
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/208332

Felipe Román, MJ.; Pérez-Ramos, MD.; Sotomayor, V. (2023). On G-character tables for
normal subgroups. Quaestiones Mathematicae. 46(4):721-743.
https://doi.org/10.2989/16073606.2022.2040633

https://doi.org/10.2989/16073606.2022.2040633

Informa UK (National Inquiry Services Center)



On G-character tables for normal subgroups

M.J. Felipe ∗ · M.D. Pérez-Ramos � · V. Sotomayor ∗

Abstract

Let N be a normal subgroup of a finite group G. From a result due to Brauer, it
can be derived that the character table of G contains square submatrices which are
induced by the G-conjugacy classes of elements in N and the G-orbits of irreducible
characters of N . In the present paper, we provide an alternative approach to this
fact through the structure of the group algebra. We also show that such matrices are
non-singular and become a useful tool to obtain information of N from the character
table of G.

Keywords Finite groups · Group algebra · Irreducible characters · Normal sub-
groups · Conjugacy classes

2010 MSC 20C15 · 20E45 · 20C05

1 Introduction

In the sequel, all groups considered are finite. In general, if N is a normal subgroup
of a group G, the character table of N can not be computed from the one of G. However,
normal subgroups are clearly detected from the character table of the group, as inter-
sections of kernels of irreducible characters. If we consider the action by conjugation of
G on N , then the orbits are the conjugacy classes of G which are contained in N , i.e.
conjugacy classes xG = {xg | g ∈ G} with x ∈ N , the so-called G-conjugacy classes of
N . Since N is the union of those G-conjugacy classes, it is natural to wonder whether
those columns of the character table of G provide structural information of N . In this
setting, for instance, recent investigations show that the sizes of the G-conjugacy classes
are related to the structure of N , though one easily checks that the prime divisors of the
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sizes of the G-conjugacy classes may even not divide the order of N . We refer to [1] for
a survey about the influence of conjugacy classes contained in normal subgroups on the
normal structure of the group, mainly focusing on the framework of graphs associated
to the conjugacy classes. Further, the authors of [4] analysed normal subgroups N of a
group G that contain (non-)vanishing G-conjugacy classes. This turns out to be closely
related to the research presented in this paper (see Remark 4.7).

Conjugation of G on N clearly induces an action of G on the set of conjugacy classes
of N , and G-conjugacy classes are in one-to-one correspondence with the orbits of that
action, since each G-conjugacy class appears as the union of the elements of one of those
orbits. More precisely, if x ∈ N , then xG =

⋃r
i=1(x

N )hi =
⋃r
i=1(x

hi)N , for suitable
elements hi ∈ G, 1 ≤ i ≤ r, where we may assume h1 = 1; in particular, |xG| = r|xN | for
some integer r ≥ 1. Clifford’s theorem (c.f. [8, Theorems (6.2), (6.5)] for the character
and module theoretic settings, respectively) may be seen as a character version of this
easy fact on conjugacy classes, as follows.

The group G acts by conjugation on the set Irr(N) of irreducible complex characters
of N . We recall that if θ is a class function of N and g ∈ G, then θg is the class function
conjugate to θ, defined as θg(x) = θ(gxg−1) for all x ∈ N . If θ ∈ Irr(N), then θg ∈ Irr(N)
and θ̂ =

∑t
i=1 θ

gi is a minimal G-invariant character of N (see Sections 4 and 5), where
{θgi | i = 1, . . . , t} = {θg | g ∈ G} is the orbit of θ under the action by conjugation ofG on
Irr(N), being the set {gi ∈ G | i = 1, . . . , t} a right transversal in G of IG(θ) = {g ∈ G |
θg = θ}, the inertia subgroup of θ in G. Clifford’s theorem (see [8, Theorem (6.2)]) states
that irreducible characters χ ofG whose restrictions χN toN have θ as constituent satisfy
χN = e θ̂ for suitable integers e, known as ramification numbers. This fact introduces an
equivalence relation (respect to N) on the set Irr(G) of irreducible complex characters of
G, being two elements equivalent if their restrictions to the normal subgroup N have a
common irreducible constituent (Definition 4.3). In this case, the equivalence classes of
irreducible characters of G are in one-to-one correspondence with the orbits of irreducible
characters of N under the action of G by conjugation, by Clifford’s theorem.

Now, from the character table of G, if we focus on the G-conjugacy classes that make
up N , then by taking one character in each of those equivalence classes, we obtain a
submatrix which is associated to the normal subgroup N . We call these submatrices
the G-character tables of N (Definition 4.4), and they happen to be square matrices,
since the numbers of orbits in the actions of G on the irreducible characters and on the
conjugacy classes of N are equal, by a result due to Brauer (Theorem 2.5, Corollary 2.6).

In the present paper, we provide an alternative proof of this last fact in a module
theoretic setting, analysing the structure of the subalgebra ZZZ(K[G])∩K[N ] of the group
algebra K[G] over a splitting field K for G (in particular, if K is algebraically closed)
with characteristic not dividing the order of G. It is well-known that the formal sums
of the elements in the conjugacy classes of G form a basis for ZZZ(K[G]), the center of
the group algebra of G over K, whose dimension then coincides with the number of
conjugacy classes of G as well as with the number of pairwise non-isomorphic irreducible
K[G]-modules. Now it turns out that the formal sums of the elements in the G-conjugacy
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classes that built N form a basis for ZZZ(K[G])∩K[N ], and it is also proven that the dimen-
sion of this algebra coincides with the number of minimal G-invariant K[N ]-modules, up
to isomorphism, which is equal to the number of orbits in the action by conjugation of
G on the set of irreducible K[N ]-modules, by Clifford’s theorem. (See Sections 2 and 3,
Lemma 3.1 and Theorem 3.3.) In particular, when K = C is the complex field, it follows
that the G-character tables of N are square, as mentioned.

We show then in Section 4 how the character table of G nicely displays the set of ir-
reducible characters of G with a common irreducible constituent when restricting to the
normal subgroup N , as well as the relations between their ramifications numbers (Corol-
lary 4.6). Also as applications, we prove that the G-character tables are non-singular,
and we obtain some arithmetical relations among significant integers associated to the
normal subgroup N as, for instance, its character degrees, the indices in G of the inertia
subgroups of its irreducible characters and the ramification numbers, and these relations
can be read off a G-character table of N (Theorem 4.8, Corollary 4.10). In particular, it
will be possible to know from the character table of G whether χN ∈ Irr(N) if χ ∈ Irr(G)
(Corollary 4.9), and we will be able to compute the exact values of those parameters in
some occasions, as for instance for normal Hall subgroups (Remark 4.12). Also we show
that the prime divisors of the degrees of the minimal G-invariant characters of a normal
subgroup N are known from the character table of the group G (Corollary 4.11).

In Section 5, the minimal G-invariant characters are proven to form a basis of the C-
vector space of the G-invariant class functions of N (Proposition 5.2), and they become
relevant to G-character tables by playing the role that irreducible characters do to the
character table of a group. They can be used as row indexes of the so called G-invariant
table of a normal subgroup (Definition 5.1), which is proven to be a useful tool. It is
first applied to give an extension of the aforementioned Brauer’s result (Theorem 5.3).
As a consequence we obtain that the number of rows of the G-character tables that are
real valued (i.e. the number of real valued minimal G-invariant characters) coincides
with the number of G-conjugacy classes of N that are real (i.e. the G-conjugacy classes
xG such that xG = (x−1)G, where x ∈ N) (Corollary 5.4). Indeed, we show that real
G-conjugacy classes of normal subgroups can provide structural information about the
subgroup, consistent with previous results about the relation between the number of real
conjugacy classes and the structure of groups (Lemma 5.6, Corollary 5.7). Finally, in the
last section, some examples are provided which show the scope of the results presented.

To close with, we mention that the notation and terminology used are standard
within theories of groups and representations, and they are taken mainly from the books
[8], [7] and [5].

