
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Telecommunications Engineering

Development of a system for monitoring and control of the
sensors in the data processing module of the Hyper-

Kamiokande neutrino detector.

End of Degree Project

Bachelor's Degree in Telecommunication Technologies and
Services Engineering

AUTHOR: Martínez Sánchez, Borja

Tutor: Ballester Merelo, Francisco José

ACADEMIC YEAR: 2023/2024

Resumen

Este TFG se realiza en el marco del proyecto internacional Hyper-Kamiokande, que tiene por ob-

jetivo construir el detector más avanzado y de mayor tamaño de neutrinos basado en la detección

de luz de Cherenkov en agua ultrapura. Este detector será construido en Japón, en la antigua mina

de Kamioka (prefectura de Gifu) y será el sucesor de Super-Kamiokande. El principal cambio de

Super-Kamiokande a Hyper-Kamiokande es el uso de sensores PMT mucho más sensibles para

captar el fenómeno conocido como “luz de Cherenkov”. Esto provoca que la electrónica de con-

versión tenga que ponerse cerca de los PMT, en las propias vasijas. Por tanto, se hace necesario que

la propia electrónica sea capaz de monitorizar su estado a través de diversos sensores y reportarse

a través de un enlace Ethernet a los servidores situados en un data center encima del observatorio.

Este TFG trata sobre la implementación de estas funcionalidades, conocidas como slow control

para la DPB, que es el módulo que la UPV tiene como tarea diseñar y enviar estos datos a través

de un enlace de Ethernet. Además, estas medidas también serán muy útiles a la hora de realizar

tests con los prototipos para llegar a un diseño y fabricación finales de unos módulos que serán

montados en el observatorio durante el año 2026.

Resum

Aquest TFG es realitza en el marc del projecte internacional Hyper-Kamiokande, que té per ob-

jectiu construir el detector més avançat i de major grandària de neutrins basat en la detecció de

llum de Cherenkov en aigua ultrapura. Aquest detector serà construït al Japó, en l’antiga mina

de Kamioka (prefectura de Gifu) i serà el successor de Super-Kamiokande. El principal canvi de

Super-Kamiokande a Hyper-Kamiokande és l’ús de sensors PMT molt més sensibles per a captar

el fenomen conegut com a “llum de Cherenkov”. Això provoca que l’electrònica de conversió haja

de posar-se prop dels PMT, en els propis atuells. Per tant, es fa necessari que la pròpia electrònica

siga capaç de monitorar el seu estat a través de diversos sensors i reportar-se a través d’un enllaç

Ethernet als servidors situats en un data center damunt de l’observatori. Aquest TFG tracta sobre

la implementació d’estes funcionalitats, conegudes com slow control per a la DPB, que és el mòdul

que la UPV té com a tasca dissenyar i enviar aquestes dades a través d’un enllaç de Ethernet. A

més, estes mesures també seran molt útils a l’hora de realitzar tests amb els prototips per a arribar

a un disseny i fabricació finals d’uns mòduls que seran muntats en l’observatori durant l’any 2026.

Abstract

This TFG is carried out in the framework of the international project Hyper-Kamiokande, which

aims to build the most advanced and largest neutrino detector based on the detection of Cherenkov

light in ultrapure water. This detector will be built in Japan, in the former Kamioka mine (Gifu pre-

fecture) andwill be the successor of Super-Kamiokande. Themain change fromSuper-Kamiokande

to Hyper-Kamiokande is the use of much more sensitive PMT sensors to capture the phenomenon

known as “Cherenkov light”. This results in the conversion electronics having to be placed close

to the PMTs, in the vessels themselves. Therefore, it is necessary for the electronics themselves to

be able to monitor their status through various sensors and report through an Ethernet link to the

servers located in a data center on top of the observatory. This TFG is about the implementation

of these functionalities, known as slow control for the DPB, which is the module that UPV has the

task to design and send these data through an Ethernet link. In addition, these measurements will

also be very useful when testing the prototypes to reach a final design and manufacture of modules

that will be mounted in the observatory during the year 2026.

3

RESUMEN EJECUTIVO

La memoria del TFG del GTIST debe desarrollar en el texto los siguientes conceptos, debidamente justificados y discutidos, centrados en el ámbito

de la IT

CONCEPT (ABET) CONCEPTO (traducción)
¿Cumple?

(S/N)

¿Dónde?

(páginas)

1. IDENTIFY: 1. IDENTIFICAR:

1.1. Problem statement and opportunity 1.1. Planteamiento del problema y oportunidad S 1

1.2. Constraints (standards, codes, needs,

requirements & specifications)

1.2. Toma en consideración de los condicionantes

(normas técnicas y regulación, necesidades,

requisitos y especificaciones)

S 1

1.3. Setting of goals 1.3. Establecimiento de objetivos S 2

2. FORMULATE: 2. FORMULAR:

2.1. Creative solution generation (analysis) 2.1. Generación de soluciones creativas (análisis) S
55, 59,70,

73,79,83, 87

2.2. Evaluation of multiple solutions and

decision-making (synthesis)

2.2. Evaluación de múltiples soluciones y toma de

decisiones (síntesis)
S

27, 59,68,

70,73,79, 83

3. SOLVE: 3. RESOLVER:

3.1. Fulfilment of goals 3.1. Evaluación del cumplimiento de objetivos S 95-96

3.2. Overall impact and significance

(contributions and practical recommendations)

3.2. Evaluación del impacto global y alcance

(contribuciones y recomendaciones prácticas)
S 95-96

Escuela Técnica Superior de Ingeniería de Telecomunicación

Universitat Politècnica de València

Edificio 4D. Camino de Vera, s/n, 46022 Valencia

Tel. +34 96 387 71 90, ext. 77190

www.etsit.upv.es

I would like to take this opportunity in my TFG to thank all those who have accompanied me

during these 4 years of my studies for putting up with me and making this period of my life

enjoyable. I would also like to thank Francisco Ballester and the I3M team for trusting me and

providing me with my first professional experience as an engineer. Specifically, I want to express

my gratitude to Alejandro Gómez Gambín for his time and guidance as my mentor during my

internship, and for everything I have learned while working with him- Lastly, I must thank my

family and parents for their unwavering emotional and financial support, and for always

believing in me.

Contents

I Introduction: Hyper-Kamiokande Project

1 TFG goals 1

2 The neutrino itself 3

3 HKK project 5

3.1 HKK project structure . 5

3.2 HKK physics basis . 8

3.3 HKK predecessor, Super-Kamiokande . 9

3.4 HKK objectives . 10

3.5 HKK project organization . 12

II Leveraged technology

1 DPB SoM election 15

1.1 Understanding System-on-Module . 15

1.1.1 Advantages of SoM Technology: . 15

2 DPB2 Prototype 17

2.1 Zynq UltraScale+ Architecture . 17

2.1.1 Difference between PS and PL . 18

2.1.2 JTAG interface . 19

2.1.3 UART interface . 20

2.1.4 Ethernet interface . 21

2.1.5 I2C interface . 22

2.1.6 GPIO interface . 25

2.1.7 RS-485 communication protocol . 26

3 PetaLinux embedded OS 27

3.1 Unix/Linux environment and OS election . 27

3.1.1 Used Linux libraries, drivers and applications 28

3.2 Sysfs file system . 29

4 Development environments used 31

4.1 Vivado Design Suite . 31

4.2 Vitis IDE . 32

4.3 Robot Framework . 34

CONTENTS

III DPB sensors capabilities descriptions for slow control tasks

1 I2C devices 37

1.1 INA3221 Current sensor . 37

1.2 MCP9844 Temperature sensor . 42

1.3 AFBR-5715ALZ SFP Transceiver . 44

2 Xilinx AMS gathered data 49

IV Tasks Development and Results

1 Preparation of the environment to be used on the board 55

1.1 Platform setup and configuration . 55

1.2 Vitis Project Creation . 56

2 Application workflow 59

3 Application initialization 67

4 Monitoring thread development 73

4.1 Sensor data readout functions . 73

4.2 Parse monitoring data into JSON string and send it to the DAQ 74

5 Alarms threads development 79

5.1 Configure shared memory segment and synchronization semaphores 80

5.2 Detection and handling sensors alarms functions 81

5.3 Parse alarms data into JSON string and send it to the DAQ 81

6 Command handling thread development 83

6.1 Parse commands from the DAQ into JSON string for processing 84

6.2 Define the command cases and develop functions to handle each case 85

7 Develop manufacturing test software 87

7.1 Adapt previously developed software for manufacturing test 87

7.2 Automation of the tests using Robot framework 89

V Conclusions and future work

1 Lessons learned 95

2 Future work 97

Bibliography 99

VI Annexes

A Additional Listings 103

7

List of Figures

3.1 HKK water tank concept sketch . 6

3.2 Cross-section of the Hyper-Kamiokande . 6

3.3 PMT structure . 7

3.4 Interior of the vessel . 7

3.5 How a PMT detects Cherenkov light phenomenon 8

3.6 Interior of the Super-Kamiokande, predecessor of the Hyper-Kamiokande 9

3.7 Hyper-Kamiokande neutrino oscillation investigation fields [5] 11

3.8 Diagram of communication between the different modules of the vessel 12

2.1 Zynq UltraScale+ PS and PL blocks . 19

2.2 Daisy-chained JTAG . 20

2.3 UART Controller schema . 21

2.4 Addressing and data frames I2C . 23

2.5 Structure of the I2C of our DPB . 24

2.6 SDA and SCL I2C communication signals . 25

3.1 Role of sysfs in user-hardware communication 30

4.1 Vivado GUI . 32

4.2 Vitis Embedded Software Development Flow [18] 33

4.3 Vitis GUI . 33

4.4 Robot framework workflow [20] . 34

4.5 Example of keyword driven test . 34

1.1 Operation of the alarms MCP9844 Temperature Sensor 42

1.1 Vitis IDE Platform project wizard . 57

2.1 Main application execution flow . 59

2.2 Monitoring thread execution flow . 61

2.3 I2C alarms execution flow . 62

2.4 AMS alarms thread execution flow . 63

2.5 Slow Control thread execution flow . 64

4.1 Monitoring thread value . 74

4.2 ZeroMQ Publisher-Subscriber simple pattern [28] 76

4.3 PL Temperature monitored evolution . 77

5.1 Difference between AMS temperature alarm with hysteresis on and hysteresis off 80

5.2 JSON strings received in Python application after triggering alarms 82

6.1 Request-Reply pattern [29] . 83

7.1 Example of keyword-driven test . 90

7.2 Example of data-driven test . 90

7.3 Basic example of successful Robot test report 91

List of Tables

3.1 SK Phases . 9

2.1 DPB GPIO pin distribution . 26

1.1 INA3221 Current Sensor Registers . 41

1.3 MCP9844 Temperature Sensor Registers . 43

1.4 SFP transceiver EEPROM page 1 registers . 45

1.5 SFP transceiver EEPROM page 2 registers . 47

1.6 Breakdown of SFP transceiver status bits . 47

1.7 Breakdown of the flags of SFP transceivers . 48

2.1 SYSMON channels and their details . 50

2.2 AMS alarms register set . 51

7.1 Basic data structures in ctypes, C y Python . 88

A.1 Setting DPB command list . 103

A.2 Reading DPB command list . 104

Acronyms

ACK Acknowledgment.

ADC Analog-to-Digital Converter.

AMD Advanced Micro Devices.

AMS Analog Mixed-Signal.

APB Advanced Peripheral Bus.

API Application Programming Interface.

APU Accelerated Processing Unit.

ARM Advanced RISC Machine.

AXI Advanced eXtensible Interface.

COM Computer on Module.

CP Charge Conjugation and Parity.

CPU Central Processing Unit.

DAQ Data Acquisition Centre.

DHCP Dynamic Host Configuration Protocol.

DMA Direct Memory Access.

DPB Data Processing Board.

DSP Digital Signal Processor.

DUT Device Under Testing.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EMIO Extended Multiplexed I/O.

eMMC embedded Multi-Media Card.

FD Far Detector.

Acronyms

FIFO First In First Out.

FinFET Fin Field-Effect Transistor.

FPD Full Power Domain.

FPGA Filed Programmable Gate Array.

GCC GNU Compiler Collection.

GEM Gigabit Ethernet Module.

GMII Gigabit Media Independent Interface.

GND Ground.

GPIO General Purpose I/O.

GUI Graphical User Interface.

HKK Hyper-Kamiokande.

HV High Voltage.

I/O Input/Output.

I3M Institute for Molecular Imaging Instrumentation.

I2C Inter-Integrated Circuit.

IC Integrated Circuit.

ID Inner Detector.

IDE Integrated Development Environment.

IEEE Institute of Electrical and Electronics Engineers.

IIO Industrial I/O.

IOP I/O Processor.

IP Internet Protocol.

JSON JavaScript Object Notation.

JTAG Joint Test Action Group.

LPD Low Power Domain.

LSB Least Significant Bit.

LV Low Voltage.

MAC Media Access Control.

12

Acronyms

MDIO Management Data I/O.

MIO Multiplexed I/O.

MPSoC Multi-Processing System on Chip.

MSB Most Significant Bit.

NACK Negative Acknowledgment.

OS Operating System.

PCB Printed Circuit Board.

PHY Physical Layer.

PL Programmable Logic.

PLL Phase-Locked Loop.

PMT Photo-multiplier Tube.

POSIX Portable Operating System Interface uniX.

PS Processing System.

PS-GTR Processing System-Gigabit Transceiver.

RAM Random Access Memory.

RGMII Reduced Gigabit Media Independent Interface.

RISC Reduced Instruction Set Computer.

ROM Read Only Memory.

RPU Real-time Processing Unit.

RS Recommended Standard.

SCL Clock Signal.

SDA Data Signal.

SDK Software Development Kit.

SFP Small Form-factor Pluggable.

SK Super-Kamiokande.

SMARC Smart Mobility ARChitecture.

SoC System on Chip.

SoM System on Module.

13

SSH Secure SHell.

SYSMON SYStem MONitor.

TAP Test Access Port.

Tcl Tool command language.

TCO Total Cost of Ownership.

TCP Transmission Control Protocol.

TFG Final Degree Project.

TO Time Out.

TSMC Taiwan Semiconductor Manufacturing Company.

UART Universal Asynchronous Receiver-Transmitter.

UPV Polytechnic University of Valencia.

UUID Universally Unique Identifier.

VHV Very High Voltage.

VLAN Virtual Local Area Network.

XPPU Extended Peripheral Protection Unit.

Part I

Introduction: Hyper-Kamiokande

Project

Chapter 1

TFG goals

I
t is well known that telecommunications have played a pivotal role in the course of society since

its emergence, being a discipline that nowadays is necessary for almost everything, whether for

2-person telephone communication or military applications.

The field of telecommunications encompasses several branches of knowledge, one of them

being electronic systems, where I specialize. Therefore, this Final Degree Thesis of the Degree in

Telecommunication Technologies and Services Engineering is clear evidence of the importance of

electronic systems in the advancement of human beings to explore and investigate the behaviour

of the universe in all of its aspects. Specifically, this thesis will deal with the design of software

for an embedded system, a type of electronic system that is very recurrent during the degree in

telecommunications engineering and indispensable in a vast majority of electronic components

worldwide.

This TFG is part of the Hyper-Kamiokande (HKK) project, which will be described in more

detail in the following chapters. It is a massive global project that started in 2018 with around 300

researchers from 22 different countries, and over time the number has grown, which means that

project coordination is crucial in the development of the whole project. The responsibilities of the

UPV form the nucleus of the experiment’s electronics, given the module’s design originating from

the UPV, particularly the Institute for Molecular Imaging Technologies (I3M).

It has to be taken into account that the electronics of this project have to be inaccessible for at

least 10 years as they will be sealed in a vessel, so this thesis can be considered a step forward

in the development of the DPB software through the design of an application that will allow to

control the state of the electronic components inside the vessel and to communicate the DPB with

the DAQ. In addition, it will serve as a basis for the development of automated manufacturing tests

for the larger-scale production of the final version of the DPB. All this has to be developed taking

into account that most of the processing capacity and memory of the DPB is destined for the data

captured by the PMTs, so I have to try to optimize the designed software. Not to mention, I must

detect and correct any possible bug that could cause any memory leak or lead the application to

crash since neither the vessel nor the DPB will be accessible for at least 10 years and a failure

to manually manipulate the electronics in a vessel would lead to the loss of that vessel until the

next emptying of the observatory and a great amount of valuable information would be lost. This

software will be developed on a Linux platform already designed by project colleagues.

1

CHAPTER 1. TFG GOALS

The objectives of this dissertation are summarized as follows:

• DevelopDPB software in order to allow us to read the information gathered from the sensors

or other modules, process commands coming from the DAQ, and transmit the gathered data

as packets to the DAQ.

• Learn how to work in embedded environments using the AMD Vitis IDE, which allows

us to develop C or C++ application code that will run on Xilinx products. Therefore, we will

be able to debug and run code on our DPB SoM.

• Program software in Linux for our DPB as it runs on an embedded OS derived from Linux,

PetaLinux. Therefore, to develop software that will run on this OS, Linux drivers will be used

and modified if necessary to achieve the desired functionality. The operation and execution

flow of the drivers themselves must be understood in order to be used.

• Develop slow control system with the aim of precisely monitoring and managing low-

frequency signals or events from the DPB, prioritizing stability and accuracy over real-time

responsiveness.

• Create data structures using JavaScript Object Notation (JSON) format to parse the gath-

ered information and be able to communicate with the DAQ by following these data struc-

tures.

• Manage alarm systems asserted by the sensing components on the board to be able to act

and report in case any of the components is operating outside manufacturer’s margins and

may compromise the operation or reliability of the DPB.

• Test preparation and automation using the Robot framework for testing the mass pro-

duction of boards (about 900 will be produced for the detector). The aim is to integrate the

previously designed software into the test software and to prepare and enumerate the test

cases in the Robot framework in order to be able to verify all necessary test cases automati-

cally.

2

Chapter 2

The neutrino itself

P
rior to the development of the HKK project, it is useful to know more about the main particle

to be detected during this project, the neutrino. Therefore, in this chapter a brief explanation

of the knowledge about the neutrino throughout history, and the configurations and phenomena

used for the detection of the neutrino and the study of its nature.

Within the field of physics there are countless subfields that study different aspects of everything

around us. The project on which this dissertation is based is based on the speciality of physics

called Particle physics [1], which is also known as high-energy physics, because many of these

particles can only be seen in large collisions provoked in particle accelerators. This discipline of

physics is responsible for demonstrating the existence of particles classified according to certain

characteristics as bosons or fermions. Nonetheless, it also encounters the difficulty of having been

able to demonstrate particles that are almost non-detectable to this day.

