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Abstract
Let G be a finite group, and let π be a set of primes. The aim of this paper is to obtain
some results concerning how much information about the π -structure of G can be
gathered from the knowledge of the sizes of conjugacy classes of its π -elements and
of their multiplicities. Among other results, we prove that this multiset of class sizes
determines whether G has a hypercentral Hall π -subgroup.

Keywords Finite groups · Conjugacy classes · Hypercentral subgroups · Hall
subgroups

Mathematics Subject Classification 20D15 · 20D20 · 20E45

1 Introduction

Within finite group theory, there are numerous results which endorse that the set of
sizes of conjugacy classes of a group provide relevant information on its structure.
However, there are some features that may not be inferred from this piece of informa-
tion. For instance, the order of the group is unknown; less trivially, solubility cannot
be determined as Navarro showed in [10], and the same happens with nilpotency as
Camina and Camina established in [3]. In contrast, if the frequencies of the class sizes
are also considered, then it is straightforward to compute the group order, and Cossey,
Hawkes and Mann proved that nilpotency can be read off from that multiset (cf. [4]).
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Nevertheless, whether it is possible to recognise solubility (or supersolubility) of a
group from its class lenghts and their multiplicities is a problem that remains open
nowadays, and it seems difficult to solve. It is worth mentioning that, as usual, the
result due to Cossey, Hawkes and Mann has a counterpart in the context of irreducible
character degrees, which was addressed by Isaacs in [8]; in fact, it predates the conju-
gacy class version. We also refer the interested reader to [5, 9] for further development
concerning the multiset of character degrees.

To investigate whether the set of class sizes of some smaller subsets of elements
of the group is enough for studying its algebraic structure is a research line that has
received the interest of many authors over the last decades. Surprisingly enough,
very little seems to have been done in the analogous context of either the multiset
of class sizes or the multiset of character degrees. In this framework, A. Beltrán
recently made some progress (cf. [1]): he showed that the knowledge of the sizes of
the conjugacy classes of a group G that are contained in a normal subgroup N and of
their multiplicities determines if N is hypercentral in G.

Inspired by the previous research, the aim of the present paper is to analyse whether
some features of the π -structure of a group G can be determined when only the class
sizes of the π -elements of G and their frequencies are considered, for a set of primes
π . For this goal, we introduce, in a similar way to the papers cited above, the π -class
size frequency function of G, wG

π (n) : N −→ N, as follows:

wG
π (n) = 1

n
· |{g ∈ Gπ : |G : CCCG(g)| = n}|,

whereGπ denotes the set ofπ -elements ofG. In other words, for every natural number
n, the function wG

π (n) computes the number of conjugacy classes of π -elements of
G that have size n. This function may provide some arithmetical properties of the
π -structure of G, as the order of the Hall π -subgroup of its centre ZZZ(G), i.e. the
number of π -elements that are central in G; the π -part of the order of its hypercentre
can also be computed (see Theorem 3.1), and this is actually a key ingredient in our
proofs. Nonetheless, other elementary facts, as the π -part of the order of G, cannot
be deduced if π is a proper subset of the set of prime divisors of the order of G: for
example, the symmetric group on three letters and the alternating group on four letters,
with π = {2}, have equal π -class size frequency function, although the 2-parts of their
orders differ.

This loss of information about class sizes of elements of G with orders divisible by
prime numbers lying in π ′ entails the use of a different approach in some arguments.
For instance, at some point a celebrated Frobenius’ theorem regarding the number of
solutions of xn = 1 in a group G such that n is a divisor of its order is involved.

Our first result shows that the π -class size frequency function of G determines
the existence of hypercentral Hall π -subgroups. We highlight that no π -separability
assumption is required.

Theorem A Let G and H be finite groups, and suppose that G has a hypercentral
Hall π -subgroup for certain set of primes π . If the conjugacy class sizes of the π -
elements of G joint with their multiplicities are the same as those of H, then H has a
hypercentral Hall π -subgroup.
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A particular case that merits to be emphasised is when π = p′, since it follows
that the nilpotency of G can be determined from its p′-class size frequency function.
Remember that the main result of [4] attained the same conclusion but considering
all the class sizes of G, which is a larger multiset in general. Recall that a p-regular
element of G is an element whose order is not divisible by p.

Corollary B Let G and H be finite groups, and suppose that G is nilpotent. If, for a
given prime p, the class sizes of the p-regular elements of G and their multiplicities
coincide with those of H, then H is nilpotent.