2 Preliminaries

We gather some notation, basic concepts and facts about algebras and modules which
are used in the paper. In the following, K always denote a field and, for any group X,
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the group algebra over K is denoted by K[X]. In general, K-algebras A are considered
with identity 1A, and both them and their modules have finite dimension as K-vector
spaces. If A is a K-algebra, V is an A-module and M is an irreducible A-module, the M -
homogeneous component of V is HV (M) =

∑
{X | X is an A-submodule of V, V ∼= M}

the sum of all those submodules of V which are isomorphic to M . An A-module V
is understood to be completely reducible if it is a sum of irreducible A-submodules or,
equivalently, if V = V1⊕ · · · ⊕Vr is a direct sum of irreducible A-submodules V1, . . . , Vr.
It is worth noticing that HV (M) =

⊕
{Vi | Vi ∼= M}; in particular, every completely

reducible A-module is a direct sum of its homogeneous components.

First we establish a version for modules of the facts about characters mentioned in
the Introduction. Let N be a normal subgroup of a group G, and let W be a K[N ]-
module. Let W be a copy of the K-vector space W , and let w denote the image of each
w ∈ W under some K-linear isomorphism from W to W . For a fixed element g ∈ G
define an action of N on W by

wn = w (gng−1)

for all w ∈ W and n ∈ N . Then W becomes a K[N ]-module under this action, called
the conjugate module of W by g and denoted by W g ([5, B. Definition (7.2)]).

It is worth noticing that if W is a K[N ]-submodule of a K[G]-module V , then Wg =
{wg | w ∈W} ⊆ V is a K[N ]-submodule of V isomorphic to W g. The inertia subgroup of
W in G is the subgroup of G defined as IG(W ) = {g ∈ G |W g ∼= W as K[N ]-modules}.
The module W is said to be G-invariant if W g is isomorphic to W for all g ∈ G, i.e. if
IG(W ) = G.

If W is an irreducible K[N ]-module and g ∈ G, then W g is also irreducible, and so
conjugation defines an action of the group G on the set of irreducible K[N ]-modules.
The orbit of W , up to isomorphims of K[N ]-modules, is the set {W gi | i = 1, . . . , t}
where the set {gi ∈ G | i = 1, . . . , t} is a right transversal in G of IG(W ). The following
result is easily checked.

Lemma 2.1. With the notation above, the following assertions hold:

1. The module Ŵ :=
⊕t

i=1W
gi is a minimal G-invariant K[N ]-module.

2. Every minimal G-invariant K[N ]-module can be constructed from one orbit of irre-
ducible modules in this way, and this defines a one-to-one correspondence between
the set of orbits in the action by conjugation of G on the set of irreducible K[N ]-
modules and the set of minimal G-invariant K[N ]-modules (up to isomorphism).

3. Every completely reducible G-invariant K[N ]-module is a direct sum of minimal
G-invariant K[N ]-modules.

From Clifford’s theorem (c.f. [8, Lemma (6.4), Theorem (6.5)]) the following connec-
tion with irreducible K[G]-modules is easily established. For notation, if e is a positive

integer and V is any module, e V = V ⊕ e· · · ⊕V denotes the direct sum of e copies of V .
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Lemma 2.2. Let N be a normal subgroup of a group G. For irreducible K[G]-modules
V and U the following statements are equivalent:

(i) The restricted K[N ]-modules VN and UN , i.e. the modules V and U viewed as
K[N ]-modules, have a common irreducible K[N ]-submodule (up to isomorphism).

(ii) There exist an irreducible K[N ]-submodule W and positive integers eV and eU such

that VN ∼= eV Ŵ and UN ∼= eU Ŵ .

(iii) There are positive integers eV and eU such that eU VN ∼= eV UN .

The previous lemma allows us to introduce an equivalence relation on the set of
irreducible K[G]-modules as follows:

Definition 2.3. Let N be a normal subgroup of a group G. Two irreducible K[G]-
modules V and U are defined to be equivalent respect to N if they satisfy any of the
conditions in Lemma 2.2.

It is worth emphasizing the following fact: The equivalence class of each irreducible
K[G]-module V is associated to a minimal G-invariant K[N ]-module Ŵ , with W an
irreducible K[N ]-submodule of VN , and this defines a one-to-one correspondence between
the set of equivalence classes of irreducible K[G]-modules and the set of minimal G-
invariant K[N ]-modules (up to isomorphism).

We will make use of the structure of semisimple algebras that we gather in the
next result, which includes Wedderburn’s theorem. An algebra A is understood to be
semisimple if the regular A-module A, i.e. A itself viewed as A-module under right
multiplication, is completely reducible. If M is an A-module, then HA(M) is the M -
homogeneous component of A as regular module. We refer to [8, Theorem (1.15) and
Corollary (1.17)] and to [7, V. Satz (3.8), Hauptsazt (4.4), Satz (4.5)] for details.

Theorem 2.4. Let A be a semisimple K-algebra. Then:

(a) There is a positive integer h and minimal bilateral ideals A1, . . . , Ah such that
A =

⊕h
i=1Ai. For i 6= j it holds that AiAj = 0. Moreover, each bilateral ideal of

A is a direct sum of some of A1, . . . , Ah.

(b) There exist exactly h pairwise non-isomorphic irreducible A-modules V1, . . . , Vh,
and w.l.o.g. Ai = HA(Vi) for each i = 1, . . . , h. If V is an irreducible A-module,
then V Ai = 0 for i = 1, . . . , h, unless V ∼= Vi.

(c) Each Ai is a K-algebra isomorphic to EndDi(Vi), the algebra of Di-endomorphisms
of Vi, for the division algebra Di = EndA(Vi).

(d) Each Ai is an algebra with identity element 1Ai = ei, being 1A = e1 + · · ·+ eh with
ei ∈ Ai for each i = 1, . . . , h.

Whenever Di
∼= K, for some i ∈ {1, . . . , h}, then Ai ∼= EndK(Vi), and ZZZ(Ai) ∼= K, being

ZZZ(Ai) = {x ∈ Ai | xy = yx for all y ∈ Ai} the center of the algebra Ai. This holds, in
particular, if K is algebraically closed.
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Finally, we state Brauer’s result cited in the Introduction.

Theorem 2.5. [8, Theorem (6.32), Corollary (6.33)] Let A be a group that acts on Irr(G)
and on the set of conjugacy classes of a group G. Assume that χa(ga) = χ(g) for all
χ ∈ Irr(G), g ∈ G and a ∈ A, where ga is an element of the conjugacy class (gG)a. Then
for each a ∈ A, the number of fixed irreducible characters of G is equal to the number of
fixed conjugacy classes.

Consequently, the numbers of orbits in the actions of A on Irr(G) and on conjugacy
classes of G are equal.

Corollary 2.6. If N is a normal subgroup of a group G, then the numbers of orbits in
the actions by conjugation of G on Irr(N) and on the set of conjugacy classes of N are
equal.

Proof. Notice that, by the definition of conjugate character, the considered actions
satisfy the required condition in Theorem 2.5.

Remark 2.7. According to Brauer’s theorem, if N is a normal subgroup of a group G,
and we consider the action by conjugation of G on Irr(N) and on the set of conjugacy
classes of N , for each g ∈ G, then the number of fixed irreducible characters of N is equal
to the number of fixed conjugacy classes of N , but it is not difficult to find examples
showing that the number of conjugacy classes of N that are invariant under the action of
G may not coincide with the number of irreducible characters of N that are G-invariant.
For instance, let N = 〈a〉×〈b〉×〈c〉 be a 2-elementary abelian group. Consider the action
of a cyclic group H = 〈x〉 of order 4 on N , in such way that ax = ab, bx = bc, cx = c.
Let G = N oH be the corresponding semidirect product. One can check, for instance
by using GAP, that the mentioned numbers are not equal for the normal subgroup N .

