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Abstract: The application of Allan variance to characterize the stability of optical signals
affected by stochastic polarization fluctuations and the identification of the underlying power
law noise processes is explored. Allan variance can ease the comparison regarding polarization
stability of optical systems affected by polarization noise and define a near-optimum integration
interval to reveal trends. Examples of the application of Allan variance to optical systems with
stable polarization conditions show that white noise and random walk terms can be observed.
Additionally, experiments show that the three Stokes parameters can exhibit different statistical
behaviors in the Brownian-noise regime. Allan analysis can easily be used to define, in real-time
systematically, the denoising strategy in polarization-based sensing and for the optimization of
polarization-sensitive optical systems instead of the conventional approach relying on heuristics
or information criteria.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Electromagnetic waves are defined by three physical degrees of freedom: intensity, frequency
and polarization. The performance of light-based systems relies on the precise determination
of these properties. Optical amplitude noise processes have been thoroughly studied [1,2].
This knowledge allows the proper design of optical networks and photonic systems. Similarly,
the frequency stability of laser oscillators has been extensively researched [3–5], enabling
ultra-precise measurements in several fields of physics and opening new engineering applications
such as satellite navigation and network synchronization.

The evolution of the state of polarization (SOP) of an optical signal, defined in the Jones
or Stokes spaces, has been well studied [6]. In fiber optics, the polarization state of light
fluctuates with time due to variations in wavelength or changes in birefringence, which is very
sensitive to any nonsymmetric perturbation about the fiber axis that can be caused by varying
environmental conditions such as temperature or mechanical changes. Considerable attention
[6–10] has been devoted to describing polarization changes with frequency and, similarly, fiber
length. However, modeling the impact of environmental perturbations on the time evolution of
the SOP is challenging due to the lack of homogeneity of the problem [11–15].

To quantify the polarization stability of a signal, standard metrics are the rate of change of
the SOP, i.e., the angular velocity in the Stokes space [13–15] for a fixed input SOP, which is
suitable to quantify the magnitude of polarization transients amid polarization drifts; and the
mean squared error of Stokes parameters [12], to assess changes from a given SOP.

Here, a tool initially developed to address frequency stability and synchronization issues
between atomic clocks is applied to study the character of noise terms affecting polarization
fluctuations in optical systems. Allan deviation, or variance, is a time-domain analysis technique
designed to characterize noise by measuring the heterogeneity of its change across time. It is
based on representing the root mean square (RMS) of an error signal as a function of averaging
times, which has been extensively used to characterize the frequency stability of oscillators
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[3,4]. This technique allows the characterization of the underlying random processes that drive
stochastic fluctuations.

2. Polarization stability

The SOP of a light signal can be defined in the Stokes space as a vector, ŝ, which represents a
point on the Poincaré sphere [6]. Changes in the SOP at the output of a system can be due to
random changes in birefringence caused by the transduction of temperature fluctuations to the
refractive index via the thermo-optic coefficient, stress and strain-induced changes in refractive
index along different axes and also to changes in the wavelength of the optical signal or phase
noise.

Fluctuations affecting the measured SOP, ŝmeas, can be represented as errors on the polarization
vector. Their aggregated magnitude, as a measure of the strength of the fluctuations, can be
collapsed into a single factor by measuring how far each sample has deviated from its ideal
position on the Poincaré sphere, ŝreference. This error, ŝerror, [12], quantifies the level of fluctuations
experienced by the signal. Thus, the amount of stochastic fluctuations on the instantaneous
Stokes parameters can be estimated by calculating an error vector as the difference between the
measured and ideal SOPs, as shown in Fig. 1.

2. Polarization stability

The SOP of a light signal can be defined in the Stokes space as a vector, 𝑠, which represents a 
point on the Poincaré sphere [6]. Changes in the SOP at the output of a system can be due to 
random changes in birefringence caused by the transduction of temperature fluctuations to the 
refractive index via the thermo-optic coefficient, stress and strain-induced changes in refractive 
index along different axes and also to changes in the wavelength of the optical signal or phase 
noise. 

Fluctuations affecting the measured SOP, 𝑠𝑚𝑒𝑎𝑠, can be represented as errors on the 
polarization vector. Their aggregated magnitude, as a measure of the strength of the 
fluctuations, can be collapsed into a single factor by measuring how far each sample has 
deviated from its ideal position on the Poincaré sphere, 𝑠𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. This error, 𝑠𝑒𝑟𝑟𝑜𝑟, [12], 
quantifies the level of fluctuations experienced by the signal. Thus, the amount of stochastic 
fluctuations on the instantaneous Stokes parameters can be estimated by calculating an error 
vector as the difference between the measured and ideal SOPs, as shown in Figure 1.

Fig. 1. Concept of polarization error vector (red) on the Poincaré sphere.

A factor can be defined to measure the accumulated error as the root mean square 
(rms) value of all the error vectors, averaged over N measurements [12],
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where 𝑆1..3 are the normalized Stokes parameters. This parameter eases the comparison among 
systems in terms of polarization stability as, for example, the conceptually similar error vector 
magnitude (EVM) parameter provides a system-level metric used to quantify the performance 
of digital modulations under varied impairments.

3. Analysis of polarization stability using Allan deviation
Some stochastic processes with scale-free dynamics have power spectral densities that follow 
a power law, i.e., their spectral density can be approximated by a sum of terms, each varying 
as an integer power of frequency. A power law process has a spectral density of the form,

Fig. 1. Concept of polarization error vector (red) on the Poincaré sphere.

