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Abstract: Cu-doped TiO2 films were synthesized directly on FTO glass with a spin coating method.
With a variation in copper amount, samples were prepared with 0%, 1%, 2%, 4% and 8% of dopant
concentrations. Morphological and structural characterization of undoped and Cu-doped TiO2

samples were investigated and the obtained results showed the small, spherical shapes of the
nanoparticles forming a thin film on top of FTO glass and their preferred orientation of TiO2 anatase
(101), which is the same for each sample. However, this peak exhibited a slight shift for the 2% sample,
related to the inflation of the microstrain compared to the other samples. For the optical properties,
the 4% sample displayed the highest transmittance whereas the 2% sample exhibited the lowest band
gap energy of 2.96 eV. Moreover, the PL intensity seems to be at its highest for the 2% sample due to
the present peaking defects in the structure, whereas the 8% sample shows a whole new signal that is
related to copper oxide. These properties make this material a potential candidate to perform as an
electron transport layer (ETL) in solar cells and enhance their power conversion efficiency.

Keywords: titanium dioxide TiO2 nanoparticles; copper Cu doping; perovskite solar cells PSCs;
electron transport layer ETL

1. Introduction

Renewable energy sources are witnessing an immense growth in industrial develop-
ments and technologies, as they started with conventional solar cells and biomass combus-
tion and progressed to innovative hydrogen production systems that are still to this day
under assessment [1]. Solar cells have their share in spreading and reinforcing renewable
energy technologies into industry and their flourishing success [2]. Moreover, solar panels
have been expanding and diverting over the years; they were pioneered with different
materials and different systems, as you can find monocrystalline and polycrystalline as
well as amorphous silicon solar cells, plasmonic, multi-junction, thin films, quantum dots,
dye-sensitized, perovskite and organic–inorganic hybrid solar cells [3–5]. All of these types
of solar panels have received great feedback on their efficiency and yielding [6]. Among the
third generation, perovskite solar cells (PSCs) have gained a lot of recognition due to their
high power conversion efficiency (PCE), which was recently reported to have increased
from 3.8% in 2009 to 25.2% in 2020 [7], which is very close to the notional Shockley–Queisser
efficiency limit (~33%), and also, perovskite materials possess a narrow direct band gap,
leading to a high optical absorption coefficient and broadband absorption and thus a long
charge carrier lifetime and high mobility, and they also offer a simple, low-cost and effective
synthesis methods [8]; several types of perovskite have been developed to create a better
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absorber with excellent optoelectronic properties, like a slow recombination rate of e−/h+

pairs [9], and the ABX3 formula is the most used one, where A is an organic (CH3NH3
+ or