3 The algebra ZZZ(K[G]) ∩K[N ]

Let K = xG be the conjugacy class in the group G of an element x ∈ G, and
let us denote its formal sum in the group algebra by K̂ =

∑
g∈G x

g ∈ K[G]. It is a
fact of common knowledge that the algebra ZZZ(K[G]) is generated by the set of formal
sums of the conjugacy classes of G. Further, its dimension is equal to the number of
non-isomorphic irreducible K[G]-modules, if in addition K is a splitting field for the
group G, i.e. EndK[G](V ) ∼= K for any irreducible K[G]-module V , in particular, if K is
algebraically closed, and the characteristic of K does not divide the order of G.

Our main goal in this section is to carry out an analogous study for the subalgebra
ZZZ(K[G]) ∩ K[N ] for a normal subgroup N of G. We split our development into the
following two results.

Lemma 3.1. Let N be a normal subgroup of a group G, and K be a field. Let {K1, . . . ,Kl}
be the set of G-conjugacy classes of N , and let K̂i be the formal sum of Ki in K[G], for

each i = 1, . . . , l. Then {K̂1, . . . , K̂l} forms a basis of the K-algebra ZZZ(K[G]) ∩K[N ].
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Proof. Let {K1, . . . ,Kl, . . . ,Kh} be the set of conjugacy classes of G, so Ki ⊆ N

precisely when 1 ≤ i ≤ l. We know that {K̂1, . . . , K̂l} ⊆ ZZZ(K[G]) ∩ K[N ] is a K-linear
independent set. If x ∈ ZZZ(K[G]) ∩K[N ] ⊆ ZZZ(K[G]), then

x = α1K̂1 + · · ·+ αhK̂h,

for suitable α1, . . . , αh ∈ K. Moreover, x ∈ K[N ] can be uniquely written as x =∑
n∈N βn n with βn ∈ K. Since K̂i ⊆ N if 1 ≤ i ≤ l, we deduce that αi = 0 whenever

l + 1 ≤ i ≤ h, so {K̂1, . . . , K̂l} is a basis of ZZZ(K[G]) ∩K[N ].

Next we introduce some notation, which will be used in the statement of our main
result, Theorem 3.3.

Notation 3.2. Let K denote a splitting field for a group G, whose characteristic does
not divide the order of G, which implies by Maschke’s theorem that the group algebra
K[G] is semisimple. Hence Theorem 2.4 applies for the group algebra K[G].

Since the number of non-isomorphic irreducible K[G]-modules is finite, let the positive
integer k denote the number of equivalence classes in the equivalence relation respect to
a normal subgroup N , on the set of irreducible K[G]-modules (Definition 2.3). For each
i = 1, . . . , k, let {Vi1, . . . , Visi}, for some positive integer si, denote a system of pairwise
non-isomorphic irreducible K[G]-modules in the same equivalence class, and set

Ti := HK[G](Vi1)⊕ · · · ⊕HK[G](Visi), and Li := Ti ∩K[N ],

which are bilateral ideals of K[G] and K[N ], respectively.

Theorem 3.3. Let N be a normal subgroup of a group G. With Notation 3.2, the
following statements hold:

(a) K[N ] = L1 ⊕ · · · ⊕ Lk.

(b) ZZZ(K[G]) ∩K[N ] = (L1 ∩ZZZ(T1))⊕ · · · ⊕ (Lk ∩ZZZ(Tk)).

(c) dimK(Li ∩ZZZ(Ti)) = 1, for every i = 1, . . . , k.

(d) dimK(ZZZ(K[G])∩K[N ]) = k, which is equal to the number of non-isomorphic mini-
mal G-invariant K[N ]-modules, as well as to the number of orbits in the action by
conjugation of G on the set of irreducible K[N ]-modules.

Proof. Following Notation 3.2, let us consider

K[G] = T1 ⊕ · · · ⊕ Ti ⊕ · · · ⊕ Tk =
k⊕
i=1

(
HK[G](Vi1)⊕ · · · ⊕HK[G](Visi)

)
.

According to Lemmas 2.2 and 2.1, for each i = 1, . . . , k, and each j = 1, . . . , si, we have
that

(Vij)N ∼= eijŴi1 = eij(Wi1 ⊕ · · · ⊕Witi),
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for suitable positive integers eij and ti, and being Ŵi1 and {Wi1, . . . ,Witi}, respectively,
the corresponding minimal G-invariant K[N ]-module and orbit in the action of G by
conjugation on the set of irreducible K[N ]-modules, up to isomorphism of K[N ]-modules.

By the generalization for modules of the Frobenius reciprocity theorem, due to
Nakayama, it follows that

k⋃
i=1

{Wi1, . . . ,Witi}

is a complete system of pairwise non-isomorphic irreducible K[N ]-modules. (See [5, B.
Theorem 6.11].) Therefore,

K[N ] = A1 ⊕ · · · ⊕Ai ⊕ · · · ⊕Ak =

k⊕
i=1

(
HK[N ](Wi1)⊕ · · · ⊕HK[N ](Witi)

)
,

being Ai := HK[N ](Wi1)⊕· · ·⊕HK[N ](Witi) bilateral ideal of K[N ], for each i ∈ {1, . . . , k}.

Let i ∈ {1, . . . , k}. We claim that Ai = Li := Ti ∩K[N ]. Let C := K[G]N (that is, C
denotes K[G] viewed as K[N ]-module). Then

C = R1 ⊕ · · · ⊕Ri ⊕ · · · ⊕Rk =
k⊕
i=1

(
HC(Wi1)⊕ · · · ⊕HC(Witi)

)
,

being Ri := HC(Wi1) ⊕ · · · ⊕ HC(Witi), which is a K[N ]-submodule of C, for each
i ∈ {1, . . . , k}. Since K[N ] ⊆ C, it is clear that Ai ⊆ Ri. Besides, Ti ⊆ Ri. Hence, by
Dedekind’s identity, we have

Ri = Ri ∩K[G] = Ri ∩ (T1 ⊕ · · · ⊕ Tk) = Ti ⊕ (Ri ∩
⊕
j 6=i

Tj).

Let us prove that Si := Ri ∩
⊕

j 6=i Tj = 0. Arguing by contradiction, suppose that
Si 6= 0, and let W be an irreducible K[N ]-submodule of Si. Then W ⊆ Ri, so W ∼= Wis

for some s ∈ {1, . . . , ti}. Since additionally W ⊆
⊕

j 6=i Tj , we have W ∼= Wjr, for some
j 6= i and r ∈ {1, . . . , tj}, which is a contradiction. Thus Si = 0 and Ai ⊆ Ri = Ti. It
can analogously be proven that Ti ∩

⊕
j 6=iAj = 0, so that

Li = Ti ∩K[N ] = Ti ∩ (A1 ⊕ · · · ⊕Ak) = Ai ⊕ (Ti ∩
⊕
j 6=i

Aj) = Ai,

which proves the claim. Since K[N ] = A1 ⊕ · · · ⊕Ai ⊕ · · · ⊕Ak, Part (a) follows.

In order to prove part (b), we notice that TiTj = 0, whenever i 6= j, from Theo-
rem 2.4(a). Then, since K[G] = T1⊕· · ·⊕Tk, it follows that ZZZ(K[G]) = ZZZ(T1)⊕· · ·⊕ZZZ(Tk),
and so

K[N ] ∩ZZZ(K[G]) = (L1 ⊕ · · · ⊕ Lk) ∩ (ZZZ(T1)⊕ · · · ⊕ZZZ(Tk)) =

=

k⊕
i=1

Li ∩ZZZ(Ti) =

k⊕
i=1

CCCLi(Ti),
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being CCCLi(Ti) = {x ∈ Li | xy = yx for all y ∈ Ti}, and where the second equality
follows from the uniqueness of the decomposition of the elements within the direct sum
T1 ⊕ · · · ⊕ Tk, as Li ⊆ Ti for each i = 1, . . . , k. Part (b) is now proven.