A factor can be defined to measure the accumulated error as the root mean square (rms) value
of all the error vectors, averaged over N measurements [12],
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where S1..3 are the normalized Stokes parameters. This parameter eases the comparison among
systems in terms of polarization stability as, for example, the conceptually similar error vector
magnitude (EVM) parameter provides a system-level metric used to quantify the performance of
digital modulations under varied impairments.

3. Analysis of polarization stability using Allan deviation

Some stochastic processes with scale-free dynamics have power spectral densities that follow a
power law, i.e., their spectral density can be approximated by a sum of terms, each varying as an
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integer power of frequency. A power law process has a spectral density of the form,

S(f ) =
2∑︂

α=−2
hαf α (2)

where some terms of the summation are usually dominant. The PSD of each power-law process
can be specified by its slope on a log-log plot for a given range of frequencies and its amplitude.

Through the estimation of the polarization stability provided by |ŝrms
error |, Allan deviation can be

used to investigate the power-law noises affecting polarization fluctuations. Let be a set of N
consecutive data points showing the instantaneous SOP error, |ŝrms

error(t)|, each sampled at time Ts,
we can group n samples (with n<N/2) in a cluster. The temporal duration of each cluster, or the
correlation time, is τ = n · Ts. The average for a cluster which starts from the k data point and
contains n subsequent points is

ȳk =
1
τ

k+n∑︂
i=k

|ŝrms
error(i)| (3)

Thus, Allan variance, σ2(τ), is defined as half the averaged squared mean of two adjacent
clusters,

σ2(τ) =
1
2
⟨(ȳm+1 − ȳm)

2⟩ (4)

where ⟨·⟩ denotes the average operator over all the clusters. It is a positive value and it can
only be calculated for τ<N ·Ts

2 or equally n<N
2 . For large values of τ, the number of clusters is

low, and consequently, the statistical error increases. To reduce the sizeable statistical error of
standard Allan variance, more clusters can be obtained by overlapping samples among clusters
[16]. First, the difference between two clusters each of n samples is calculated. Then, each cluster
is shifted one sample and the difference calculated again. This process is repeated to obtain a
more extensive set of averages. This method is known as the overlapping Allan variance. It
shows better statistical error at the cost that clusters are no longer statistically independent.

Allan variance is related to the power spectral density, PSD, of the random process [17]. This
relation is:

σ2(τ) = 4
∫ ∞

0
S(f ) ·

sin4(πf τ)
(πf τ)2

df (5)

where S(f ) is the PSD of |ŝrms
error(t)|. From (5) it can be seen that Allan variance is proportional to

the total power output of the random process after being filtered by a frequency response given
by sin4(πf τ)/(πf τ)2. In other words, Allan variance can be calculated in the time domain as a
convolution (4) or in the frequency domain as a filter (5). The bandwidth of the filter depends on
τ, thus, the different types of underlying noise terms in the signal can be identified and quantified
by varying τ. This is usually done through a log-log plot of σ(τ) versus correlation time which
allows to sort out noise components by the slopes of Allan deviation [18].

Experiments have been carried out to study polarization using Allan analysis. Two polarimeters
have been used through the experiments: polarimeter #1 (Optellios PS2300B) and polarimeter
#2 (Thorlabs PAX1000IR2/M). As an example of application, Figs. 2(b),(c) show logarithmic
plots of Allan deviation for the change in polarization during short time windows obtained with
a light source connected to polarimeter #1 through a polarization controller (Fig. 2(a)) during
regular operation (Fig. 2(b)) and during laser warming-up (Fig. 2(c)). Figures 2(d),(e) show the
temporal evolution of Stokes parameters and their Poincaré sphere representation. Measurements
were carried out with a sampling rate of the polarimeter of 200 Hz. The number of samples was
10000 in all experiments. For convenience, the first data point is selected as the reference SOP.

Several piecewise linear regions with different slopes can be observed in the two examples
shown in Fig. 2(b),(c). These straight lines on the log plot are potential signatures of a power law.
From the figure, the main types of dominant error can be identified.
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the temporal evolution of Stokes parameters and their Poincaré sphere representation. 
Measurements were carried out with a sampling rate of the polarimeter of 200 Hz. The number 
of samples was 10000 in all experiments. For convenience, the first data point is selected as the 
reference SOP. 

Fig. 2. Application of Allan deviation to SOP analysis. (a) Experimental setup Yenista laser 
(model 1549.32) connected to polarimeter #1 through a polarization controller. Log-log plot of 

Allan deviation for regular operation (b) and laser warming-up (c), where (dashed) 
corresponds to the non-overlapping estimator and (solid) to the overlapping one; red, green, 
and yellow dashed lines are linear regression fits. The time evolution of the sampled Stokes 
parameters is shown in (d), (e) where the insets provide the representation on the Poincaré 

sphere. 

Several piecewise linear regions with different slopes can be observed in the two examples 
shown in Fig. 2b,c. These straight lines on the log plot are potential signatures of a power law. 
From the figure, the main types of dominant error can be identified.  

