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Genetic Determinism of Seed Production in Alfalfa used as Living
Mulch

Resumen

Este estudio investiga los determinantes genéticos de la producciéon de semillas en la alfalfa
(Medicago sativa) utilizada como mantillo vivo, en el contexto de la transicién agroecoldgica.
Utilizando un panel diverso compuesto por una poblaciéon F1 y 30 poblaciones de alfalfa, in-
cluyendo tipos cultivados y silvestres, analizamos un total de 1,600 plantas. Cada planta fue
fenotipada para siete rasgos de produccién de semillas y genotipada utilizando la Secuenciacién
por Genotipado (GBS) para obtener frecuencias alélicas de SNP. Utilizando los datos de GBS,
la estructura poblacional del panel fue analizada mediante Analisis de Componentes Princi-
pales (PCA) y evaluacién de Desequilibrio de Ligamiento (LD). Las varianzas genéticas se
determinaron usando el modelo REML vy se utilizaron para calcular la heredabilidad en sentido
amplio. Los Estudios de Asociaciéon del Genoma Completo (GWAS) a través de un Modelo
Mixto Multilocus (MLMM) se utilizaron como metodologia para detectar QTLs candidatos.
Se observé una estructura genética en el panel, con las poblaciones diploides distancidndose
de las tetraploides. Por otro lado, se encontré que F1 presentaba una alta estructura genética.
Por lo tanto, tanto las poblaciones tetraploides F1 como no F1 fueron tratadas por separado
en los Estudios de Asociacion. Se identificaron dieciséis marcadores genéticos asociados con
rasgos de produccion de semillas; la mayoria de estos marcadores estaban vinculados a genes
anotados. Estos resultados, junto con la identificacién de QTLs candidatos significativos,
subrayan variaciones genéticas sustanciales que podrian informar estrategias de mejoramiento
para desarrollar variedades de alfalfa optimizadas para su uso como mantillo vivo con alto
potencial de semillas.

Abstract

This study investigates the genetic determinants of seed production in alfalfa (Medicago
sativa) utilized as living mulch, in the context of agroecological transition. Utilizing a diverse
panel comprising one F1 and 30 alfalfa populations, including both cultivated and wild types,
we analyzed a total of 1,600 plants. Each plant was phenotyped for seven seed production
traits and genotyped using Genotyping-by-Sequencing (GBS) to obtain SNP allele frequen-
cies. Using the GBS data, the panel’'s population structure was analyzed through Principal
Component Analysis (PCA) and Linkage Disequilibrium (LD) assessment. Genetic variances
were determined using the REML model and were used to calculate broad-sense heritability.
Genome-Wide Association Studies (GWAS) through a Multi-Locus Mixed Model (MLMM)
were used as the methodology to detect candidate QTLs. A genetic structure was observed in
the panel, with diploid populations distancing from tetraploid populations. On the other hand,
F1 was found to present high genetic structure. Subsequently, both F1 and non F1 tetraploid
populations were treated separately in the Association Studies. Sixteen genetic markers as-
sociated with seed production traits were identified; most of these markers were linked to
annotated genes. These results, along with the identification of significant candidate QTLs,
underscore substantial genetic variations that could inform breeding strategies for developing
optimized alfalfa varieties for use as living mulch with high seed potential.

Palabras Clave: lucerna, GWAS, produccién de semilla, QTL, asociacién de cultivos
Keywords: alfalfa, GWAS, seed production, QTL, living mulch, companion plant
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Preface

The table below shows the degree of relation of this master's thesis work (TFM, acronym
in Spanish for Trabajo de Fin de Master) with the United Nations Sustainable Development
Goals (SDGs) of the 2030 Agenda.

Sustainable Development Goal High Medium Low NA
1. End poverty. X
2. Zero hunger. X

3. Good health and well-being. X
4. Quality education. X
5. Gender equality. X
6. Clean water and sanitation. X

7. Affordable and clean energy. X
8. Decent work and economic growth. X
9. Industry, innovation, and infrastructure. X

10. Reduced inequalities. X
11. Sustainable cities and communities. X

12. Responsible consumption and production. X

13. Climate action. X

14. Life below water. X
15. Life on land. X

16. Peace, justice, and strong institutions. X
17. Partnerships for the goals. X

The goal most directly addressed by this work is Goal 15, "Life on Land." This goal is ded-
icated to protecting, restoring, and promoting the sustainable use of terrestrial ecosystems,
managing forests sustainably, combating desertification, halting and reversing land degrada-
tion, and halting biodiversity loss.

This TFM is an integral component of the MoBiDiv project, which is geared towards devel-
oping genetically diverse alfalfa varieties that are optimized for intra-plot diversification. This
directly supports the transition to pesticide-free agriculture, enhancing the sustainability of
agricultural practices. When employed as a living mulch, alfalfa effectively suppresses weeds,
enriches the soil with organic nitrogen —eliminating the need for synthetic fertilizers— and
enhances soil health and structure. Furthermore, the presence of alfalfa varieties coupled with
cash crops increases the biodiversity within agricultural systems, which is a direct action to-
wards achieving SDG 15's aim of promoting sustainable ecosystem use and halting biodiversity
loss.

Understanding the genetic determinants of seed production in alfalfa is crucial because it
helps in selecting varieties that are more efficient in their roles as living mulch. Intercrop-
ping practices contribute to maintaining ecosystem balance and also enhances agricultural
sustainability by reducing dependency on chemical inputs and improving soil and plant health.
Thus, my TFM aligns with the objectives of SDG 15 by contributing to the restoration and
sustainable management of terrestrial ecosystems through innovative agricultural practices.


https://sdgs.un.org/goals
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1 Introduction

1.1 Context

Intensive agricultural practices, including short crop rotations, mechanization, monoculture,
and the excessive use of fertilizers and pesticides, have led to severe environmental chal-
lenges. These include soil degradation, water contamination, loss of biodiversity, increased
disease incidence, and a decline in long-term agricultural sustainability (Marcos et al., 2020).
Monoculture, a particularly harmful practice, not only increases soil erosion and pollutes water
resources but also elevates atmospheric carbon levels and diminishes biodiversity (Demirdogen
et al., 2023). It affects a wide range of agricultural ecosystems, from artificially created 'cul-
tivated forests' (Karancsi, 2010) to cash crops such as wheat and cotton (Demirdogen et al.,
2023). To mitigate these issues, sustainable practices such as crop rotation and multicropping
have been advocated as effective alternatives.

Crop rotation, wherein farmers alternate crop types on the same land from year to year or
within the same year, not only boosts crop yields but also stabilizes them, reduces pest and
disease outbreaks, and ultimately enhances farmers' financial results (Demirdogen et al., 2023).
Multicropping, which involves growing multiple crops in the same space, utilizes methods such
as sequential cropping (growing crops one after another) and intercropping (growing crops
simultaneously in close proximity). These practices aim to optimize the use of resources —
such as light, water, and nutrients— and increase yield while minimizing risks associated with
pests and diseases (Deb, 2021).

Forage intercropping presents a viable agroecological practice. The use of legume associ-
ations, exemplified by systems such as wheat-faba bean, wheat-pea, barley-pea, and maize-
cowpea, leverages biological nitrogen fixation from legumes, reducing reliance on synthetic
fertilizers (Mu et al., 2023).

A specialized form of intercropping, companion planting, strategically pairs specific plants
to benefit one to the other in terms of pest control, pollination, habitat provision for beneficial
organisms, space maximization, and overall plant health and soil quality. For instance, some
plants naturally repel pests, reducing the need for chemical interventions (Huss et al., 2022).