Part (d) is clearly a consequence of Part (c) together with Lemmas 2.2 and 2.1. So
we finally prove Part (c). Let i ∈ {1, . . . , k}. We aim to prove that dimK(CCCLi(Ti)) = 1.

We claim first that CCCLi(Ti) 6= 0. Observe that K[G] and K[N ] are two K-algebras
with identity element 1 = 1G = 1K[G] = 1K[N ]. Moreover, 1 = 1L1 + · · · + 1Lk =
1T1 + · · · + 1Tk being 1Lj ∈ Lj and 1Tj ∈ Tj the identity elements of the K-algebras Lj
and Tj , respectively, for each for j ∈ {1, . . . , k}, by Theorem 2.4(a). Since 1Li ∈ Li ⊆ Ti,
it follows that 1Li = 1Ti ∈ CCCLi(Ti) 6= 0, which proves the claim.

Since Ti := HK[G](Vi1) ⊕ · · · ⊕ HK[G](Visi), we derive from Theorem 2.4(a),(c), and
the fact that K is a splitting field for G, that ZZZ(HK[G](Vij)) ∼= K for all j = 1, . . . , si, and

CCCLi(Ti) ⊆ ZZZ(Ti) =

si⊕
j=1

ZZZ(HK[G](Vij)) ∼= K⊕ si· · · ⊕K.

For each j = 1, . . . , si, set Zij := ZZZ(HK[G](Vij)). Let

in : CCCLi(Ti) −→
si⊕
j=1

Zij πr :

si⊕
j=1

Zij −→ Zir

be the natural injection and projection of the direct sum, respectively, for each r ∈
{1, . . . , si}, i.e. in(x) = x for every x ∈ CCCLi(Ti), and πr(

∑si
j=1 xj) = xr for every

xj ∈ Zij , 1 ≤ j ≤ si. Let us consider the induced projection πr ◦ in : CCCLi(Ti)→ Zir, for
each r = 1, . . . , si, which is a K-linear map.

If si = 1, it is clear that dimK(CCCLi(Ti)) = 1, and we are done. Hence, we may

assume that si ≥ 2. We show next that CCCLi(Ti) is a subdirect product of

si⊕
j=1

Zij , i.e.

(πr ◦ in)(CCCLi(Ti)) = Zir for all r = 1, . . . , si. In order to show that πr ◦ in is onto, let us
suppose by contradiction that (πr ◦ in)(CCCLi(Ti)) = 0, for some r ∈ {1, . . . , si}. Hence

CCCLi(Ti) ⊆ K[N ] ∩

 si⊕
j=1
j 6=r

Zij

 ⊆ K[N ] ∩

 si⊕
j=1
j 6=r

HK[G](Vij)

 .

We claim that this last intersection is trivial, which will imply the contradiction CCCLi(Ti) =
0. More generally, we are going to prove that for every I ( {1, . . . , si} it holds

CIi := K[N ] ∩

 ⊕
j∈I({1,...,si}

HK[G](Vij)

 = 0.

9



Suppose that CIi 6= 0 for some I ( {1, . . . , si}. We notice that CIi is a bilateral ideal
of K[N ] by Theorem 2.4(a),(b). Moreover, CIi ⊆ K[N ] ∩ Ti = Li = HK[N ](Wi1) ⊕ · · · ⊕
HK[N ](Witi). Again, by the structure of the semisimple algebra K[N ], Theorem 2.4(a),(b)

implies that CIi is sum of some of the homogenous componentsHK[N ](Wi1), . . . ,HK[N ](Witi)

of K[N ]. W.l.o.g. assume that HK[N ](Wi1) ⊆ CIi .

Now if we take l ∈ {1, . . . , si}\I, thenHK[G](Vil)HK[N ](Wi1) = 0 by Theorem 2.4(a),(b).
In particular, if we consider Vil as K[N ]-module, then VilHK[N ](Wi1) = 0, so that
HK[N ](Wi1) ⊆ AnnK[N ](Vil) = {x ∈ K[N ] | Vilx = 0}, the annihilator of Vil as K[N ]-

module. We observe that AnnK[N ](Vil) =
⋂ti
m=1 AnnK[N ](Wim), and so

AnnK[N ](Vil) = AnnK[N ](Vij)

for all j ∈ {1, . . . , si}. Thus, TiHK[N ](Wi1) = 0. In particular, since HK[N ](Wi1) ⊆
Li ⊆ Ti, we deduce that HK[N ](Wi1) = 1TiHK[N ](Wi1) = 0, which is a contradiction.

We obtain therefore that CIi = 0. This implies in particular the claim, and so the
contradiction CCCLi(Ti) = 0, which proves that πr ◦ in is onto.

We consider π1 ◦ in, which is onto with kernel

CCCLi(Ti) ∩Ker(π1) = CCCLi(Ti) ∩

(
si⊕
s=2

Zis

)
⊆ K[N ] ∩

(
si⊕
s=2

HK[G](Vis)

)
= 0.

Hence, π1 ◦ in is an isomorphism, and then dimK(CCCLi(Ti)) = 1, as wanted.

Certainly, Theorem 3.3 applies for the group algebra C[G] over the field K = C of
complex numbers. Lemma 3.1 and Theorem 3.3 provide in particular an alternative
proof for Corollary 2.6, without using character theory.

4 G-character tables of normal subgroups

In the rest of the paper we focus on characters of groups, which are always considered
over the field C of complex numbers. We adhere to [8] as main reference on this theory.
We state versions for characters of Lemmas 2.1 and 2.2.

Let N be a normal subgroup of a group G. Let θ ∈ Irr(N) and {θgi | i = 1, . . . , t}
be the orbit of θ under the action by conjugation of G on Irr(N), where {gi ∈ G | i =
1, . . . , t} is a right transversal in G of IG(θ). We say that a character ϑ of N is minimal
G-invariant if it is G-invariant, i.e. ϑg = ϑ for all g ∈ G, and there is no G-invariant
constituent of ϑ, different of ϑ.

Lemma 4.1. With the notation above, the following assertions hold:

1. The character θ̂ :=
∑t

i=1 θ
gi is a minimal G-invariant character of N .
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2. Every minimal G-invariant character of N can be constructed from one orbit of
irreducible characters in this way, and this defines a one-to-one correspondence
between the set of orbits in the action by conjugation of G on Irr(N) and the set
of minimal G-invariant characters of N .

3. Every G-invariant character of N is a sum of minimal G-invariant characters of
N .

From now on, for any θ ∈ Irr(N) and with the previous notation, we write θ̂ =∑t
i=1 θ

gi for the minimal G-invariant character of N corresponding to the orbit of θ in
the action by conjugation of G on Irr(N).

Lemma 4.2. Let N be a normal subgroup of a group G. For χ, φ ∈ Irr(G) the following
statements are equivalent:

(i) [χN , φN ] 6= 0.

(ii) There exist θ ∈ Irr(N) and positive integers eχ and eφ such that χN = eχ θ̂ and

φN = eφ θ̂.

(iii) There is a rational number c such that χN = c φN .

The previous lemma allows to introduce an equivalence relation on the set Irr(G) as
follows:

Definition 4.3. Let N be a normal subgroup of a group G. Two irreducible characters
χ, φ of G are defined to be equivalent respect to N if they satisfy any of the conditions
in Lemma 4.2.

It is worth emphasizing the following facts: The equivalence class of each χ ∈ Irr(G) is
associated to a minimal G-invariant character θ̂ of N , with θ an irreducible constituent of
χN , and this defines a one-to-one correspondence between the set of equivalence classes of
irreducible characters of G and the set of minimal G-invariant characters of N . Besides,
the equivalence class of each χ ∈ Irr(G) is the set Irr(G|θ) = {φ ∈ Irr(G) | [φN , θ] 6= 0}.

In view of the previous two results, we introduce the following concept.