The downward slope, with a slope of ―1 2, can be associated to white noise following 
Allan analysis theory. This noise can arise from several contributions. It can be caused by 
random fluctuations in the local birefringence due to vibrations [6], rapid laser frequency noise 

Fig. 2. Application of Allan deviation to SOP analysis. (a) Experimental setup Yenista laser
(model 1549.32) connected to polarimeter #1 through a polarization controller. Log-log
plot of Allan deviation for regular operation (b) and laser warming-up (c), where (dashed)
corresponds to the non-overlapping estimator and (solid) to the overlapping one; red, green,
and yellow dashed lines are linear regression fits. The time evolution of the sampled Stokes
parameters is shown in (d), (e) where the insets provide the representation on the Poincaré
sphere.
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The downward slope, with a slope of −1/2, can be associated to white noise following Allan
analysis theory. This noise can arise from several contributions. It can be caused by random
fluctuations in the local birefringence due to vibrations [6], rapid laser frequency noise attributed
to the inherent linewidth resulting from spontaneous emission, operating within time scales faster
than the microsecond [19], the unpolarized component of the signal from the optical source, and
the optoelectronic noise of the photodetection in the polarimeter. The accumulated effect of all
these perturbations gives rise to high-frequency random changes on the recorded SOP with a
correlation time much shorter than the sampling time, and they can be characterized by a white
noise spectrum.

S(f ) = N2
0 (6)

Substituting (6) in (5), the Allan deviation yields,

σ(τ) =
N0
√
τ

(7)

Thus, the Allan deviation of the white noise term can be derived, showing a slope of −1/2.
This is observed in the experimental data shown in Fig. 2(b),(d), whose slope was calculated
through a linear regression. The strength of the noise term can be quantified by reading the value
at τ = 1 of the linear fit of the data.

Figure 3 shows the experimental data for the white noise term of Fig. 2(b), simulations of a
discrete white noise process with the same standard deviation as the one derived from Allan
analysis and a linear fit to the data, which has a R2 value of 0.9987.

attributed to the inherent linewidth resulting from spontaneous emission, operating within time 
scales faster than the microsecond [19], the unpolarized component of the signal from the 
optical source, and the optoelectronic noise of the photodetection in the polarimeter. The 
accumulated effect of all these perturbations gives rise to high-frequency random changes on 
the recorded SOP with a correlation time much shorter than the sampling time, and they can be 
characterized by a white noise spectrum. 

 𝑆(𝑓) = 𝑁2
0 (6)

Substituting (6) in (5), the Allan deviation yields, 

𝜎(𝜏) =
𝑁0

𝜏 (7)

Thus, the Allan deviation of the white noise term can be derived, showing a slope of ―1 2. 
This is observed in the experimental data shown in Fig. 2b,d, whose slope was calculated 
through a linear regression. The strength of the noise term can be quantified by reading the 
value at 𝜏 = 1 of the linear fit of the data. 

Figure 3 shows the experimental data for the white noise term of Fig. 2b, simulations of a 
discrete white noise process with the same standard deviation as the one derived from Allan 
analysis and a linear fit to the data, which has a 𝑅2 value of 0.9987.  

Fig. 3. Overlapping Allan deviation, 𝜎(𝜏), for the white noise term on a log-log plot: Allan 
deviation calculated from white noise simulations with parameters from Fig. 2b (solid black); 
Theoretical linear fit with -0.5 slope (dashed black); Experimental results from Fig. 2b (blue 

dots). 

The white noise term seems to have several main contributions. One is related to the noise 
floor of the polarimeter. Measurements under stable conditions and high signal to noise ratio 
point out that the polarimeters have a noise floor of the 𝑁0 coefficient that can be estimated to 
be 𝑁#1

0 = (1.7 ± 0.3)·10―5 and 𝑁#2
0 = (0.61 ± 0.06)·10―5, respectively. Fluctuations caused 

by environmental and wavelength changes increase the recorded white noise term. This white 

Fig. 3. Overlapping Allan deviation, σ(τ), for the white noise term on a log-log plot: Allan
deviation calculated from white noise simulations with parameters from Fig. 2(b) (solid
black); Theoretical linear fit with -0.5 slope (dashed black); Experimental results from
Fig. 2(b) (blue dots).

The white noise term seems to have several main contributions. One is related to the noise
floor of the polarimeter. Measurements under stable conditions and high signal to noise ratio
point out that the polarimeters have a noise floor of the N0 coefficient that can be estimated to
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be N#1
0 = (1.7 ± 0.3) · 10−5 and N#2

0 = (0.61 ± 0.06) · 10−5, respectively. Fluctuations caused
by environmental and wavelength changes increase the recorded white noise term. This white
continuous polarization noise is filtered by the analog bandwidth of the polarimeter. Figure 4
shows the Allan deviation for an optical source connected through a SMF28 fiber and a fiber
splitter to both polarimeters. The fiber section was 20-meter long unspooled and it was laid in the
floor untapped. The magnitudes of the white noise term in this case are N#1

0 = 19.4 · 10−5 and
N#2

0 = 22.16 · 10−5. The small difference in the magnitude of the white term can be caused by the
fact that polarimeter #2 has wider bandwidth. The measured values of N0 should be interpreted
as upper bounds since quantization of the Stokes parameters by the polarimeter might introduce
an additional white noise term (Supplement 1).

continuous polarization noise is filtered by the analog bandwidth of the polarimeter. Fig. 4 
shows the Allan deviation for an optical source connected through a SMF28 fiber and a fiber 
splitter to both polarimeters. The fiber section was 20-meter long unspooled and it was laid in 
the floor untapped. The magnitudes of the white noise term in this case are 𝑁#1

0 = 19.4·10―5 
and 𝑁#2

0 = 22.16·10―5. The small difference in the magnitude of the white term can be caused 
by the fact that polarimeter #2 has wider bandwidth. The measured values of 𝑁0 should be 
interpreted as upper bounds since quantization of the Stokes parameters by the polarimeter 
might introduce an additional white noise term (Supplementary material S1). 