An interesting variation of companion planting involves the use of living mulches (or living
cover crops). Living mulches are a type of cover crop sown either before or simultaneously
with the cash crop and kept alive as ground cover for the entire growing period. When the
living mulch consists of perennial plants, it can potentially be preserved over several years
without requiring reseeding (Cougnon et al., 2022).

In France, the usage of living mulches is gaining traction (Carof, 2006; Labreuche et
al., 2017). Alfalfa, in particular, has been reported as an effective living mulch to combat
weeds, enrich the soil with nitrogen, and enhance soil structure (Petit & Aubry, 2012). These
advantages enable more environmentally sustainable agronomic practices.

1.2 Alfalfa

Medicago sativa L. (alfalfa) stands as an important legume perennial species, widely culti-
vated for forage (Annicchiarico et al., 2015). It is recognized as the highest protein producer
under temperate climates (Pégard et al., 2023), contributing significantly to protein auton-



omy through its efficient atmospheric nitrogen fixation. Remarkably, alfalfa achieves unrivaled
protein productivity per hectare in temperate zones, reaching up to four tons of protein per
hectare. It also boasts an adequate energy value and enhances the structure and composition
of soils (Mei et al., 2022; Osterholz et al., 2019).

Alfalfa’s robust deep root system renders it drought-tolerant, capable of accessing water
from deep within the soil, thus ensuring its resilience (Jefferson & Cutforth, 2005). This deep
rooting also facilitates nitrogen fixation and enhances water quality. Additionally, it interrupts
the life cycles of weeds, pests, and pathogens in annual crops, further contributing to improved
carbon storage in the soil (Fernandez et al., 2019; Meiss et al., 2010).

1.2.1 History and Origin

The history and origin of alfalfa are intricately linked to human civilization, reflecting a journey
that spans continents and millennia. Initially believed to have been cultivated as early as 9,000
years ago in the Near East to Central Asia, alfalfa’s domestication is rooted in regions rich
in agricultural innovation (Hanson et al., 1988). Various scholars, including Prosperi et al.
(2014), have traced the earliest written records of alfalfa to its introduction to Greece by the
Medes, followed by its spread across Italy and the wider Roman Empire (Figure 1).

The Middle Ages saw a decline in the cultivation of alfalfa in Europe, but it resurged
when reintroduced in Spain by the Moors, eventually spreading across Europe and later to the
Americas by the Spanish in the sixteenth century. After the Spanish arrived in South America,
alfalfa was introduced to the new continent in the 18th century. This expansion continued into
North America through California in the early nineteenth century, marked as "Chilean clover"
(Prosperi et al., 2014). The introduction of alfalfa to North America and Oceania occurred
considerably later, and the sources and routes taken for this introduction are well documented
(Sakiroglu & Ilhan, 2021)

The debate over alfalfa’s precise origins remains open, with multiple potential centers of
origin proposed, including Eastern Anatolia, lran, Armenia, Afghanistan, and Central Asia
(Lesins & Lesins, 1979). Each of these regions presents unique contributions to alfalfa’s
genetic diversity, shaped by natural and artificial selection to adapt the crop to varied ecological
conditions. Central Asia, in particular, is noted for its role as a secondary center of diversity,
contributing genetic resistance to diseases like bacterial wilt and pests such as the blue alfalfa
aphid.

Prosperi et al. (2014) emphasize that despite a significant domestication bottleneck, which
reduced genetic variability, alfalfa maintains considerable genetic diversity, particularly in wild
populations found in its areas of origin. These wild forms, particularly adapted to their local
environments, offer valuable genetic traits such as drought tolerance and prostrate growth
habits, which are crucial for alfalfa’s adaptation to new and changing environments.

1.2.2 Taxonomy

Alfalfa belongs to the major genus Medicago within the Fabaceae family. It is part of a
taxonomic continuum that encompasses both the cultivated crop alfalfa varieties and its closely
related wild taxa, all of which can interbreed and produce fertile offspring. This taxonomic
continuum is referred to as the Medicago sativa species complex (Sakiroglu & ilhan, 2021).
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Figure 1. History of alfalfa expansion from its presumed center of origin. Modified from
Prosperi et al. (2014) by Irving Arcia.

M. sativa exhibits intrinsic diversity, which is amplified by a wide spectrum of phenotypic
variations resulting from processes such as hybridization, polyploidy, and domestication.
Among the taxa described in the complex, we find sativa, falcata, glomerata, and x varia.
Each taxon has been considered as species or subspecies by different investigators over time
(Sakiroglu & lIlhan, 2021). However, there are two main taxonomical groups: sativa and
falcata. Morphologically, these subspecies are distinct (Figure 2); ssp. sativa features a
taproot system, erect growth habit, purple flowers, and spiral pods, while ssp. falcata exhibits
a fasciculate root system, prostrate growth habit, yellow flowers, and fasciculate pods (Teuber
& Brick, 1988). Medicago x varia is commonly encountered as a result of hybridization between
subsp. sativa and subsp. falcata (Prosperi et al., 2014). For clarity, in this document, the
aforementioned taxa are all considered as subspecies of the M. sativa complex.
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Figure 2: Main subspecies of the M. sativa complex. (a) Upright habit of spp. sativa, (b)
Inflorescence of ssp. sativa, (c) Infructescence of spp. sativa, (d) Inflorescence of M. x varia,
(e) Infructescence of spp. falcata, (f) Inflorescence of ssp. falcata, (g) Habit of spp. falcata.
Modified by Irving Arcia from MNHN & OFB [Ed] (2024).

1.2.3 Breeding

Plant breeding in alfalfa is complex due to the plant’s allogamous nature, which prevents the
creation of pure lines and results in varieties existing as synthetic populations. On the other
hand, alfalfa’s perennial characteristics and long breeding cycles mean that advancements
in yield and other traits occur slowly (Julier et al., 2017). Historically, the development
of alfalfa cultivars has primarily utilized phenotypic recurrent selection within natural field
conditions (Bolafios-Aguilar, 2001; Li & Brummer, 2012). Recurrent selection plays a critical
role in this process, aiming to incrementally increase the presence of beneficial alleles while
preserving genetic diversity for ongoing improvement efforts. The challenges inherent in alfalfa
genetic improvement set the stage for innovative approaches in plant breeding. As traditional
methods such as recurrent selection strive to incrementally enhance alfalfa's genetic traits,
there emerges a clear need for advanced techniques that can accelerate and refine this process
(Li & Brummer, 2012). Among those techniques we find Marker Assisted Selection (MAS)



and Genomic Selection.

1.2.4 Genetics

The genetic composition of Medicago sativa reflects its complex taxonomic structure. While
diploids are present, Medicago sativa ssp. sativa is predominantly tetraploid, featuring a
chromosome count of 2n = 4x = 32. In contrast, Medicago sativa ssp. falcata may exhibit
either diploid or tetraploid forms (Quiros & Bauchan, 1988). This genetic diversity is critical
for alfalfa cultivation, with tetraploid varieties generally preferred for their robustness and
vigor in agricultural settings. The genome size of these autotetraploid populations ranges
from 800-1,000 Mb for 1 C (Medina et al., 2020).

Alfalfa’s genetic variability is primarily intra-varietal (Flajoulot et al., 2005; Julier et al.,
2000), influenced by its mode of reproduction as a cross-pollinated species and its autote-
traploid nature. This variability is also a result of its recent domestication and frequent seed
exchanges. Regional genetic variations have been noted, with studies highlighting distinct
differences in genetic diversity between Asian and Middle Eastern accessions (Muller et al.,
2003), and between Chinese germplasm and that from other regions (Pégard et al., 2023;
Qiang et al., 2015). It is from this germplasm that a reference genome for alfalfa has been
produced (Chen et al., 2020).