Within these elusive particles lies the neutrino, a subatomic entity generated during a radioactive

decay and scattering phenomenon. In this instance, the neutrino arises from beta decay, as proposed

in Fermi’s theory, wherein a sizeable neutral particle (n0) disintegrates into a proton (p+), an
electron (e−), and a neutrino (ν̄e).

n0 → p+ + e− + ν̄e (2.1)

The first person to postulate the existence of the neutrino theoretically was Wolfgang Pauli

[2] in 1930, but it remained undetected for 25 years because this hypothetically predicted particle

had to be massless, chargeless and without strong interaction. Finally, in 1956, Clyde Cowan,

Frederick Reines, Francis B. ”Kiko” Harrison, Herald W. Kruse, and Austin D. McGuire were

able to demonstrate the existence of the neutrino experimentally by using a beam of neutrons to

pump a tank of pure water. By observing the subsequent emission of the protons, they were able

to demonstrate the existence of the neutrino. This test was called the neutrino experiment.

Over the years, different types of radioactive decays have been discovered that can give rise to

neutrinos, such as natural and artificial nuclear reactions, supernova events or the spin-down of a

neutron star. Furthermore, it has been discovered that there are different leptonic flavours of neu-

trinos originating from the weak interactions, electron neutrino, muon neutrino and tau neutrino,

each flavor is associated with the correspondingly named charged lepton and similar to some other

neutral particles, neutrinos oscillate between different flavors in flight as a consequence.

3

CHAPTER 2. THE NEUTRINO ITSELF

I have done a terrible thing: I have postulated a particle that cannot be detected.

– Wolfgang Pauli, 1930

This quote comes from Wolfgang Pauli when he postulated the existence of the neutrino as a

particle without electric charge or mass to balance the equation, and it is that the discipline that

studies the phenomena caused by neutrinos from space has been encountering great difficulties in

detecting it for years detecting neutrinos because they interact with almost nothing or only weakly.

A configuration for detecting a decent amount of neutrinos, based on the Cherenkov light phe-

nomenon, will be explained in further detail in the following sections. This precise configuration

is the physics basis of the project on which this TFG has been developed.

4

Chapter 3

HKK project

T
his chapter aims to present the structure and objectives of the HKK project, the evolution of

its predecessor, SK, and the physics phenomena on which the project is based.

3.1 HKK project structure

Hyper-Kamiokande [3] is a neutrino detector project still under construction (estimated to start

operation in 2027), which takes place in the Kamioka mines in Japan, surpassing the performance

of its predecessor, Super-Kamiokande. Although the project is based in Japan, it involves research

institutes from 22 different countries. The aim of the project is to search for anti-neutrinos coming

from supernovas, proton decays and detect neutrinos from natural sources such as the Earth, the

atmosphere, the Sun and the cosmos, as well as to study neutrino oscillations from the neutrino

beam of the artificial accelerator.

Hyper-Kamiokande is planned to be the world’s largest neutrino detector, surpassing its prede-

cessor Super-Kamiokande, which is 71 meters high and 68 meters in diameter. The detector, filled

with ultrapure water, will have about 40,000 photomultiplier tubes as detectors inside the detector

and 10,000 detectors outside the detector. Although HKK is bigger than SK, by including almost

4 times the number of PMTs of its predecessor, HKK achieves a 40% photo-cathode coverage, the

same as SK.

5

CHAPTER 3. HKK PROJECT

Figure 3.1: HKK water tank concept sketch

Figure 3.2: Cross-section of the Hyper-Kamiokande

6

3.1. HKK PROJECT STRUCTURE

The detector design comprises a cylindrical tank with outer dimensions of 71 meters in height

and 68 meters in diameter. It is filled with 260,000 metric tons of ultrapure water to create a

water Cherenkov detector. This tank will be surrounded by highly sensitive photodetectors, which

boast a 50% higher efficiency compared to the SK ones, thus allowing for greater precision in

measuring light intensity and detection time. These photomultiplier tubes (PMTs), specifically the

Hamamatsu R12860 model, will enhance the detection of signatures such as those produced in

neutrino interactions. Consequently, this setup will enable researchers to more accurately measure

the direction and velocity of neutrinos passing through the detector.

Figure 3.3: PMT structure

The PMTs, along with the rest of the electronics, will be housed in hermetically sealed vessels

submerged in the water inside the detector, following the same structure as the SK.

Figure 3.4: Interior of the vessel

As can be seen in the previous figure, the electronics are concentrated inside the vessel, where

the information from the PMTs is sampled in the digitizers and then sent to the DPB. The DPB is

responsible for communicating the different modules both outside and inside the vessel, it acts as

a hub inside the vessel.

Since the electronics are located in a place that is difficult to access, as it would mean emptying

the detector of water, high reliability is required in this project, at least 10 years. For this reason,

robust systems have been chosen and the electronics used must be monitored.

7

CHAPTER 3. HKK PROJECT

3.2 HKK physics basis

The physics apparatus used to study neutrinos is referred to as a neutrino detector, built to

be isolated from any other influence like cosmic rays or background radiation. These neutrino

detectors are huge structures that work following a neutrino detection technique of the existent

ones let it be scintillators (like in the Cowan-Reines neutrino experiment), radiochemical methods,

radio detectors or Cherenkov light detectors. The experiment that gives name to this chapter is

based on the latter: the Cherenkov light detection [4].

These detectors are huge water-filled tanks enriched with deuterium and gadolinium. This

environment is ideal for neutrino interaction as the interaction of one of these subatomic particles

with the electrons or nuclei of water can produce a charged particle faster than the speed of light in

water. This produces a cone of light called Cherenkov light and can be defined as the equivalent

of light to a sonic boom in acoustic waves.

The water tank is surrounded by photosensible sensors called Phototubes, a cell filled with gas

or a vacuum tube sensitive to light. The most used kind of phototube is the PMT due to its high

sensitivity.

This PMT detects the Cherenkov light produced by the neutrino interaction. By sensing the

pattern of light, a lot of information of the neutrino can be inferred, such as direction, energy and

sometimes the flavor information of the incident neutrino.

Figure 3.5: How a PMT detects Cherenkov light phenomenon

These detections are exceedingly rare due to the low probability of a neutrino interacting with

matter. Therefore, the larger the water tank and the greater the number of PMTs, the more inter-

actions can be detected within the same time-frame. Furthermore, the concept of fiducial volume

must be taken into account, a recurring concept in particle physics experiments that involves con-

sidering only results from a specific region of the detector, as results outside of that zone may be

confusing or of limited validity for several reasons. Increasing this valid detection zone is the key

to increasing detection possibilities

8

3.3. HKK PREDECESSOR, SUPER-KAMIOKANDE

3.3 HKK predecessor, Super-Kamiokande

The largest neutrino detector currently in operation is the Super-Kamiokande. ”Kamiokande”

is a fusion of several words: KAMIOKANeutrino Detection Experiment. Situated beneath Mount

Ikeno near the city of Hida in the Gifu Prefecture, Japan, Kamioka is the facility that oversees this

detector. The SK consists of a 36.2m high and 33.3m diameter ultrapure water tank with PMT

detectors for inner and outer tank detection, and the operation of this neutrino detector also relies

on the Cherenkov light phenomenon captured by PMTs to collect data.

The main difference with its successor (HKK) lies in the size of the ultrapure water tank and

the amount of PMTs. It is estimated that this increase in tank size and number of PMTs will make

it possible to capture with HKK in 10 years an amount of data that would take 100 years to capture

in SK.

Figure 3.6: Interior of the Super-Kamiokande, predecessor of the Hyper-Kamiokande

The detector has undergone up to four revisions for various reasons, such as cascade failures

or the replacement of the 6000 PMTs, along with upgrades to electronics in the latest iteration,

Super-Kamiokande IV. These phases have not led to an increase in the number of PMTs or their

percentage of coverage, but rather to measures to protect the technology used.

Phase SK-I SK-II SK-III SK-IV

Period Start 1996 Apr. 2002 Oct. 2006 Jul. 2008 Sep.

End 2001 Jul. 2005 Oct. 2008 Sep. 2018 Jun.

Number of PMTs ID 11146 (40%) 5182 (19%) 11129 (40%) ID 11129 (40%)

OD 1885

Anti-implosion container No Yes Yes Yes

OD segmentation No No Yes Yes

Front-end electronics ATM (ID) ATM (ID) ATM (ID) QBEE

QTC (OD) QTC (OD) QTC (OD)

Table 3.1: SK Phases

9

CHAPTER 3. HKK PROJECT

3.4 HKK objectives

The HKK experiment stands at the forefront of contemporary neutrino research, poised to un-

lock profound insights into the fundamental properties of these elusive particles. With its innova-

tive design and enhanced capabilities, HKK ventures into uncharted territories of particle physics,

aiming to shed light on mysteries ranging from neutrino oscillations to the enigmatic nature of dark

matter.

In the realm of neutrino oscillation measurements, HKK endeavours to employ both accelerator

and atmospheric neutrinos to unravel mysteries such as determining the mass hierarchy, investigat-

ing CP violation in the lepton sector, and precisely measuring oscillation parameters. Additionally,

it aims to explore phenomena such as sterile neutrinos and potential violations of Lorentz invari-

ance.

In solar neutrino measurements, HKK aims to address discrepancies observed between solar

and reactor neutrino measurements, particularly focusing on the θ12 sector. It intends to achieve

this by studying day-night asymmetry in solar neutrino flux and exploring novel avenues such as

monitoring solar fusion reactions and observing higher-energy neutrino flux.

HKK seeks to build upon the nucleon decay research legacy of Kamiokande and SK (Super-

Kamiokande) by significantly enhancing limits on proton decays. It plans to utilize advanced PMT

technology to improve performance, especially in detecting gamma rays from neutron capture,

which is crucial for reducing neutrino backgrounds in proton decay searches.

In terms of supernova burst neutrinos, HKK aims to detect and analyze a substantial number

of neutrinos from Galactic supernovae, allowing for detailed studies of these explosive events.

It complements other experiments such as DUNE in its sensitivity to various types of supernova

neutrinos.

For supernova relic neutrinos, HKK could contribute significantly by focusing on higher en-

ergy regions, complementing the efforts of SK. Introducing gadolinium enhances sensitivity by

distinguishing neutrino interactions from background events.

In dark matter searches, HKK aims to improve upon SK’s capabilities in detecting dark matter

through neutrino signals, particularly from neutralino annihilation in regions of high dark matter

density like the core of the Sun and the Galactic center. It also seeks to detect low-mass neutralinos,

which are challenging to detect in direct-detection experiments.

In the pursuit of understanding the universe at its most fundamental level, the HKK experiment

represents a beacon of scientific exploration. Through its multifaceted approach and collaborative

efforts, HKK is poised to unravel some of the most profound mysteries of the cosmos, shaping our

understanding of particle physics for generations to come.

10

3.4. HKK OBJECTIVES

Figure 3.7: Hyper-Kamiokande neutrino oscillation investigation fields [5]

11

CHAPTER 3. HKK PROJECT

3.5 HKK project organization

As it has been mentioned previously, the HKK project involves research institutes from all

over the world, which are in charge of different tasks within the project whether they are related to

physics, electronics or any other relevant field. The project tasks have been divided in 7 different

FD (Far Detector) groups [6]. Apart from the Far Detector groups, there are also the Near Detector

and Beam Facility groups.

This TFG is developed inside of the FD4 group as our group in the I3M at the UPV belongs

to this FD group. FD4 group tasks focus on developing electronics front-end inside the vessel for

the inner sensors of the neutrino detector so as to be able to gather information from the sensors,

transform it in order to allow the processing unit to process the data properly for sampling and

sending the data from the inner sensors of the detector to a data-center.

Figure 3.8: Diagram of communication between the different modules of the vessel

As it can be seen in the previous figure, the electronics inside the vessel consists of high and low

voltage modules used as power supplies for the rest of the components, digitizers and the DPB, and

communicate outside the vessel with the DAQ. In the case of the power boards, the HV supplies

the PMTs while the LV supplies the rest of the electronics inside the vessel.

The UPV is in charge of the development of the DPB of the ID focusing on collecting and

transmitting information to the DAQ and on employing redundancy to maximise reliability. This

is because the DPB, being the hub of the front-end electronics inside the vessel, is responsible for

communicating all the modules and as the vessel is submerged in water, the electronics must be

reliable enough to last for more than 10 years without needing to be repaired or replaced.

To achieve these goals, our group has to take care of designing the different parts of the DPB

up to the final version, develop a software platform where we can develop the necessary software

to communicate the DPB with the relevant modules and carry out the slow control tasks with

reliability as a top priority in this project.

12

Part II

Leveraged technology

Chapter 1

DPB SoM election

I
n the realm of embedded systems development, System-on-Module (SoM) form factor has

emerged as a transformative solution, particularly for academic institutions such as universities

engaged in research and development projects. SoM refers to a compact, integrated circuit board

that encapsulates essential components such as processors, memory, and I/O interfaces within a

single package.

This chapter will therefore explain the definition of SoM and the advantages of choosing a SoM

for the design of the DPB.

1.1 Understanding System-on-Module

System-on-Module (SoM) is a comprehensive computing platform condensed into a small,

modular package. These modules typically include a microprocessor or System-on-Chip (SoC),

memory components (both RAM and ROM), storage options, power management circuitry, and

various peripheral interfaces. SoMmodules are standardized in form factors such as COMExpress,

SMARC, and Qseven, facilitating easy integration into diverse hardware configurations.

1.1.1 Advantages of SoM Technology:

1. Cost Efficiency:

• Reduced Development Costs: One of the primary advantages of SoM technology

for universities lies in its ability to lower development costs. Instead of investing re-

sources in designing custom PCBs and integrating individual components, universities

can procure pre-built SoMmodules. While the upfront cost of SoMmodules may seem

higher compared to standalone chips, the overall development expenditure, including

labour and prototyping, is significantly reduced.

• Lower Total Cost of Ownership (TCO):Despite initial investment differences, SoM

technology often leads to a lower Total Cost of Ownership (TCO) over the project

lifecycle. This is attributed to reduced development time, minimized risk of errors

during hardware integration, and streamlined maintenance processes.

15

CHAPTER 1. DPB SOM ELECTION

2. Time Efficiency:

• Accelerated Development Cycles: SoM modules expedite the development process

by eliminating the need for designing intricate hardware configurations from scratch.

This acceleration is particularly beneficial for universities engaged in time-sensitive

research projects or academic initiatives with strict deadlines.

• Rapid Prototyping: SoM technology facilitates rapid prototyping, allowing researchers

and students to quickly iterate through design concepts and experiment with various

configurations. This agility fosters innovation and enables timely validation of hy-

potheses.

3. Risk Mitigation:

• Enhanced Reliability: SoM modules undergo rigorous testing and validation proce-

dures during manufacturing, ensuring high levels of reliability and performance. By

leveraging pre-tested and validated modules, universities mitigate the risk of hardware

failures and associated costs, safeguarding project budgets and timelines.

• Quality Assurance: SoM vendors adhere to industry standards and quality control

measures, providing universities with assurance regarding the integrity and function-

ality of the modules. This reliability is crucial for academic endeavours where consis-

tency and reproducibility are paramount.

4. Resource Optimization:

• Focused Resource Allocation: By adopting SoM technology, universities can re-

allocate resources previously dedicated to hardware design towards other aspects of

research and development, such as software development, data analysis, and experi-

mentation. This focused resource allocation enhances overall project efficiency and

productivity.

• Skills Utilization: SoM technology reduces the dependency on specialized hardware

design expertise within university research teams. Instead, academic resources can be

channelled towards leveraging domain-specific knowledge and interdisciplinary col-

laboration, fostering a conducive environment for innovation and knowledge exchange

[7], [8].

16

Chapter 2

DPB2 Prototype

T
he DPB2 we are currently working with is only a prototype of what will become the final DPB.

It is a combination between a SoM and a carrier board. The choice of the SoM is motivated

by the reasons mentioned in the previous chapter, since for us as a university institution it means a

saving in engineering costs to be able to insert the SoM in a carrier board and not having to design

the entire PCB from scratch and solder the processing unit to the board.

Regarding the carrier board, it was designed by Enclustra with the assistance and supervision

of our group to obtain a design according to our needs and Enclustra itself was responsible for

manufacturing the board. This is because Enclustra is a company dedicated to the manufacture of

these plates. Therefore, delegating the design and manufacturing process of the board to Enclustra

represented engineering costs savings and provided us with a guarantee against possible manu-

facturing defects. Among the components of the board we can highlight current and temperature

sensors, 6 SFP ports, UART or JTAG ports among others.

Zynq UltraScale+ Architecture has been chosen as the SoM architecture due to its processing

capacity, efficiency and the integration of PetaLinux, a reduced version of Linux for embedded

systems which offers us a very complete embedded software development platform.

This chapter will discuss this selected SoM architecture and review the features it offers and

their usefulness for the HKK project.

2.1 Zynq UltraScale+ Architecture

The Zynq UltraScale+ MPSoC platform offers designers the first truly all-programmable, het-

erogeneous, multiprocessing system-on-chip (SoC) device. Smart systems are increasing in com-

plexity with applications in the automotive industry, large database deployments, and even space

exploration, pushing the requirements of each new generation of SoC to its limits. Requirements

for increased power control, real-time applications, intensive graphical capabilities, and process-

ing power demand a platform with maximum flexibility. The Zynq UltraScale+ MPSoC platform

provides leading-edge features that modern systems designers demand. [9]

Built on the next-generation 16 nm FinFET process node from Taiwan Semiconductor Manu-

facturing Company (TSMC), the Zynq UltraScale+ MPSoC contains a scalable 32 or 64-bit multi-

processor CPU, dedicated hardened engines for real-time graphics and video processing, advanced

17

CHAPTER 2. DPB2 PROTOTYPE

high-speed peripherals, and programmable logic. The platform delivers maximum scalability

through either dual or quad-core APU devices, offloading of critical applications like graphics and

video pipelining to dedicated processing blocks, and the ability to turn blocks on and off through ef-

ficient power domains and gated power islands. With a wide range of interconnect options, digital

signal processing (DSP) blocks, and programmable logic choices, the Zynq UltraScale+ MPSoC

has the flexibility to fit a diverse set of user application requirements.

To effectively harness the power of the Zynq UltraScale+ MPSoC, AMD has the SoC-strength

tools with Vivado Design Suite, and PetaLinux, and can further accelerate development using the

Vitis unified software platform for design abstraction. [10]

Architecture’s Essential Elements:

• 64-bit Quadcore ARM Cortex-A53 Processors

• Dualcore ARM Cortex-R5 Real-Time Processors

• ARM Mali™-400MP Graphics Processor

• H.265/264 Video Codec Unit

• Advanced Dynamic Power Management Unit

• Configuration Security Unit

• DDR4/LPDDR4 Memory Interface Support

• 16FinFET+ Performance/Watt

• Vitis unified software platform for Design Abstraction

• Next-Generation AXI Interconnect

• Compatible with the Zynq 7000 SoCs, Software, and Ecosystem

2.1.1 Difference between PS and PL

When we refer to a SoM, we must be clear about the two main blocks that conform it, PS and

PL. The PS encompasses pre-designed and non-programmable components such as CPUs, memory

controllers, and peripheral interfaces. Its main purpose is to handle computing tasks and manage

the interface with the external world, facilitating communication with peripherals, memory access,

and system-level operations.