Fig. 4. Log-log plot of Allan deviation for the non-overlapping estimator (dashed) and to the 
overlapping one (solid) for two polarimeters: #1 Optellios PS2300B (black) and #2 Thorlabs 

PAX1000IR2/M (blue). 

Finally, the contribution from the unpolarized component of the signal increases the white 
term coefficient. Fig.5 shows 𝑁0 values for different optical power levels of an optical carrier 
related to the degree of polarization (DOP). It can be seen how the white noise term increases 
as the degree of polarization decays, showing a linear relation with a 𝑅2 = 0.986. 

Fig. 4. Log-log plot of Allan deviation for the non-overlapping estimator (dashed) and to
the overlapping one (solid) for two polarimeters: #1 Optellios PS2300B (black) and #2
Thorlabs PAX1000IR2/M (blue).

Finally, the contribution from the unpolarized component of the signal increases the white
term coefficient. Figure 5 shows N0 values for different optical power levels of an optical carrier
related to the degree of polarization (DOP). It can be seen how the white noise term increases as
the degree of polarization decays, showing a linear relation with a R2 = 0.986.

An upward slope can be observed in Fig. 2(b),(c). It can be associated with a low-frequency
drift, i.e., noise that changes over longer time frames and, therefore, starts to affect larger data
clusters. These SOP fluctuations can be induced by slow changes in the SOP of the source
and changes in the magnitude or orientation of the PMD vector by temperature changes or
other slow-varying perturbations along the fiber [6]. Given the range of slopes observed, it can
be interpreted as a fractional Brownian motion (fBm) noise [20], i.e., a Gaussian zero-mean
nonstationary stochastic process with stationary increments and which is defined by the Hurst
exponent, H, which goes from 0 to 1 and is directly related to the slope of Allan deviation on the
log plot. This noise is an extension of ordinary Brownian noise, obtained for H = 1/2. Values
H<1/2 result in a mean-reverting process (antipersistent), whereas H>1/2 reflect a process that
has a trend (bias) with the value of H = 1 corresponding to a bias instability, or, in other words,

https://doi.org/10.6084/m9.figshare.25260334
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continuous polarization noise is filtered by the analog bandwidth of the polarimeter. Fig. 4 
shows the Allan deviation for an optical source connected through a SMF28 fiber and a fiber 
splitter to both polarimeters. The fiber section was 20-meter long unspooled and it was laid in 
the floor untapped. The magnitudes of the white noise term in this case are 𝑁#1

0 = 19.4·10―5 
and 𝑁#2

0 = 22.16·10―5. The small difference in the magnitude of the white term can be caused 
by the fact that polarimeter #2 has wider bandwidth. The measured values of 𝑁0 should be 
interpreted as upper bounds since quantization of the Stokes parameters by the polarimeter 
might introduce an additional white noise term (Supplementary material S1). 

Fig. 4. Log-log plot of Allan deviation for the non-overlapping estimator (dashed) and to the 
overlapping one (solid) for two polarimeters: #1 Optellios PS2300B (black) and #2 Thorlabs 

PAX1000IR2/M (blue). 

Finally, the contribution from the unpolarized component of the signal increases the white 
term coefficient. Fig.5 shows 𝑁0 values for different optical power levels of an optical carrier 
related to the degree of polarization (DOP). It can be seen how the white noise term increases 
as the degree of polarization decays, showing a linear relation with a 𝑅2 = 0.986. 

Fig. 5. (a) White noise coefficient, N0, as a function of the optical power, and (b) relation
between white noise coefficient and degree of polarization (DOP) in both cases for polarimeter
#1.

the closest that H is to 1 the greater the degree of persistence or long-range dependence, i.e. the
evolution of the SOP shows statistically significant correlations across large time scales. In the
study of polarization evolution, it could be associated with the total birefringence of the system.
Several models of polarization evolution in optical fibers with propagation length or frequency
rely on having the PMD vector change orientation randomly as a random walk [6,7].

In particular, for the system described in Fig. 2(a), the slope is around +1/2 on the log—log
plot following the dynamics of Brownian noise, i.e. the short time future evolution of SOP cannot
be predicted since values are uncorrelated. This random polarization drift can be interpreted as a
continuous Wiener process that is being discretized by the polarimeter, becoming a random walk.
It is a nonstationary process that manifests as impulsive changes on the SOP. The random walk
(Brownian) nature of the noise means that there is no memory or correlation from one impulse to
the next. These discrete random disturbances can be described as a set of random steps on the
mathematical space of the Poincaré sphere. The PSD of a random walk noise is [17]

S(f ) =
K2

(2πf )2
(8)

The standard deviation associated with a random walk noise can be obtained by substituting
(8) into (5). It can be expressed as

σ(τ) = K
√︃
τ

3
(9)

where K is the random walk coefficient. The magnitude of this term can be read from the fit
slope line at τ = 3.

The magnitude of the noise term of Fig. 2(c) is K(a) = (1.7 ± 0.7) · 10−4. Figure 6 compares
the measurement of Fig. 2(c), the theoretical slope (+1/2) and simulations of Brownian noise.
The goodness-of-fit measure through R2 shows a value of 0.9942, pointing out, as in the white
noise term, the plausibility of a power law as a fit of the data. In both cases Allan analysis allows
the identification of the dominant noise term within the measurement window. Figure 6 shows
a decrease for large averaging (correlation) time, partially replicated in simulations. It seems
related to the sample size (10000 samples in both simulations and experiments) since simulations
show that when using a more significant number of samples, the curve tends to be the theoretical
linear slope.
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Fig. 6. Overlapping Allan deviation, 𝜎(𝜏), for the random walk term on a log-log plot: Allan 
deviation calculated from simulations of Brownian noise on a sphere with the same coefficient 

as measurements from Fig. 2b (solid black); Theoretical linear fit with 0.5 slope (dashed 
black); Experimental results shown in Fig. 2b (blue dots). 