The adoption of Genotyping-by-Sequencing (GBS) technology has significantly advanced
alfalfa genotyping. Early efforts relied on de novo assembly of reads without a reference
genome (Annicchiarico et al., 2015), while other studies used the genome of M. truncatula as
a reference (Julier et al., 2018). However, because these two legumes are different species,
few functional genes from M. truncatula have been found in alfalfa (He et al., 2022). More
accurate alignments have become possible with the development of alfalfa’'s own reference
genomes (Chen et al., 2020; Long et al., 2022; Shen et al., 2020). Recently, Pégard et
al. (2023), performed GWAS and Genomic Prediction using as reference genome the one
assembled by Chen et al. (2020); most of the pipeline used here follows this study.

1.3 Association Studies

Association studies, particularly genome-wide association studies (GWAS), play a pivotal role in
identifying genetic variants that influence traits. GWAS focus on detecting single-nucleotide
polymorphisms (SNPs). Thanks to the certain SNPs that are linked to phenotypic traits,
researchers can suggest that nearby genetic variants may be crucial for these traits (Flint-
Garcia et al., 2003). This process aids in the detection of quantitative trait loci (QTL),
where significant QTL signals indicate a strong statistical linkage to key phenotypic traits
(Flint-Garcia et al., 2003).

1.3.1 Genetic structure

Genetic similarity (or relatedness) complicates the detection of causal variants in standard
association studies, often leading to the identification of numerous false positive associations
(Flint-Garcia et al., 2003; Segura et al., 2012). Sul et al. (2018) identifies two main types of
relatedness that contribute to high rates of false positives: differences in ancestry and cryptic
relatedness. These differences can involve varying backgrounds among study participants, with



large population cohorts (N > 5,000) frequently displaying shared ancestry across different
populations. Cryptic relatedness occurs when individuals are closely related in ways unknown
to the researchers, which, along with ancestry differences, constitutes population structure.

Linkage disequilibrium (LD) is another factor affecting GWAS results. Associations of a
trait with multiple SNPs within a region may be due to long LD with an untyped causal
variant rather than allelic heterogeneity. This issue is exacerbated in related populations,
where population structure causes genome-wide LD between physically unlinked loci, leading
to statistical confounding effects in genome-wide association studies (Segura et al., 2012).
Furthermore, the extent of LD determines the number and density of markers needed (Flint-
Garcia et al., 2003); when LD persists over longer distances, fewer markers are needed to
capture the same genetic variation over a larger region of the genome. Flint-Garcia et al. (2003)
also notes that selection enhances LD, creating locus-specific bottlenecks and promoting LD
between the selected allele at a locus and its neighboring loci. Moreover, selection targeting
a phenotype influenced by two unlinked loci can also lead to LD, despite these loci not being
physically connected. As an allogamous species, alfalfa typically exhibits LD over short physical
distances (Herrmann et al., 2010).

1.4 Challenges

Building on the foundation laid by existing genome-wide association studies (He et al., 2022;
Medina et al., 2020; Pégard et al., 2023), there is a compelling need to extend these studies
to address unique challenges associated with using alfalfa as a living mulch.

Alfalfa’s role as a forage crop makes commercial varieties vigorous but competitive for
resources when co-cultivated with cash crops; this can ultimately diminish the cash crop
yields. To prevent competition for light, mowing or the usage of herbicides becomes necessary
(Carof, 2006; Labreuche et al., 2017). Employing dormant varieties could be a strategy to let
the primary crop establish; however, this also makes room for weeds to thrive. A potential
compromise could involve the development of semi-dormant varieties. Consequently, there is
a need to identify traits for the living-mulch alfalfa ideotype within a broad germplasm.

High seed production is a critical trait to consider. Indeed, the ability of a cultivar to provide
high seed yield determines its commercial success and wide acceptance by farmers (Bolafios-
Aguilar et al., 2000). This is particularly crucial for emerging alfalfa varieties intended for
use as living-mulch. Moreover, it is essential to explore underutilized germplasm with unique
characteristics such as shorter or erect growth habits, in particular those not previously selected
for seed production. This approach could provide new insights and broaden the genetic diversity
for more effective living-mulch applications.

1.5 Seed Production

In alfalfa, seed yield is determined by a hierarchy of levels extending from the broadest scale
of plant spacing in the field (stand density) up to the scale of the seed itself (Bolafios-Aguilar,
2001): stand density, plant, stem, inflorescence, pod, and seed; see Figure 3. Each level of this
hierarchy can be quantified either as counts or as weights, each dependent on a broader level
(e.g., number of seeds per pod, number of pods per inflorescence, number of inflorescences per
stem, ending by number of healthy plants per stand). This hierarchical quantification allows



determination of traits or components that contribute to the overall seed yield difference
between varieties. The correlation between seed yield and the components varies; however,
variables related to the inflorescence are particularly linked to seed production. Bolafios-Aguilar
et al. (2000) and Bouton and Gates (2003) found that the inflorescence plays a pivotal role
in seed production-related traits, which is why this work places major emphasis on traits
associated with the inflorescence.

Stand density

Inflorescence

Figure 3: Alfalfa seed yield hierarchy of levels.

1.6 Objectives

The primary aim of this research is to understand the genetic determinism of seed pro-
duction in a diversified alfalfa panel meant to be used as living mulch. To achieve this,
the study is structured around several specific objectives. Initially, we will evaluate genetic
diversity. Subsequently, we will quantify the heritability of these traits to determine the
extent to which they are genetically controlled versus influenced by environmental factors. The
research will then progress to a Genome-Wide Association Study (GWAS), which will identify
the genetic markers closely associated with seed production.

2 Materials and Methods

2.1 Plant material

The 30 populations used in this study were derived from 22 synthetic populations and 8 wild
populations (named P30, see Table 1), each represented by 40 plants, totaling 1200 individuals.
In addition to the standard 40 plants per population, 155 individuals of the Milky Max variety
were included to monitor spatial homogeneity. The chosen populations aimed to represent
a diverse range of characteristics, including subspecies, ploidy levels, autumn dormancy, and
whether they were wild or cultivated. The tetraploid populations from P30 were named P27.

Additionally, a polycross comprising 245 individuals was available (named F1). This poly-
cross resulted from the outcrossing of three populations: Krasnokutskaya (subspecies falcata
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), Mezzo (a vigorous cultivated variety of subspecies sativa ), and LPIll (an experimental
variety of subspecies sativa known for high seed production potential), each represented by 30
plants. In total, the study included 1600 plants.

Table 1: Overview of Alfalfa Accessions by Subspecies, Ploidy, Cultivation Status, and Origin.