It is noteworthy that the information provided by theπ -class size frequency function
is sometimes quite restrictive, and thus to generalise known results that consider the
whole multiset of class lengths is not always possible. In Remark 3.4 we will further
discuss this feature.

At this point, it is convenient to point out that the positive results in the literature
on this topic usually give a concrete criterion to read off the desired property from the
multiset of class sizes (or character degrees). In our situation, however, we have not
been able to achieve it in all cases because, as previously said, even the π -part of the
order of the group is unknown. Exceptionally, and following the spirit of [9], we give
the next sufficient condition to detect when the only q-elements with class length not
divisible by q are the central ones, where q ∈ π . Let us denote by Sq ′(Gπ ) the union
of those conjugacy classes of π -elements of G whose cardinalities are not divisible
by the prime q.

Theorem C Let G be finite group, let π be a set of primes and let q ∈ π . Then |ZZZ(G)|q
divides |Sq ′(Gπ )|q . Further, if |ZZZ(G)|q = |Sq ′(Gπ )|q , then ZZZ(Q) � ZZZ(G) where Q
is a Sylow q-subgroup G.

The second assertion in the above theorem is simply not true when q /∈ π , it is
enough to consider as G the symmetric group on three letters, with π = {3} and
q = 2. We also demonstrate that the converse holds whenever CCCG(Q) has a normal
Hall π -subgroup, and in addition we illustrate with an example that this condition is
not necessary (see Proposition 3.7 and Example 3.9).

In the previous results, evidence has been shown on how the π -class size frequency
function gives information about properties of a Hall π -subgroup with regard to its
immersion in the group. It is then natural to wonder whether this function may also
provide properties of the Hall π -subgroup itself. To determine solubility or superso-
lubility, as occurs when π is the set of prime divisors of the group order, are likewise
open problems. The author has also been unable to decide if nilpotency is recognis-
able. However, abelianity is almost determined, up to some specific cases, and via
the classification of finite simple groups; this contrasts with the situation when π is
the whole set of prime divisors of the group order, where abelianity is elementarily
recognisable. We will further comment this issue in Remark 3.10.
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2 Notation and Preliminaries

Hereafter, if x is an element of a finite group G, then we denote by xG the conjugacy
class of x in G, and its size is |xG | = |G : CCCG(x)|. We write π(G) for the set of prime
divisors of |G|. For a positive integer n and a prime number p, the p-part n p of n is the
largest power of p that divides n. In particular, if π is a set of primes, then the π -part
nπ of n is the product of n p for each prime p ∈ π . If nπ ′ = 1, then n is said to be a
π -number. As usual, the set of all Sylow p-subgroups ofG is denoted by Sylp (G), and
Hallπ (G) is the set of all Hall π -subgroups of G. A group is called π -decomposable
if it has a Hall π -subgroup as a direct factor. We recall that the hypercentre ZZZ∞(G) of
a group G is the last term of its upper central series, i.e. the last term of the series

1 � ZZZ1(G) � ZZZ2(G) � · · · ,

where ZZZ1(G) = ZZZ(G) and ZZZi+1(G) is defined by ZZZi+1(G)/ZZZi (G) = ZZZ(G/ZZZi (G)) for
every integer i ≥ 1. It is well-known that that ZZZ∞(G) is nilpotent, it is a characteristic
subgroup of G, and ZZZ∞(G) = G if and only if G is nilpotent (cf. [7]). Finally, and
as mentioned in the Introduction, we denote by Gπ the set of π -elements of G; and
if σ is another set of primes, Sσ (Gπ ) is the union of those conjugacy classes gG with
g ∈ Gπ such that |gG | is divisible by primes in σ only; thus its size is

|Sσ (Gπ )| =
∑

nσ ′=1

wG
π (n) · n,

where wG
π is the π -class size frequency function previously defined. In particular, we

will write Sq(Gπ ) when σ consists of a single prime q, and Sq ′(Gπ ) when σ = {q}′.
The remaining notation and terminology used is standard in the framework of finite
group theory.

Let us state two preliminary results that will be needed later. The first one is an
elementary lemma, whilst the second one is a celebrated theorem due to Frobenius.

Lemma 2.1 Let the finite group G = A × B be the direct product of two subgroups
A and B. Then the multiset of conjugacy class sizes in G of the elements lying in A
coincides with the multiset of class sizes of A.