Meanwhile, the PL offers a flexible and customizable hardware fabric that enables users to

implement custom logic and tailor the functionality of the module to specific application require-

ments. Contrary to the PS, the PL consists of programmable hardware, typically in the form of

FPGA or similar devices along with embedded transceivers and memory blocks, among others.

This adaptable hardware fabric enables developers to create and implement bespoke hardware

accelerators, interfaces, or custom processing pipelines, thus elevating the flexibility and perfor-

mance capabilities of the SoM.

18

2.1. ZYNQ ULTRASCALE+ ARCHITECTURE

The PL functions in tandem with the PS, enabling hardware acceleration, real-time processing,

and seamless integration of tailored peripherals to meet the distinct requirements of the specific

application at hand.

Figure 2.1: Zynq UltraScale+ PS and PL blocks

2.1.2 JTAG interface

JTAG is an industry standard used for verifying designs, testing PCB after being manufac-

tured and programming FPGAs or similar devices by using boundary-scan technology. Signals

are scanned into and out of the I/O cells of a device serially to control its inputs and test the outputs

under various conditions.

The JTAG port consists of the following pins:

• Test Data In (TDI)

• Test Data Out (TDO)

• Test Clock (TCK)

• Test Mode Select (TMS)

• Test Reset (TRST) (optional)

19

CHAPTER 2. DPB2 PROTOTYPE

Figure 2.2: Daisy-chained JTAG

The data transmission is serial since there is only one wire of transmission in each direction. There-

fore, one bit of data is transmitted every rising clock edge and the direction depends on the mode

select pin.

In the case of the Zynq UltraScale+ architecture, it enables a JTAG interface to the user that

allows debugging features for software and PL configuration since it features PS and PL TAP and

ARM debugging of the RPU and APU.

In particular, we have used the JTAG interface to load the PetaLinux image and the necessary

boot files onto the eMMC using the Vivado development environment.

2.1.3 UART interface

The Zynq UltraScale+ architecture also count with an UART controller that functions as a full-

duplex asynchronous receiver and transmitter, supporting a broad range of programmable baud

rates and I/O signal formats. It offers capabilities for automatic parity generation and multi-master

detection mode. The configuration and mode registers control UART operations, while the status,

interrupt status, and modem status registers are used to monitor FIFO states, modem signals, and

other controller functions.

The controller comprises separate RX and TX data paths, each featuring a 64-byte FIFO. It

handles data serialization and deserialization within the TX and RX FIFOs, and includes a mode

switch to support various loop-back configurations for RxD and TxD signals. FIFO interrupt status

bits allow for either polling or interrupt-driven handling. Data bytes are read and written using RX

and TX data port registers.

In modem-like applications, the modem control module manages modem handshake signals

and controls receiver and transmitter paths according to the handshaking protocol.

Key features of the UART controller include:

• Programmable baud rate generator

• Configurable receive and transmit FIFOs, with byte, two-byte, or four-byte APB access

mechanisms

• Options for 6, 7, or 8 data bits

• Support for 1, 1.5, or 2 stop bits

• Parity options including odd, even, space, mark, or no parity

20

2.1. ZYNQ ULTRASCALE+ ARCHITECTURE

• Detection of parity, framing, and overflow errors

• Line break generation and detection

• Automatic echo, local loop-back, and remote loop-back channel modes

• Interrupt generation

• Modem control signals

• Dual clocks: advanced peripheral bus (APB) clocks up to 100 MHz and uart_ref_clock

ranging from 1 MHz to 100 MHz

Figure 2.3: UART Controller schema

In our case, the UART interface has been used to communicate with the DPB and access its file

system. Although the main communication with the DPB has been established via the Ethernet

interface, the UART interface has been used mainly for debugging drivers and OS elements, since

we can see kernel messages via UART, but not via Ethernet.

2.1.4 Ethernet interface

Zynq UltraScale+ counts with the gigabit Ethernet controller (GEM), which implements a

10/100/1000 Mb/s Ethernet MAC that is compatible with the IEEE Standard for Ethernet (IEEE

Std 802.3-2008) and capable of operating in either half or full-duplex mode in 10/100 mode and

full-duplex in 1000 mode. The processing system (PS) is equipped with four gigabit Ethernet con-

trollers. Each controller can be configured independently. Each controller uses a reduced gigabit

media independent interface (RGMII) v2.0.

Access to the programmable logic (PL) is through the EMIO which provides the gigabit media

independent interface (GMII). Other Ethernet communications interfaces can be created in the

PL using the GMII available on the EMIO interface. GEM supports the serial gigabit media-

independent interface at 1000 Mb/s using the PS-GTR interface.

Registers are used to configure the features of the MAC, select different modes of operation,

and enable and monitor network management statistics. The DMA controller connects to memory

through the advanced eXtensible interface (AXI). It is attached to the controller’s FIFO interface of

21

CHAPTER 2. DPB2 PROTOTYPE

the MAC to provide a scatter-gather capability for packet data storage in an embedded processing

system.

Each GEM controller provides management data input/output (MDIO) interfaces for PHYman-

agement.

Each gigabit Ethernet MAC controller has the following features:

• Compatibility with IEEE Standard 802.3-2008, supporting various transfer rates.

• Flexibility in operation modes: full/half duplex.

• Multiple I/O options for connectivity.

• MDIO interface for managing external PHY.

• Powerful DMA capabilities with scatter-gather support.

• APB slave interface for control register access.

• Comprehensive interrupt system for event notification.

• Automatic frame integrity checks and error handling.

• Configurable inter-packet gap and flow control.

• Advanced address checking and VLAN tagging capabilities.

• Support for loopback mode and checksum offloading.

• Recognition of IEEE Precision Time Protocol frames.

• Statistics counters for monitoring network performance.

• Jumbo frame support for efficient data transfer.

• Priority support for enhanced traffic management.

We have used the Ethernet interfaces to establish a connection to the DPB that is faster and

more practical than JTAG and also allows us to implement interface redundancy techniques to

maximise the reliability of the link.

2.1.5 I2C interface

Furthermore, Zynq UltraScale+ provide us with an I2C controller which allows us to communi-

cate with the sensors and SFPs installed in the DPB via 2 different I2C buses. The I2C controllers

are versatile, capable of operating as either a master or a slave within a multi-master setup, with

a clock frequency range of up to 400 kb/s. They support multi-master mode for both 7-bit and

extended 10-bit addressing formats.

In master mode, transfers are initiated solely by the processor writing the slave address into the

I2C address register. The processor is then alerted to any incoming data via either a data interrupt

or a transfer complete interrupt. If the hold bit is activated, the I2C interface keeps the clock signal

22

2.1. ZYNQ ULTRASCALE+ ARCHITECTURE

(SCL) Low after transmitting data, facilitating smooth operation for slower processors. Master

configuration allows for the use of both standard and extended addressing modes, with the latter

exclusive to master mode [11].

In slave monitor mode, the I2C interface acts as a master, persistently attempting a transfer to

a designated slave until either an acknowledgement (ACK) is received or a timeout occurs.

The controller also supports repeated start functionality, wherein the master can generate a

subsequent start condition following the initial one, typically followed by the slave’s I2C address.

A shared feature between master and slave modes is the timeout mechanism, indicated by the

TO interrupt flag. If, at any stage, the SCL clock signal remains Low for a duration exceeding that

specified in the timeout register, a TO interrupt is triggered to prevent operational stalls.

There are two I2C controllers located in the LPD IOP section of the PS. They adhere to I2C

bus specification version 2 and feature a 16-byte FIFO buffer. Key features include programmable

normal and fast bus data rates, support for multi-master configurations, and versatile operation

modes.

In master mode, the controllers facilitate read and write transfers, with support for both seven

and 10-bit addressing formats. They incorporate clock stretching functionality to accommodate

slow processor operation, preventing stalls with a TO interrupt bit. Additionally, they offer re-

peated start capability and slave monitor mode.

When operating in slave mode, the controllers can transmit and receive data and feature fully

programmable slave response addresses. They include a HOLD bit to mitigate overflow conditions

and utilize clock stretching to manage communication delays when data isn’t readily available.

Furthermore, the controllers can be polled for status by software or function as interrupt-driven

devices, with programmable interrupt generation capabilities.

To achieve communication between the different components on the board and the terminal,

the I2C protocol is used, a communication protocol based on a Master-Slave system where the

communication bus is divided into 2 lines, SCL for the clock and SDA for the data, which are

connected to a pull-up resistor each, so the default level is high level.

The operation of this protocol consists of the start of the transmission by the Master which

jointly indicates the address of the slave to which it is directed with an address of 7 bits, even

though we have sensors that have an address of 6 bits plus a reserved bit, which can be configured

to differentiate each slave in a physical way, in addition, it is indicated with a bit if the operation

to be carried out is reading or writing. The data transmission is guided by the clock line and the

data is transmitted in byte size, transmitting from MSB to LSB.

Figure 2.4: Addressing and data frames I2C

For the write operation on the slave, once communication has been established, the register to be

23

CHAPTER 2. DPB2 PROTOTYPE

written to and the data to be written must be indicated. The master is responsible for receiving the

corresponding ACK and NACK during communication and the end of communication sequence.

The read operation follows a similar process to the write operation, indicating the register to

be read and the master is in charge of sending the corresponding ACKs and NACKs during the

communication and at the end of communication sequence.

In our case the communication process will be based on the functions provided by the Linux

libraries that allow us to open/close the communication and read/write registers simply by calling

defined functions and indicating the necessary arguments. In addition, these functions allow us to

operate with vectors in order to read or write consecutive data with a single function.

Figure 2.5: Structure of the I2C of our DPB

In the previous block diagram you can see how the I2C buses of our DPB are structured, the

corresponding filename of each of the I2C bus outputs designated by the multiplexers and the slave

addresses of each module with which we intend to communicate.

As can be seen, the current sensors, the SFP connectors and the temperature sensor that we

intend to use all use the I2C protocol to communicate. However, the temperature sensor and the

current sensors use 16-bit registers, while the SFPs use 1-byte sized registers. The I2C protocol

carries byte-sized frames, so in the case of 16-bit registers it involves performing 2 consecutive

operations (either read or write) on the same register address, whereas for 8-bit registers it will

involve a single operation per register address.

Moreover, as it can be seen in our I2C devices datasheets, reading and writing operations are

performed differently since for the read operation you have to write the address of the register you

want to read in the register pointer and then read the contents in separate operations, whereas for

the write operation you have to indicate the address of the register you want to write to and the

data you want to write consecutively. In our case, the Linux I2C driver will make it much easier

to perform any I2C operations.

24

2.1. ZYNQ ULTRASCALE+ ARCHITECTURE

Figure 2.6: SDA and SCL I2C communication signals

As can be seen in the figure 2.6, SDA and SCL signals generated by the Linux driver to achieve

I2C communication are as expected and the clock signal works in the standard mode of 100kHz

and it has been successfully measured using an oscilloscope that the I2C transmission speed we

are working with is 100kHz.

2.1.6 GPIO interface

The Zynq UltraScale+ architecture incorporates the General Purpose Input/Output (GPIO) con-

troller, which is a collection of input/output signals available for software applications. The GPIO

comprises the MIO with 78 pins and the Extended Multiplexed Input/Output Interface (EMIO)

with 288 signals, divided into 96 inputs from the Programmable Logic (PL) and 192 outputs to the

PL. The GPIO is organized into six banks of registers that group related interface signals.

Each GPIO channel is independently and dynamically programmed as input, output, or inter-

rupt sensing. Software applications can read all GPIO values within a bank using a single load

instruction or write data to one or more GPIOs using a single store instruction. The GPIO control

and status registers for the Zynq UltraScale+ architecture are memory-mapped beginning at base

address 0xFF0A_0000 and are protected by the XPPU [12].

Key features of the GPIO peripheral are summarized as follows:

• 78GPIO interfaces to the device pins, routed through theMIOmultiplexer, with programmable

I/O drive strength, slew rate, and 3-state control.

• 96 GPIO interfaces to the PL (four allocated by software to reset PL logic), routed through

the EMIO interface, providing data inputs, data outputs, and output enables.

• I/O interface organized into six banks (3 MIO and 3 EMIO).

25

CHAPTER 2. DPB2 PROTOTYPE

• Interface control registers grouped by bank {0:5}.

• Input values read using the six DATA_RO_x registers.

• Two types of data ports for writing: full bank write using the DATA_x registers, and split

bank maskable write using the MASK_DATA_x_LWS, MWS register pairs.

• The function of each GPIO can be dynamically programmed on an individual or group basis.

• Enable, bit or bank data write, output enable, and direction controls.

• Programmable interrupts on an individual GPIO basis, with status read of raw and masked

interrupt, and selectable sensitivity (Level-sensitive: High or Low, or edge-sensitive: posi-

tive, negative, or both).

In our case, the GPIO pins have been used for various functions, such as enabling Aurora links

with the digitizers or SFPs transmission, or even controlling SFP status. In table 2.1, we can see

our DPB GPIO pin distribution.

DIR PIN# PIN NAME PIN NAME PIN NAME PIN NAME

OUTPUT (65:64) DMA TIMEOUT ENABLE DMA FORCE TLAST

OUTPUT (63:60) AURORA_RST_DIG1_SEC AURORA_RST_DIG1_PRI AURORA_RST_DIG0_SEC AURORA_RST_DIG0_PRI

OUTPUT (59:56) DMA_PAUSE DMA_BUF_SIZE DMA_ENABLE EN_HVLV_DRV

OUTPUT (55:52) EN_CPU_HV_1 EN_CPU_HV_0 EN_CPU_LV_1 EN_CPU_LV_0

OUTPUT (51:48) TIMING_RST XVC_DISABLE DMA_SOURCE GLOBAL_AURORA_RST

INPUT (47:44) AURORA AFIFO FULL DIG_STREAM_ERR PLL_LOL_n PLL_INTR_n

INPUT (43:40) LINK_UP(DIG1,SEC) LINK_UP(DIG1,PRI) LINK_UP(DIG0,SEC) LINK_UP(DIG0,PRI)

INPUT (39:36) DIG1_PWR_GOOD DIG0_PWR_GOOD DIG1_FPGA_DONE DIG0_FPGA_DONE

INPUT (35:32) SFP_PWR_GOOD(5) SFP_RX_LOS(5) SFP_MOD_ABS(5) SFP_TX_FAULT(5)

INPUT (31:28) SFP_PWR_GOOD(4) SFP_RX_LOS(4) SFP_MOD_ABS(4) SFP_TX_FAULT(4)

INPUT (27:24) SFP_PWR_GOOD(3) SFP_RX_LOS(3) SFP_MOD_ABS(3) SFP_TX_FAULT(3)

INPUT (23:20) SFP_PWR_GOOD(2) SFP_RX_LOS(2) SFP_MOD_ABS(2) SFP_TX_FAULT(2)

INPUT (19:16) SFP_PWR_GOOD(1) SFP_RX_LOS(1) SFP_MOD_ABS(1) SFP_TX_FAULT(1)

INPUT (15:12) SFP_PWR_GOOD(0) SFP_RX_LOS(0) SFP_MOD_ABS(0) SFP_TX_FAULT(0)

OUTPUT (11: 8) TX_DIS(5) TX_DIS(4) TX_DIS(3) TX_DIS(2)

OUTPUT (7: 4) TX_DIS(1) TX_DIS(0) PWR_EN(5) PWR_EN(4)

OUTPUT (3: 0) PWR_EN(3) PWR_EN(2) PWR_EN(1) PWR_EN(0)

Table 2.1: DPB GPIO pin distribution

2.1.7 RS-485 communication protocol

RS-485 is an established standard initially introduced in 1983. It outlines the electrical char-

acteristics of drivers and receivers for use in serial communication systems. The signaling is bal-

anced, supporting multi-point systems. The standard is jointly managed by the Telecommuni-

cations Industry Association and the Electronic Industries Alliance. RS-485 facilitates effective

digital communication networks over extended distances and in electrically noisy environments.

It enables the connection of multiple receivers to a linear, multi-drop bus, making it valuable in

industrial control systems and similar applications.

RS-485 facilitates cost-effective local networks and multi-drop communication links, utilizing

the same differential signaling over twisted pair as RS-422.

We use two RS-485 drivers which are connected are connected to the UARTLite cores of the

HV and LV boards instantiated in the PL to be able to communicate with these boards.

26

Chapter 3

PetaLinux embedded OS

I
n this chapter, we intend to give an introduction to the OS chosen, PetaLinux, as the platform

on which the DPB works, its characteristics, and the advantages of its use.

3.1 Unix/Linux environment and OS election

It is well known that nowadays there are plenty of OS options available. Nevertheless, Linux

has established itself as the ideal choice for a large part of the worldwide server market and is also

extending its reach to personal computers and embedded systems, the latter including our DPB.

Its success is mostly due to its open-source nature, which allows software developers to fully

customize and optimize it for specific applications. At a time when it is essential to reduce resource

consumption as much as possible, being able to configure the technology you have available to

extract its maximum performance for your particular application is ideal [13].

In addition, thanks to being an open source OS, this has led to the creation of a huge community

that is dedicated to developing and supporting software such as drivers and libraries to provide a

higher level of abstraction over the control of peripherals or any other component achieved by

the Linux kernel in the form of functions [14]. This can be an advantage when applied to generic

applications since the driver or librarymay not be suitable for a specific application andmay require

custom adaptation.

However, Linux offers a huge variety of different distributions and not all are suitable for em-

bedded systems. Therefore, Xilinx offers two options for running Linux on its Zynq UltraScale+

boards: PetaLinux and Ubuntu Desktop. For this project, PetaLinux has been chosen for the fol-

lowing reasons:

• Customizability: PetaLinux provides a comprehensive SDK that allows for tailoring the

operating system to specific hardware and software requirements. This is crucial in the DPB

as both hardware and software must serve a very specific purpose, namely reliability. With

PetaLinux, it’s possible to customize the operating system to meet the specific demands of

the Zynq MPSoC, optimizing performance and minimizing resource usage.

• Size: PetaLinux enables the creation of a highly optimized, minimalist system image, ideal

27

CHAPTER 3. PETALINUX EMBEDDED OS

for embedded systems. This is significant in the DPB, where one strategy to enhance relia-

bility is to have redundant booting images. The smaller the image, the more copies can be

placed in memory. In contrast, Ubuntu Desktop is designed for desktop computers and typ-

ically includes a plethora of applications and features unnecessary for an embedded system,

resulting in a larger image size.