Population Subspecies Ploidy Type Origin
Camporegio falcata 4x Cultivated Italy
Coussouls sativa 4x Cultivated France
Gabes sativa 4x Cultivated Tunisia
Glomerata glomerata 2X Wild France
Greenmed sativa 4x Cultivated  Spain
Koalf 2-96 sativa 4x Cultivated Hungary
Krasnokutskaya falcata 4x Cultivated Ukraine
L4332 sativa 4x Cultivated France
L5323 X varia 4x Cultivated France
L8988 falcata 4x Cultivated France
Limory sativa 4x Cultivated France
Ludelis sativa 4x Cultivated France
Luzelle sativa 4x Cultivated France
Malzeville falcata 4x Wild France
Marais de Lucon  sativa 4x Cultivated France
Maron falcata 4x Wild France
Mezzo sativa 4x Cultivated France
Miechowska sativa 4x Cultivated Poland
Milfeuil sativa 4x Cultivated France
Milky Max sativa 4x Cultivated France
Monte Oscuro sativa 4x Wild Spain
Occitane sativa 4x Cultivated France
Pancrudo sativa 4x Wild Spain
Quasifalcata falcata 2x Wild Russia
Romanica falcata 2x Wild Russia
Speeda sativa 4x Cultivated France
Timbale sativa 4x Cultivated France
Verdor sativa 4x Cultivated France
Villanueva de Jara sativa 4x Wild Spain
Wugong sativa 4x Cultivated China

2.2 Experimental Conditions

Plants were cultivated under greenhouse conditions until they reached one month of age. In
April 2021, the seedlings were transplanted into the field in the experimental site illustrated in
Figure 4. Each plant was spaced 70 cm apart from its neighbors. The experiment included four
replicates, organized into four blocks. Plants were cultivated at the Grasslands and Fodder



Plants Research Unit of INRAE (Lusignan, France; 46° 24" 3" N, 0° 4" 53" E). Data were
collected over 2022 and 2023.

Milky Max I:l F1 I:' P30

Figure 4: Spatial Arrangement of the Alfalfa Populations. This aerial photograph illustrates
the layout of the populations distributed across four experimental blocks in a field study. Each
block systematically hosts distinct varieties: 'Milky Max' for spatial monitoring (yellow), 'F1’
(blue), and 'P30’" (red). Notably, each block is surrounded by border plants to minimize edge
effects and ensure consistent experimental conditions.

2.3 Phenotyping

2.3.1 Plant measurement

The phenotypic measurements were conducted in July 2022 and 2023. For each plant, five
(2022) or ten (2023) large inflorescences were collected and four seed yield measurements
components were recorded: the number of pods, the number of seeds, the weight of the seeds,
and the weight of the inflorescences. These data were utilized to calculate the traits analyzed
throughout this study (Table 2). In 2022 and 2023, 313 and 364 plants, respectively, could not
be phenotyped. The Interquartile Range (IQR) method was used to flagged outliers, that were
subsequently removed. Besides outliers’ removal, after contextual and visual examination,
anomalous points were also removed. Although only data points were removed at each time,
sometimes this led to the removal of all variables for a plant, in total 1279 and 1216 plants
were kept for 2023 and 2022 respectively.


https://geohack.toolforge.org/geohack.php?params=46_24_3_N_0_4_53_E

Table 2: Overview of Seed Yield Components Measured in This Study. Each variable is
classified under three main levels: Inflorescence, Pod, and Seed.

Level Description Variable
Inflorescence Seed weight per inflorescence SWhl
Seed number per inflorescence SNpl
Pod number per inflorescence PNpl
Inflorescence weight W
Pod Seed weight per pod SWpP
Seed number per pod SNpP
Seed Thousand seed weight TSW

2.3.2 Statistical Analysis

To assess variability among accessions, years, and experimental blocks, an ANOVA was per-
formed on P30 using the model shown in Equation 1. Here, Yjj is the measurement of the
trait, m is the overall mean, a; represents the fixed effect of the i-th accession, y; represents
the fixed effect of the j-th year, (ay);; is the interaction between the accession and the year,
by is the random effect associated with the k-th block, ejjx is the residual error.

Y,-jk =m-+ a; + Y -+ (ay),-j —+ bk + €ijk (1)

To control for the potential impact of different years, separate ANOVAs were performed
for each year using the model shown in Equation 2. This approach ensures that the fixed effect
of the year, a;, and its interaction with the variety, (ta);;, do not influence the assessment of
variety and block effects within each year. The model for the yearly analysis was:

Yik = m+ a; + bx + eix (2)

2.4 Genotyping

For each plant, leaflet sampling and DNA extraction were performed according to the method
described by Julier et al. (2018). Subsequently, six GBS libraries were constructed with DNA
being digested by Pstl and Msel enzymes based on the approach outlined by Elshire et al.
(2011). Following adaptor ligation and PCR amplification, the process includes cleanup steps
and final library assessment for sequencing readiness. Sequencing was done with Novaseq
technology.

2.4.1 SNP calling

SNP calling followed the methodology detailed by Pégard et al. (2023), reads were mapped
to chromosome B of the Medicago sativa reference genome (Chen et al., 2020). The analysis
was restricted to biallelic SNPs and was focused on calculating SNP frequencies using custom
scripts, rather than determining SNP dosages.
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2.4.2 GBS Quality Control

The SNP data mapped onto scaffolds were first excluded. We then applied a filter to remove
plants exhibiting over 60% missing data. Subsequently, SNPs with more than 20% missing
data were removed, along with SNPs where the minor allele frequency (MAF) was below 0.05.
After these filtering steps, we created matrix M1, which retained only the markers that had no
missing data; resulting in a total of 13,883 markers. For the creation of matrix M2, imputation
was conducted; for each variety, the MAF was calculated and used to impute missing data.
Markers absent in any of the varieties (totaling 35) were excluded, culminating in matrix M2
containing 62,150 markers.

2.5 Population Structure

The M1 GBS matrix was utilized for the analysis of genetic structure. Linkage disequilibrium
(LD) was measured by the partial correlation coefficient between each pair of markers Lin
et al. (2012), and was plotted against the physical distance. LD was estimated for F1 (216
individuals), Milky Max (178 individuals), P27 and P30. Additionally, a Principal Component
Analysis (PCA) was conducted on P30 and F1 using the R package FactoMineR (L& et al.,
2008) to assess diversity and structure within the population.

2.6 Genetic Model and Phenotypic Adjustment

2.6.1 Spatial Adjustment

When phenotypic data values distribution is structured and influenced by varying environmental
conditions across the test field, a microenvironmental adjustment is necessary to correct for
spatial heterogeneity bias. While doing this correction, the genotypic variance (by means
of a Genetic Relationship Matrix, GRM [see Equation 4]) and the fixed block effects were
also considered. The function remlf90 from the breedR package (Mufioz & Sanchez, 2024)
was used to perform the correction. This package uses the Restricted Maximum Likelihood
(REML) statistical method to capture the variance components; moreover, to model small-
scale environmental variations, the tensor product of two B-splines bases was used to create
a smooth representation of spatial effects. A covariance structure is used to determine how
random effects (in this case, Random Knot Effects, RKE) correlate with each other across
the two dimensions (rows and columns). As mentioned by Pégard et al. (2023), breedR
optimized the knot numbers by an automated grid search based on the Akaike Information
Criterion (AIC). Besides variance components, the function remlf90 also allows us to estimate
the genetic correlation between different traits. The previous variances and effects (calculated
following the model presented in equation 3) determine the microenvironmental effect, which
is subtracted from the observed phenotypic value to obtain an adjusted phenotypic value. This
adjustment was done only for P27; for populations F1 and Milky Max the remI90 model did
not capture spacial heterogeneity.
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2.6.2 Genetic Model

In this work, a mixed (both fixed effects and random effects) genetic model was employed.
The phenotypic values, y, are modeled as the sum of the global mean, u, the genetic effects,
Xu, the spatial effects, W's; and the residual effects e:

y=p+ Xu+Ws+e (3)

While X is an incidence matrix that links each plant to its genetic effects, u is a vector
representing the genetic effects. These genetic effects are assumed to be normally distributed
with a mean of zero and variance Go2, where G is the genomic relationship matrix (detailed
below, Equation 4), that quantifies genetic similarities between the plants, and o2 is the
additive genetic variance. Ws is the spatial effects that might affect the phenotype, like
variations within the field where the plants are grown. W is also an incidence matrix linking
these effects to each plot, and s is a vector of these random spatial effects, which are also
assumed to follow a normal distribution with zero mean and specific variance (So?), S describes
how these spatial effects are related across different plots. € represents the residual effects (or
error) that cannot be explained by genetic or known spatial factors. It is assumed to follow a

normal distribution with zero mean and its own variance 2.