MA and FA) or alkali metal, B is a bivalent metal (Pb, Sn and Ge) and X is a halide anion,
and this formula is called organic–inorganic metal halide perovskite [10], and we can also
find other types like RP phase layered perovskite and ACI-type perovskite. From all of
these types, it seems that the Pb2+-based perovskite is needed for exhibiting excellent pho-
toelectric properties [11]. After all of these successful achievements of perovskite solar cells,
they are still deteriorated by the issue of charge carrier recombination [12]. So, engineering
the lane of carriers between the perovskite active layer and the electron transport layer
(ETL) is vital to enhance the PCE [13]. However, many factors affect the power conversion
efficiency (PCE) of PSCs with an n-i-p structure or inverted p-i-n structure, and it seems
that the most crucial is the charge carrier transfer procedure at the interfaces [14], such
as the interface between electron transport layer (ETL) and perovskite and hole transport
layer (HTL); it is better to construct a contact interface that reduces charge carrier trapping
at the interface, which leads to their recombination. Some researchers have focused on
engineering the ETL and HTL separately to optimize their electrical and optical properties,
since the chemical stability of these layers as well as the thickness, absorption spectrum,
doping and interfacial defects can badly effect the extraction and transportation of the
photogenerated charge carriers from the perovskite absorber layer, leading to a reduction
in the PCE [15–17]. The most commonly used metal oxides for an ETL are TiO2, ZnO, SnO2
and ZrO2. But TiO2 is frequently selected due to its low cost, great chemical stability, suit-
able conduction band and high electric conductivity [18]; even a solar cell with a TiO2 ETL
reported a 24.66% PCE. But the drawbacks presented by TiO2 mainly consist of the large
energy barrier at the perovskite/TiO2 interface and its limited UV light absorption which
hinders efficient charge transfer, causing researchers to turn to other metal oxides [19,20].
To overcome these drawbacks, tuning the energy levels is the optimal choice either via
doping or/and inserting an interlayer between the ETL and perovskite layer to achieve
a prime energy alignment. To create a smooth contact interface, some researchers have
resorted to adding Cl ions to expand the electron diffusion length; S. D. Stranks et al.
reported the aftermath of adding Cl ions to the perovskite solar cells, as the PCE went from
4.2% to 12.2% [21]. As for the alteration of TiO2 ETL properties, for instance the Fermi level,
band gap and electrical conductivity, the doping process has been highly suggested [22];
furthermore, many metals have been proposed as a supreme dopant candidate for a TiO2
ETL in PSCs, namely Sn, Zn, Ag, Nb and W [23]. Shih-Husan Chen et al. reported that for
PSCs with a meso-Sn-doped TiO2 ETL, the PEC was improved from 16.86% to 20.55% due
to the decrease in defect states and a slight upward shifting of the conduction band and
valence, leading to improved carrier extraction and transport [24]. Also, Sadiq Shahriyar
Nishat et al. reported a 16.44% PEC for a 4.17 mol% Zn-doped TiO2 ETL in a PSC, which
is considered slightly lower compared to the same amount of 4.17 mol% Sn-doped TiO2
that showed a 0.63% higher PCE [22]. Chen et al. reported that a mesoporous Ag-doped
TiO2 ETL in PSCs exhibits a great PEC of 17.7% [25]. Among the transition metals, Cu has
never been used in any research report for doping a TiO2 ETL in a perovskite solar cell,
even considering its high conductivity and abundance, but it has been widely studied in
dye-sensitized solar cells (DSSCs) [26] and it shows great yielding in different doping con-
centrations of TiO2 photoanodes and photocatalysis applications [27–30]. T. Raguram et al.
revealed a maximum efficiency of 3.90% for 0.1 M Cu-TiO2 for DSSC application and
97.12% for Rhodamine B photocatalytic degradation; the 0.1 M Cu-TiO2 synthesized with
the sol–gel method showed a great impact on the structural, optical, morphological and
electrical properties of TiO2, as if the incorporation of Cu concentrations perfectly tailored
the optical band gap and crystallinity of TiO2 nanoparticles, as it shifted from 3.2 eV to
2.3 eV with the addition of copper concentration [31]. A lot of methods exist for Cu-TiO2
synthetization and deposition on FTO glass substrate that have accrued throughout the
years, as each process gives the material a specific size, morphology and other typical
properties. The electrodeposition [32], sol–gel [33], spin coating [34], hydrothermal [35]



Inorganics 2024, 12, 188 3 of 12

and spray pyrolysis [36] methods are the most commonly used, especially the spin coating
process since it is a very simple, cost effective and easy to manipulate method without
any dissipations of energy and resources [37]; its consistency of a homogeneous dispersion
of nanoparticles on the surface of FTO glass is the main cause of its vast utilization in
wide range of research reports [38]. Ying-Han Liao et al. fabricated a perovskite solar cell
CH3NH3PbI3−xClx/(Sn/TiO2)/FTO with the spin coating method with a variation in the
concentration of dopant Sn, with a PCE of 14.4% for the 1.0 mol% Sn/TiO2 sample; all
the samples showed a successful decrease in band gap and an increase in charge carrier
mobility [39].

Herein, we will prepare an electron transport layer (ETL) that consists of Cu-doped
TiO2 for a perovskite solar cell with the spin coating method, while varying the dopant
concentration; we will study the effect on the morphology, crystallinity and the optical
properties of TiO2, and thus the effect on e−/h+ mobility and recombination. To observe
the power conversion efficiency of the PSCs and the impact of the copper concentration
after the characterization, the samples will be integrated as an ETL in an efficient and
famous perovskite solar cell, as is shown in Figure 1, where a SCAPS simulation will be
used in future work to foretell the PCE of each sample.
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Figure 1. Schematic of perovskite solar cell.

2. Results and Discussion
2.1. Morphological Properties

Figure 2 shows the SEM images of pure and doped TiO2. The TiO2 thin films demon-
strate small spherical nanoparticles at a range of 200–500 nm that are orderly dispersed
on the surface of the FTO glass to form a homogenous film. It seems that the addition
of copper dopant to the TiO2 nanoparticles has no effect on the morphology of the TiO2
nanoparticles; all films depict a granular nanostructure, and with the increase in dopant
concentration percentage, some regions show a microstructural defect with the presence of
bumps and holes.