• Flexibility: PetaLinux offers a high level of flexibility in terms of package selection, config-

uration, and even customization of the kernel’s source code, allowing for on-the-fly patches

before compiling the boot image. This makes it well-suited for use in a system where hard-

ware and software are designed together, ensuring that any device-specific bugs, such as

those related to SFP modules or sensors, can be patched without much difficulty. Ubuntu

Desktop, on the other hand, is a more general-purpose operating system that lacks the same

level of flexibility and customization, as the image provided byXilinx is already pre-compiled.

3.1.1 Used Linux libraries, drivers and applications

As mentioned in the previous section, Linux libraries and drivers are outstanding tools that can

considerably ease the task of software development on a Linux-based OS.

During the course of the tasks of this TFG, several drivers and libraries have been used, in

addition to those specific to the C programming language, and the following is intended to name

and explain the most significant drivers and libraries used in order to understand their usefulness

in the developed software.

• Pthreads (pthreads(7)): It allows us to segment the execution of the code into different

threads that run in parallel and thus be able to divide and perform different tasks indepen-

dently. These threads are known as POSIX threads, an API designed by the IEEE standards

for Unix systems. The main difference between these threads is with those in Windows,

which we find in the API designed by Microsoft and in their behaviour, as they differ in how

they handle signals or synchronize at the kernel level.

By including a lightweight application called a timer to define the period of the thread and

send it to sleep during this period, we achieve the periodical execution threads that have

been used to perform the constant tasks of slow control, monitoring and communication of

the DPB.

• I2C driver (I2C application source): The I2C application abstracts and uses the Linux I2C

driver itself, reducing it to different functions so that allow us to perform the necessary

operations using the I2C interface, either initiating communication with the device, reading

from a register or writing to it. This is a great help when dealing with the I2C devices

available in the DPB since we only have to apply the functions accurately, indicating the

necessary parameters and following the instructions in the datasheet of each component, but

we do not have to worry about the communication process internally since this will be taken

care of by the driver.

• Xilinx AMS (Xilinx AMS driver): The Xilinx AMS driver has been included in the Linux

kernel so as to be able to access all the relevant data gathered by the AMS SYSMON. The

driver provides us access to this information through the sysfs file system, the information

28

https://linux.die.net/man/7/pthreads
https://github.com/Digilent/linux-userspace-examples/tree/master/i2c_example_linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842163/Zynq+UltraScale+MPSoC+AMS

3.2. SYSFS FILE SYSTEM

is encoded in ADC code and its conversion to the corresponding magnitude is done by fol-

lowing the guidelines of the Xilinx documentation.

In addition, the driver provides us an alarm system depending on value thresholds. Since

the driver treats alarms as IIO device events, we can use the generic Linux kernel tool IIO

Event Monitor, which will be explained in more detail in the next section, as a background

process that will capture alarms and report them to the main application.

• IIO Event Monitor(IIO Event Monitor application source): As mentioned previously, this

tool is a generic application for detecting IIO device events and reporting them. Conse-

quently, it will run in the background to detect Xilinx AMS alarms and report them to our

main application so it can process them.

• Shared Memory (sys_shm.h(0p)): In order to communicate our main application with the

IIO Event Monitor which runs, it was necessary to use a library that would allow us to

reserve and manage shared memory segments to be able to move data from one application

to another.

• Semaphores (sempahore.h(0p)): Whenworkingwith different threads and shared resources,

synchronization is crucial to avoid race conditions and, thus, amalfunction of the application.

Wherefore, the semaphores function is to synchronize the application execution to ensure its

correct operation.

• JSON-C(json-c_json.h(0p)): It has been decided that the format in which the communica-

tion will be made will be JSON, so this release will allow the information collected to be

encapsulated in a JSON string and also to extract the messages received from the DAQ in

the same format to process them.

• ZeroMQ(zmq(7)): The communication between the DPB and the DAQ will be through

different types of sockets which each will transmit or receive a specific type of information

through different transport layers such as TCP or multicast. ZeroMQ library will allow us

to create the necessary sockets and manage them to send or receive the desired data.

• Regular expressions(regex(7)): Since it has been necessary to work with paths and com-

mands defined in string, and in the C programming language it is not trivial to handle strings

as it can be in other languages, the use of regular expressions to be able to find specific files

or expressions has been very useful in the development of the application.

Apart from these driver libraries, basic C libraries have been used to handle strings, errors, direc-

tories, and mathematical operations. In addition, most of the global constants and variables have

been defined in a separate header file, which has then been included in the application to visualize

the code in a cleaner way

3.2 Sysfs file system

Sysfs is a mechanism within the kernel that serves as a representation of kernel objects, their

attributes, and how they relate to each other. It offers both a kernel programming interface for

exposing these elements via sysfs and a user interface to visualize and manipulate them, aligning

29

https://github.com/torvalds/linux/blob/master/drivers/i2c/i2c-dev.c
https://man7.org/linux/man-pages/man0/sys_shm.h.0p.html
https://man7.org/linux/man-pages/man0/semaphore.h.0p.html
https://json-c.github.io/json-c/json-c-current-release/doc/html/index.html
https://linux.die.net/man/7/zmq
https://man7.org/linux/man-pages/man7/regex.7.html

CHAPTER 3. PETALINUX EMBEDDED OS

with the kernel objects they represent. In this system, kernel objects are represented as directories,

their attributes as regular files, and their relationships as symbolic links [15].

As a fundamental part of kernel infrastructure, sysfs provides a relatively straightforward in-

terface for basic tasks. While its code tends to be straightforward and descriptions clear, it can

become abstract and challenging to navigate due to its core nature. To address this, this paper

takes a gradual approach to explaining sysfs, beginning with a brief history, followed by essential

information on mounting and accessing sysfs. It then delves into the directory structure and layout

of subsystems within sysfs, providing users with an understanding of the organization and content

exported through sysfs.

Sysfs serves as a conduit of information between the kernel and user space, providing ample

opportunities for user space applications to utilize this data. Some existing applications include

managing I/O Scheduler parameters and utilizing the udev program.

Therefore, the sysfs file system provides us with the information collected by the Xilinx AMS

driver in the form of directories and files.

Figure 3.1: Role of sysfs in user-hardware communication

As can be seen in the figure 3.1 in this example of PWM, sysfs serves as a connection between

user space and kernel space In our case, communication between kernel space and hardware is

abstracted by the employed driver

30

Chapter 4

Development environments used

I
n this chapter, the used software and hardware development environments will be presented and

their use and importance in the development of the tasks of this TFG will be explained.

4.1 Vivado Design Suite

The AMD Vivado Design Suite is aimed at enhancing productivity in designing, integrating,

and implementing systems using various AMD devices such as UltraScale+, 7 series, Versal, Zynq

UltraScale+ MPSoCs, and Zynq 7000 SoCs. These devices feature advanced technologies like

stacked silicon interconnect, high-speed I/O interfaces up to 28 gigabytes, hardened microproces-

sors, analog mixed signal, and more.

The suite replaces the ISE Design Suite and integrates all its point tools, offering analytical

optimization for multiple design metrics including timing, congestion, wire length, utilization, and

power. Design analysis capabilities are available at each stage, enabling modifications early in the

design process to reduce iterations and accelerate productivity.

All Vivado Design Suite tools feature a native Tcl interface, accessible through the GUI-based

commands in the Vivado IDE or via Tcl commands entered in the Tcl Console. This allows for

comprehensive design synthesis and implementation flows, including reporting and configuration.

The Vivado IDE provides both new users and advanced users with an intuitive interface and

powerful tools, allowing analysis and constraint assignment throughout the design process. De-

signs can be opened in memory at various stages, facilitating visualization, interaction, and modi-

fication of constraints, logic, and device configurations. Design checkpoints capture snapshots of

the design at different stages for analysis and comparison [16].

The tools provided by Vivado have allowed us to initially flash the PetaLinux image via JTAG,

with the necessary files.

31

CHAPTER 4. DEVELOPMENT ENVIRONMENTS USED

Figure 4.1: Vivado GUI

4.2 Vitis IDE

The Vitis unified software platform is a new tool that brings together all aspects of Xilinx soft-

ware development into a unified environment. The Vitis software platform supports both the Vitis

embedded software development flow, for Xilinx Software Development Kit (SDK) users looking

to transition to the next generation technology, and the Vitis application acceleration development

flow, for software developers looking to utilise the latest in Xilinx FPGA-based software acceler-

ation. This document discusses the embedded software development flow and the use of the Vitis

core development kit [17].

The Vitis integrated design environment (IDE) is part of the Vitis unified software platform.

The Vitis IDE is designed to be used for the development of embedded software applications tar-

geted towards Xilinx embedded processors. The Vitis IDE works with hardware designs created

with Vivado Design Suite. The Vitis IDE is based on the Eclipse open-source standard. The fea-

tures for software developers include:

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic Makefile generation

• Error navigation

• Integrated environment for seamless debugging and profiling of embedded targets

• Source code version control

• System-level performance analysis

32

4.2. VITIS IDE

• Focused special tools to configure FPGA

• Bootable image creation

• Flash programming

• Script-based command-line tool

Figure 4.2: Vitis Embedded Software Development Flow [18]

As it can be seen in the previous figure 4.2, after loading the necessary files into the DPB, Vitis IDE

is used in order to create the platform project on which our software will be developed and then the

application project is created where the desired functions will be programmed in the programming

language C.

Figure 4.3: Vitis GUI

33

CHAPTER 4. DEVELOPMENT ENVIRONMENTS USED

4.3 Robot Framework

Robot Framework is an open-source automation framework based on Python which can be

used for test automation and robotic process automation. It is a very powerful tool since it can be

integrated virtually with almost any other tool to develop flexible automation solutions.

Furthermore, the environment proposed by the robot framework is very intuitive and easy to

work with once the test libraries have been defined since it is based on a human language rather

than a programming language and has an infinite number of libraries to extend its functionalities

if necessary [19].

As a Python-based development environment, you can work with the Robot Framework in any

text or code editor such as Visual Studio Code. However, Visual Studio Code offers an extension

that seamlessly integrates Robot Framework and even allows running tests from the editor itself.

Figure 4.4: Robot framework workflow [20]

As can be seen in the previous figure, Robot framework employs test library APIs to access

the defined test libraries, which comprise keyword-driven and data-driven cases to facilitate case

readability and implementation. Then this library has to communicate with the DUT to implement

the cases, and after running the corresponding tests the Robot framework provides in an HTML

file the report of the tests performed.

Figure 4.5: Example of keyword driven test

34

Part III

DPB sensors capabilities descriptions

for slow control tasks

Chapter 1

I2C devices

R
egarding the sensor units available in our DPB we find, as previously mentioned in the I2C

section, a temperature sensor (MCP9844), several current and voltage sensors (INA3221) for

the SFP transceivers and the SoM and the SFP transceivers themselves, which provide us with very

relevant information about their operating status and that we should keep track of.

1.1 INA3221 Current sensor

The current sensors installed in the DPB provide us with the possibility of monitoring up to

3 different channels from the same sensor. In addition, it allows us to measure the bus voltage

with respect to GND (Bus Voltage) or the voltage difference between the IN+ and IN- terminals

of each channel (Shunt Voltage). In our case, a resistive element with a value of 0.05 Ω is placed

between IN+ and IN-, which is useful for obtaining both the current and the power consumed in

each channel [21].

It should be noted that this sensor allows us to configure alerts and warnings for voltage values

obtained in Shunt Voltagemeasurement mode to detect if the voltage difference between terminals

of our resistor exceeds or does not reach certain values and to be able to act accordingly. We also

have an alert if in Bus Voltage measurement mode, which informs us if all the channels being

measured have a voltage higher than that marked by the limits or if any of the channels has a

voltage lower than the lower limit. We are also provided with the option to obtain the sum of the

Shunt Voltage of all channels and set a limit to configure an alert. All named alerts and warnings

are collected in theMask/Enable register where the sum of the Shunt Voltage, warnings and alarms

can also be enabled or disabled.

In the following table you can see the most influential registers for our application, a short

description of these registers, their default value and the type of register it is, whether it is read-

only or read-write.

37

CHAPTER 1. I2C DEVICES

POINTER

ADDRESS

(Hex)

REGISTER

NAME

DETAILS BINARY

(Power-On

Reset)

HEX

(Power-

On Reset)

TYPE

0 Configura-

tion

All-register

reset, shunt

and bus

voltage ADC

conversion

times and

operating

mode.

01110001

00100111

7127 R/W

1 Channel-

1 Shunt

Voltage

Averaged

shunt voltage

value.

00000000

00000000

0000 R

2 Channel-1

Bus Voltage

Averaged

bus voltage

value.

00000000

00000000

0000 R

3 Channel-

2 Shunt

Voltage

Averaged

shunt voltage

value.

00000000

00000000

0000 R

4 Channel-2

Bus Voltage

Averaged

bus voltage

value.

00000000

00000000

0000 R

5 Channel-

3 Shunt

Voltage

Averaged

shunt voltage

value.

00000000

00000000

0000 R

6 Channel-3

Bus Voltage

Averaged

bus voltage

value.

00000000

00000000

0000 R

7 Channel-1

Critical Alert

Contains

limit value

to compare

each conver-

sion value

to deter-

mine if the

correspond-

ing limit

has been

exceeded.

01111111

11111000

7FF8 R/W

Continued on next page

38

1.1. INA3221 CURRENT SENSOR

Table 1.1: INA3221 Current Sensor Registers (Continued)

POINTER

ADDRESS

(Hex)

REGISTER

NAME

DETAILS BINARY

(Power-On

Reset)

HEX

(Power-

On Reset)

TYPE

8 Channel-1

Warning

Alert

Contains

limit value

to compare

to averaged

measurement

to deter-

mine if the

correspond-

ing limit

has been

exceeded.

01111111

11111000

7FF8 R/W

9 Channel-2

Critical Alert

Contains

limit value

to compare

each conver-

sion value

to deter-

mine if the

correspond-

ing limit

has been

exceeded.

01111111

11111000

7FF8 R/W

A Channel-2

Warning

Alert

Contains

limit value

to compare

to averaged

measurement

to deter-

mine if the

correspond-

ing limit

has been

exceeded.

01111111

11111000

7FF8 R/W

Continued on next page

39

CHAPTER 1. I2C DEVICES

Table 1.1: INA3221 Current Sensor Registers (Continued)

POINTER

ADDRESS

(Hex)

REGISTER

NAME

DETAILS BINARY

(Power-On

Reset)

HEX

(Power-

On Reset)

TYPE

B Channel-3

Critical Alert

Contains

limit value

to compare

each conver-

sion value

to deter-

mine if the

correspond-

ing limit

has been

exceeded.

01111111

11111000

7FF8 R/W

C Channel-3

Warning

Alert

Contains

limit value

to compare

to averaged

measurement

to deter-

mine if the

correspond-

ing limit

has been

exceeded.

01111111

11111000

7FF8 R/W

D Shunt-

Voltage

Sum

Contains

the summed

value of

the each of

the selected

shunt voltage

conversions.

00000000

00000000

0000 R

E Shunt-

Voltage Sum

Limit

Contains

limit value

to compare

to the Shunt

Voltage

Sum register

to deter-

mine if the

correspond-

ing limit

has been

exceeded.

01111111

11111110

7FFE R/W

Continued on next page

40

1.1. INA3221 CURRENT SENSOR

Table 1.1: INA3221 Current Sensor Registers (Continued)

POINTER

ADDRESS

(Hex)

REGISTER

NAME

DETAILS BINARY

(Power-On

Reset)

HEX

(Power-

On Reset)

TYPE

F Mask/Enable Alert con-

figuration,

alert status

indication,

summation

control and

status.

00000000

00000010

0002 R/W

10 Power-Valid

Upper Limit

Contains

limit value to

compare all

bus voltage

conversions

to determine

if the Power

Valid level

has been

reached.

00100111

00010000

2710 R/W

11 Power-Valid

Lower Limit

Contains

limit value to

compare all

bus voltage

conversions

to determine

if the any

voltage rail

has dropped

below the

Power Valid

range.

00100011

00101000

2328 R/W

FE Manufac-

turer ID

Contains

unique man-

ufacturer

identification

number.

01010100

01001001

5449 R

FF Die ID Contains

unique die

identification

number.

00110010

00100000

3220 R

Table 1.1: INA3221 Current Sensor Registers

It is worth mentioning that all voltage data is given in 2’s complement and uses 13 bits, bit 15

of the register (MSB) determines the sign and bit 14-3 the voltage data. For Shunt Voltage the full

41

CHAPTER 1. I2C DEVICES

scale range is 163.8 mV and the LSB is 40 µV, in the case of Bus Voltage the LSB is 8 mV and

although the full scale range of the ADC is 32.76 V, the full scale range in the case of Bus Voltage

is 26 V since it is not recommended to apply more voltage.

1.2 MCP9844 Temperature sensor

The temperature sensor MCP9844 is a great IC to monitor the temperature of the environment

where our DPB works, an essential magnitude to ensure operating conditions within the working

range of our electronics [22].

This temperature sensor provides us with the events tool that facilitates the monitoring of the

ambient temperature. TheMCP9844 allows us to set temperature limits, only modifiable if enabled

in the configuration register, both upper and lower and even critical temperature (only higher than

the upper limit). Once the limits have been established, from the configuration register you can

enable or disable the events and you can configure the event as an interruption or as a compari-

son, decide whether the event is active at high or low level and decide whether only the critical

temperature limit is taken into account or all the limits are taken into account.

In addition, the sensor has several functionalities such as the option to include a certain hystere-

sis value to the temperature limits (only applicable in case of temperature drop), the possibility to

modify the measurement resolution (lower resolution value will imply a longer conversion time)

or the possibility to switch off the sensor if desired.

Figure 1.1: Operation of the alarms MCP9844 Temperature Sensor

42

1.2. MCP9844 TEMPERATURE SENSOR

Below is a table of the registers presented by this temperature sensor and their default value.

Register Address

(Hexadecimal)

Register Name Default Register

Data (Hexadecimal)

Power-Up Default

Register Descrip-

tion

0x00 Capability 0x00EF Event output de-

asserts in shutdown

I2C time out 25 ms to

35 ms. Accepts VHV

at A0 Pin 0.25°C

Resolution. Mea-

sures temperature

below 0°C ±1°C

accuracy over active

range Temperature

event output

0x01 CONFIG 0x0000 Comparator mode

Active-Low output

Event and critical

output Output dis-

abled Event not

asserted Interrupt

cleared Event limits

unlocked Critical

limit unlocked Con-

tinuous conversion

0°C Hysteresis

0x02 TUPPER 0x0000 0°C

0x03 TLOWER 0x0000 0°C

0x04 TCRIT 0x0000 0°C

0x05 TA 0x0000 0°C

0x06 Manufacturer ID 0x0054 —

0x07 Microchip Device

ID/ Device Revision

0x0601 —

0x09 Resolution 0x8001 Most Significant

bit is set by default

0.25°C Measurement

Resolution

Table 1.3: MCP9844 Temperature Sensor Registers

In this case, the temperature data is encoded in 2’s complement and is presented as a 13-bit data,

with 1 bit determining the sign and 12 bits determining the temperature data. The manufacturer

provides the following equations to obtain the data in degrees Celsius.