2.6.3 Genetic Relationship Matrix Estimation

GRM was calculated on M1 according to VanRaden (2008) and modified as presented by
Cericola et al. (2018) to deal with allelic frequencies:

MM’

GRM = —— "~
% j:lp(l_pj)

(4)

With M representing the allelic frequencies matrix centered by minor allele frequency
(MAF), m the number of markers, p; the frequency of the j*" marker, and n a scalar meant
to obtain a diagonal mean of 1, Cericola et al. (2018) defines it as the ploidy number. In this
work, setting n = 4 achieved a diagonal mean close to 1 for tetraploid P27. Including other
populations altered the diagonal mean, and using a different ploidy number lacked biological
sense. Consequently, the reml90 model was not run for P30.

2.6.4 Heritability Estimation

Variance components were autonomously computed from adjusted phenotypic values using the
reml90 function from the breedR package, without the need for manual supervision. This cal-
culation adhered to the genetic model previously described (Equation 3). With these variance
components, the broad-sense heritability, denoted as H?, was determined using the following
equation:
2 _ Varg (5)
Varg + Vare + Varg

With Varg accounting for the genetic variance, Varg the microenvironment effect variance,
and Varg the residual. H?, was estimated for P27 across two different years (Table ??), as
well as for each year —done by adding the year affect to the model presented in Equation
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3 . It was also calculated for F1 and Milky Max variety using (Table ??) data from 2023,
using AR1XARL instead of B-splines, which may result in a less accurate representation of
the spacial effect; in these cases, no spatial correction was done because the model failed to
identify spatial structure.

2.7 GWAS

Using 62,150 markers Genome-Wide Association Studies (GWAS) were conducted on P27 (one
study per year and a third averaging data from both years), MilkyMax-2023, and F1-2023 to
identify potential QTLs, this time M2 matrix was used. To mitigate bias from population
structure and variation due to kinship among accessions, a multi-locus mixed model (MLMM)
approach was employed using the R package mlmm, developed by Segura et al. (2012). The
model was parameterized to run up to ten (non-inclusive) steps. A Bonferroni corrected
threshold of 0.05 over the total number of markers was used.

3 Results and Discussion

3.1 Phenotypic data

An essential aspect of this study was to determine whether data from both years could be
integrated effectively. Utilizing the relm90 model in breedR, the year effect emerged as the
predominant factor for all traits. Likewise, analysis through an ANOVA (Table 3) revealed
significant interactions between variety and year for all traits (p < 0.001), except for TSW,
which had a p-value of 0.65. This could be due to environmental variations or other annual
factors influencing the traits. Furthermore, while IW shows an exceptionally high F value
for the year effect —suggesting a very strong year dependency, TSW exhibits no significant
interaction between variety and year, indicating that the year-to-year variation in variety effects
is relatively consistent for this trait compared to others.

Table 3: Refined ANOVA P-values for different variables and effects, showing <0.001 where
applicable.

Variable Variety Year Block  Year-Variety Interaction
PNpl <0.001 <0.001 <0.001 <0.001
W <0.001 <0.001 0.00949 <0.001
SNpl <0.001 <0.001 <0.001 <0.001
SWhl <0.001 <0.001 0.00319 <0.001
SWpP  <0.001 <0.001 0.0218 <0.001
SNpP <0.001 <0.001 0.109 <0.001
TSW <0.001 0.426285 <0.001 0.650465

When run separately (Appendices 3 and 4), for both years ANOVA results indicated strong
influence of variety for all variables (p < 0.001). This is a consistent pattern across years
and suggests that genetic differences among varieties are important determinants of the traits.
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The block effect is also significant for most variables, indicating that environmental or spatial
variations within the blocks are affecting the traits.

3.2 Genotypic data

The percentage of markers mapped onto scaffolds corresponded to 10% of the markers. After
filtering steps, the total number of markers was of 62,150 SNPs (Table 4).

Table 4: Processing Steps and SNP Counts

Step SNP count Individual Plant Count
Initial count data 173,876 1,557
Removing duplicated plants 173,876 1,544
Scaffolds filter 155,818 1,544
Less than 60% NA in plants 155,818 1,505
Less than 20% NA in SNPs 63,649 1,505
MAF < 0.05 62,185 1,505
SNPs present in all populations 62,150 1,505

SNPs were not evenly distributed along the chromosomes (Figure 5), and there were areas
with less coverage, particularly towards the central parts of some chromosomes, possibly due
to centromeric regions (Medina et al., 2020). Interestingly, in a similar way to Medina et al.
(2020) and Pégard et al. (2023), chromosome 6 are among the chromosomes with the least

presence of markers, this is due to a less density in the presence of coding genes (Chen et al.,
2020).
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Figure 5: Distribution of GBS SNP markers across the eight alfalfa chromosomes using a
500kb window

3.3 Population Structure

3.3.1 Principal Component Analysis

The PCA analysis conducted on the entire population panel (Figure 6) revealed distinct cluster-
ing patterns. Diploid varieties were markedly separated from tetraploid varieties. Additionally,
the French diploid Glomerata population formed a distinct cluster, separate from the Russian
diploids Romanica and Quasifalcata. The genetic divergence observed in glomerata, compared
to other groups, supports the argument for classifying this group as a separate species, as
suggested by some authors (Sakiroglu & Ilhan, 2021).
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Figure 6: PCA for P30 populations.

When PCA was performed on P27, excluding the diploids (refer to Appendix 5), the data
exhibited less clustering, but still some can been seen; for example for cultivated populations,
this can be due to breeding selection pressure. Spanish wild populations (Pandcrudo, Villanueva
de Jara and Monte Oscuro) also appear to have some clustering. F1 individuals appeared more
or less centered with respect to other populations.

However, within the F1 group, there was more internal structuring (Figure 7). Depending
on the maternal heritage, it was evident that out-crosses occurred, along with in-crosses
between plants of the same variety and/or possible selfing within a single plant. Furthermore,
there might be more intercrossing between sativa maternal populations (LPIll and Mezzo).
This apparent preferential intercrossing may be due to differences in the developmental stage;
for instance, LPIIl and Mezzo may have flowered at the same time, and earlier or later than
Krasnokutskaya. In this study we neither establish a difference between selfing and crosses
between plants of the same variety, nor determine the paternal heritage status of the F1 plants.

However, within the F1 group, distinct internal structuring was observed, as illustrated
in Figure 7. This structuring highlights the occurrence of both out-crosses and in-crosses
among plants of the same variety, as well as potential selfing within individual plants. Notably
—regardless of the random distribution of plants in the field, there appears to be a higher
incidence of intercrossing among the sativa maternal populations (LPIII and Mezzo), possibly
influenced by differences in their developmental stages; for example, LPIIl and Mezzo may
have matured earlier or later than Krasnokutskaya. Differences in inflorescence architecture
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and seed viability may play a significat role too. In this study, a differentiation between
selfing and in-crosses within the same variety is not done, nor was it possible to determine the
paternal heritage of the F1 plants. Further genetic characterization is needed to elucidate the
genealogical history of the F1 population.