Figure 7a shows Allan deviation for an experiment where a different optical source 
(HP8168F) was connected through a 20m-long uncoiled standard single-mode fiber to 
polarimeter #1. In this case, the slope (Hurst exponent) is 0.61, i.e., close to the dynamics of 
Brownian noise. Still, the magnitude of the Brownian term, K, is 70 times the one of Fig. 2a. 
The poorer stability of this dataset can be qualitatively appreciated through the time evolution 
of Stokes parameters as seen in Fig. 7b. Thus, Allan analysis can be used not only to identify 
but also to quantify polarization fluctuations.

Fig. 7. (a) Log-log plot of Allan deviation. (Dashed) non-overlapping estimator, (solid) 
overlapping estimator; red and green dashed lines are linear regression fits; (b) Evolution of 
the sampled Stokes parameters, blue, red, and green represents S1, S2, and S3 respectively, 

(inset) Poincaré sphere representation. 
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Fig. 6. Overlapping Allan deviation, σ(τ), for the random walk term on a log-log plot:
Allan deviation calculated from simulations of Brownian noise on a sphere with the same
coefficient as measurements from Fig. 2(b) (solid black); Theoretical linear fit with 0.5 slope
(dashed black); Experimental results shown in Fig. 2(b) (blue dots).

Fig. 6. Overlapping Allan deviation, 𝜎(𝜏), for the random walk term on a log-log plot: Allan 
deviation calculated from simulations of Brownian noise on a sphere with the same coefficient 

as measurements from Fig. 2b (solid black); Theoretical linear fit with 0.5 slope (dashed 
black); Experimental results shown in Fig. 2b (blue dots). 

Figure 7a shows Allan deviation for an experiment where a different optical source 
(HP8168F) was connected through a 20m-long uncoiled standard single-mode fiber to 
polarimeter #1. In this case, the slope (Hurst exponent) is 0.61, i.e., close to the dynamics of 
Brownian noise. Still, the magnitude of the Brownian term, K, is 70 times the one of Fig. 2a. 
The poorer stability of this dataset can be qualitatively appreciated through the time evolution 
of Stokes parameters as seen in Fig. 7b. Thus, Allan analysis can be used not only to identify 
but also to quantify polarization fluctuations.

Fig. 7. (a) Log-log plot of Allan deviation. (Dashed) non-overlapping estimator, (solid) 
overlapping estimator; red and green dashed lines are linear regression fits; (b) Evolution of 
the sampled Stokes parameters, blue, red, and green represents S1, S2, and S3 respectively, 

(inset) Poincaré sphere representation. 
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Fig. 7. (a) Log-log plot of Allan deviation. (Dashed) non-overlapping estimator, (solid)
overlapping estimator; red and green dashed lines are linear regression fits; (b) Evolution of
the sampled Stokes parameters, blue, red, and green represents S1, S2, and S3 respectively,
(inset) Poincaré sphere representation.
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Figure 7(a) shows Allan deviation for an experiment where a different optical source (HP8168F)
was connected through a 20m-long uncoiled standard single-mode fiber to polarimeter #1. In
this case, the slope (Hurst exponent) is 0.61, i.e., close to the dynamics of Brownian noise. Still,
the magnitude of the Brownian term, K, is 70 times the one of Fig. 2(a). The poorer stability
of this dataset can be qualitatively appreciated through the time evolution of Stokes parameters
as seen in Fig. 7(b). Thus, Allan analysis can be used not only to identify but also to quantify
polarization fluctuations.

Finally, Fig. 2(c) shows a second upward slope. It has a slope close to 1, and thus, it points out
the presence of a trend, i.e., the system in the time scale of the measurement is evolving through
a systematic (deterministic) bias. Figure 8 shows an Allan deviation plot for an optical source
connected to polarimeter #1 with a sampling rate of 10 Hz through a polarization controller and a
DGD module (90 ps). The polarization controller controls the SOP at the input of the DGD to be
at 45° of its axes. In Fig. 8, a slope close to unity can also be observed. This can be attributed
to the precession of the SOP around the PMD vector axis at a rate governed by the strength
of the birefringence under slow frequency drifts (on longer observation times of the order of
milliseconds or more), due to laser cavity fluctuations of various types and which are likely to be
flicker (1/f ) [19]. This evolution can also be seen in the inset of Fig. 7(b) as an arc caused by the
system strong birefringence (90 ps).

Finally, Fig. 2c shows a second upward slope. It has a slope close to 1, and thus, it points 
out the presence of a trend, i.e., the system in the time scale of the measurement is evolving 
through a systematic (deterministic) bias. Fig. 8 shows an Allan deviation plot for an optical 
source connected to polarimeter #1 with a sampling rate of 10 Hz through a polarization 
controller and a DGD module (90 ps). The polarization controller controls the SOP at the input 
of the DGD to be at 45º of its axes.  In Fig. 8, a slope close to unity can also be observed. This 
can be attributed to the precession of the SOP around the PMD vector axis at a rate governed 
by the strength of the birefringence under slow frequency drifts (on longer observation times 
of the order of milliseconds or more), due to laser cavity fluctuations of various types and which 
are likely to be flicker (1/𝑓) [19]. This evolution can also be seen in the inset of Fig. 7b as an 
arc caused by the system strong birefringence (90 ps). 