43

CHAPTER 1. I2C DEVICES

If Temperature ≥ 0°C :

TA(
◦C) = (UpperByte× 24 + LowerByte× 2−4) (1.1)

If Temperature < 0°C :

TA(
◦C) = (UpperByte× 24 + LowerByte× 2−4)− 256 (1.2)

Where UpperByte are bits 15-8 of the TA register and LowerByte are bits 7-0 of the same reg-

ister.

Regarding the temperature limits, these are defined by 11 bits, with 1 bit determining the sign

and 10 bits to encode the absolute temperature data.

1.3 AFBR-5715ALZ SFP Transceiver

Opto-electronic transceivers, called SFP due to its form, have the primary function of being the

communication ports on the board. These transceivers have an EEPROM memory that is divided

into two pages, which correspond to the slave addresses I2C 0x50 and 0x51 in our case [23].

The SFPs collect information on highly relevant real-time quantities and are located on the

second page of the EEPROM (0x51), such as the temperature within the module, the supply voltage

supplied to them, the laser bias current and both the transmitted and received optical power.

On the same second page of the SFP EEPROM is the possibility to use alerts andwarnings based

on a range already determined by the manufacturer to monitor the status of the SFP transceivers.

Although the first page of the EEPROM is mainly based on transceiver identification characters

such as part number and revision or vendor name, we can also find relevant information about the

status and operation of the transceiver as we can find in this memory space the wavelength of

the laser to know in which window it is working and the register that tells us if the status signals

TX_DISABLE, TX_FAULT and RX_LOS have been configured by hardware.

In both pages of the EEPROM we find one or more registers dedicated to a Checksum that will

allow us to check the data integrity of the EEPROM itself.

Below are several tables representing the EEPROM registers of the SFP transceivers.

Byte Decimal Data Notes

0 SFP physical device

1 SFP function defined by serial ID only

2 LC optical connector

6 1000BaseSX

11 Compatible with 8B/10B encoded data

12 1200Mbps nominal bit rate (1.25Gbps)

16 550m of 50/125mm fiber @ 1.25Gbps

17 275m of 62.5/125mm fiber @ 1.25Gbps

20-35 ’AVAGO’ - Vendor Name ASCII character

44

1.3. AFBR-5715ALZ SFP TRANSCEIVER

Table 1.4 (continued): SFP transceiver EEPROM page 1 registers

Byte Decimal Data Notes

37 Vendor OUI

38 Vendor OUI

39 Vendor OUI

40-55 ’AFBR-5715ALZ’ - Vendor Part Number ASCII characters

56-59 Vendor Revision Number ASCII character

60 Hex Byte of Laser Wavelength

61 Hex Byte of Laser Wavelength

63 Checksum for bytes 0-62

65 Hardware SFP TX_DISABLE, TX_FAULT, & RX_LOS

68-83 Vendor Serial Number, ASCII

84-91 Vendor Date Code, ASCII

95 Checksum for bytes 64-94

Table 1.4: SFP transceiver EEPROM page 1 registers

Byte Decimal Notes Byte Decimal Notes Byte Decimal Notes

0 Temp H

Alarm MSB

26 Tx Pwr L

Alarm MSB

104 Real Time

Rx PAV
MSB

1 Temp H

Alarm LSB

27 Tx Pwr L

Alarm LSB

105 Real Time

Rx PAV
LSB

2 Temp L

Alarm MSB

28 Tx Pwr H

Warning

MSB

106

3 Temp L

Alarm LSB

29 Tx Pwr H

Warning

LSB

107

4 Temp H

Warning

MSB

30 Tx Pwr L

Warning

MSB

108

5 Temp H

Warning

LSB

31 Tx Pwr L

Warning

LSB

109

6 Temp L

Warning

MSB

32 Rx Pwr H

Alarm MSB

110 Status/ Con-

trol

7 Temp L

Warning

LSB

33 Rx Pwr H

Alarm LSB

111

45

CHAPTER 1. I2C DEVICES

Table 1.5 (continued): SFP transceiver EEPROM page 2 registers

Byte Decimal Notes Byte Decimal Notes Byte Decimal Notes

8 VCC H

Alarm MSB

34 Rx Pwr L

Alarm MSB

112 Flag Bits

9 VCC H

Alarm LSB

35 Rx Pwr L

Alarm LSB

113 Flag Bit

10 VCC L

Alarm MSB

36 Rx Pwr H

Warning

MSB

114

11 VCC L

Alarm LSB

37 Rx Pwr H

Warning

LSB

115

12 VCC H

Warning

MSB

38 Rx Pwr L

Warning

MSB

116 Flag Bits

13 VCC H

Warning

LSB

39 Rx Pwr L

Warning

LSB

117 Flag Bits

16 Tx Bias H

Alarm MSB

95 Checksum

for Bytes

0-94

120

17 Tx Bias H

Alarm LSB

96 Real Time

Tempera-

ture MSB

121

18 Tx Bias L

Alarm MSB

97 Real Time

Tempera-

ture LSB

122

19 Tx Bias L

Alarm LSB

98 Real Time

Vcc MSB

123

20 Tx Bias H

Warning

MSB

99 Real Time

Vcc LSB

124

21 Tx Bias H

Warning

LSB

100 Real Time

Tx Bias

MSB

125

22 Tx Bias L

Warning

MSB

101 Real Time

Tx Bias

LSB

126

23 Tx Bias L

Warning

LSB

102 Real Time

Tx Power

MSB

127

24 Tx Pwr H

Alarm MSB

103 Real Time

Tx Power

LSB

128

46

1.3. AFBR-5715ALZ SFP TRANSCEIVER

Table 1.5 (continued): SFP transceiver EEPROM page 2 registers

Byte Decimal Notes Byte Decimal Notes Byte Decimal Notes

25 Tx Pwr H

Alarm LSB

Table 1.5: SFP transceiver EEPROM page 2 registers

• Temperature (Temp): Temperature values are encoded as 16-bit integers in two’s comple-

ment, which allows both positive and negative values to be represented. Each unit in this

representation is equivalent to 1
256 of a degree Celsius (ºC).

• Power Supply Voltage (VCC): This parameter is represented as a 16-bit unsigned integer,

which means that it can only have positive values. Each increment in this value corresponds

to 100 microvolts (µV).

• Laser Bias Current (Tx Bias): The laser bias current is decoded as a 16-bit unsigned in-

teger, which means that it can only be positive. Each increment in this value represents 2

microamperes (µA).

• Average Transmitted Optical Power (Tx Pwr): This parameter is represented as a 16-bit

unsigned integer, where each increment corresponds to 0.1 microwatt (µW) of transmitted

optical power.

• AverageOptical PowerReceived (Rx Pwr): Similar to the previous parameter, the average

optical power received is encoded as a 16-bit unsigned integer. Each unit of this value

represents 0.1 microwatt (µW) of received optical power.

As can be seen in the register table on the second page of the EEPROM, there is a status register

and this describes the following cases.

Bit # Status/Control Name Description

7 Tx Disable State Digital state of SFP Tx Disable Input Pin

(1 = Tx_Disable asserted)

6 Soft Tx Disable Read/write bit for changing digital state of

SFP Tx_Disable function

4 Rx Rate Select State Digital state of SFP Rate Select Input Pin

(1 = full bandwidth of 155 Mbit)

2 Tx Fault State Digital state of the SFP Tx Fault Output

Pin (1 = Tx Fault asserted)

1 Rx LOS State Digital state of the SFP LOS Output Pin (1

= LOS asserted)

0 Data Ready (Bar) Indicates transceiver is powered and real-

time sense data is ready (0 = Ready)

Table 1.6: Breakdown of SFP transceiver status bits

As for the registers dedicated to the flags, these contain the indicator bits of the previously men-

tioned alerts and warnings. The following table shows their distribution in the relevant registers.

47

CHAPTER 1. I2C DEVICES

Byte Bit # Flag Bit Name Description

112 7 Temp High Alarm Set when transceiver internal temper-

ature exceeds high alarm threshold.

6 Temp Low Alarm Set when transceiver internal temper-

ature exceeds low alarm threshold.

5 VCC High Alarm Set when transceiver internal supply

voltage exceeds high alarm threshold.

4 VCC Low Alarm Set when transceiver internal supply

voltage exceeds low alarm threshold.

3 Tx Bias High Alarm Set when transceiver laser bias current

exceeds high alarm threshold.

2 Tx Bias Low Alarm Set when transceiver laser bias current

exceeds low alarm threshold.

1 Tx Power High Alarm Set when transmitted average optical

power exceeds high alarm threshold.

0 Tx Power Low Alarm Set when transmitted average optical

power exceeds low alarm threshold.

113 7 Rx Power High Alarm Set when received P_Avg optical

power exceeds high alarm threshold.

6 Rx Power Low Alarm Set when received P_Avg optical

power exceeds low alarm threshold.

116 7 Temp High Warning Set when transceiver internal temper-

ature exceeds high warning threshold.

6 Temp Low Warning Set when transceiver internal temper-

ature exceeds low warning threshold.

5 VCC High Warning Set when transceiver internal supply

voltage exceeds high warning thresh-

old.

4 VCC Low Warning Set when transceiver internal supply

voltage exceeds low warning thresh-

old.

3 Tx Bias High Warning Set when transceiver laser bias current

exceeds high warning threshold.

2 Tx Bias Low Warning Set when transceiver laser bias current

exceeds low warning threshold.

1 Tx Power High Warning Set when transmitted optical power

exceeds high warning threshold.

0 Tx Power Low Warning Set when transmitted optical power

exceeds low warning threshold.

117 7 Rx Power High Warning Set when received P_Avg optical

power exceeds high warning thresh-

old.

6 Rx Power Low Warning Set when received P_Avg optical

power exceeds low warning threshold.

Table 1.7: Breakdown of the flags of SFP transceivers

48

Chapter 2

Xilinx AMS gathered data

D
ue to the sensors together with ADC converters with which Xilinx has equipped our module

and its systemmonitoring hardware block (SYSMON), we can access a large amount of real-

time information from the PS and the PL via the Linux driver “xilinx-ams” [24]. This information

collected from the PS and PL is differentiated into different channels which are explained in the

following table:

SYSMON Block Channel Details File Descriptor

PS Sysmon 7 LPD temperature measure-

ment.

in_temp7_raw,

in_temp7_scale,

in_temp7_offset

8 FPD temperature measure-

ment (REMOTE).

in_temp8_raw,

in_temp8_scale,

in_temp8_offset

9 VCC PS LPD voltage mea-

surement (supply1).

in_voltage9_raw, in_volt-

age9_scale

10 VCC PS FPD voltage mea-

surement (supply2).

in_voltage10_raw, in_volt-

age10_scale

11 PS Aux voltage reference

(supply3).

in_voltage11_raw, in_volt-

age11_scale

12 DDR I/O VCC voltage mea-

surement.

in_voltage12_raw, in_volt-

age12_scale

13 PS IO Bank 503 voltage mea-

surement (supply5).

in_voltage13_raw, in_volt-

age13_scale

14 PS IO Bank 500 voltage mea-

surement (supply6).

in_voltage14_raw, in_volt-

age14_scale

15 VCCO_PSIO1 voltage mea-

surement.

in_voltage15_raw, in_volt-

age15_scale

16 VCCO_PSIO2 voltage mea-

surement.

in_voltage16_raw, in_volt-

age16_scale

Continued on next page

49

CHAPTER 2. XILINX AMS GATHERED DATA

Table 2.1 – continued from previous page

SYSMON Block Channel Details File Descriptor

17 VCC_PS_GTR voltage

measurement (VPS_MG-

TRAVCC).

in_voltage17_raw, in_volt-

age17_scale

18 VTT_PS_GTR voltage

measurement (VPS_MG-

TRAVTT).

in_voltage18_raw, in_volt-

age18_scale

19 VCC_PSADC voltage mea-

surement.

in_voltage19_raw, in_volt-

age19_scale

PL SYSMON 20 PL temperature measurement. in_temp20_raw,

in_temp20_scale,

in_temp20_offset

21 PL Internal voltage measure-

ment, VCCINT.

in_voltage21_raw, in_volt-

age21_scale

22 PL Auxiliary voltage mea-

surement, VCCAUX.

in_voltage22_raw, in_volt-

age22_scale

23 ADC Reference P+ voltage

measurement.

in_voltage23_raw, in_volt-

age23_scale

24 ADC Reference N- voltage

measurement.

in_voltage24_raw, in_volt-

age24_scale

25 PL Block RAM voltage mea-

surement, VCCBRAM.

in_voltage25_raw, in_volt-

age25_scale

26 LPD Internal voltage mea-

surement, VCC_PSINTLP

(supply4).

in_voltage26_raw, in_volt-

age26_scale

27 FPD Internal voltage mea-

surement, VCC_PSINTFP

(supply5).

in_voltage27_raw, in_volt-

age27_scale

28 PS Auxiliary voltage mea-

surement (supply6).

in_voltage28_raw, in_volt-

age28_scale

29 PL VCCADC voltage mea-

surement (vccams).

in_voltage29_raw, in_volt-

age29_scale

Table 2.1: SYSMON channels and their details

The chart starts from channel 7 as the previous channels are from the AMS Control SYSMON

block and display repeated information from the PL which is not used by the AMS driver.

The information obtained is displayed in ADC code in the _raw file and has to be scaled with

the value obtained in the _scale file. In the case of temperature, an offset from the _offset file must

also be applied. Every file is a virtual file generated by the sysfs file system. The expressions used

to convert the values read to the corresponding magnitude are shown below:

VXX(V) = (in_voltageXX_raw× in_voltageXX_scale)× 1

2n_bits
(2.1)

50

TXX(C) = (in_tempXX_raw+ in_tempXX_offset)× 1

2n_bits
(2.2)

Where XX defines the selected channel number in voltage or temperature and “n_bits” defines

the number of bits of the ADC used, in our case 10 bits. The offset in the case of temperature is

added since a negative number is returned.

Xilinx also offers alarms applied to the voltages and temperatures measured on the previously

mentioned channels and the Linux driver allows us to configure and read these alarms also using

the IIO_EVENT_MONITOR tool of Linux itself. In order to detect events or enable event detection,

the IIO_EVENT_MONITOR application works along with the sysfs file system.

IIO_EVENT_MONITOR uses the IIO framework in Linux, which facilitates the acquisition and

control of industrial devices such as sensors and actuators. It consists of device drivers integrated

into the kernel, a user API for interacting with the devices, and user-friendly interfaces such as the

mentioned previously, sysfs. Its modular and flexible design makes it adaptable to a wide range of

industrial devices and applications [25].

In the case of temperature, there are only alarms that are activated if a certain temperature is

exceeded, while in the case of voltage, there are alarms for both overvoltage and undervoltage, but

without specifying whether the limit exceeded is the lower or upper limit as the alarm is a single

bit, so it does not discriminate between falling or rising event (shown as either) [26].

Field Name Bits Type Reset Value Description

pl_alm_15 31 Readable, write 1 to clear 0x0 PL Sensor Alarms – OR of bits [29:16].

pl_alm_14 30 Readable, write 1 to clear 0x0 reserved

pl_alm_13 29 Readable, write 1 to clear 0x0 reserved

pl_alm_12 28 Readable, write 1 to clear 0x0 PL ADC voltage, VCCADC.

pl_alm_11 27 Readable, write 1 to clear 0x0 PL VUser3.

pl_alm_10 26 Readable, write 1 to clear 0x0 PL VUser2.

pl_alm_9 25 Readable, write 1 to clear 0x0 PL VUser1.

pl_alm_8 24 Readable, write 1 to clear 0x0 PL VUser0.

pl_alm_7 23 Readable, write 1 to clear 0x0 PL Sensor Alarms – OR of bits [22:16].

pl_alm_6 22 Readable, write 1 to clear 0x0 VCC_PSAUX

pl_alm_3 19 Readable, write 1 to clear 0x0 VCCBRAM.

pl_alm_2 18 Readable, write 1 to clear 0x0 PL VCCAUX

pl_alm_1 17 Readable, write 1 to clear 0x0 PL VCCINT

pl_alm_0 16 Readable, write 1 to clear 0x0 PL Temperature

ps_alm_15 15 Readable, write 1 to clear 0x0 PS Sensor Alarms – OR of bits [13:0].

ps_alm_14 14 Readable, write 1 to clear 0x0 reserved

ps_alm_13 13 Readable, write 1 to clear 0x0 FPD Temperature.

ps_alm_12 12 Readable, write 1 to clear 0x0 VCC_PSADC voltage.

ps_alm_11 11 Readable, write 1 to clear 0x0 PS_MGTRAVTT voltage (supply10).

ps_alm_10 10 Readable, write 1 to clear 0x0 PS_MGTRAVCC voltage (supply9).

ps_alm_9 9 Readable, write 1 to clear 0x0 VCCO_PSIO2 I/O bank 502, MIO[52:77].

ps_alm_8 8 Readable, write 1 to clear 0x0 VCCO_PSIO1 I/O bank 501, MIO[26:51].

ps_alm_7 7 Readable, write 1 to clear 0x0 PS Sensor Alarms – OR of bits [6:0].

ps_alm_6 6 Readable, write 1 to clear 0x0 VCCO_PSIO0 I/O bank 500, MIO[0:25].

ps_alm_5 5 Readable, write 1 to clear 0x0 VCCO_PSIO3 I/O bank 503, boot mode, serial config, JTAG, error output, error status, SRST, POR.

ps_alm_4 4 Readable, write 1 to clear 0x0 VCCO_PSDDR, bank 504, DDR I/O.

ps_alm_3 3 Readable, write 1 to clear 0x0 VCCO_PSAUX auxiliary power supply for BPU, eFuse, GPIOB logic.

ps_alm_2 2 Readable, write 1 to clear 0x0 FPD internal voltage, VCC_PSINTFP.

ps_alm_1 1 Readable, write 1 to clear 0x0 LPD internal voltage, VCC_PSINTLP.

ps_alm_0 0 Readable, write 1 to clear 0x0 LPD Temperature.

Table 2.2: AMS alarms register set

51

CHAPTER 2. XILINX AMS GATHERED DATA

52

Part IV

Tasks Development and Results

Chapter 1

Preparation of the environment to be

used on the board

T
his chapter aims to detail the process of adaptation and acclimatisation to thework environment

in order to be able to carry out the corresponding tasks.