Definition 4.4. Let N be a normal subgroup of a group G. A G-character table of
N is any (square) matrix X = (xij) ∈ Mk(C) with entries

xij = χi(nj), 1 ≤ i, j ≤ k,

where {nG1 , . . . , nGk } is the set of G-conjugacy classes of N and ∆ = {χ1 = 1G, χ2, . . . , χk}
denotes a representative system of the equivalence classes in the equivalence relation
respect to N , defined on Irr(G).

In the next results we will adhere to the following notation.
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Notation 4.5. Let N be a normal subgroup of a group G. Denote:

• {nG1 , . . . , nGk } the set of G-conjugacy classes of N ;

• D = (dij) a diagonal matrix with entries dij = δij |nGi |, where δij is the Kronecker
delta function, for i, j ∈ {1, . . . , k};

• ∆ = {χ1 = 1G, χ2, . . . , χk} a representative system of the equivalence classes in
the equivalence relation respect to N , defined on Irr(G);

• Ω = {θi ∈ Irr(N) | 1 ≤ i ≤ k} such that χi ∈ Irr(G|θi), for each i ∈ {1, . . . , k};

• ti = |G : IG(θi)|, ei = [(χi)N , θi] 6= 0, 1 ≤ i ≤ k.

• λi = |N | tie2i , 1 ≤ i ≤ k.

• X the G-character table of N constructed from ∆, and X
t

its transposed conjugate

matrix; i.e if X = (xij), then X
t

= (yij) being yij = xji the complex conjugate of
xji, 1 ≤ i, j ≤ k.

With this notation, we observe that the number of possible G-character tables (not
necessarily different) of N is

∏k
i=1 |Irr(G|θi)|, where θi ∈ Irr(N) such that [χiN , θi] 6= 0,

for each i = 1, . . . , k.

If we consider the submatrix Y of the character table of G defined by the columns
corresponding to the G-conjugacy classes of the normal subgroup N , then by Lemma 4.2
one just need to look at the proportional rows of Y to identify the equivalence classes
in the equivalence relation respect to N , defined on Irr(G), and to know their sizes
as well as the relations between the ramification numbers corresponding to equivalent
irreducible characters of G respect to N . We gather these facts in the next corollary.

Corollary 4.6. Let N be a normal subgroup of a group G. The equivalence classes in
the equivalence relation respect to N , defined on Irr(G), are detected in the character
table of the group G. In particular, with Notation 4.5, the size of Irr(G|θi), for every
θi ∈ Ω, is determined by the character table of G, as well as the rational numbers

eχ
eφ

whenever χ, φ ∈ Irr(G|θi), with χN = eχ θ̂i and φN = eφ θ̂i.

Remark 4.7. We emphasize the information that G-character tables of normal sub-
groups can contribute in the study of the normal structure of groups and the influence
of G-conjugacy classes. For instance, from Theorem A of [4] one easily deduce that if a
G-character table (and therefore all of them) of a normal subgroup N of the group G
has no zeros, then N is nilpotent.

In the next theorem, we prove that G-character tables are non-singular matrices.
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Theorem 4.8. With Notation 4.5, it holds that ΛX := XDX
t

= diag(λ1, . . . , λk) is a
diagonal matrix with entries

λi = |N | tie2i , 1 ≤ i ≤ k.

In particular, X is non-singular.

Proof. Let χi, χj ∈ ∆. Then there exist elements g1 = 1, g2, . . . , gti , h1 = 1, h2, . . . , htj ∈
G such that

χi(x) = ei(θ
g1
i (x) + θg2i (x) + · · ·+ θ

gti
i (x)),

and
χj(x) = ej(θ

h1
j (x) + θh2j (x) + · · ·+ θ

htj
j (x)),

for all x ∈ N . If i 6= j, then by the orthogonality relations we obtain

∑
x∈N

χi(x)χj(x) =
∑
x∈N

eiej

ti∑
r=1

tj∑
s=1

θgri (x)θhsj (x)

= eiej

ti∑
r=1

tj∑
s=1

(∑
x∈N

θgri (x)θhsj (x)

)

= eiej

ti∑
r=1

tj∑
s=1

|N | [θgri , θ
hs
j ] = 0.

If i = j, then we get

∑
x∈N

χi(x)χi(x) =
∑
x∈N

e2i

ti∑
r=1

ti∑
s=1

θgri (x)θgsi (x) = e2i

ti∑
r=1

ti∑
s=1

(∑
x∈N

θgri (x)θgsi (x)

)
=

= e2i

ti∑
r=1

(∑
x∈N

θgri (x)θgri (x)

)
= e2i ti |N | .

Thus, if χi, χj ∈ ∆, it follows e2i ti|N |δij =
∑

x∈N χi(x)χj(x) =
∑k

s=1 |nGs |χi(ns)χj(ns),
and the first assertion follows. In particular, the determinant of XDX

t
is non-zero, and

therefore X is non-singular.

As a first consequence we notice that a G-character table of N allows to know whether
an irreducible character of G restricts into an irreducible character of N .

Corollary 4.9. With Notation 4.5, let χ ∈ Irr(G) and i ∈ {1, . . . , k} such that χ = χi ∈
∆. Then χN ∈ Irr(N) if and only if λi = |N |.

From Theorem 4.8 we deduce that some arithmetical relations between the afore-
mentioned integers ti, ei and θi(1) can be read off the matrix ΛX, for the G-character
table X of N .
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Corollary 4.10. With Notation 4.5, the next integer relations hold, where the corre-
sponding right sides can be computed from the matrix ΛX, for the G-character table X of
N :

e2i ti =
λi
|N |

(Ai)

tiθi(1)2 =
|N |χi(1)2

λi
(Bi)

θi(1)

ei
=
|N |χi(1)

λi
(Ci)

1 ≤ i ≤ k.

Proof. The relation (Ai) follows directly from Theorem 4.8, as well as (Bi) and (Ci),
using in addition the fact that χi(1) = eitiθi(1), for every i.

Let θ̂ be a minimal G-invariant character of N , θ ∈ Irr(N). Then, with Notation 4.5,
θ̂ = θ̂i for some θi ∈ Irr(N), i ∈ {1, . . . , k}. We notice that θ̂i(1) = tiθi(1), and so the
prime divisors of θ̂(1) are known from equation (Bi) in Corollary 4.10. Hence, together
with Itô-Michler’s theorem, the following result follows.

Corollary 4.11. Let N be a normal subgroup of a group G. Then the prime divisors of
θ̂(1) for every minimal G-invariant character of θ̂ of N are known from the character
table of G. Moreover, if a prime p does not divide θ̂(1) for every minimal G-invariant
character θ̂ of N , then N has an abelian normal Sylow p-subgroup.

The relations in Corollary 4.10 yield also significant information of N from its G-
character tables in certain situations, as we show below.

Remark 4.12. 1. If N is a Hall subgroup of G, then ti and θi(1) are coprime num-
bers, for each i = 1, . . . , k, since ti divides |G : N | and θi(1) divides |N |. Conse-
quently, the integers ti and θi(1) can be computed from the equations (Bi), and
then also the integers ei are known from (Ai).

2. If (Ai) is square-free, for some i ∈ {1, . . . , k}, then it follows that ei = 1 and

ti = λi
|N | , so θi(1) = |N |χi(1)2

λi
. In particular, the integers ti, ei and θi(1) can be

computed from a G-character table of N . Analogously, if (Bi) is square-free, for
some i ∈ {1, . . . , k}, then the integers ti, ei and θi(1) can be also computed.