Fig. 8. (a) Log-log plot of Allan deviation. (Dashed) non-overlapping estimator, (solid) 
overlapping estimator; red and green dashed lines are linear regression fits; (b) Evolution of 
the sampled Stokes parameters, blue, red, and green represents S1, S2, and S3 respectively, 

(inset) Poincaré sphere representation. 

Allan deviation plots show a sweet spot where the standard deviation is minimized due to 
the averaging of fast-oscillating noise. In contrast, the data are not corrupted yet by slower 
polarization drifts. When a moving average analysis is carried out, the window length is critical 
in the performance of the estimator. Instead of evaluating multiple window lengths to select the 
near-optimal using heuristics or even information theory such as Akaike Information Criteria 
(AIC), Allan deviation provides a systematic data-driven method to determine the timescale 
over which the SOP remains relevant while minimizing white noise corruption of the 
nonstationary term. This is done without prior knowledge about the system or its noise model. 
For example, for the dataset shown in Fig. 2b, a correlation time of 𝜏 = 0.25 allows SOP 
variance to be minimized. 

Figure 9 shows simulations of a small amplitude cosine signal embedded in additive white 
Gaussian noise. Allan analysis shows that the near-optimum length of the moving average filter 
is 200 samples. This value defines the window length of the optimum moving average filter 
that better retrieves information buried in noise for the dataset, i.e., a better estimation of the 
underlying deterministic component. As a comparison, the sum of the squared estimate of errors 
(SSE) for the measurement (50000 samples) goes from 2000 without averaging to 9 for a 
moving average of 200 samples. For an averaging window of 10 and 1000 samples, the SSE is 
174 and 19, respectively. 

Fig. 8. (a) Log-log plot of Allan deviation. (Dashed) non-overlapping estimator, (solid)
overlapping estimator; red and green dashed lines are linear regression fits; (b) Evolution of
the sampled Stokes parameters, blue, red, and green represents S1, S2, and S3 respectively,
(inset) Poincaré sphere representation.

Allan deviation plots show a sweet spot where the standard deviation is minimized due to
the averaging of fast-oscillating noise. In contrast, the data are not corrupted yet by slower
polarization drifts. When a moving average analysis is carried out, the window length is critical
in the performance of the estimator. Instead of evaluating multiple window lengths to select the
near-optimal using heuristics or even information theory such as Akaike Information Criteria
(AIC), Allan deviation provides a systematic data-driven method to determine the timescale over
which the SOP remains relevant while minimizing white noise corruption of the nonstationary
term. This is done without prior knowledge about the system or its noise model. For example,
for the dataset shown in Fig. 2(b), a correlation time of τ = 0.25 allows SOP variance to be
minimized.
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Figure 9 shows simulations of a small amplitude cosine signal embedded in additive white
Gaussian noise. Allan analysis shows that the near-optimum length of the moving average filter
is 200 samples. This value defines the window length of the optimum moving average filter
that better retrieves information buried in noise for the dataset, i.e., a better estimation of the
underlying deterministic component. As a comparison, the sum of the squared estimate of errors
(SSE) for the measurement (50000 samples) goes from 2000 without averaging to 9 for a moving
average of 200 samples. For an averaging window of 10 and 1000 samples, the SSE is 174 and
19, respectively.

Fig. 9. Simulation of the evolution of a Stokes parameter driven by white Gaussian noise plus a 
small-amplitude cosine signal (red solid) sampled at 200 Hz. Evolution of the Stokes 

parameter (grey dots); moving average with window length 10 samples (blue solid); moving 
average with window length 200 samples, optimum point according to Allan deviation plot 

(orange solid); moving average with window length 1000 samples (green solid). Inset: Allan 
deviation plot of the Stokes parameter simulations.

Figure 10 shows simulations and measurements of a Stokes parameter under noise and 
polarimeter quantization and how the underlying noise term (random walk) is revealed when 
quantized white noise is removed through optimum moving average filtering with the window 
length given by Allan analysis. Since white noise is more significant than quantization noise, 
digitalization introduces an offset on the Allan curve and, consequently, the noise coefficients 
associated with each noise term. Still, it does not significantly change the optimum moving 
average filter length. 

Fig. 10. (a) Simulation of the evolution of a Stokes parameter under Brownian noise (red), 
recorded value under white noise (light grey) plus quantization (dark grey dots), estimations of 
the evolution with different moving average windows lengths (blue: 10 samples; green: 1000 
samples; orange: optimum value, 200, given by Allan analysis); (b) Experimental evolution of 
the quantized S2 Stokes parameter (grey dots); estimation of the unknown evolution through 

the moving average with optimum window length (50 samples or 0.25 s) (blue solid); 
estimation through a moving average with window length 10 samples (orange solid).

Fig. 9. Simulation of the evolution of a Stokes parameter driven by white Gaussian noise
plus a small-amplitude cosine signal (red solid) sampled at 200 Hz. Evolution of the Stokes
parameter (grey dots); moving average with window length 10 samples (blue solid); moving
average with window length 200 samples, optimum point according to Allan deviation plot
(orange solid); moving average with window length 1000 samples (green solid). Inset: Allan
deviation plot of the Stokes parameter simulations.

Figure 10 shows simulations and measurements of a Stokes parameter under noise and
polarimeter quantization and how the underlying noise term (random walk) is revealed when
quantized white noise is removed through optimum moving average filtering with the window
length given by Allan analysis. Since white noise is more significant than quantization noise,
digitalization introduces an offset on the Allan curve and, consequently, the noise coefficients
associated with each noise term. Still, it does not significantly change the optimum moving
average filter length.