Proof This follows immediately from the fact that every element x ∈ A satisfies
xG = x A. ��

Theorem 2.2 If n is a divisor of |G| for a finite group G, then the number of solutions
of xn = 1 in G is a multiple of n.

Proof See [7, 9.9 Theorem (b)] for a proof based on character theory, or [6, Theorem
9.1.2] for a group-theoretic proof. ��
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3 Proof of Main Results

We point out that the proof of Theorem A differs from that originally presented in [4];
instead, we have followed the ideas in [7, Theorem 23.5] with suitable changes.

Theorem 3.1 Let G be a group, and π a set of primes. Then for every q ∈ π it holds

|Sq(Gπ )|q = |ZZZ∞(G)|q .

In particular, a Sylowq-subgroupof G is hypercentral if and only if |G|q = |Sq(Gπ )|q .
Proof Weargue by induction on |G|. SinceSq (Gπ ) is the set ofπ -elements ofGwhose
class sizes are powers of q, then it certainly holds that |Sq(Gπ )| ≡ |ZZZ(G)|π (mod q).
Thus, if q does not divide |ZZZ∞(G)|, then it cannot divide |ZZZ(G)|π either, so
|Sq(Gπ )|q = 1 = |ZZZ∞(G)|q as wanted.

Now we may suppose that q is a prime divisor of |ZZZ∞(G)|. It is well-known that
then q also divides |ZZZ(G)| (see for instance [12, Lemma 3]), so we can take a normal
subgroup N � ZZZ(G) of order q. Let us write G = G/N . We claim that

|Sq(Gπ )| · q = |Sq(Gπ )|. (1)

Let g ∈ G, and denote by C = CCCG(g). Let α : C −→ N be the map defined
by α(x) = [g, x] ∈ N , for every x ∈ C . Since N � ZZZ(G), observe that α(xy) =
[g, xy] = [g, y][g, x]y = [g, y][g, x] = [g, x][g, y] = α(x)α(y) for every x, y ∈ C ,
so α is a group homomorphism. As ker(α) = CCCG(g), it holds that |C/CCCG(g)| divides
|N | = q.

Take g ∈ Sq(Gπ ), i.e. a π -element g ∈ G such that |gG | = qn for some integer
n ≥ 0. We may clearly assume that g is a π -element. Set N = 〈z〉. As |C/CCCG(g)|
divides |N | = q, then either C = CCCG(g) or |C | = q · |CCCG(g)|. In the former case
C = CCCG(g), and since N � ZZZ(G) and q ∈ π , then {g, gz, ..., gzq−1} are q distinct
π -elements of G, and it is not difficult to show that {gG, (gz)G, ..., (gzq−1)G} are q
distinct conjugacy classes that are preimages of gG . Moreover, they all have the same
length because |(gzi )G | = |(gG)zi | = |gG | for every 0 ≤ i ≤ q − 1, and this length
is precisely

|gG | = |G : CCCG(g)| = |G : C | = |gG |.

On the other hand, in the latter case |C | = q · |CCCG(g)|, so

|gG | = |G : CCCG(g)| = q · |G : C | = q · |G : C | = q · |gG |,

and one can check that the unique preimage of gG in this case is gG . Consequently, each
gG , where g ∈ Sq(Gπ ), yields either q conjugacy classes of π -elements of G with the

same size as |gG |, or one conjugacy class of aπ -element ofG with size exactly q ·|gG |.
Hence, for every integer i ≥ 0, we can decomposewG

π (qi ) = βG
π (qi )+γ G

π (qi ), where
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βG
π (qi ) and γ G

π (qi ) denote the number of conjugacy classes of π -elements of G that
correspond to each of the mentioned type of classes. Thus

|Sq(Gπ )| =
∞∑

i=0

qi · q · βG
π (qi ) +

∞∑

i=0

qi+1 · γ G
π (qi )

=
∞∑

i=0

qi+1 · (βG
π (qi ) + γ G

π (qi ))

= q ·
∞∑

i=0

qi · wG
π (qi )

= q · |Sq(Gπ )|,

so equation equation (1) is established. Finally, since N is central inG, thenZZZ∞(G) =
ZZZ∞(G) by the definition of the hypercentre. Now using induction and equation (1) we
obtain

|Sq(Gπ )|q = q · |Sq(Gπ )|q = q · |ZZZ∞(G)|q = q · |ZZZ∞(G)|q = |ZZZ∞(G)|q ,

as desired. The last assertion of the theorem is straightforward. ��
Remark 3.2 (1) The above theorem is simply not true whenever q /∈ π . It is enough

to consider any q-group G, which has a unique conjugacy class of π -elements
(the trivial one) with cardinality a q-power, for any set of primes π that does not
contain q, so |Sq(Gπ )| = 1 = |G|.