In the context of associations studies, including diploid varieties may increase the risk of
producing population stratification bias. This is because genetic differences between groups
might be associated with both the genetics and the phenotype, potentially leading to false
associations; associations may represent adaptations to specific environmental or historical
contexts. Another source for bias may be due to the high relatedness of F1. To avoid this
bias, separated analysis were done for P27 and F1 when calculating the component variances
and performing the GWAS.
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Figure 7: PCA for F1 population. The plot shows the distribution of individuals based on their
genetic variation, with each color representing the maternal heritage of the individuals: ME
for Mezzo, KR for Krasnokutskaya, and LP for LPIII.

3.3.2 Linkage Disequilibrium

Generally, all populations exhibit an expected LD decay where LD decreases as physical distance
between SNPs increases. This decay pattern is a hallmark of recombination breaking down
linkage between loci over generations. The LD decay in P27 and P30 was relatively steep
(Figure 8), with high LD values concentrated at short distances and rapidly decreasing over
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longer distances. This steep decay might be indicator of populations with high recombination
rates and substantial genetic diversity. The P30 population, which included the P27 set
plus three additional diploid populations, showed a broader distribution of LD values. The
inclusion of additional populations appeared to increase the variability in LD, with some SNP
pairs maintaining higher LD over longer distances. This can be attributed to the increased
genetic variability and potential introduction of new haplotypes from the additional diploid
populations.
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Figure 8: Linkage Disequilibrium plots for P30 (top) and P27 (bottom).

The F1 population also shows a decay pattern where the LD decreases as the physical
distance between SNPs increases (Figure 9). The relatively quick decay of LD suggests effective
recombination events in the F1 population, which might be related to the genetic mixing from
the three parental populations. In contrast to P27 and P30, F1 exhibited a slower decay, which
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may be due to some chromosome fragments not having the opportunity to recombine over
several generations.

Surprisingly, Milky Max displays a similar LD decay pattern to the F1 population, though
with some differences in the density and spread of LD values. The initial high LD values
decrease with increasing physical distance, possibly indicating recombination over generations.
However, the point density suggests there might be more regions with moderate LD compared
to the F1 population. Also, Milky Max population shows a less steep LD decay pattern than
F1. This could be indicative of less effective recombination and genetic mixing due to the
breeding history and selection pressures specific to the Milky Max, where fewer recombinations
than expected occurred.

The fact that Milky Max shows a LD profile similar to that of F1, rather than P30, may
be due to its breeding history. Given that the initial linkage disequilibrium (LD) in a synthetic
variety is shaped by the number and genetic relatedness of its parent plants, and typically
diminishes through successive panmictic generations (Gallais, 2003), several scenarios could
explain the LD observed in Milky Max. It is plausible that Milky Max was developed either
from a relatively small number of parents, from parents who were closely related, or both.
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Figure 9: Linkage Disequilibrium plots for F1 (top) and Milky Max (bottom).

3.4 Heritability and Correlation

The heritability estimates for P27-2023 were higher than those for P27-2022, and also sur-
passed the estimates when both years were analyzed collectively. When analyzed across both
years, heritability exhibits intermediate values between those observed in 2022 and 2023 (ex-
cept for TSW, with the highest heritability across years).

Heritability is known to be adversely affected by unfavorable environments and has been
reported to change, often improving, with plant age (Lawrence-Paul et al., 2023). There-
fore, variation in heritability across years could be attributed to experimental complications
encountered during data collection in 2022, where inflorescences were collected later —and in
a less benign environment. Conversely, the improved heritability in 2023 might be linked to
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the plants being older and more established.

Although most traits exhibit varying levels of heritability across different years for P27
(Table 5), with some showing significant changes —suggesting environmental and/or experi-
mental impacts on trait heritability), in overall, SWpP, SNpP and TSW (when analysed each
year independently) are the traits with the lowest heritability. SWpP was found to have the
smallest heritability for Milky Max and P27 in both years, similarly to TSW its value increases
when used both years.

For SWpl, PNpl, SNpl, SWpP and SNpP Bolafios-Aguilar et al. (2000) presents broad
heritabilities of 0.42, 0.32, 0.42, 0.39, and 0.38 respectively for one experiment and 0.31,
0.27, 0.34, 0.34, and 0.40 for another. Thus, although not as wide as the heritabilities found
in this work, some variation is observed depending on experimental conditions. Also, these
values exhibit moderate heritabilities, which aligns with ours.

Table 5: Broad-sense heritability estimates for P27 across different years and for F1 and Milky
Max in 2023.

P27 2023
2022 2023 2022-2023 F1  Milky Max

PNpl  0.25 0.46 0.34 0.27 0.28
IW 0.30 0.50 0.29 0.49 0.16
SNpl  0.26 0.41 0.25 0.56 0.35
SWpl  0.23 0.39 0.23 0.56 0.04
SWpP 0.16 0.16 0.28 0.51 0.22
SNpP  0.23 0.32 0.21 0.45 0.49
TSW 029 0.34 0.46 0.23 0.84

Trait

The correlation analysis for P27 (10) revealed a strong alignment between phenotypic and
genotypic correlations among the traits. Traits associated with inflorescence (XX-pl and W),
exhibit strong positive correlations. Similarly, traits linked to pod development (XX-pP), with
the exception of PNpl, also demonstrate robust positive correlations among themselves. This
suggests that certain traits could potentially be predicted from others, which could simplify
breeding programs or genetic studies by focusing on a subset of traits. On the other hand,
similarly to Lefebvre (2023), TSW displays very weak correlations with most other traits,
indicating a distinct set of influencing factors. This independence suggests that the factors
driving TSW are likely different from those impacting inflorescence and pod traits, possibly
involving unique genetic or environmental interactions. Similar behaviour was seen for the
phenotypic correlations for Milky Max and F1 in 2023.

In general, for SWpl, PNpl, SNpl, SWpP and SNpP Bolafios-Aguilar et al. (2000) reports
moderate to high positive genetic and phenotypic correlations, with the exception of PNpl
which exhibits low correlations. This conforms with the correlations on Figure 10, where
(after TSW) PNpl appears to be the least correlated trait.

The fact that TSW is slightly negatively correlated with SNpP and SNpl may indicate
a possible negative compensation in seed weight when there is a high seed yield. This is
something to keep in mind when breeding for seed yield in alfalfa, because it could increase
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at the expense of seed size and weight. In this scenario, seeds may present problems for
germination, since smaller seeds may establish poorly (Wall & Steppuhn, 2007).
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Figure 10: Correlation between traits for P27. Phenotypic and genetic correlations (based on
the covariance matrix estimated with a multi-trait model) are on the left and right sides of
the diagonal, respectively.

3.5 GWAS

No QTLs were identified for P27 in 2022, which aligns with expectations given the low her-
itability observed for all traits. However, a combined analysis for both years identified five
QTLs. The r2 values, which measure the proportion of variance in the trait explained by
the markers, are relatively low in some cases (see Appendix 12), suggesting either complex
genetic architecture with multiple contributing factors or insufficient marker coverage. Higher
r2 values in certain markers (e.g., associated with IW) indicate stronger associations worth
further investigation.

Since heritability quantifies the proportion of phenotypic variance attributable to genetic
variance within a specific population, high heritability can suggest the presence of multiple
genetic factors, such as additive, dominance, and epistatic effects, influencing the trait (Viss-
cher et al., 2008). This could imply a complex genetic architecture with potential for multiple
QTLs. However, high heritability does not equate to genetic determinism (Visscher et al.,
2008). Rather, it indicates that genetics significantly influence phenotypic variation in the
current population context. Thus, in cases where GWAS fails to identify significant markers
despite high heritability (e.g., SNpl and SWpl for F1 in 2023; and TSW for Milky Max in
2023), it may be due to the complex genetic architecture involving many small-effect alleles
or other factors limiting detection power.