In brief, with Notation 4.5, the numbers λi, 1 ≤ i ≤ k, as well as |N |, are known
from the character table of the group G, and so are also the relations between the
important parameters ei, ti, θi(1), 1 ≤ i ≤ k, given in Corollary 4.10, as mentioned
above. As a consequence, in particular situations when one of these parameters, for
some i ∈ {1, . . . , k}, either ei, ti or θi(1), is known, then all three of them are known.
But one can not expect that either the G-character tables of N or even the character
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table of G provides all these values with no additional information. This would mean,
for instance, a positive answer to Problem 10 of Brauer’s famous list in [3], which asked
whether or not N is abelian can be decided from the character table of the group. It is
known that this is not the case (c.f. [10, 6]). In particular, the authors in [6] consider
the concept of automorphism of the character table of a group, which is a permutation of
rows and columns of the character table, considered as a matrix, such that the resulting
matrix coincides with the initial one. Two normal subgroups of the group are then
called character-table-isomorphic if there is an automorphism of the character table
such that the image of one of the subgroups (as collection of conjugacy classes) is the
other one. In that reference examples of groups are given, containing corresponding
two character-table-isomorphic normal subgroups, such that only one of the subgroups
is abelian. Obviously character-table-isomorphic normal subgroups of a group G have
equal G-character tables, with equal corresponding diagonal matrices D of G-conjugacy
class sizes. (See Example 6.2.)

5 G-invariant table and minimal G-invariant characters of
a normal subgroup

According with Lemma 4.1 and Notation 4.5, we denote

MinG(N) = {θ̂ | θ ∈ Irr(N)} = {θ̂i | i = 1, . . . , k}

the set of minimal G-invariant characters of N , which has cardinality k. It is clear
from the definition that a G-character table of the normal subgroup N is not unique,
unless G = N . The description of each G-character table depends upon the choice of
a representative system of the equivalence classes in the equivalence relation respect
to N on Irr(G). But it is also obvious that two G-character tables have proportional
corresponding rows, by rational numbers given by the ramification numbers. One can
then think of a G-invariant table of N as defined next.

Definition 5.1. With Notation 4.5, the G-invariant table of N is defined to be the
matrix X̂ = (yij) ∈ Mk(C), with entries

yij = θ̂i(nj), 1 ≤ i, j ≤ k.

Observe that this G-invariant table of N is unique and, comparing with the G-
character table X of N , each row of X is a multiple of the corresponding one of X̂. In
particular, X̂ is non-singular. We notice that the knowledge of the G-invariant table of
N from some G-character table of N is equivalent to the knowledge of the ramifications
numbers.

When G = N , the corresponding G-invariant table is the character table of G, and
so the G-invariant table might be seen as a version of the character table of the group
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for normal subgroups, where the minimal G-invariant characters of the normal subgroup
play the role of the irreducible characters of G. Indeed, for a normal subgroup N of a
group G, we can consider

cfG(N) = {f | f class function of N, fg = f for all g ∈ G}
= {f : N −→ C | f(ng) = f(n) for all n ∈ N and all g ∈ G},

the set of G-invariant class functions of N , which are exactly the class functions of N
constant on G-conjugacy classes. It is straightforward to check that cfG(N) is a subspace
of the C-vector space of class functions of N , with basis the set of irreducible characters of
N (c.f. [8, Theorem 2.8]), and cfG(N) contains the set MinG(N) of minimal G-invariant
characters of N , which are proven to form a basis as stated below.

Proposition 5.2. Let N be a normal subgroup of a group G. If f ∈ cfG(N) then f can
be uniquely expressed in the form

f =
∑

θ̂∈MinG(N)

a
θ̂
θ̂,

where a
θ̂
∈ C. Furthermore, f is a G-invariant character of N if and only if all of the

a
θ̂

are nonnegative integers and f 6= 0.

Proof. On the one hand it is easily derived that cfG(N) forms a C-vector space whose
dimension is the number k of G-conjugacy classes in N . Moreover, by Theorem 4.8 it
follows that the set MinG(N) forms a independent system of cardinality k contained in
cfG(N), which implies that it forms a basis of cfG(N), and proves the first part of the
result. The rest follows from Lemma 4.1(3).

We close this section with the next generalisation of Brauer’s theorem 2.5 and further
applications. More precisely, the G-invariant table of a normal subgroup may play the
role of the character table of the group G in the proof of Brauer’s theorem 2.5, as given
in [8, Theorem (6.32)]. With this idea and analogous arguments the next generalization
can be stated. We include the proof for the sake of completeness.

Theorem 5.3. Let N be a normal subgroup of a group G. Let A be a group which acts on
the set MinG(N) of minimal G-invariant characters of N and on the set of G-conjugacy
classes of N . Assume that θ̂ a(na) = θ̂(n) for all θ̂ ∈ MinG(N), a ∈ A, and n ∈ N ;
where na is an element of (nG)a. Then for each a ∈ A, the number of fixed characters
of MinG(N) is equal to the number of fixed G-conjugacy classes.

Proof. With Notation 4.5, we consider the G-invariant table X̂ as defined above. For
each a ∈ A, let Pa = (pij) where pij = 0 unless θ̂i

a = θ̂j , in which case pij = 1. Similarly,
we define Qa = (qij) where qij = 1 if (nGi )a = nGj , and zero otherwise. We write nai = nj

if (nGi )a = nGj . It is not difficult to see that the (u, v)-entry of the matrix PaX̂ is

k∑
i=1

puiθ̂i(nv) = θ̂u
a(nv).
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Similarly, the (u, v)-entry of X̂Qa is

k∑
j=1

θ̂u(nj)qjv = θ̂u(na
−1

v ).

Our hypotheses lead to PaX̂ = X̂Qa, and since X̂ is non-singular, then Qa = X̂
−1
PaX̂.

We conclude that the traces of Qa and Pa are equal, and these are precisely the number
of fixed points of the action of a on MinG(N) and on the set of G-conjugacy classes of
N .

In the same spirit we are also able to obtain a version for G-conjugacy classes of the
well-known result which states that the number of real classes of a group G is equal to
the number of real valued irreducible characters of G. We recall that an element g ∈ G
is said to be real if g is conjugate in G to its inverse g−1; in this case, the corresponding
conjugacy class gG is called real. Also a character ϑ of a group X is real valued if ϑ(x)
is a real number for all x ∈ X.

It is worth noticing that if N is a normal subgroup of a group G, the number of real
valued minimal G-invariant characters of N coincides with the number of real valued
irreducible characters of G which are not equivalent respect to N , as well as with the
number of real valued rows in any G-character table of N , by Lemmas 4.1, 4.2 and
Definition 4.4.

Corollary 5.4. Let N be a normal subgroup of a group G. Then the number of real
G-conjugacy classes of N is equal to the number of real valued minimal G-invariant
characters of N .

Proof. Let A = 〈σ〉 be a cyclic group of order 2 that acts on the set MinG(N) of
all minimal G-invariant characters of N , and on the set of G-conjugacy classes of N ,
such that θ̂ σ(n) = θ̂(n−1), and (nG)σ = (n−1)G, for all n ∈ N . Note that σ fixes
a G-conjugacy class nG if and only if nG is real. Also the characters θ̂ ∈ MinG(N)
which are fixed by σ are exactly the real valued characters in MinG(N). It follows from
Theorem 5.3 that the number of real G-conjugacy classes of N is equal to the number
of real valued characters of MinG(N).

The question about the relation between the number of real conjugacy classes and
the structure of the group has been previously considered. Groups with all elements real
are called ambivalent and have been studied by Berggren and others (e.g., [2]). In the
opposite situation, Burnside noticed that a group G is of odd order if and only if G has
a unique real conjugacy class (which is of course the one formed by the identity of the
group). Iwasaki [9] characterised those groups with exactly two real conjugacy classes,
in terms of the normality of a Sylow 2-subgroup. We wonder about the influence of real
G-conjugacy classes on a normal subgroup N of a group G. If x ∈ N and x is real in N
then x is obviously real in G, but the converse is easily checked not to be true in general,
as the next example shows.
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Example 5.5. Let G = 〈a〉 o 〈b〉 be the holomorph of C5
∼= N = 〈a〉 the cyclic group

of order 5, with ab = a2. It is clear the N has no real conjugacy class different from the
trivial one. However there are two G-conjugacy classes, namely 1G and aG, and they
are real. Indeed, one can check that a G-character table of N is given by the matrix[
1 1
4 −1

]
, while the character table of N contains non-real values.