(2) We have previously mentioned that from the π -class size frequency function of
G it is possible to retrieve both |ZZZ(G)|π and |ZZZ∞(G)|π . However, we point out
that the π -part |ZZZi (G)|π for the intermediate terms of the upper central series of
G cannot be computed, even when π = π(G), as it was shown in [4, Example 1].

(3) If we take π = {q} for a given prime q, then Theorem 3.1 yields a q-
decomposability criterion for a group based on the multiset of class lengths of
its q-elements only.

(4) Theorem 3.1 asserts that a group is q-decomposable if and only if |Sq(Gπ )|q is as
large as possible, for any set of primes π that contains q.

The result below is [4, Theorem]. For the sake of completeness, we also give the
proof.

Corollary 3.3 Let G and H be finite groups. Suppose that G is nilpotent, and that its
conjugacy class sizes joint with their multiplicities are the same as those of H. Then
H is nilpotent.

Proof The hypotheses clearly lead to |G| = |H |, because both numbers can be com-
puted from the class sizes and their multiplicities. Since G is nilpotent, then every
Sylow subgroup of G is hypercentral, so applying Theorem 3.1 with π = π(G) it
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follows for every prime q ∈ π that |Sq(G)|q = |ZZZ∞(G)|q = |G|q . Therefore we get

|Sq(H)|q = |Sq(G)|q = |G|q = |H |q ,

where the first equality is due to our assumptions. Thus, by Theorem 3.1 again, we can
affirm that H has hypercentral Sylow subgroups for every prime q ∈ π(G) = π(H),
so H is nilpotent. ��
Proof of TheoremA Let us suppose that G and H have the same class sizes of π -
elements, taking into account their multiplicities, and that G has a hypercentral Hall
π -subgroup. Hence G = OOOπ (G)×OOOπ ′(G) withOOOπ (G) nilpotent, and by Lemma 2.1
the multiset of class sizes in G of its π -elements is actually the whole multiset of class
sizes of OOOπ (G). In particular we can compute |G|π = |OOOπ (G)|.

Since the class sizes of π -elements of H and their multiplicities are the same as
those of G, and they add up to |G|π , then applying Theorem 2.2 to H with n = |H |π
we get that the number of solutions of x |H |π = 1 in H is a multiple of |H |π . In other
words, |H |π divides the number of π -elements of H , and we have that this last number
equals |G|π . On the other hand, for every prime q ∈ π , we have

|G|q = |ZZZ∞(G)|q = |Sq(Gπ )|q = |Sq(Hπ )|q = |ZZZ∞(H)|q ,

where the first equality follows from the fact that G = OOOπ (G) ×OOOπ ′(G) with OOOπ (G)

nilpotent, the second and fourth ones are due to Theorem 3.1, and the third one is due to
our assumptions. It follows that |G|q = |ZZZ∞(H)|q divides |H |q for every q ∈ π , and
since we have also proved that |H |π divides |G|π , then we get |G|q = |ZZZ∞(H)|q =
|H |q for every q ∈ π . Thus H has a hypercentral Hall π -subgroup. ��
Remark 3.4 As discussed earlier, to generalise known results that consider the whole
multiset of class lengths is not always possible. For instance, S. Mattarei proved that
G has a Sylow q-subgroup as a direct factor if and only if the number of elements
with class lengths not divisible by q is exactly |G|q ′ · |ZZZ(G)|q , where q is a prime
number (cf. [9, Theorem 3.3]). Observe that, if G = OOOq(G) × OOOq ′(G), then in the
most extreme case with π = {q} it holds that |Sq ′(Gπ )| = |ZZZ(G)|q , so it would be
natural to wonder whether a Sylow q-subgroup is a direct factor of G if and only if
the number of q-elements with class lengths not divisible by q is exactly |ZZZ(G)|q . But
this is certainly not true, since there are two 2-elements in the group SL(2, 3) with
class sizes not divisible by 2, the order of ZZZ(G) is 2, and the Sylow 2-subgroup is not
a direct factor.