1.1 Platform setup and configuration

Starting with the environment to work on the DPB, we will use PetaLinux, a Xilinx software

development tool based on a light version of Linux.

The universal availability of the Linux source code and the infinite number of drivers available

in Linux gives us greater flexibility and ease of working at the application level on the DPB. To

implement this OS on the DPB we have used the Xilinx software, Vivado, and through the JTAG

port we have loaded on a 16 GigaBytes eMMC as non-volatile memory, both the relevant boot

files and the custom image of the PetaLinux project, image.ub. As boot files we find BOOT.BIN

which is the First Stage Boot Loader, in addition to other essential files such as the device tree, and

boot.scr, which is a script that defines the boot up process to the board. Then I have selected the

eMMC as the main boot option by means of switches from the board itself. In the boot process,

the OS is loaded onto the RAM and the RAM is worked on.

Once the OS has been installed, the connection with the DPB has to be configured. Despite

the possibility of maintaining the connection via JTAG, the main source of communication of the

DPB is going to be via Ethernet, through SSH protocol, so one of the SFP ports of the DPB has

been used to make an Ethernet connection with the equipment by means of an SFP transceiver.

For this purpose, the configuration of a 125 MHz PLL for the corresponding Ethernet clock signal

was included in the customization of the PetaLinux version.

It should be noted that the main communication with the DPB will be via Ethernet, so the JTAG

port after the initial loading of the boot files will only be considered for debugging actions.

Once the connection has been configured, a local DHCP server has been set up to assign an IP

address to the DPB and facilitate the connection via SSH to the board. For this purpose, the subnet

has been declared with a very basic configuration on the server:

55

CHAPTER 1. PREPARATION OF THE ENVIRONMENT TO BE USED ON THE BOARD

Listing 1.1: Subnet Configuration

1 subnet 20.0.0.0 netmask 255.255.255.0 {
2 range 20.0.0.2 20.0.0.30;
3 option routers 20.0.0.1;
4 }

The network interface of the PC connected to the DPB in question has been assigned the address

20.0.0.1 and the subnet has been declared with a small arbitrary range, and the DPB has been

assigned the fixed IP address 20.0.0.33, an address outside the range, since otherwise, the server

would return an error. It should be noted that the SFP ports of the DPB are designed to use optic

fiber ports, so sometimes the equipment is not able to detect the connection on the Ethernet port

using Ethernet cable with RJ-45, so the interface has to be deactivated and then re-activated and

assigned the address 20.0.0.1 and the problem is solved, in the case of using a optic fiber port, this

problem does not arise.

With the fixed IP address already assigned, it is now possible to access the board via SSH and

communicate with it using the following command:

Listing 1.2: Command to establish SSH connection with the DPB

1 ssh root@20.0.0.33
2 #Here we would enter the relevant password

1.2 Vitis Project Creation

To finish with the establishment of the working environment, we only have to create the appli-

cation project that is going to be developed on a customized platform of our project, in the Vitis

IDE software of Xilinx. The application project has been named DBP2_App.

For this purpose, I first have to create the platform on which the application I want to develop

will run. In order to achieve this, I have used the Platform project wizard from Vitis IDE to import

the custom platform provided by my project colleague in a .xsa file.

56

1.2. VITIS PROJECT CREATION

Figure 1.1: Vitis IDE Platform project wizard

After creating the Platform project from the mentioned .xsa file, the information on the custom

configuration of the hardware and software environment is now available so the application project

that will run on this customized environment can now be created.

The application project has also been created using the available Vitis IDE Application project

wizard, and with the project created, the development of the application can be started.

57

CHAPTER 1. PREPARATION OF THE ENVIRONMENT TO BE USED ON THE BOARD

58

Chapter 2

Application workflow

W
hen starting to develop the application, the flow of execution of the application must be

clarified prior to the start of development, which is why this chapter will explain, with the

help of several flow charts, the flow of execution initially proposed for the application and its

sub-processes.

Figure 2.1: Main application execution flow

59

CHAPTER 2. APPLICATION WORKFLOW

As it has been mentioned in previous sections, it has been decided to use different periodic

threads rather than a single infinite loop to optimize resource usage and to be able to prioritize

executions in a simple way. The periodic threads run in the background and each performs different

slow control tasks, be it monitoring, checking alarm status and handling them, or receiving and

processing DAQ commands. Wherefore, as it can be seen in the diagram 2.1, the main application

is only responsible for initializing the shared memory segment, the relevant ZeroMQ sockets and

I2C devices, the threads and sub-processes. It also obtains the address needed to operate the GPIO

pins.

During the initialization process, the necessary semaphores are also set to avoid race conditions

both during the initialization and during the execution of the threads, releasing shared resources

between threads to allow the use of them in another thread. Moreover, the I2C device initialization

function checks if there is a problem on the I2C bus by reporting it as an alarm and determines

which SFPs are connected to take it into account when reading magnitudes or alarms from them.

Finally, the main thread remains dormant to reduce the consumption of CPU resources while

waiting for a termination or interruption signal to release the devices and resources used prior to

the end of the application. This sequential execution flow has been reached in the main thread

and periodically in the child threads created, taking into account the premises instructed during the

degree on these types of execution flow. In addition, optimization of this code should be sought,

avoiding redundancy and heavy functions that could increase the board’s resource consumption

and energy usage. I have used the memory profiling tool Valgrind to locate possible memory leaks

and thus eliminate them. It has also been very helpful in debugging segmentation faults caused by

memory loss or overflow at some point in the code

60

Figure 2.2: Monitoring thread execution flow

Regarding the monitoring thread, it can be seen in the diagram 2.2 that it has been proposed a

linear execution flow: reading the magnitudes and states of devices and links available periodically

while respecting the use of the I2C bus and finally the data collected is sent in JSON format to the

DAQ.

61

CHAPTER 2. APPLICATION WORKFLOW

Figure 2.3: I2C alarms execution flow

62

Figure 2.4: AMS alarms thread execution flow

As can be seen in both diagrams 2.4 and 2.3 the operation of the AMS alarm threads and the

I2C devices is very similar, they report the same JSON message format but the AMS alarm thread

captures the events through the IIO Event Monitor application and transmits the information to the

alarm thread through the shared memory. Whereas, the I2C alarm thread requires the I2C bus to

read the necessary flags to catch the alarm events, it also includes the use of GPIO and terminal

commands to also take into account the status of the Ethernet and Aurora links.

63

CHAPTER 2. APPLICATION WORKFLOW

Figure 2.5: Slow Control thread execution flow

Finally, the slow control thread is in charge of receiving the commands sent by the DAQ, check-

ing if the command is correct and processing it, executing the action indicated by the command

and sending the pertinent response to the DAQ in a JSON formatted message.

It could be seen in the diagrams that all the threads are periodically running so that they continue

to run indefinitely until the application is finished. For the period of each thread an approximate

time has been assigned that has been considered correct for each thread while waiting to assign

values for each period with other members of the project.

64

For the monitoring thread, a period of 5 seconds has been established since it is not a priority,

while for both alarm threads, a period of 100 ms has been set considering the sensor conversion

times and giving maximum possible priority. Finally, the Slow Control thread has been assigned

a period of 50 ms for maximum priority.

65

CHAPTER 2. APPLICATION WORKFLOW

66

Chapter 3

Application initialization

A
s it has been mentioned in the previous chapter, the first step of the developed application is

to initialize every device and process that will be used. Consequently, in this chapter, the

application initialization process will be explained, and the most relevant code fragments in this

process will be presented, even though all developed functions are explained in more detail in the

documentation generated as an HTML file with the Doxygen tool, which is planned to be submitted

as an annex to this thesis, being “index.html” the main HTML file of the documentation.

To begin with the initialization process, firstly, every I2C device has been gathered and globally

defined in a struct. Then, the following functions have been developed to initialize each of the I2C

devices:

Listing 3.1: I2C devices struct

1 struct DPB_I2cSensors{
2

3 struct I2cDevice dev_pcb_temp;
4 struct I2cDevice dev_sfp0_2_volt;
5 struct I2cDevice dev_sfp3_5_volt;
6 struct I2cDevice dev_som_volt;
7 struct I2cDevice dev_sfp0_A0;
8 struct I2cDevice dev_sfp1_A0;
9 struct I2cDevice dev_sfp2_A0;
10 struct I2cDevice dev_sfp3_A0;
11 struct I2cDevice dev_sfp4_A0;
12 struct I2cDevice dev_sfp5_A0;
13 struct I2cDevice dev_sfp0_A2;
14 struct I2cDevice dev_sfp1_A2;
15 struct I2cDevice dev_sfp2_A2;
16 struct I2cDevice dev_sfp3_A2;
17 struct I2cDevice dev_sfp4_A2;
18 struct I2cDevice dev_sfp5_A2;
19 };

Listing 3.2: I2C devices struct

1 int init_tempSensor (struct I2cDevice *dev) {
2 int rc = 0;
3 uint8_t manID_buf[2] = {0,0};

67

CHAPTER 3. APPLICATION INITIALIZATION

4 uint8_t manID_reg = MCP9844_MANUF_ID_REG;
5 uint8_t devID_buf[2] = {0,0};
6 uint8_t devID_reg = MCP9844_DEVICE_ID_REG;
7 :

As seen in the function fragment, only the I2C device itself is required as an input parameter

for its initialization, and within the function, register addresses are determined from which to read

to verify that the device has started correctly. The rest of the I2C devices follow a similar structure

to be started, only the verification methods differ. Firstly, the device is started using the function

i2c_start from the I2C Linux driver, then we check if we are initializing the correct device by

checking specific registers and comparing them to their expected value and if any step fails, the

function returns a negative integer which indicates the error. For SFPs, the initialization process is a

bit different since each of the two pages of their EEPROM is initialized as an independent devices.

Furthermore, I have decided to use the checksum contained in the memory pages to verify the

proper data integrity of the memory pages.

The following function has been developed to verify the checksum value is correct:

Listing 3.3: Checksum validator function

1 int checksum_check(struct I2cDevice *dev,uint8_t ini_reg, int size){
2 int rc = 0;
3 int sum = 0;
4 uint8_t byte_buf[size+1] ;
5

6 rc = i2c_readn_reg(dev,ini_reg,byte_buf ,1); //Read every register
from ini_reg to ini_reg+size-1

7 if(rc < 0)
8 return rc;
9 for(int n=1;n<(size+1);n++){
10 ini_reg ++;
11 rc = i2c_readn_reg(dev,ini_reg ,&byte_buf[n],1);
12 if(rc < 0)
13 return rc;
14 }
15

16 for(int i=0;i<size;i++){
17 sum += byte_buf[i]; //Sum every register read in order to

obtain the checksum
18 }
19 uint8_t calc_checksum = (sum & 0xFF); //Only taking the 8 LSB of

the checksum as the checksum register is only 8 bits
20 uint8_t checksum_val = byte_buf[size];
21 if (checksum_val != calc_checksum){ //Check the obtained checksum

equals the device checksum register
22 printf("Checksum value does not match the expected value

\r\n");
23 return -EHWPOISON;
24 }
25 return 0;
26 }

68

In order to verify the checksum from any SFP, a function was needed that calculates the cur-

rent checksum value and compares it to the expected value. So as to calculate the checksum, the

function needs to be given the I2C device, the address of the first register to be counted in the

checksum calculation, the expected checksum value register address, and the number of registers

to be counted in the checksum calculation.

The function sums every register in the given range, and only takes the 8 LSB as the SFP

registers size is 1 byte.

Listing 3.4: I2C device definition and initialization function

1 int init_I2cSensors(struct DPB_I2cSensors *data){
2

3 data->dev_pcb_temp.filename = "/dev/i2c-2";
4 data->dev_pcb_temp.addr = 0x18;
5 :

Finally, in this function, we define every filename and slave address for every I2C device and

we call every initialization function mentioned previously and in case any initialization is missed,

it is reported which device has failed. In order to report any device initialization errors, the sockets

necessary to establish communication with the DAQ are first started. It has been established that

all the sockets used work over TCP to ensure the sending and receiving of messages using ACKs,

and the output buffer size for sockets and the message retention time have been reduced to avoid

resource usage when no receiver is connected to the socket.

Listing 3.5: I2C device stopping function

1 int stop_I2cSensors(struct DPB_I2cSensors *data){
2

3 i2c_stop(&data->dev_pcb_temp);
4 :

It has also been developed the stop_I2cSensors function to terminate the I2C devices by using

I2C application should be permanently active.

Regarding the IIO Event Monitor initialization, it has been executed as a sub-process that will

detect AMS alarms as events and it is executed by the following function:

Listing 3.6: IIO Event Monitor executing function

1 int iio_event_monitor_up() {
2 pid_t pid = fork(); // Create a child process
3

4 if (pid == 0) {
5 // Child process
6 // str: Path of the .elf file and arguments
7 char *args[] = {str, "-a", "/dev/iio:device0", NULL};
8

9 // Execute the .elf file
10 if (execvp(args[0], args) == -1) {
11 perror("Error executing the .elf file");
12 return -1;
13 }
14 } else if (pid > 0) {

69

CHAPTER 3. APPLICATION INITIALIZATION

15 // Parent process
16 // You can perform other tasks here while the child process

executes the .elf file
17 } else {
18 // Error creating the child process
19 perror("Error creating the child process");
20 return -1;
21 }
22 return 0;
23 }

This function executes the IIO Event Monitor application through its binary file, built with

Release optimizations parameters passed to the GCC compiler. It should be emphasized that this

IIO Event Monitor is slightly customized by us so as to include shared memory configuration to

communicate the main application with it. At first, it was recommended to use the function

system() to execute the process as it was a bash command. Nevertheless, it did not resulted as

expected so it was decided to use the function execvp(), which also provides us with a more visual

and convenient way of passing the necessary arguments to the function.

Furthermore, due to the multi-threaded execution of our application, 5 semaphores have been

enabled prior to starting the threads to prevent potential race conditions in different situations:

• sem_t i2c_sync : Determines the I2C bus usage shift.

• sem_t thread_sync : Avoids stalling when starting threads due to ZeroMQ functions are

not thread-safe.

• sem_t file_sync : Avoids trying to read non-existing GPIO sysfs files, overwrite existing

GPIO sysfs files or any possible race condition when dealing with GPIO or Ethernet status

files.

• sem_t alarm_sync : Avoids stalling when sending multiple alarms from different threads

due to ZeroMQ functions are not thread-safe.

• sem_t sem_valid : Avoids race condition when validating a JSON schema.

A semaphore is also included in the shared memory to force the IIO Event Monitor to boot

before the AMS alarm thread.

Finally, all threads are created in the determined order and start running independently.

70

https://linux.die.net/man/3/system#:~:text=system%20%283%29%20-%20Linux%20man%20page%201%20Name,POSIX.1-2001.%206%20Notes%20...%207%20See%20Also%20
https://linux.die.net/man/3/execvp

Listing 3.7: Thread creation

1 pthread_create(&t_1, NULL, ams_alarms_thread ,NULL); //Create thread 1
- reads AMS alarms

2 sem_wait(&thread_sync);
3 pthread_create(&t_2, NULL, i2c_alarms_thread ,(void *)&data); //Create

thread 2 - reads I2C alarms every x milliseconds
4 sem_wait(&thread_sync);
5 pthread_create(&t_3, NULL, monitoring_thread ,(void *)&data);//Create

thread 3 - monitors magnitudes every x seconds
6 sem_wait(&thread_sync); //Avoids race conditions
7 pthread_create(&t_4, NULL, command_thread ,(void *)&data);//Create

thread 4 - waits and attends commands

71

CHAPTER 3. APPLICATION INITIALIZATION

72

Chapter 4

Monitoring thread development

O
nce all the necessary elements have been set up, the development of the threads has begun

with the monitoring thread. It has been decided to start with this thread since, as previously

presented, it exhibits the most linear and straightforward behaviour of all threads. This will serve

as an introduction to multi-threaded programming and a solid foundation for the development of

subsequent threads.

4.1 Sensor data readout functions

In order to be able to read information from the I2C sensors by using the I2C Linux driver, I

have used the functions i2c_write() to write the address of the register I want to read in the register

pointer, so that by using the function i2c_read() I can read the desired register byte to byte as all

the I2C devices that have been used 2 bytes registers and allow continuous reading apart from the

SFPs.

In order to read from the SFPs, I used the function i2c_readn_reg() which is an implicit com-

bination of i2c_write() to write in the register pointer and i2c_read(). As the SFPs do not allow

continuous reading and their register size is 1 byte, i2c_readn_reg() has been used two times to

read MSB and LSB of the desired data and it has been specified the appropriate register address

for each operation. In addition to using the functions provided by the Linux driver, as can be seen,

I have also needed both the datasheets for each I2C device and the knowledge of serial communi-

cation acquired during the degree to truly understand how to use the tools provided by the driver

for my purposes.

Regarding the data provided by the AMS, we obtain them in ADC code by calling a function

that will access the sysfs files generated by the “xilinx-ams” driver, and the final magnitude is

obtained by applying the conversion explained in prior theory chapters depending on whether we

are dealing with voltage or temperature.

73

CHAPTER 4. MONITORING THREAD DEVELOPMENT

Figure 4.1: Monitoring thread value

In the figure 4.1, a first approximation to the desired operation of the monitoring thread can be

observed, printing the read values to the terminal. This has successfully verified that the readings

of the values are correct and that, when reading, only the properly initialized SFPs are taken into

account, in this case only the SFP0.

4.2 Parse monitoring data into JSON string and send it to the DAQ

Once the correct functioning of the functions designed to read the desired magnitudes and states

has been confirmed, you can proceed to use the json-c library to encapsulate the collected infor-

mation into a JSON string that will be sent to the DAQ.

74

4.2. PARSE MONITORING DATA INTO JSON STRING AND SEND IT TO THE DAQ

Listing 4.1: Monitoring JSON format example

1 {
2 "time": 0,
3 "device": "ID DPB",
4 "data": {
5 "HV": [],
6 "LV": [],
7 "Dig1": [],
8 "Dig0": [],
9 "DPB": [
10 {
11 "magnitudename": "PL Temperature",
12 "value": 75.256
13 }
14]
15 }
16 }

The monitoring JSON must follow the structure which can be seen in the prior listing. As a

way to make sure the JSON string that is going to be sent is valid, my project colleague, whose

tasks include supporting the DPB and developing and implementing the customization of the OS

that runs on the DPB, has been in charge of preloading an application called json-schema-validate

in the PetaLinux image. The purpose of this application is to use a schema, which have also been

developed and loaded into the PetaLinux image by my colleague, as a template that has to comply

with the JSON created to send to the DAQ. So as to validate the JSON from our application, the

function json_schema_validate() stores the created JSON string in a temporary file, executes the

json-schema-validate with a terminal command and checks if the response is positive or negative

[27].