Figure 3 shows the cross-sectional SEM image of the TiO2 thin films with a thickness
of 350 nm deposited on FTO glass. The thickness of the sample remains the same since
the deposition parameters of the spin coating were sustained with same speed, solution
quantity and duration. Moreover, the thickness seems to range between 340 and 380 nm for
the different dopant concentrations.
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2.2. Structural Properties

The X-ray diffraction can provide information about the structural properties of the
as-prepared samples. Figure 4a depicts a diffractogram with the visible crystalline patterns
of undoped and Cu-doped TiO2 nanoparticles deposited on FTO glass with a preferred
orientation at 2θ = 25.389◦ that correspond to anatase TiO2 (101), according to the ref-
erence card (JCPDS Card 21-1272) [40], and a small peak, with the other intense peaks
corresponding to FTO glass (110), (101), (200) and (211); however, no Cu-related peaks
were observable, which could mean the substitution with the Cu ion was successfully
carried out without interstitial growth [41]. Moreover, the intensity of the anatase (101)
peak increases with the increase in the dopant percentages. This could be due to the high
incorporation of copper into the TiO2 structure, which in turn induces physical stressing on
the lattice. From the used precursors, we can confirm the formation of Cu2+ in the solution
and according to the literature the ionic radius of Cu2+ is (86 pm) and Ti4+ is (74.5 pm) [42].
According to Figure 4b, it seems that as we increase the percentage of the dopant the TiO2
(101) peak vaguely shifts to lower angles, especially for 8% sample. This could be better
interpreted by the calculation of the crystallite size, lattice strain and microstrain, which
are presented below.



Inorganics 2024, 12, 188 5 of 12

The Scherrer equation for crystallite size and lattice strain determination is [43]

D =
Kλ

βcos θ
(1)

1
D

(2)

The Wilson equation for microstrain determination is [43]

ε =
β

4tan(θ)
(3)

According to Figure 5 and the calculation in Table 1, it seems that the crystallite size
is at its lowest values for the 2% and 4% samples and according to proportionality these
samples also exhibits a high lattice strain and microstrain, which provides information on
the degree of distortion, dislocations and defects present in the crystalline lattice; this could
affect the photosensitivity of TiO2 nanoparticle thin films by inducing the density of charge
carriers [44].
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4% and 8% Cu-doped TiO2 nanoparticle thin films.
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Table 1. Crystallite size, lattice strain and microstrain calculations of the undoped and 1%, 2%, 4%
and 8% Cu-doped TiO2 at the preferred orientation (101).

Cu-Doped TiO2 (101) 2θ (deg) d(101) (Å) FWHM (rad) D (nm) 1/D (nm−1) E(%) × 10−3

0% Cu 25.389 3.506934 0.002962 47.16 0.0212 3.289

1% Cu 25.388 3.515507 0.003223 43.33 0.023 3.579

2% Cu 25.397 3.472665 0.003748 36.9 0.0271 4.16

4% Cu 25.40 3.513734 0.003749 37.2 0.0268 4.161

8% Cu 25.32 3.508971 0.002896 48.23 0.0207 3.22

2.3. Optical Properties

To acknowledge the effect of Cu doping on the optical properties of the TiO2 nanopar-
ticle thin film, we used UV–Vis spectroscopy and obtained transmittance and absorbance
spectra (Figure 6). Figure 6a depicts the transmittance of each sample, and it seems that the
4% copper dopant TiO2 presents more light transmission than the other samples, followed
by the 2% copper dopant TiO2; this could positively affect the charge mobility and the
performance of TiO2 as an electron transport layer [45]. Figure 6b shows the absorption
spectra of the samples, and it seems that at the range 300–400 nm, the sample with 8%
copper dopant has a high absorbance value compared to the other samples; as for the 2%
and 4% samples, they have a low absorbance value, even lower than the undoped TiO2,
but unexpectedly the 1% sample presents a higher light absorption than the undoped and
2% and 4% Cu-doped TiO2.
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To better understand the effect of doping with copper on the optical band gap of the
samples, we used the Tauc formula below [46]

(Ahυ)1/n = C(hυ − Eg) (4)

where A is the absorption coefficient, C is a constant, Eg is the average band gap of the
material and n depends on the type of the transition. After examination of the obtained
Tauc plots (Ahυ)2 vs. hυ (Figure 7), the difference in the optical band gap is clear. If we
exclude the 2% sample, it is noticeable that by increasing the copper doping percentage
(the concentration of dopant) the optical band gap increases from 3.01 eV for undoped
TiO2 to 3.1 eV for 8% copper-doped TiO2. But it is obvious to state that the optical band
gap for the sample of 2% Cu-doped TiO2 decreases in comparison with undoped and the
other doped samples to a value of 2.96 eV. This is in accordance with Nair et al., who
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studied the effect of doping and crystalline properties on the band gap of nanoparticles
and concluded that clearly there is a correlation between the particle size, strain and band
gap [47]. Considering the calculated values in Table 1 and the obtained results from the
Figure 5, the 2% Cu-doped TiO2 nanoparticle sample presents the lowest crystallite size,
the highest microstrain and the lowest bang gap. So, in short, and as they reported, when
the particle is extremely small, pressure surface increases, meaning lattice strain increases
and thus the band gap decreases [48]. So, as reported, Red shift or a decrease in optical
band gap with a decrease in particle size arises due to the surface and interface effect and
Blue shift or an increase in energy is due to the quantum size effect, which is the case for
1%, 4% and 8% copper-doped TiO2.
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2.4. Photoluminescence