Proof of Theorem C Let q ∈ π be a prime, and Q ∈ Sylq (G). We aim to prove that
|ZZZ(G)|q divides |Sq ′(Gπ )|q , and if equality holds, then ZZZ(Q) � ZZZ(G). Set Z :=
ZZZ(G)∩ Q, so Z ∈ Sylq (ZZZ(G)) and it is a normal subgroup of G. Notice that Sq ′(Gπ )

can be written as a union of cosets of Z : this follows from the fact that, if g ∈ Sq ′(Gπ ),
since Z is a central q-group with q ∈ π , then every z ∈ Z satisfies that gz ∈ Gπ and
|(gz)G | = |(gG)z| = |gG |, so gZ ⊆ Sq ′(Gπ ). Thus the first assertion is established.

Henceforth we suppose that |ZZZ(G)|q = |Sq ′(Gπ )|q . We claim that if g ∈ Sq ′(Gπ ),
then CCCG/Z (gZ) ⊆ CCCG(g)/Z , and since the other containment is trivial, then equality
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follows. Set C/Z = CCCG/Z (gZ). Identically as in the proof of Theorem 3.1, as Z �
ZZZ(G), it holds that the map α : C −→ Z defined by α(x) = [g, x] for every x ∈ C
is a group homomorphism, whose kernel is CCCG(g). Therefore |C/CCCG(g)| divides |Z |.
But Z is a q-group, and |C/CCCG(g)| divides |G : CCCG(g)| = |gG | which is a q ′-number
because g ∈ Sq ′(Gπ ), so C = CCCG(g) as wanted.

Let us denote by A the set of cosets of Z in Sq ′(Gπ ), and consider the action of
Q/Z by conjugation on A. By the previous paragraph, we have that a coset gZ is
fixed by Q/Z if and only if Q fixes g, which happens if and only if gZ is a π -element
lying in CCCG(Q)/Z . Let us denote by t the number of π -elements in CCCG(Q)/Z . The
sizes of the orbits lead to

|Sq ′(Gπ )|/|Z | = |A| ≡ t (mod q).

Recall that Z = ZZZ(G) ∩ Q. We deduce that if |ZZZ(G)|q = |Sq ′(Gπ )|q , then t is not
divisible by q. Since t is the number of π -elements that lie in CCCG(Q)/Z , then t is
a multiple of |CCCG(Q)/Z |π by Theorem 2.2. Thus, if t is not divisible by q, then
|CCCG(Q)/Z |π is not either, so |CCCG(Q)|q = |Z |. This last feature occurs if and only if
Z = ZZZ(Q) because ZZZ(Q) is the unique Sylow q-subgroup of CCCG(Q). ��
Remark 3.5 Theorem C admits the following restatement: if |Sq ′(Gπ )|q is as small as
possible, then the unique q-elements with class size not divisible by q are the central
ones.

Example 3.6 The converse of the second assertion in Theorem C does not hold in
general. To see this, let G be the direct product of the cyclic group of order 3 and
the dihedral group of order 10. Set π = {2, 3} and q = 3. The centre of G coincides
with the unique Sylow 3-subgroup Q of G, so certainly ZZZ(Q) � ZZZ(G). Nonetheless,
|S3′(Gπ )|3 = |Gπ |3 = 183 = 9 = 3 = |ZZZ(G)|3.

We give below a sufficient condition for the converse of Theorem C to be true.

Proposition 3.7 Let G be finite group, let π be a set of primes. Let Q ∈ Sylq (G) for
a prime q ∈ π . If ZZZ(Q) � ZZZ(G) and CCCG(Q) has a normal Hall π -subgroup, then
|ZZZ(G)|q = |Sq ′(Gπ )|q .
Proof Set Z := Q ∩ ZZZ(G). If ZZZ(Q) � ZZZ(G), then Z = ZZZ(Q), and CCCG(Q)/Z is a
q ′-group. Similarly as in the proof of Theorem C, let us consider the action of Q/Z
by conjugation on the set A of cosets of Z in Sq ′(Gπ ). Hence

|Sq ′(Gπ )|/|Z | = |A| ≡ t (mod q),

where t is the number of π -elements in CCCG(Q)/Z . Since CCCG(Q)/Z has a unique Hall
π -subgroup by assumptions, then it follows t = |CCCG(Q)/Z |π . But we have seen that
CCCG(Q)/Z is a q ′-group, and then q does not divide |Sq ′(Gπ )|/|Z |, which leads to
|Z |q = |ZZZ(G)|q = |Sq ′(Gπ )|q . ��
Remark 3.8 It is significant to mention that the previous condition regarding the exis-
tence of a normal Hall π -subgroup in CCCG(Q) is trivially satisfied if π = {q}, since
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ZZZ(Q) is its unique Sylow q-subgroup. Furthermore, ifπ = π(G), then that assumption
is also superfluous, and in particular we recover [9, Theorem 3.1].