Since the alarm and command threads also use JSON strings, this schema validation application

will be used in the other threads as well with a custom schema for each message type, either to

validate alarm messages that are sent to the DAQ or to validate a properly formatted command

message.

After validating the JSON string, it is sent through the corresponding ZeroMQ socket to the

DAQ. Since the library to perform communication by the standard agreed by Hyper-Kamiokande

collaboration is not available yet, I have designed a simple Python application to send or receive

JSON strings. With this, I manage to establish and verify communication of the DPB through

ZeroMQ so that the subsequent implementation of the mentioned library is much more straight-

forward.

75

CHAPTER 4. MONITORING THREAD DEVELOPMENT

Figure 4.2: ZeroMQ Publisher-Subscriber simple pattern [28]

To establish communication between the monitoring thread and the DAQ servers or the used

Python application, the socket type for both the monitoring thread and the message-receiving ap-

plication must be determined.

The communication of the monitoring thread is intended to be unidirectional, whereby the

thread transmits the information gathered periodically and the clients who are monitoring the

thread receive the information. That is why I have decided to opt for a simple ZeroMQ Publisher-

Subscriber communication configuration as shown in figure 4.2 among other possible configura-

tions. In this configuration, the monitoring thread is established as the Publisher, the one in charge

of sending information through a specific socket and port, and the Subscribers connect to the cor-

responding address and port and wait on the other side of the communication to receive messages

from the Publisher.

76

4.2. PARSE MONITORING DATA INTO JSON STRING AND SEND IT TO THE DAQ

Figure 4.3: PL Temperature monitored evolution

In figure 4.3 can be seen an example of a magnitude arbitrarily selected from all the magnitudes

sent periodically through the monitoring socket to a Python-developed application and the applica-

tion plotted the evolution over time of the data of this particular magnitude sent in the JSON string,

verifying the monitoring thread communication through ZeroMQ socket is working correctly as

well as the magnitude value is within its typical working range since it is about the temperature of

silicon while using a small passive heat-sink.

77

CHAPTER 4. MONITORING THREAD DEVELOPMENT

78

Chapter 5

Alarms threads development

A
fter developing the monitoring periodic thread, the same periodic structure has been followed

for the development of the alarm threads. However, the period will be much shorter than in

the monitoring thread as detecting any alarm is much more critical.

It has been decided to divide the alarm thread into two different threads, one for the I2C devices

and the other for the AMS alarms. This decision has been made since the I2C devices detect alarm

information by reading from a register while the AMS detects it through the IIO Event Monitor

sub-process. Furthermore, the conversion time of the I2C devices restricted the alarm triggering of

the AMS too much. Therefore, linking alarm readings from I2C or GPIO devices that depend on

registers or files with AMS alarms that depend on another process would unnecessarily complicate

the synchronisation of alarm feedback with other shared resources such as the I2C bus and would

delay the reaction time to any alarms detected.

Regarding the I2C devices alarms thread, it has been necessary to use a POSIX semaphore to

synchronize the I2C bus usage and avoid race conditions between any other thread. In regards

to the operation of the thread, it calls functions that read the flag registers of the I2C devices and

checks if there is an active flag, cleans it if necessary, and depending on which flag is activated,

the event is communicated to the DAQ.

In order to develop the AMS alarms thread, we first need the Linux kernel tool IIO Event

Monitor, to work along the “xilinx-ams” driver so it allows us to catch AMS alarms and the com-

munication between the driver and IIO Event Monitor occurs through the previously mentioned

Linux IIO framework. For this purpose, the IIO Event Monitor has been modified in order to be

able to transmit the detected event information to our main application .

First of all, a segment of shared memory has been established between the main application

and the IIO Event Monitor sub-process to transmit the necessary event information and set up

semaphores to synchronize sub-process and thread. One semaphore is used to force the AMS

alarm thread to start IIO Event Monitor, and the other semaphore is used to indicate to the alarm

thread that an event has been detected and the thread will handle it accordingly.

As the IIO Event Monitor does not provide us with the value of the magnitude that has triggered

the alarm and does not differentiate rising and falling voltage events, the thread has been configured

to take care of this.

It should be noted that in the process of debugging this thread, several bugs have been detected

79

CHAPTER 5. ALARMS THREADS DEVELOPMENT

in the “xilinx-ams” driver that we have solved to ensure the correct functioning of our application.

The first encountered bug is due to the driver masking an alarm when it is triggered so that it

is not detected again until it has been previously reset to normal values to avoid the same alarm

going off constantly. However, the unmasking process proposed an impossible situation and did

not allow an alarm to go offmore than once despite a previous reset as it shouldwork. Bymodifying

several logical operations, the problem was solved without affecting its performance.

The other problem that was found was a lack of functionality of the driver since the AMS by

default enables hysteresis for the temperature alarm and the lower limit places it at 0 degrees. The

problem is that the driver does not allow you to modify the lower limit or disable hysteresis, so

it only allowed you to enable temperature alarms once. We made the decision to disable hystere-

sis from the driver itself since it does not suit our application and with this, we find the desired

operation of the AMS alarms

Figure 5.1: Difference between AMS temperature alarm with hysteresis on and hysteresis

off

The figure 5.1 shows how AMS hysteresis alarm system works, where it is clearly seen that

hysteresis does not provide any usefulness to our application if the driver does not allow changing

the lower alarm threshold.

5.1 Configure sharedmemory segment and synchronization semaphores

For the communication of events between the IIO Event Monitor application and the main

application, the use of shared memory functionality and proper synchronization between both ap-

plications is crucial.

The desired space in shared memory has been reserved using the shm library and is identified

by a specific memory key in the main application. The reserved memory space matches the space

occupied by a struct that acts as a wrapper for all the variables intended to be exchanged through

sharedmemory, which includes event information and semaphores. After enabling access to shared

memory for external processes, the variables included in the wrapper and the semaphores have been

initialized, we now proceed to configure shared memory in the IIO Event Monitor application.

80

5.2. DETECTION AND HANDLING SENSORS ALARMS FUNCTIONS

The access to the reserved memory segment has been set up upon application startup, and this

application will release the semaphores as necessary for the alarm thread to operate with the data

provided by the IIO Event Monitor.

Using this configuration, it is possible to collect data from an application external to the main

application, respecting the execution flow initially proposed.

5.2 Detection and handling sensors alarms functions

When detecting alarms, as seen, the magnitudes related to the Xilinx chip are obtained through

an external application, while alarms related to I2C or GPIO devices, or link status are based on

flags located in registers or global variables Therefore, the detection process relies on readings

from relevant registers, similar to monitoring threads but with a much shorter period. That is why

I have relied on the work done in the functions used in the monitoring thread to develop the alarm

detection functions, taking into account the devices that use masks to avoid repeatedly reporting the

same alarm based on the datasheets of the devices, and for those that do not have this mechanism,

such as the SFPs, a mask has been declared in the application to mimic this mechanism.

Regarding the handling of alarms, based on the activated bit or the information from the IIO

Event Monitor obtained by AMS, we can extract, according to the documentation of the devices,

the type of event, its severity and the channel if the device has different channels. Then it depends

on whether the event has been triggered by a change of state or a magnitude, since magnitude

events also have direction depending on whether they have exceeded the upper threshold or are

below the lower threshold.

In addition, I have considered it important to obtain the value of the trigger for activating the

event. In the case of it being a magnitude alarm, it will be read as done in the monitoring thread,

while if it is a status alarm the value will be “ON” or “OFF”.

5.3 Parse alarms data into JSON string and send it to the DAQ

Once the alarm event has been detected and the alarm thread gathered the necessary information

of the event, the final handling step is to report the alarm to the DAQ so that they are aware of the

triggered event and can act to correct or mitigate the consequences of the event.

The communication between the alarm threads and the receiving module has been established

in the same way as in the monitoring thread. Both alarm threads become the Publishers in the

communication meanwhile the DAQ or the corresponding receiving application act as Subscribers.

The sockets used have been differentiated according to the information they carry by port number,

so clearly a different socket is used, but with the same configuration in the alarm and monitoring

threads.

Listing 5.1: Alarm JSON format example

1 {
2 "time": 1637343635012,
3 "device": "ID DPB",
4 "level": 1,
5 "message": {

81

CHAPTER 5. ALARMS THREADS DEVELOPMENT

6 "board": "DPB",
7 "magnitudename": "SFP RX Power",
8 "eventtype": "falling",
9 "eventtimestamp": 1637343635000,
10 "channel": 0,
11 "value": 0
12 }
13 }

As it can be seen in the previous listing, the alarm JSON string format is different from the

monitoring JSON format. The alarm JSON format contains two timestamps one to know when the

message has been sent and the other to indicate when the event occurred. In addition, the message

indicates the device that has triggered the alarm, in our case it will always be the ID DPB, the level

which will be 0 if the event is critical or other than 0 if it is only a warning and the message which

includes the captured and relevant information of the event. The event type and channel fields will

appear in the message only when necessary.

The created message will be sent through the alarm socket after being successfully validated

by the json-schema-validate application according to a defined schema, taking into account the

desired message format.

Figure 5.2: JSON strings received in Python application after triggering alarms

82

Chapter 6

Command handling thread

development

T
he last thread to be developed is the command handling or slow control thread, which consists

on receiving commands directly from the DAQ and verifying that it is an existing command.

In that case, it acts accordingly with the received command and sends the corresponding response

to the DAQ. If the command is invalid an “Invalid command” reply is sent to the DAQ servers.

Unlike the monitoring and alarm threads, the command thread has a different ZeroMQ commu-

nication configuration. This thread requires bi-directional communication in order to receive com-

mands and send the corresponding response, so it is not possible to use the Publisher-Subscriber

model previously used. This is why it has been decided to use a ZeroMQ Request-Reply commu-

nication model.

Figure 6.1: Request-Reply pattern [29]

83

CHAPTER 6. COMMAND HANDLING THREAD DEVELOPMENT

This Request-Reply model consists of, as the name suggests, Request sockets requesting the

Reply socket, and the requesting socket waits for a response. While the Reply socket is initially

waiting for a message to be sent and once it receives it, it sends a response to the message sender

socket and waits again for a request. A bidirectional communication that follows a Request-Reply

flow suitable for command line operation. Furthermore, this model can be implemented with sev-

eral clients on the same server since ZeroMQ itself implements a queuing system based on the

Round-Robin algorithm to organize the requests and then directs the response to the correspond-

ing requester [30].

In this case, I have defined the command thread socket as Reply and the test Python application

used as Request as the function of the DAQ servers. With this, the command thread waits to receive

a message to process it and answer as it should.

6.1 Parse commands from the DAQ into JSON string for processing

The message received by the slow control thread is a JSON string which among other keys in-

cludes the value of the message which is the command to be handled. So the command thread must

extract the command string and once extracted the string is divided into the command parameters

(see tables A.1 and A.2 for the list of commands implemented in the annex), which can range from

3 to 5 words, in order to treat each command parameter independently.

Once the command is segmented into different strings using the strtok(3) function, a JSON

string is created with the fragments of the received command, to apply the json-schema-validate

application and by means of another schema designed by my project colleague to verify that the

command is valid. If the command is not correct, an “Invalid command” response is sent.

Listing 6.1: Command request JSON format example

1 {
2 "msg_id": 0,
3 "msg_time": "2021-11-19T17:54:30.691Z",
4 "msg_type": "Command",
5 "msg_value": "READ DPB TEMP PCB",
6 "uuid": "931fbc9d-b2b3-c248-87d6ae33f9a62"
7 }

It can be seen in the above listing the received JSON string format, where the command thread

must retrieve “msg_id” and “msg_value” key values. The “msg_id” value will be indicated in the

command reply and “msg_value” is the command string itself.

84

https://man7.org/linux/man-pages/man3/strtok.3.html

6.2. DEFINE THE COMMAND CASES AND DEVELOP FUNCTIONS TO HANDLE EACH CASE

6.2 Define the command cases and develop functions to handle each

case

As previously indicated, a list of commands to be implemented has been defined, so far only

referring to the DPB, and a function has been declared to deal with the different commands de-

pending on which board it is addressed to. As so far only the commands for the DPB are known,

only this function has been developed.

The DPB handling function retrieves the received fragmented command and differentiates the

received parameter between SFP and the rest, because SFPs have more measurement magnitudes,

and the rest of the parameters allow to define general cases and save code. Then, cases are differ-

entiated by the magnitude and finally differentiated by the desired operation, either READ or SET,

so calls the corresponding function to carry out the received command.

In case of failure in the reading or setting operation, a JSON response will be sent to the DAQ

indicating “ERROR: READ operation not successful” or “ERROR: SET operation not successful”

respectively.

Listing 6.2: Command reply JSON format example

1 {
2 "msg_id": 0,
3 "msg_time": "2021-11-19T17:54:30.691Z",
4 "msg_type": "Command reply",
5 "msg_value": 38.5,
6 "uuid": "931fac9d-b2b3-c248-87d6ae33f9a62"
7 }

As can be seen in the previous listing, the command reply format is exactly the same as for the

command request message. The “msg_id” is retrieved from the corresponding command request,

and the “msg_type” value will always be “Command reply”. The message time is presented with

the format: “<year>-<month>-<day>T<hour>:<min>:<second>.<ms>Z” and the UUID is gener-

ated randomly for every command reply message.

Regarding the message value key value, it depends on the command operation. If the command

operation is SET and it is successful, the message value will be “OK” indicating everything went

smoothly. Whereas if the command operation is READ and it was successful, the message value

will be “ON” or “OFF” if a status has been read, or if a magnitude has been read, the message

value will be the value of the magnitude read.

To carry out the READ commands I have used the read functions previously developed for

the monitoring thread, while for the SET commands, I have developed new functions with a very

similar structure to the read ones but following the writing flow either through I2C, GPIO, or

writing to registers through the sysfs file system.

85

CHAPTER 6. COMMAND HANDLING THREAD DEVELOPMENT

86

Chapter 7

Develop manufacturing test software

T
he software designed for the slow control applications of the DPB will not be used solely for

the purpose of real-time component monitoring or alarming, as much of this software can be

very useful for manufacturing tests for new prototypes and the final version of the DPB. This is

why in this chapter we will deal with the adaptation of the software designed in C programming

language to Python as a library to be able to use it from the Robot framework, and how we intend

to design the test cases in Robot to be able to automate them.

7.1 Adapt previously developed software for manufacturing test

After including the Robot framework in the PetaLinux device tree, in order to define the desired

test cases and automate them, it is necessary to adapt the functions designed in C to Python. For

this, the Python ctypes library allows you to make use of C data structures and functions in Python.

It also allows wrapping complete C libraries in Python.

Being aware of the functionalities of this library, I have used the library project wizard of

Vitis IDE to encapsulate all the functions designed in the DBP2_App application except for the

declaration of the threads and the main in a library importable by other applications. It should be

noted that minimal modifications have beenmade to the functions by eliminating any semaphore as

it will not be necessary and parameterizing the path of the IIO Event Monitor application. Once the

library has been successfully compiled, the Vitis IDE itself provides the .so file which comprises

the shared library. We only need to insert this .so file as well as the headers of the external libraries

used to develop the application functions in the “/usr/lib/” directory of the DPB OS so that the

functions can be executed on the board and include these files in the corresponding path so that the

compiler detects these functions. The last step in the adaptation is to transcribe the functions from

C language to Python language, indicating the type of arguments that each function requires. To

do this, ctypes provides us with a table of basic C data structures, their corresponding structure in

ctypes, and how the Python Interpreter assimilates them.

87

https://docs.python.org/3/library/ctypes.html

CHAPTER 7. DEVELOP MANUFACTURING TEST SOFTWARE

ctypes type C type Python type

c_bool _Bool bool (1)

c_char char 1-character bytes object

c_wchar wchar_t 1-character string

c_byte char int

c_ubyte unsigned char int

c_short short int

c_ushort unsigned short int

c_int int int

c_uint unsigned int int

c_long long int

c_ulong unsigned long int

c_longlong __int64 or long long int

c_ulonglong unsigned __int64 or unsigned long long int

c_size_t size_t int

c_ssize_t ssize_t or Py_ssize_t int

c_time_t time_t int

c_float float float

c_double double float

c_longdouble long double float

c_char_p char* (NULL terminated) bytes object or None

c_wchar_p wchar_t* (NULL terminated) string or None

c_void_p void* int or None

POINTER() <data>* class

Structure struct class

Table 7.1: Basic data structures in ctypes, C y Python

Considering the conversion of data types from C to Python using ctypes, I have designed a

Python script called Init_Robot, which will be executed to start the Python library. This script

defines the special data types such as I2Cdevices or JSONobjects and then passes the C functions to

Python by defining the argument and return types of the function. The transcription of C functions

into Python is done automatically by using the function headers from the .h file of the shared

library, detecting the return data type and arguments and assigning their equivalence in cytpes by

looking at a dictionary that has been designed. In addition, in the processing of the arguments of

each function it is taken into account whether the argument is a pointer to define it as such or not.

88

7.2. AUTOMATION OF THE TESTS USING ROBOT FRAMEWORK

Listing 7.1: Ctypes dictionary of equivalences

1 ctype_map = {
2 'int': ctypes.c_int,
3 'float': ctypes.c_float,
4 'char': ctypes.c_char,
5 'struct DPB_I2cSensors':DPB_I2cSensors ,
6 'struct I2cDevice':I2cDevice ,
7 'uint16_t': ctypes.c_uint16 ,
8 'uint8_t': ctypes.c_ubyte,
9 'uint64_t': ctypes.c_uint64 ,
10 'json_object':JsonObject ,
11 'int ': ctypes.c_int,
12 'float ': ctypes.c_float,
13 'char ': ctypes.c_char,
14 'struct DPB_I2cSensors ':DPB_I2cSensors ,
15 'struct I2cDevice ':I2cDevice ,
16 'uint16_t ': ctypes.c_uint16 ,
17 'uint8_t ': ctypes.c_ubyte,
18 'uint64_t ': ctypes.c_uint64 ,
19 'json_object ':JsonObject ,
20 'void':None,
21 # Add more types in case it is necessary
22 }

Listing 7.2: Ctypes C function definition process

1 <library_name >.<function_name >.argtypes = [ctypes.<argN_data_type > ..]
2 # N being the number of arguments of the function
3 <library_name >.<function_name >.restypes = ctypes.<return_data_type >

Once all the C functions have been defined in Python, the library can be considered initialized,

but in addition to this, the script takes care of starting the sockets, devices, and processes to be

used and obtains the GPIO base address just as the main thread of the application does. With this,

I manage to start or obtain all the necessary resources to run the tests every time the library is

initialized.