The next results show that real G-conjugacy classes of normal subgroups can provide
structural information about them.

Lemma 5.6. Let N be a normal subgroup of a group G. If there is a unique real
G-conjugacy class in N , then N is of odd order, but the converse is not true in general.

Proof. If N had even order, then N would contain an involution, which would be a
real element different from the identity. Example 5.5 shows that the converse is not true
in general.

Corollary 5.7. Let N be a normal subgroup of a group G. Assume that there are exactly
two real G-conjugacy classes in N . Then N has a normal Sylow 2-subgroup.

Proof. We argue by induction on |G|. We may assume that N is of even order and
consider an involution x ∈ N . Then xG is a non-trivial real G-conjugacy class and, by
hypothesis, xG is the set of all involutions of N . Set M := 1∪xG ⊆ N . We claim that M
is a (elementary abelian normal) subgroup of G, and it is enough to prove that ab ∈M
for every pair of involutions a, b ∈ M . Since (ab)a = ba = b−1a−1 = (ab)−1, it follows
that ab is real, which implies by hypothesis that ab ∈M .

Let us denote by “bar” the images in the factor group G := G/M . If |N | is odd,
then M ∈ Syl2(N) and we are done. Hence we may assume that N has a non-trivial
G-conjugacy class that is real. We claim that the number of real valued rows in a G-
character table of N is not larger than that in a G-character table of N . If χ is an
irreducible character of G, then χ(gM) = χ(g) for all g ∈ G, where χ is an irreducible
character of G containing M in its kernel. It is trivial that χ is real-valued if and
only if χ is real-valued. Moreover, if χ1, χ2 ∈ Irr(G), with corresponding characters
χ1, χ2 ∈ Irr(G) containing M in their kernels, then χ1 and χ2 are equivalent respect
to N/M if and only if χ1 and χ2 are equivalent respect to N . The claim is now clear.
(Indeed, if χ ∈ Irr(G) contains M in its kernel, and φ ∈ Irr(G) is equivalent to χ respect
to N , then M is contained in the kernel of φ.) Corollary 5.4 implies that N has exactly
two real G-conjugacy classes, and the result follows by induction.

It is worth to highlight that a normal subgroup N of a group G may satisfy the
hypotheses of Corollary 5.7 and, however, it might not satisfy those of Iwasaki’s theorem,
i.e. it might not have exactly two real conjugacy classes, as Example 5.5 easily shows.
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6 Some illustrative examples

The next examples show the application of our results to particular groups; especially
the relations in Theorem 4.8 and Corollary 4.10, which may be very useful to obtain
information about normal subgroups. The first example shows that it is possible to
completely describe the character table of the considered normal subgroup, although in
general it is not determined by the character table of the group, as well as to derive the
existence of an abelian Sylow subgroup in the normal subgroup. In this example, the
actions by conjugation of the group, on the set of irreducible characters and on the set of
conjugacy classes of the normal subgroup, happen to be the trivial actions. In the second
example we apply our computations to one of the groups, and its corresponding normal
subgroups, previously mentioned, below Remark 4.12, which appears in [6, Section 3.2].
As expected, it shows up that the relations in Theorem 4.8 and Corollary 4.10 do not
completely determine the parameters ei, ti and θi(1), 1 ≤ i ≤ k. Observe that we show
techniques to obtain information from the character table of the group, though certainly
the knowledge of the group, as well as other techniques, might provide other possibilities.

Unless for the labels corresponding to irreducible characters of G, we follow the
notation introduced previously in the paper; in particular, Notation 4.5.

Example 6.1. Let A be a dihedral group of order 8, and let B be an alternating group
on 4 letters. Consider G = A × B. The character table of G is the 20 × 20 matrix
appearing in Table 1, where ζ denotes a primitive 3-root of unity, and the second row
corresponds to the sizes of the conjugacy classes. Let N be the intersection of the kernels
of χ1, χ2, χ3 and χ4, so N is a normal subgroup of G which is the union of the conjugacy
classes 1A, 3A, 2C, 2D, 3B, 6C, 2G, 6F . It follows that |N | = 24.

Then there are 8 equivalence classes in the equivalence relation respect to N , defined
on Irr(G), and so also 8 minimal G-invariant characters of N , denoted θ̂i, i = 1, . . . , 8,
with Ω = {θi | i = 1, . . . , 8} a representative system of the orbits in the action by
conjugation of G on Irr(N). From the observation of proportional rows in the character
table, when restricting to the described conjugacy classes, we obtain:

Irr(G|θ1) = {χ1, χ2, χ3, χ4}, Irr(G|θ2) = {χ5, χ7, χ9, χ11},
Irr(G|θ3) = {χ6, χ8, χ10, χ12}, Irr(G|θ4) = {χ13},
Irr(G|θ5) = {χ14}, Irr(G|θ6) = {χ15},
Irr(G|θ7) = {χ16, χ17, χ18, χ19, }, Irr(G|θ8) = {χ20},

In particular, for each i = 1, . . . , 8, we know the size of Irr(G|θi). Also, whenever
χ, ϑ ∈ Irr(G|θi), it holds that

χN = ϑN = eiθ̂i.

We may choose {χ1, χ5, χ6, χ13, χ14, χ15, χ16, χ20} a representative system of the
equivalence classes on Irr(G), and construct the corresponding G-character table X of
N , which is the matrix of dimension 8× 8 in Table 2.
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1A 2A 2B 3A 2C 2D 4A 6A 2E 6B 2F 3B 6C 2G 12A 4B 6D 6E 6F 12B
1 2 2 4 1 3 2 8 6 8 6 4 4 3 8 6 8 8 4 8

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 1 1
χ3 1 −1 1 1 1 1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 1 1 −1
χ4 1 1 −1 1 1 1 −1 1 1 −1 −1 1 1 1 −1 −1 1 −1 1 −1
χ5 1 −1 −1 ζ2 1 1 1 −ζ2 −1 −ζ2 −1 ζ ζ2 1 ζ2 1 −ζ −ζ ζ ζ
χ6 1 −1 −1 ζ 1 1 1 −ζ −1 −ζ −1 ζ2 ζ 1 ζ 1 −ζ2 −ζ2 ζ2 ζ2

χ7 1 −1 1 ζ2 1 1 −1 −ζ2 −1 ζ2 1 ζ ζ2 1 −ζ2 −1 −ζ ζ ζ −ζ
χ8 1 −1 1 ζ 1 1 −1 −ζ −1 ζ 1 ζ2 ζ 1 −ζ −1 −ζ2 ζ2 ζ2 −ζ2
χ9 1 1 −1 ζ2 1 1 −1 ζ2 1 −ζ2 −1 ζ ζ2 1 −ζ2 −1 ζ −ζ ζ −ζ
χ10 1 1 −1 ζ 1 1 −1 ζ 1 −ζ −1 ζ2 ζ 1 −ζ −1 ζ2 −ζ2 ζ2 −ζ2
χ11 1 1 1 ζ2 1 1 1 ζ2 1 ζ2 1 ζ ζ2 1 ζ2 1 ζ ζ ζ ζ
χ12 1 1 1 ζ 1 1 1 ζ 1 ζ 1 ζ2 ζ 1 ζ 1 ζ2 ζ2 ζ2 ζ2

χ13 2 0 0 2 −2 2 0 0 0 0 0 2 −2 −2 0 0 0 0 −2 0
χ14 2 0 0 2ζ2 −2 2 0 0 0 0 0 2ζ −2ζ2 −2 0 0 0 0 −2ζ 0
χ15 2 0 0 2ζ −2 2 0 0 0 0 0 2ζ2 −2ζ −2 0 0 0 0 −2ζ2 0
χ16 3 −3 −3 0 3 −1 3 0 1 0 1 0 0 −1 0 −1 0 0 0 0
χ17 3 −3 3 0 3 −1 −3 0 1 0 −1 0 0 −1 0 1 0 0 0 0
χ18 3 3 −3 0 3 −1 −3 0 −1 0 1 0 0 −1 0 1 0 0 0 0
χ19 3 3 3 0 3 −1 3 0 −1 0 −1 0 0 −1 0 −1 0 0 0 0
χ20 6 0 0 0 −6 −2 0 0 0 0 0 0 0 2 0 0 0 0 0 0

Table 1: Character table of the group G in Example 6.1.