Example 3.9 The assumption in Proposition 3.7 about the existence of a normal Hall
π -subgroup in CCCG(Q) is not necessary. To see this, consider as G the direct product
of the cyclic group of order 5 and the symmetric group on three letters. Set π = {2, 5}
and q = 5. Then CCCG(Q) = G does not have a normal Hall π -subgroup, the centre of
the Sylow 5-subgroup Q of G is central, and both |ZZZ(G)|5 and |S5′(Gπ )|5 = |Gπ |5
are equal to 5.

Remark 3.10 If G is a finite group, and π = π(G), then the π -class size frequency
function undoubtedly determines the abelianity of the group. But this problem cannot
be elementary transferred to the case π � π(G). Let us suppose that G and H are two
finite groups such that, for certain subset π , their multisets of class sizes of π -elements
coincide, and G has abelian Hall π -subgroups. Then certainly the class sizes of all
π -elements of G, and so also those of H , are π ′-numbers. By [2, Theorem B], which
uses the classification of finite simple groups, it follows that H has nilpotent Hall π -
subgroups. Further, H has abelian Hall π -subgroups whenever π ∩ {3, 5} = ∅ by [2,
Theorem C]. Finally, if π ∩ {3, 5} = ∅ and H has no composition factor isomorphic
to Ru, J4, Th or 2F4(qi )′ with qi + 1 not divisible by 9, then by [11, Theorem B]
we deduce that the Hall π -subgroups of H are also abelian. Thus the open question
is whether it is possible that H has a composition factor isomorphic to one of those
types of simple groups, under the assumptions that G has abelian Hall π -subgroups
and both groups have the same multiset of class sizes of π -elements.

Acknowledgements The author would like to thank Antonio Beltrán for helpful discussions about the
paper.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Beltrán, A.: A criterion for a normal subgroup to be hypercentral based on class sizes. To appear in
Ricerche Mat. (2024). https://doi.org/10.1007/s11587-024-00856-7

2. Beltrán, A., Felipe, M.J., Malle, G., Moretó, A., Navarro, G., Sanus, L., Solomon, R., Tiep, P.H.:
Nilpotent and abelian Hall subgroups in finite groups. Trans. Am. Math. Soc. 368, 2497–2513 (2016)

3. Camina, A.R., Camina, R.D.: Recognising nilpotent groups. J. Algebra 300, 16–24 (2006)
4. Cossey, J., Hawkes, T., Mann, A.: A criterion for a group to be nilpotent. Bull. London Math. Soc. 24,

267–270 (1992)
5. Hawkes, T.: On groups with isomorphic complex group algebras. J. Algebra 167, 557–577 (1994)
6. Hall, M.: The theory of groups. The Macmillan Company, New York (1959)
7. Huppert, B.: Character theory of finite groups. Walter de Gruyter, Berlin (1998)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11587-024-00856-7


  157 Page 10 of 10 V. Sotomayor

8. Isaacs, I.M.: Recovering information about a group from its complex group algebra. Arch. Math. 47,
293–295 (1986)

9. Mattarei, S.: Retrieving information about a group from its character degrees or from its class sizes.
Proc. Amer. Math. Soc. 134, 2189–2195 (2006)

10. Navarro, G.: The set of conjugacy class sizes of a finite group does not determine its solvability. J.
Algebra 411, 47–49 (2014)

11. Navarro, G., Solomon, R., Tiep, P.H.: Abelian sylow subgroups in finite groups, II. J. Algebra 421,
3–11 (2015)

12. Peng, T.A.: The hypercenter of a finite group. J. Algebra 48, 46–56 (1977)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Determining Hypercentral Hall Subgroups in Finite Groups
	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Proof of Main Results
	Acknowledgements
	References