Finally, the application of Allan deviation to each Stokes parameter allows the comparison
among their statistical behaviors or, from a geometrical point of view, the study of the isotropic
nature of the noise terms on the Poincaré sphere. For example, Fig. 11 shows the Allan deviation
for each Stokes parameter for two systems. A similar trend is obtained in spherical coordinates.
On short time windows, the slope of the fractional Brownian noise term is different for each
Stokes parameter. So, fluctuations are anisotropic, i.e., not all possible orientations of the error
term of the Stokes vector are equally likely. The white noise term is very similar in slope and
magnitude, although changes in magnitude can also be found. Figure 12 shows the time evolution
of the coefficient of variation of the slope of the fractional Brownian noise component for different
fiber lengths. The coefficient of variation has been chosen as a statistical measure to compare
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Fig. 9. Simulation of the evolution of a Stokes parameter driven by white Gaussian noise plus a 
small-amplitude cosine signal (red solid) sampled at 200 Hz. Evolution of the Stokes 

parameter (grey dots); moving average with window length 10 samples (blue solid); moving 
average with window length 200 samples, optimum point according to Allan deviation plot 

(orange solid); moving average with window length 1000 samples (green solid). Inset: Allan 
deviation plot of the Stokes parameter simulations.

Figure 10 shows simulations and measurements of a Stokes parameter under noise and 
polarimeter quantization and how the underlying noise term (random walk) is revealed when 
quantized white noise is removed through optimum moving average filtering with the window 
length given by Allan analysis. Since white noise is more significant than quantization noise, 
digitalization introduces an offset on the Allan curve and, consequently, the noise coefficients 
associated with each noise term. Still, it does not significantly change the optimum moving 
average filter length. 

Fig. 10. (a) Simulation of the evolution of a Stokes parameter under Brownian noise (red), 
recorded value under white noise (light grey) plus quantization (dark grey dots), estimations of 
the evolution with different moving average windows lengths (blue: 10 samples; green: 1000 
samples; orange: optimum value, 200, given by Allan analysis); (b) Experimental evolution of 
the quantized S2 Stokes parameter (grey dots); estimation of the unknown evolution through 

the moving average with optimum window length (50 samples or 0.25 s) (blue solid); 
estimation through a moving average with window length 10 samples (orange solid).

Fig. 10. (a) Simulation of the evolution of a Stokes parameter under Brownian noise (red),
recorded value under white noise (light grey) plus quantization (dark grey dots), estimations
of the evolution with different moving average windows lengths (blue: 10 samples; green:
1000 samples; orange: optimum value, 200, given by Allan analysis); (b) Experimental
evolution of the quantized S2 Stokes parameter (grey dots); estimation of the unknown
evolution through the moving average with optimum window length (50 samples or 0.25 s)
(blue solid); estimation through a moving average with window length 10 samples (orange
solid).

Finally, the application of Allan deviation to each Stokes parameter allows the comparison 
among their statistical behaviors or, from a geometrical point of view, the study of the isotropic 
nature of the noise terms on the Poincaré sphere. For example, Figure 11 shows the Allan 
deviation for each Stokes parameter for two systems. A similar trend is obtained in spherical 
coordinates. On short time windows, the slope of the fractional Brownian noise term is different 
for each Stokes parameter. So, fluctuations are anisotropic, i.e., not all possible orientations of 
the error term of the Stokes vector are equally likely. The white noise term is very similar in 
slope and magnitude, although changes in magnitude can also be found. Fig. 12 shows the time 
evolution of the coefficient of variation of the slope of the fractional Brownian noise component 
for different fiber lengths. The coefficient of variation has been chosen as a statistical measure 
to compare the other cases. Fig. 12 shows spikes in which the slopes of each Stokes parameter 
differ and that with longer fiber lengths, these fluctuations are less frequent and less 
pronounced. This is aligned with previous works showing that SOP angular increments can be 
seen as a random walk equally likely in all directions [13] since as the fiber length increases, 
the diffusion of SOP angular increments would approach a uniform angular distribution related 
to the averaging of rotations of the local birefringence and thus the noise should converge to 
the same slope and magnitude. 

Fig. 11. Overlapping Allan deviation for each Stokes parameter in a 1m standard single mode 
fiber measured with polarimeter #1 with 200 Hz sampling: S1 (blue), S2 (cyan), S3 (yellow). (a) 

Measurement of Fig. 2b; (b) Laser Keysight 81940A. 

Fig. 11. Overlapping Allan deviation for each Stokes parameter in a 1 m standard single
mode fiber measured with polarimeter #1 with 200 Hz sampling: S1 (blue), S2 (cyan), S3
(yellow). (a) Measurement of Fig. 2(b); (b) Laser Keysight 81940A.
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the other cases. Figure 12 shows spikes in which the slopes of each Stokes parameter differ and
that with longer fiber lengths, these fluctuations are less frequent and less pronounced. This
is aligned with previous works showing that SOP angular increments can be seen as a random
walk equally likely in all directions [13] since as the fiber length increases, the diffusion of SOP
angular increments would approach a uniform angular distribution related to the averaging of
rotations of the local birefringence and thus the noise should converge to the same slope and
magnitude.

Fig. 12. Time evolution of the coefficient of variation of the slopes of each Stokes parameter 
measured with polarimeter #2 at 200 Hz for different fiber lengths: 1m (blue); 20 m (cyan); 

350 m (green); 1 km (black). 