7.2 Automation of the tests using Robot framework

The definition of tests in the Robot framework is the most tedious task when testing a DUT

with this platform, as it requires an initial analysis of the test cases we want to define. Afterward,

we must decide whether to orient each case towards a data-driven test or a keyword-driven test,

based on which type of test may be more intuitive for an arbitrary user.

Since I currently only have the DPB and I lack elements that could help me to develop test

cases such as measurement probes, it has been decided to develop, for the time being, tests that

can be performed only with the DPB. Therefore, tests have been implemented to verify the correct

initialization of the library and its components, to check the correct value of any magnitude that

has a stipulated value or range of values, and to probe the status of Ethernet interfaces, as well

as being able to choose the active interface and perform connectivity tests. In addition, test cases

have also been implemented to verify the correct operation of the GPIOs using the pins associated

89

CHAPTER 7. DEVELOP MANUFACTURING TEST SOFTWARE

with the SFPs to detect the SFPs connected and verify the correct reading by comparing via I2C

the value of certain GPIO pins with their corresponding value stored in the SFP EEPROM.

Apart from all these test cases more focused on the correct functioning of the components, tests

have also been implemented to force the activation of alarms and the use of commands to verify

the operation of the software and communication through ZeroMQ.

The library containing all the functions for performing test cases has been designed by defining

the functions with the keywords that should be associated with that function (using underscores

as spaces), even though they can be modified with a label, and the number of arguments has been

minimized to make the functions as intuitive and guided as possible. Then, when it comes to

verifying the cases, I have designed specific functions for cases in which a closed result is expected,

these will be the keyword-driven tests that will only require arguments about which component you

want to perform the test on and the action to be performed. On the other hand, data-driven tests

will mainly be those dedicated to reading values from a component and the user must be told what

the value and expected performance of each component is to facilitate the test. Both cases will

present an assertion in the event of a failure that will appear in the final Robot framework report.

Figure 7.1: Example of keyword-driven test

Figure 7.2: Example of data-driven test

As has been done with the code developed in C, it is also planned to attach to the submission

of this TFG more detailed documentation of the functions developed in Python in HTML format

extracted using the Sphinx tool. The main HTML file will be “index.html” .

It should be noted that although the test library will run on the DPB, Robot Framework will run

from the device that is being used to test the board, in my case a computer, so to communicate both

devices and run the test library on the board it must be included in the Robot Remote Server library

so tests can be automated by initializing the library in the board and using the Robot framework

Remote library on the computer to execute the relevant tests and obtain the execution report of

90

7.2. AUTOMATION OF THE TESTS USING ROBOT FRAMEWORK

the same in a HTML format file. In addition, we have the possibility to customize the result of

the report through the assertions implemented in the case verification functions, including images,

graphs, or another type of data that can be used in the testing process.

Figure 7.3: Basic example of successful Robot test report

In addition to the report, a log file is generated that provides much more detailed information

on the execution of the tests and their results.

91

CHAPTER 7. DEVELOP MANUFACTURING TEST SOFTWARE

92

Part V

Conclusions and future work

Chapter 1

Lessons learned

T
he Hyper-Kamiokande project is a long-term effort to take a step forward in neutrino detection

with the construction of the new high-performance detector. In this TFG I have sought to

contribute to the development of this new infrastructure, specifically in the submerged electronics

in the vessels of the ID of HKK, by learning about the tools available in the DPB and then using

them to develop software that performs monitoring and slow control tasks on the board. In addition

to reusing the software designed to lay the basis of manufacturing tests for the new prototypes of

the DPB. Thus fulfilling the project-specific goals related to the monitoring of electronic systems

status.

Meeting these objectives has involved encountering problems, among the most notable, I would

mention finding the bug in the “xilinx-ams” driver and the debugging process of the application

using Valgrind to identify and eliminate memory leaks that were causing segmentation faults.

After 4 month-time of work and fulfilling the objectives proposed at the beginning of the dis-

sertation, I have been able to draw the following conclusions from each of them:

• Develop DPB software : One of the biggest challenges I initially faced when developing

the application was the fact that I had to monitor each of the devices available in the DPB,

as this implied using different communication protocols when acquiring or transmitting data

through the application. The datasheet of the components and the schematics of the DPB

prototype have been of great help in expanding my knowledge of the various types of com-

munication used and being able to implement them in software for the desired applications.

• Learn how to work in embedded environments : Despite having basic knowledge of em-

bedded systems, working on them is not as straightforward as working on any other system.

Since I have worked with a lightweight version of Linux as an OS, I have been able to appre-

ciate the differences compared to a more complete Linux image, especially in aspects such

as debugging, which is much less detailed. Additionally, the DPB must reserve a significant

portion of RAM and processing capacity for the data captured, which has led me to learn

methods of memory profiling and optimization that are compatible with embedded systems,

such as using the Valgrind tool to reduce application processing capacity consumption and

detect and prevent memory leaks.

95

CHAPTER 1. LESSONS LEARNED

• Program software in Linux : As expected, programming on a Linux-based operating sys-

tem, despite it being a lightweight version, has greatly aided me in developing the applica-

tion. The drivers, libraries, and the hierarchical directory structure that Linux works with

have simplified the implementation of desired functionalities, allowing me to focus solely

on their implementation rather than internal function processes. However, this level of ab-

straction also entails the problem of encountering a bug or issue, as happened to me with

the “xilinx-ams” driver, and debugging a driver is not a trivial task. Fortunately, my project

partner and I managed to identify and fix the flaw through a rigorous debugging process.

• Develop slow control system : The development of software that performs slow control

tasks has been a nice challenge for me when it comes to differentiating the different tasks

and deciding the priority of each type using multi-threaded programming, in addition to

needing to use all the available resources such as drivers, I2C buses and GPIO pins or Linux

files to keep track of the status of the board. But above all, it has been a challenge for me to

develop the command processing thread due to the precision required by the process from

the moment you receive the command until you perform the corresponding action based on

the command. Additionally, I have personally experienced the importance of synchroniza-

tion using semaphores in a multi-threaded software when shared resources are used among

different processes.

• Create data structures : Since the format of the JSON string had already been determined

by the DAQ for each type of message, I only needed to correctly handle the json-c library

tools to compose the JSON string while respecting the proposed format and hierarchy. After-

wards, I verify the message structure using model schemata. Emphasizing the verification

of the message structure was decided upon, as mismatch from formats between message

sender and receiver makes communication between the two impossible due to the absence

of a common communication protocol.

• Manage alarm systems : Alarm systems are a key tool in slow control applications for

reporting operating conditions outside the specified or critical ranges. Having defined two

threads for alarms, one dependent on interruptions captured by the IIO Event Monitor and

another dependent on readings from files or I2C buses or GPIO pins, allows for prioritizing

this type of alarms and comfortably defining how they should be reported to the DAQ via

the ZeroMQ alarm socket.

• Test preparation and automation : The development of automated test cases for the man-

ufacture of prototypes of the DPB has been initially a bit tedious since the Robot platform re-

quired adapting the previously designed C software to Python using the ctype library. How-

ever, this adaptation using ctypes, despite being somewhat tedious, has allowed me to reuse

the functions developed in C and avoid having to redo them in Python. Furthermore, it pre-

sented the initial difficulty of knowing how to interpret the operation of the platform itself,

since it works with keyword-driven and data-driven tests so that these tests are understand-

able in human language. This implies abstracting the test as much as possible on your part

to facilitate the work of the person in charge of carrying out the manufacturing test and thus

try to reduce possible human errors in this process and avoid unnecessary consumption of

resources.

96

Chapter 2

Future work

A
s previously mentioned, the HKK project is long-term, and there is still enough work in the

electronics section that could take 3 years to complete. Regarding the slow control software

on which my TFG is based, it cannot be considered definitive by any means, but a solid basis for

the final software. This is due to the fact that during the development of this TFG, I only had the

DPB of the modules that will be inside the vessel and the different methods of communication with

the DAQ had not been stipulated.

However, in the near future, the DAQ has informed us that they will provide us with a library

that will implement communication between DPB and their servers using a structure similar to

the one used in the application developed in this TFG, based on ZeroMQ sockets and including

Multicast for non-priority sockets. Additionally, we will have access to the digitizers and HV and

LV boards to carry out slow control tasks of every module that will be inside the vessel and testing

these tasks are carried out properly. Therefore, the following points can be followed to continue

the work done in this TFG:

• Redefine communication sockets : Adapt the already established socket configuration to

the slight modifications proposed by the DAQ to follow a common communication model

commonly agreed by the project members.

• Develop slow control software for the remaining modules in the vessel : Expand the

existing software to perform the slow control tasks, including monitoring the status of HV,

LV boards and digitizers and controlling them by the DAQ via command. Extend the slow

control functionalities already developed for the DPB to the remaining modules, since so

far only the status monitoring of the Aurora links has been measured via GPIO due to the

absence of the remaining modules.

• Extend the use of the Robot Framework to all the system in the vessel : The test cases

designed to date in the Robot framework environment have beenmainly focused on verifying

the correct functioning of the internal communication protocols of the DPB and the SFPs,

ensuring that the manufacturing has been correct, in addition to verifying the operation of

part of the designed software. Due to the practicality of the Robot framework, it would be

convenient to expand the catalogue of tests defined to verify the communication between

different modules and even not simply limit Robot framework to manufacturing tests but

97

CHAPTER 2. FUTURE WORK

also use it to define tests to verify the functionality of the software and its compatibility with

the other modules.

As we come to the end of this TFG, I simply have to give my most sincere thanks to the reader

who has reached this point for taking the necessary time to read this thesis.

98

Bibliography

[1] I.C. Baianu et al. Fundamentals of Physics and Nuclear Physics. Free Software Foundation

Inc., Nov. 2002.

[2] Laurie M. Brown. “The idea of the neutrino”. In: Phys. Today 31.9 (1978), pp. 23–28. doi:

10.1063/1.2995181.

[3] The Hyper-Kamiokande Collaboration. Hyper-Kamiokande Project. Source Link. 2015.

[4] Hyper-Kamiokande Proto-Collaboration et al. Hyper-Kamiokande Design Report. 2018.

arXiv: 1805.04163 [physics.ins-det].

[5] Alejandro Gómez Gambín. “Discussion and preparation of a FPGA-based hardware plat-

form with embedded operative system for data processing tasks inside the neutrino detector

Hyper-Kamiokande”. MA thesis. 2023.

[6] Alejandro Gómez Gambín. “Prototype elaboration of the data processing block in a SOM

board with redundant boot, Aurora protocol and timing synchronization support for Hyper-

Kamiokande detector”. MA thesis. 2024.

[7] Tessolve. Five Reasons to Use System on Modules (SoM) in Embedded System Design.

Source Link. n.d.

[8] Proculus Technologies. An In-Depth Guide to System on Modules (SoMs): Everything You

Need to Know. Source Link. n.d.

[9] Advanced Micro Devices. Ultrafast Embedded Design Methodology Guide. Source Link.

n.d.

[10] Xilinx Inc. UltraScale MPSoC Technology. Source Link. n.d.

[11] Texas Instruments. Power Supply Design Seminar. Source Link. n.d.

[12] Advanced Micro Devices. GPIO Module. Source Link. n.d.

[13] Michael K Johnson and Erik W Troan. Linux application development. Addison-Wesley

Longman Publishing Co., Inc., 1998.

[14] Gene Sally. Pro Linux embedded systems. Apress, 2010.

[15] PatrickMochel. “The sysfs filesystem”. In: Linux Symposium. Vol. 1. The Linux Foundation

San Francisco, CA, USA. 2005, pp. 313–326.

[16] Advanced Micro Devices. Vivado Design Suite Overview. Source Link. n.d.

[17] AdvancedMicroDevices.Vitis™EmbeddedDevelopment: DomainOverview Page. Source

Link. 2022.

99

https://doi.org/10.1063/1.2995181
https://www-sk.icrr.u-tokyo.ac.jp/en/hk/
https://arxiv.org/abs/1805.04163
http://hdl.handle.net/10251/197665
http://hdl.handle.net/10251/197665
http://hdl.handle.net/10251/197665
http://hdl.handle.net/10251/203238
http://hdl.handle.net/10251/203238
http://hdl.handle.net/10251/203238
https://www.tessolve.com/five-reasons-to-use-system-on-modules-som-in-embedded-system-design/
https://www.proculustech.com/an-in-depth-guide-to-system-on-modules-soms-everything-you-need-to-know.html
https://docs.amd.com/v/u/en-US/ug1228-ultrafast-embedded-design-methodology-guide
https://www.xilinx.com/products/technology/ultrascale-mpsoc.html
https://acortar.link/cr2QKX
https://docs.amd.com/r/en-US/ug1087-zynq-ultrascale-registers/GPIO-Module
https://docs.amd.com/r/en-US/ug910-vivado-getting-started/Vivado-Design-Suite-Overview
https://docs.amd.com/r/2022.1-English/ug1400-vitis-embedded/Domain-Overview-Page
https://docs.amd.com/r/2022.1-English/ug1400-vitis-embedded/Domain-Overview-Page

CHAPTER 2. FUTURE WORK

[18] Advanced Micro Devices. Vitis™ Application Acceleration Development: Platform Types.

Source Link. n.d.

[19] Robot Framework. Robot Framework User Guide. Source Link. n.d.

[20] NRELabs. Using Robot Framework for Automated Testing. Source Link. 2018.

[21] Texas Instruments. INA3221 Triple-Channel, High-Side Measurement, Shunt and Bus Volt-

age Monitor with I2C Interface Datasheet. Source link. n.d.

[22] Microchip Technology Inc. PIC32 Family Reference Manual. Source link. n.d.

[23] Broadcom. AV02_3012EN_DS_AFBR_571xZ. Source link. Aug. 2018.

[24] AMD. PL System Monitor Specifications. Source Link. n.d.

[25] The Linux Kernel Organization. IIO Subsystem Documentation. Source link. n.d.

[26] AMD. DC Characteristics Over Recommended Operating Conditions. Source Link. n.d.

[27] JSON Schema Organization. JSON Schema Specification. Source link. n.d.

[28] ZeroMQ. ZeroMQ Guide. Source Link. n.d.

[29] ZeroMQ. ZeroMQ Guide. Source Link. n.d.

[30] ZeroMQ. ZeroMQ Socket API. Source Link. n.d.

100

https://docs.amd.com/r/en-US/ug1393-vitis-application-acceleration/Platform-Types
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://nrelabs.io/2018/12/using-robot-framework-for-automated-testing/
https://www.ti.com/lit/ds/symlink/ina3221.pdf?ts=1716646718956&ref_url=https%253A%252F%252Fwww.mouser.es%252F
https://ww1.microchip.com/downloads/en/DeviceDoc/20005192B.pdf
https://docs.broadcom.com/doc/AV02_3012EN_DS_AFBR_571xZ_2018_08_07
https://docs.amd.com/r/en-US/ds925-zynq-ultrascale-plus/PL-System-Monitor-Specifications
https://docs.kernel.org/iio/index.html
https://docs.amd.com/r/en-US/ds925-zynq-ultrascale-plus/DC-Characteristics-Over-Recommended-Operating-Conditions
https://json-schema.org/specification.html
https://zguide.zeromq.org/docs/chapter5/
https://zguide.zeromq.org/docs/chapter4/
https://zeromq.org/socket-api/

Part VI

Annexes

Annex A

Additional Listings

Command Board Magnitude Parameter Write-Value

SET DPB STATUS SFP0 / SFP1 /

SFP2 / SFP3 /

SFP4 / SFP5

ON/OFF

SET DPB STATUS ETH0 / ETH1 ON/OFF

SET DPB TEMP PCB number

SET DPB TEMP FPGA number

SET DPB TEMP FPDCPU number

SET DPB TEMP LPDCPU number

SET DPB VOLT FPDCPU number

SET DPB VOLT LPDCPU number

SET DPB CURR SFP0 / SFP1 /

SFP2 / SFP3 /

SFP4 / SFP5

number

SET DPB CURR 12V number

SET DPB CURR 3V3 number

SET DPB CURR 1V8 number

Table A.1: Setting DPB command list

103

ANNEX A. ADDITIONAL LISTINGS

Command Board Magnitude Parameter

READ DPB STATUS SFP0 / SFP1 /

SFP2 / SFP3 /

SFP4 / SFP5

READ DPB STATUS ETH0 / ETH1

READ DPB TEMP SFP0 / SFP1 /

SFP2 / SFP3 /

SFP4 / SFP5

READ DPB TEMP PCB

READ DPB TEMP FPGA

READ DPB TEMP FPDCPU

READ DPB TEMP LPDCPU

READ DPB VOLT FPDCPU

READ DPB VOLT LPDCPU

READ DPB CURR SFP0 / SFP1 /

SFP2 / SFP3 /

SFP4 / SFP5

READ DPB CURR 12V

READ DPB CURR 3V3

READ DPB CURR 1V8

READ DPB TXPWR SFP0 / SFP1 /

SFP2 / SFP3 /

SFP4 / SFP5

READ DPB RXPWR SFP0 / SFP1 /

SFP2 / SFP3 /

SFP4 / SFP5

Table A.2: Reading DPB command list

104

	I Introduction: Hyper-Kamiokande Project
	TFG goals
	The neutrino itself
	HKK project
	HKK project structure
	HKK physics basis
	HKK predecessor, Super-Kamiokande
	HKK objectives
	HKK project organization

	II Leveraged technology
	DPB SoM election
	Understanding System-on-Module
	Advantages of SoM Technology:

	DPB2 Prototype
	Zynq UltraScale+ Architecture
	Difference between PS and PL
	JTAG interface
	UART interface
	Ethernet interface
	I2C interface
	GPIO interface
	RS-485 communication protocol

	PetaLinux embedded OS
	Unix/Linux environment and os election
	Used Linux libraries, drivers and applications

	Sysfs file system

	Development environments used
	Vivado Design Suite
	Vitis IDE
	Robot Framework

	III DPB sensors capabilities descriptions for slow control tasks
	I2C devices
	INA3221 Current sensor
	MCP9844 Temperature sensor
	AFBR-5715ALZ SFP Transceiver

	Xilinx AMS gathered data

	IV Tasks Development and Results
	Preparation of the environment to be used on the board
	Platform setup and configuration
	Vitis Project Creation

	Application workflow
	Application initialization
	Monitoring thread development
	Sensor data readout functions
	Parse monitoring data into JSON string and send it to the DAQ

	Alarms threads development
	Configure shared memory segment and synchronization semaphores
	Detection and handling sensors alarms functions
	Parse alarms data into JSON string and send it to the DAQ

	Command handling thread development
	Parse commands from the DAQ into JSON string for processing
	Define the command cases and develop functions to handle each case

	Develop manufacturing test software
	Adapt previously developed software for manufacturing test
	Automation of the tests using Robot framework

	V Conclusions and future work
	Lessons learned
	Future work
	Bibliography

	VI Annexes
	Additional Listings