On the other hand, traits exhibiting both high genotypic and phenotypic correlations are
anticipated to share QTLs (Gardner & Latta, 2007). This is the case for population P27
in 2023; the GWAS results highlighted a marker, chrl.2_52718807, which appeared to be
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associated with most traits (SNpP, SNpl, SWpl, SWpP and on the second GWAS step for IW,
p-value 1.91e-06), underscoring its potential significance.

Thanks to the annotated reference genome (Carrere & Gouzy, 2024), it could be found
that most of the QTLs fell near or within an annotated region. Those annotations may be
linked to transcriptional differences in specific metabolic pathway steps. For instance, some
of the annotations for the found significant markers relate to DNA-binding or transcriptional
regulation such as SANT /Myb domains. MYB transcription factors are known for their role
in various plant processes including development and stress responses. Their presence in
inflorescence elongation (Huang et al., 2024) and potential implication in the Inflorescence
Weight (maker chr2.2_60522359 in Table 6, Appendix 11) through related regulatory domains
highlight their relevance. The same marker has an annotation for a Zinc finger domain.
This kind of domains are commonly associated with DNA binding and are often found in
transcription factors, which are crucial for regulating gene expression. Finding this kind of
domain in the our GWAS results (Table 6) suggests a role in transcription regulation that
could be relevant to both transcriptional control of inflorescence elongation (Huang et al.,
2024) and genetic variations affecting Inflorescence Weight.

Likewise, an annotation for a UDP-glucosyltransferase (UGT) is captured through the
marker chr8.2_36886928 (Appendix 10) in association with SNpP. UGTs participate in stress
responses by utilizing various phytohormones and secondary metabolites as substrates (Gharabli
et al,, 2023). An example occurs in rice, where one particular UGT mediates metabolic
influx from lignin to flavonoid biosynthesis under abiotic stress conditions (Dong et al., 2020).
Expression of this UGT upregulates flavonoid-mediated auxin levels, which in turn increases
grain size. Similar pathways may influence SNpP or even seed size in alfalfa.
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Table 6: Genomic Associations ldentified in Alfalfa Seed Production Traits. This table sum-
marizes markers identified through GWAS, noting their genomic locations, associated traits,
and datasets used for where the QTLs were found. The last column lists proteins or domains
potentially linked to these markers, providing insights into the underlying biological mecha-
nisms influencing seed production traits. Functions/names are given according to UniProt
descriptions. When no adjustment was done, -WA was added to the dataset name.

Marker Traits Dataset Candidate Annotation
chrl.2_36542070 | SWpP, P27-22/23 NA
SWpl
chrl.2_52718807 | SNpl, pP27-23 Eisosome protein;
SWhpl, aspartyl/glutamyl-tRNA(Asn/Gln)
SWpP, amidotransferase subunit; dentin
SNpP sialophosphoprotein-like
chr2.2_11993317 | SNpP MilkyMax-23WA | Casparian strip membrane protein
chr2.2_21391439 | IW F1-23WA NA
chr2.2_60522359 | IW F1-23WA ADA2-like, zinc finger, ZZ-type;
SWIRM domain, SANT/Myb do-
main
chr3.2_28840119 | IW F1-23WA Uncharacterized
chr3.2_71781907 | SNpP MilkyMax-23WA | Ankyrin repeat-containing domain
superfamily
chr3.2_79337878 | IW P27-23 ZIP transporter
chrd.2_73304915 | SNpP P27-22/23 NA
chrd.2_92760839 | SNpP MilkyMax-23WA | F-box domain
chrb.2_77029282 | IW F1-23WA Anaphase-promoting complex sub-
unit 5 domain
chr6.2_452788 | SNpl P27-22/23 SKP1 component, POZ domain
chr6.2_84468503 | TSW P27-22/23 SLC26A/SulP transporter domain
chr8.2_11767356 | SNpP MilkyMax-23WA | NA
chr8.2_36886928 | SNpP MilkyMax-23WA | UDP-glucuronosyl /UDP-
glucosyltransferase
chr8.2_72610801 | TSW F1-23WA Pyridoxal phosphate-dependent
transferase, major domain

4 Conclusions
This study aimed to elucidate the genetic blueprint of seed production in alfalfa, intended for

use as living mulch, by examining a diverse alfalfa panel. Genetic determinism could be effec-
tively addressed thanks to the evaluation of genetic diversity, heritability quantification, and
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identification of genetic markers via Genome-Wide Association Studies (GWAS). Significant
markers found on the Genome-Wide Association Studies provide leads for further functional
studies to confirm the roles of genes linked to identified QTLs. Expanding the study to include
more markers through denser sequencing methods could capture a broader genetic variance,
integrating genetic insights with physiological studies to enhance breeding strategies compre-
hensively. Likewise, further research is required to validate these markers to determine their
consistency and utility. If the markers found during the GWAS are validated as QTLs, they
can guide future breeding programs (MAS) aiming to improve seed yield.

This work emphasizes the importance of considering annual variability in agricultural re-
search and breeding strategies. Future studies should perform year-specific analyses to better
tailor strategies that take advantage of or mitigate the effects of yearly environmental fluc-
tuations, thereby improving the predictiveness and effectiveness of breeding and management
practices.

Additionally, considering the genetic markers already identified and filtered through our
study, there is an opportunity to employ genomic prediction techniques. By using these mark-
ers, we can potentially improve the predictability and effectiveness of breeding strategies for
alfalfa. Genomic prediction could offer a more precise approach to estimating phenotypic out-
comes based on genetic data, potentially leading to better results in developing varieties with
optimized seed production and living mulch qualities. This approach could further refine our
understanding of the genetic determinants of alfalfa’s seed yield and enhance the application
of our findings in practical breeding programs.

One final remark concerns the Genomic Relationship Matrix (GRM) used during the GWAS
implementation and the component variances computation. There is a need for continued
research on the computation of the GRM, especially concerning the use of allelic frequencies
versus allelic dosages in panels with varying ploidy levels, which is crucial for accurate genetic
analysis and breeding applications.

25



5 Appendix

5.1 GBS Data Processing

Appendix 1: Cumulative Count of SNPs by Missing Data Proportion
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5.2 Phenotypic Data Processing and Analysis

Appendix 2: Summary of Plant Data Processing Steps Across Years. The table shows the
number of plants at various stages of data processing for the years 2022 and 2023, illustrating
the impact of each filtering and review step.

Step 2022 2023
Initial Plant Count 1236 1287
Plants after IQR Filtering 1498 1286
Plants after Calculating Secondary Variables 1217 1280
Plants after Manual Review 1216 1279
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Appendix 3: ANOVA P-values for different variables without year-variety interaction, 2022.

Variable Variety (P-value) Block (P-value)

PNpl <0.001 <0.001
W <0.001 0.00784
SNpl <0.001 <0.001
SWhl <0.001 <0.001
SWpP <0.001 0.0031
SNpP <0.001 0.00179
TSW <0.001 <0.001

Appendix 4: ANOVA P-values for different variables without year-variety interaction, 2023.

Variable Variety (P-value) Block (P-value)

PNpl <0.001 <0.001
W <0.001 0.0126
SNpl <0.001 0.671

SWpl <0.001 0.395

SWpP <0.001 <0.001
SNpP <0.001 <0.001
TSW <0.001 0.00151
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5.3 Genetic Structure

PC2 (2.5% variance)

-12

PCA of P27

-10

Appendix 5: PCA for P27 populations.
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Appendix 6: PCA for Milky Max.

