciencia laboral. En un mundo cada vez m�as globalizado, la capacidad de
comunicarse efectivamente en m�ultiples idiomas es crucial para las empresas y organizaciones.
La implementaci�on de sistemas avanzados de traducci�on puede mejorar la comunicaci�on interna
y externa, reducir costos de traducci�on, y permitir una colaboraci�on m�as 
uida y efectiva entre
equipos multiculturales.

El ODS 9 Industria, innovaci�on e infraestructura promueve la construcci�on de infraestruc-
turas resilientes, la industrializaci�on inclusiva y sostenible, y el fomento de la innovaci�on. Este
TFG, al explorar y mejorar las t�ecnicas de traducci�on autom�atica mediante el uso de LLMs y
enfoques de ajuste e�ciente de par�ametros, se alinea claramente con la promoci�on de la inno-
vaci�on tecnol�ogica. La investigaci�on y el desarrollo en el campo de la traducci�on autom�atica
representan un avance signi�cativo en la creaci�on de infraestructuras tecnol�ogicas que pueden
ser aplicadas en diversos sectores industriales, desde la educaci�on hasta la comunicaci�on y el
comercio internacional.

En cuanto al ODS 10 Reducci�on de las desigualdades , que se centra en reducir las de-
sigualdades entre los pa��ses y dentro de ellos. La traducci�on autom�atica desempe~na un papel
crucial en la reducci�on de las desigualdades ling•u��sticas. Al facilitar la comunicaci�on y el acceso
a la informaci�on en diferentes idiomas, estas tecnolog��as pueden ayudar a que extranjeros que no
conocen el idioma principal del pa��s en el que residen pueden integrarse en la sociedad. Adem�as,
los sistemas de traducci�on autom�atica, especialmente para idiomas de bajos recursos, pueden
contribuir a que comunidades marginadas puedan integrarse y relacionarse internacionalmente,
fomentando as�� su participaci�on en el comercio global.
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La relaci�on de este TFG con el ODS 16 Paz, justicia e instituciones s�olidas se re
eja en
c�omo las tecnolog��as de traducci�on autom�atica pueden facilitar la comunicaci�on y la cooperaci�on
entre diferentes culturas y lenguas, promoviendo as�� la paz y la comprensi�on mutua. En el
contexto de instituciones de justicia y gobernanza, la capacidad de traducir documentos legales
y administrativos de manera precisa y e�ciente es crucial para garantizar que todas las partes
involucradas comprendan plenamente sus derechos y obligaciones, independientemente de su
lengua materna. Adem�as, la accesibilidad a la informaci�on p�ublica en varios idiomas fortalece la
transparencia y la responsabilidad de las instituciones gubernamentales, lo que es fundamental
para construir con�anza y legitimidad.
En el caso delODS 17 Alianzas para lograr objetivos , este se centra en revitalizar la alianza
global para el desarrollo sostenible. Este TFG contribuye a la exploraci�on y el desarrollo de her-
ramientas de traducci�on autom�atica, lo que es fundamental para una colaboraci�on internacional
efectiva. Los sistemas de traducci�on pueden fomentar la cooperaci�on entre gobiernos, empresas
privadas e individuos de diferentes pa��ses o regiones. Esto resulta especialmente importante en
un mundo globalizado donde la cooperaci�on internacional es clave para abordar desaf��os globales
como el cambio clim�atico, la salud p�ublica y la desigualdad econ�omica.
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