Table 1 shows the coefficient of variation of the slopes of each Stokes parameter for 
different cases measured with polarimeter #1. In particular, they correspond to two optical 
sources combined with other sections of standard single-mode fiber: 1-meter, 20-meter, and 
350-meter-long sections of unspooled fiber and a 1 km-long fiber reel, respectively. There 
seems to be a trend towards reducing the slope variation among stokes parameters for longer 
fiber lengths. 

Table 1. The median of the coefficient of variation for the slope for the fBm component among Stokes 
parameters for different lengths of standard single-mode fiber and sampling frequency

Length (m) 200 Hz sampling 10 Hz sampling

1 0.24 0.27
20 0.13 0.08
350 0.15 0.01
1000 0.05 0.23

4. Conclusion and discussion
The use of Allan deviation, a simple data-driven method available in most scientific 

software packages, for the analysis of stochastic polarization time fluctuations as a tool to study 
underlying noise models and the optimization of denoising in polarization measurements has 
been proposed and studied. Allan analysis shows that short-time SOP evolution scale with 
multiple scaling rules rather than following a global scaling rule. Experiments have been 
conducted, and in them, the results are consistent with the hypothesis that the SOP evolves 
following a power law with different regimes, and thus different regularity patterns have been 
observed: a white noise term, i.e., a mean reverting (anti persistent) process; a random walk; 
and a fractional Brownian process that in the extreme develops in a trending (persistent) 
process. These short-time temporal noise terms agree with previously reported statistical 
models for the evolution of polarization with fiber length and optical frequency, which suggest 
that the changes in the PMD vector are driven by changes in orientation following a Brownian 

Fig. 12. Time evolution of the coefficient of variation of the slopes of each Stokes parameter
measured with polarimeter #2 at 200 Hz for different fiber lengths: 1 m (blue); 20 m (cyan);
350 m (green); 1 km (black).

Table 1 shows the coefficient of variation of the slopes of each Stokes parameter for different
cases measured with polarimeter #1. In particular, they correspond to two optical sources
combined with other sections of standard single-mode fiber: 1-meter, 20-meter, and 350-meter-
long sections of unspooled fiber and a 1 km-long fiber reel, respectively. There seems to be a
trend towards reducing the slope variation among stokes parameters for longer fiber lengths.

Table 1. The median of the coefficient of variation for the slope for the fBm
component among Stokes parameters for different lengths of standard

single-mode fiber and sampling frequency

Length (m) 200 Hz sampling 10 Hz sampling

1 0.24 0.27

20 0.13 0.08

350 0.15 0.01

1000 0.05 0.23

4. Conclusion and discussion

The use of Allan deviation, a simple data-driven method available in most scientific software
packages, for the analysis of stochastic polarization time fluctuations as a tool to study underlying
noise models and the optimization of denoising in polarization measurements has been proposed
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and studied. Allan analysis shows that short-time SOP evolution scale with multiple scaling
rules rather than following a global scaling rule. Experiments have been conducted, and in
them, the results are consistent with the hypothesis that the SOP evolves following a power law
with different regimes, and thus different regularity patterns have been observed: a white noise
term, i.e., a mean reverting (anti persistent) process; a random walk; and a fractional Brownian
process that in the extreme develops in a trending (persistent) process. These short-time temporal
noise terms agree with previously reported statistical models for the evolution of polarization
with fiber length and optical frequency, which suggest that the changes in the PMD vector are
driven by changes in orientation following a Brownian motion and a white rotation process [6,7].
Somewhat unexpectedly, experimental results show that each Stokes parameter might have a
different statistical dynamic in the Brownian regime. However, this anisotropy seems to decrease
as the fiber length is increased.

Allan deviation provides a systematic approach to selecting the time window length for
averaging over which measurements remain relevant. If polarization fluctuations follow a power
law, they are scale-invariant, or, in other words, they are self-similar. This implies no restrictions
on the sampling frequency selection since the characteristics of the processes are conserved at
different time scales.

Allan analysis is similar to other statistical tools but provides unique features. While both
Allan analysis and power spectral density (PSD) provide insights into the frequency content
and noise properties of a signal, Allan variance offers additional information related to noise
characterization, stability analysis, and optimal averaging times that cannot be directly obtained
from PSD alone. An alternative path for analyzing the regularity of polarization fluctuations
could be in the framework of multifractal analysis (or scaling analysis). SOP fluctuations can be
seen as a multifractal behavior with several dominant monofractal colored noise terms. Fractal
structures similarly allow the identification of power law processes. However, multifractal tools
such as leader wavelets and multifractal detrended fluctuation analysis do not provide a simple
derivation of the optimum time window for denoising, and they are not as easy to use.

Allan analysis can contribute to advancing the study of systems where the time evolution of
the SOP is relevant, such as in the optimization of the averaging in polarization measurements,
comparison of optical systems in terms of polarization stability, modeling, and quantifying noise
stemming from various sources as well as to provide new insights on the polarization behavior of
optical systems. Different applications may benefit from Allan analysis, such as the optimization
of polarimetric sensing, especially at low signal power [21], as in remote sensing [22] and
astronomy [23]; the calibration of polarization elements, characterization of materials [24] and
characterization of polarization speckle [25]; as well as the alignment of polarization-critical
optical systems, as in quantum key distribution systems [26], microwave photonics [27] and
fiber-optic gyroscopes [28]. This tool might strengthen the accuracy of these applications with
an analysis that can be done on the fly to determine optimal parameters.
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