1A 3A 2C 2D 3B 6C 2G 6F
1 4 1 3 4 4 3 4

χ1 1 1 1 1 1 1 1 1
χ5 1 ζ2 1 1 ζ ζ2 1 ζ
χ6 1 ζ 1 1 ζ2 ζ 1 ζ2

χ13 2 2 −2 2 2 −2 −2 −2
χ14 2 2ζ2 −2 2 2ζ −2ζ2 −2 −2ζ
χ15 2 2ζ −2 2 2ζ2 −2ζ −2 −2ζ2

χ16 3 0 3 −1 0 0 −1 0
χ20 6 0 −6 −2 0 0 2 0

Table 2: G-character table X of N in Example 6.1.
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Note also that D = diag(1, 4, 1, 3, 4, 4, 3, 4) is the associated diagonal matrix, whose
diagonal entries are the sizes of the G-conjugacy classes that built N .

According to Corollary 4.10, we obtain that the numbers appearing in the right side
of relations (Ai), 1 ≤ i ≤ 8, are 1, 1, 1, 4, 4, 4, 1, 4, respectively. A first conclusion is that
for each i ∈ {1, 2, 3, 7}, it holds that

ei = ti = 1, and so χN = θ̂i = θi ∈ Irr(N),

whenever χ ∈ Irr(G|θi). We compute now the numbers appearing in the right side
of relations (Bi), 1 ≤ i ≤ 8, and obtain 1, 1, 1, 1, 1, 1, 9, 9, respectively. As immediate
consequence, we know that for every i ∈ {1, 2, 3, 4, 5, 6}, it holds that

ti = 1, θi(1) = 1, and so also θ̂i = θi.

In particular, θ̂i(1) = 1, for i = 1, . . . , 6, and the only prime divisor of θ̂i(1), for i = 7, 8
is 3.

Besides, by Corollary 4.11, since 2 does not divide θ̂i(1) for all i = 1, . . . , 8, we can
affirm that N has an abelian normal Sylow 2-subgroup. Note that, however, 2 divides
the degrees of χ13, χ14, χ15 and χ20, all of them appearing in the G-character table
considered.

From equations (Ai), i = 4, 5, 6, and (B7), it follows that ei = 2, for i = 4, 5, 6, and
θ7(1) = 3, respectively. Moreover, from (A8) and (B8), it follows that t8 = 1, e8 = 2 and
θ8(1) = 3. Also, θ̂8 = θ8.

Consequently, Irr(N) = MinG(N) = {θi = θ̂i | i = 1, . . . , 8}, with θi(1) = 1, i =
1, . . . 6, θi(1) = 3, i = 7, 8, and the character table of N can be completely described in
this particular example, having nN = nG for all n ∈ N , and the irreducible characters:

θ1 = (χ1)N , θ2 = (χ5)N , θ3 = (χ6)N , θ4 =
1

2
(χ13)N ,

θ5 =
1

2
(χ14)N , θ6 =

1

2
(χ15)N , θ7 = (χ16)N , θ8 =

1

2
(χ20)N .

In particular N is non-abelian. It can be cheked that N = ZZZ(A)×B.

Example 6.2. Let G be the automorphism group of the dihedral group of order 16. Its
character table is the 11 × 11 matrix appearing in Table 3. Let N be the intersection
of the kernels of χ2 and χ6, so N is a normal subgroup of G which is the union of the
conjugacy classes 1A, 2B, 4A and 2D, and its order is 8.

Then there are 4 equivalence classes in the equivalence relation respect to N , defined
on Irr(G), and so also 4 minimal G-invariant characters of N , denoted θ̂i, i = 1, . . . , 4,
with Ω = {θi | i = 1, . . . , 4} a representative system of the orbits in the action by
conjugation of G on Irr(N). From the observation of proportional rows in the character
table, when restricting to the described conjugacy classes, we obtain:

Irr(G|θ1) = {χ1, χ2, χ5, χ6}, Irr(G|θ2) = {χ3, χ4, χ7, χ8},
Irr(G|θ3) = {χ9, χ10}, Irr(G|θ4) = {χ11},
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1A 2A 2B 2C 4A 2D 8A 4B 2E 4C 8B
1 4 4 2 2 1 4 4 4 2 4

χ1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 1 1 −1−1 1 1 −1
χ3 1 1 −1 1 1 1 −1 1 −1 1 −1
χ4 1 −1−1 1 1 1 1 −1−1 1 1
χ5 1 1 1 −1 1 1 1 −1−1−1−1
χ6 1 −1 1 −1 1 1 −1 1 −1−1 1
χ7 1 1 −1−1 1 1 −1−1 1 −1 1
χ8 1 −1−1−1 1 1 1 1 1 −1−1
χ9 2 0 0 2 −2 2 0 0 0 −2 0
χ10 2 0 0 −2−2 2 0 0 0 2 0
χ11 4 0 0 0 0 −4 0 0 0 0 0

Table 3: Character table of the group G in Example 6.2.

1A 2B 4A 2D
1 4 2 1

χ1 1 1 1 1
χ3 1 −1 1 1
χ9 2 0 −2 2
χ11 4 0 0 −4

Table 4: G-character table X of N in Example 6.2.

In particular, for each i = 1, . . . , 4, we know the size of Irr(G|θi). Also, whenever
χ, ϑ ∈ Irr(G|θi), it holds that

χN = ϑN = eiθ̂i.

We may choose {χ1, χ3, χ9, χ11} a representative system of the equivalence classes on
Irr(G), and construct the corresponding G-character table X of N , which is the matrix
of dimension 4× 4 in Table 4.

Note also that D = diag(1, 4, 2, 1) is the associated diagonal matrix, whose diagonal
entries are the sizes of the G-conjugacy classes that built N .

According to Corollary 4.10, we get in this case that the numbers appearing in the
right side of relations (Ai) and (Bi), 1 ≤ i ≤ 4, are both 1, 1, 2, 4, respectively. From
equations (Ai) and (Bi), 1 ≤ i ≤ 4, we deduce now:

For each i = 1, 2, ei = ti = θi(1) = 1, and for all χ ∈ Irr(G|θi), χN = θi = θ̂i.

For i = 3, e3 = θ3(1) = 1, t3 = 2, and for all χ ∈ Irr(G|θi), χN = θ3 + θ3
x = θ̂3, for

some x ∈ G.

However, for i = 4, two possibilities appear: either

e4 = θ4(1) = 1, t4 = 4, and (χ11)N = θ4+θ4
x+θ4

y+θ4
z = θ̂4, for suitable x, y, z ∈ G,
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or

e4 = θ4(1) = 2, t4 = 1, and (χ11)N = 2θ4 = 2θ̂4.

Actually, both cases are possible. The normal subgroup M , which is the intersection
of the kernels of χ4 and χ8 (and so M is the union of the conjugacy classes 1A, 8A, 4A and
2D, and its order is 8), happens to have the same G-character table as N , by replacing
χ3 by χ2, and 2B by 8A, associated to the same diagonal matrix D of G-conjugacy
class sizes, so that the relations (Ai), (Bi), 1 ≤ i ≤ 4, are the same for both subgroups.
Indeed, the information derived for N and M is the same, with corresponding suitable
irreducible characters of G.

Considering, for instance, in addition the orders of elements in N and in M , one
easily deduces que M is abelian but N is not, and so the first possibility for i = 4
corresponds to M , while the second one corresponds to N .
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