PCA of Milky Max Synthetic Variety
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5.4 Variances and Heritabilities

Appendix 7: Variance Components and Heritability of Seed Production Traits in Alfalfa for
F1-2023 population.

Trait Spatial Genetic Residual  Heritability
Pod num./Inflo. 1.88 x 10°  5.61 x 10° 1.32 x 10t 0.27
Inflo. weight 223 x107* 334 x107% 3.26 x 10°3 0.49
Seed num./inflo. 2.07 x 10! 1.81 x 10> 1.18 x 107 0.56
Seed weight /inflo. 5.12x 10> 7.35x107* 5.09 x 1074 0.56
Seed weight/pod 052x 1077 149x10°° 4.70x 1077 0.51
Seed number/pod 3.56 x 107! 324 x 107! 3.70 x 1072 0.45
Thousand seed weight 6.38 x 1073 1.83 x 1072 5.29 x 1072 0.23

29



Appendix 8: Variance Components and Heritability for Traits Related to Seed Production in
Alfalfa for MilkyMax-2023 population.

Trait Spatial Genetic Residual  Heritability
Pod num./Inflo. 7.19 x 10° 734 x10° 1.19 x 10* 0.28
Inflo. weight 342x107% 139x1073 3.75x 1073 0.16
Seed num. /inflo. 8.96 x 101  1.17 x 10>  1.25 x 102 0.35
Seed weight/inflo. 1.17x 1073 521 x 1075 3.06 x 1075 0.04
Seed weight/pod 443 x 107" 6.44x 1077 1.80x 107° 0.22
Seed number/pod 1.84 x 1071 3.65x107' 194 x 107! 0.49
Thousand seed weight 1.87 x 1072 1.08 x 107! 1.78 x 1073 0.84

Appendix 9: Genetic Variances P27-2023 After Spatial Correction

Trait Genetic Spatial Residual Heritability
Pod num./Inflo. 6.993 x 10° 1.085 x 1072 8.246 x 10° 0.46
Inflo. weight 2.235 x 1073 3.000 x 1076 2.244 x 10~3 0.50
Seed num./inflo. 75.930 x 10° 0.1494 x 10° 107.600 x 10° 0.41
Seed weight/inflo. 2.870 x 107* 1.000 x 107 4.420 x 10~* 0.39
Seed weight/pod 2422 x 1072 4.910 x 1073 0.1229 x 10° 0.16
Seed number/pod 0.1851 x 10° 2.370 x 10~*  0.3946 x 10° 0.32
Thousand seed weight 3.493 x 1072 9.800 x 1075 6.862 x 1072 0.34

30



5.5 GWAS

Appendix 10: Manhattan plot for MilkyMax-2023 population for Seed Number per Pod trait.
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Appendix 11: Manhattan plot for F1-2023 population for Inflorescence Weight trait.
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Appendix 12: Summary of Genomic Associations |dentified for Various Traits Across Different
Datasets. The table lists significant markers, their associated traits, r2 values, and the dataset
in which they were identified.

Marker Trait r2 Dataset
chr6.2_452788 adj_SNpl | 0.025 P27-22/23
chrl.2_36542070 | adj_SWpl | 0.023 P27-22/23
chrl.2_36542070 | adj_SWpP | 0.028 pP27-22/23
chr4.2_73304915 | adj_SNpP | 0.028 pP27-22/23
chr6.2_84468503 | adj_TSW | 0.022 P27-22/23
chr3.2_79337878 adj_IW | 0.031 P27-23
chrl1.2_52718807 | adj_SNpl | 0.035 P27-23
chrl.2_52718807 | adj_SWpl | 0.036 P27-23
chrl.2_52718807 | adj_SWpP | 0.049 P27-23
chrl.2_52718807 | adj_SNpP | 0.045 P27-23
chr2.2_21391439 IW 0.208 F1-23WA
chr5.2_77029282 W 0.158 F1-23WA
chr3.2_28840119 W 0.159 F1-23WA
chr2.2_60522359 IW 0.132 F1-23WA
all W 0.427 F1-23WA
chr8.2_72610801 TSW 0.121 F1-23WA
chr8.2_11767356 SNpP 0.186 | MilkyMax-23WA
chr3.2_71781907 SNpP 0.208 | MilkyMax-23WA
chr2.2_11993317 SNpP 0.053 | MilkyMax-23WA
chr4.2_92760839 SNpP 0.069 | MilkyMax-23WA
chr8.2_36886928 SNpP 0.147 | MilkyMax-23WA
all SNpP 0.47 | MilkyMax-23WA
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Glossary

Akaike Information Criterion (AIC) is a method used to compare different statistical mod-
els. It is particularly useful in models where parameters (like the number of knots in
B-splines) need to be chosen optimally. AIC provides a measure of the quality of each
model, balancing the goodness of fit with the simplicity of the model. The model with
the lowest AIC is generally preferred because it suggests the best trade-off between
fitting the data well and keeping the model sufficiently simple. 11

B-splines are a series of polynomials used in numerical and statistical modeling to create
smooth curves that can adapt flexibly to different shapes of data. The use of B-splines
in the context of field trials involves creating a smooth, continuous surface to represent
how traits vary spatially within a plot. A tensor product of B-splines extends this idea
to two dimensions (e.g., rows and columns of a field). Here, separate B-spline bases
are applied to each dimension, and their tensor product creates a grid-like structure of
spline surfaces. This method allows for capturing more complex spatial patterns that
might occur due to variability in soil quality, moisture, sunlight exposure, and other
environmental factors across a plot. 11

Random Knot Effects (RKE). Knots in a spline are points that help in defining the piece-
wise polynomial segments of the spline. Typically, the placement of these knots can
significantly influence the shape and flexibility of the resulting spline surface. In sta-
tistical modeling, particularly with RKE, the knots' positions are treated as random
variables. This means they are not fixed in advance but are instead estimated from the
data. A tensor product of B-splines extends this idea to two dimensions (e.g., rows and
columns of a field). Here, separate B-spline bases are applied to each dimension, and
their tensor product creates a grid-like structure of spline surfaces. This method allows
for capturing more complex spatial patterns that might occur due to variability in soil
quality, moisture, sunlight exposure, and other environmental factors across a plot. 11

Restricted Maximum Likelihood (REML) is a statistical method used to estimate the pa-
rameters of a linear mixed-effects model, like the one presented in Equation 3. By
focusing on estimating the variance components rather than the mean structure, REML
achieves more accurate and unbiased estimates of these components. This is particularly
crucial in analyzing data where variability due to random factors, such as genetic dif-
ferences or specific environmental effects in field trials, is of interest. In mixed models,
REML's estimation of random effects’ variance components forms the basis for making
reliable predictions and inferences, helping to understand the underlying patterns in the
data effectively. 11

species complex is defined as a group of related taxa with the close morphology to a degree
that demarcation is not very clear. The term in it is broadest sense includes various
concepts such as cryptic species, sibling species, species flock, superspecies, species
aggregate, and sensu lato. 2
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taxonomic continuum refers to a perspective in biological taxonomy where the boundaries
between different taxonomic categories (like species, genera, or families) are seen as
fluid or gradational rather than fixed or discrete. This concept acknowledges that the
categorization of organisms into distinct groups, which traditionally depends on certain
measurable or observable characteristics, can sometimes be arbitrary or insufficient due
to the gradual nature of evolutionary changes. A taxonomic continuum highlights the
idea that biological diversity is continuous, with transitional forms often existing between
recognized groups. This can make it challenging to strictly define where one species ends
and another begins, especially in cases where there is significant hybridization, gene flow,
or in groups where evolutionary changes are particularly gradual. 2
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