We investigated the recombination of charge carriers for undoped and Cu-doped
TiO2 nanoparticles. All samples were optically characterized with photoluminescence
spectroscopy. As Figure 8 depicts, TiO2 nanoparticles are not photoluminescent, since the
PL spectra did not show any peak around the absorption wavelength that corresponds to the
calculated band gap ranging from 2.96 to 3.1 eV (420–401 nm). The observed peak collection
between 450 and 700 nm is related to the oxygen vacancies in the TiO2 structure [49]. The
peak appears to be decreasing with the increase in dopant concentration, which means a
decrease in the recombination rate of charge carriers e−/h+, hence fast electronic transport
and better photoactivity, except for the 8% and 2% samples, which give a higher PL intensity
which could be due the high formation of defects, while the 4% sample presents the lowest
PL intensity; also, it is clear that the doped samples present the same spectra shape as the
undoped one, which means that Cu doping does not induce any PL signals. The significant
peak of the 8% Cu-doped TiO2 nanoparticles at 780 nm corresponds to the band gap of
CuO (1.6 eV) according to the literature. But this hypothesis cannot be right since the XRD
analysis did not show any peaks related to copper oxide structure, unless it also means that
the formed copper oxide nanoparticles are extremely well dispersed on TiO2 nanoparticles
and that is why they are undetectable by the X-ray diffractometer.
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Figure 8. (a) Photoluminescence and (b) normalized PL spectra of the undoped and 1%, 2%, 4% and
8% Cu-doped TiO2 nanoparticle thin films.

3. Experimental Details Materials and Methods
3.1. Materials

All chemicals and reagents were used directly without further purification as re-
ceived. Absolute ethanol, isopropyl alcohol, acetone, FTO, Titanium diisopropoxide
bis(acetylacetonante) 75 wt.% in isopropanol (C16H32O6Ti) and Cupric Acetate Mono-
hydrate (Copper (II) Acetate Monohydrate) pure, 98% (C4H8CuO5). All the products were
bought from Sigma-Aldrich (St. Louis, MO, USA).

3.2. Pure and Cu-Doped TiO2 Film Elaboration

Firstly, the FTO glass was cleaned with acetone, ethanol and distilled water. Then, to
deposit the TiO2 nanoparticles on the surface of the FTO glass, a simple cost-free method
was used: spin coating, which consists of coating the FTO glass surface with a solution of
titanium precursor. To study the effect of doping, we added a portion of copper precursor,
while varying the amount of copper from 0%, 1%, 2%, 4% to 8%. After the deposition of
the Cu dopant TiO2 thin film with spin coating, the as-prepared samples were annealed at
450 ◦C for 1 h and then naturally cooled down for morphological, structural and optical
characterization. All of the steps are illustrated in Figure 9.
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nanoparticle thin films.
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3.3. Characterization Techniques

The samples were morphologically characterized using scanning electron microscopy
(SEM, FEI XL30 ESEM Company, Hillsboro, OR, USA). As for the structural stability and
crystallographic formation of the phase, X-ray diffraction (XRD) was performed using a
Philips X’PERT-MPD diffractometer equipped with CuKα radiation (λ = 1.5406 Å), with
the diffraction patterns in the range of 20–80◦. To determine the gap energy of each sample
and its transmittance and absorbance properties, we used a UV–Vis spectrophotometer
and photoluminescence (PL) spectroscopy in the range of 200 and 1200 nm by equipping a
PerkinElmer Lambda 950.

4. Conclusions

TiO2 nanoparticles doped with copper were synthesized with a simple method of
spin coating, which consists of dispersing the prepared solution on FTO glass at high
speed, and these samples of Cu-doped TiO2 at 0%, 1%, 2%, 4% and 8% were characterized
morphologically, structurally and optically and the acquired results reveal that the 4%
sample has the highest transmittance, while the 2% is the second highest; these samples
could be perfect candidates for electron transport. The 2% sample exhibited the lowest
band gap energy of 2.96 eV, whereas the 8% samples exhibit the highest at 3.05 eV; the 8%
sample also showed a new PL peak compared to the other samples, which could be related
to the copper oxide.
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