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Resumen

El cómputo cuántico está avanzando rápidamente, transformando las capaci-
dades computacionales convencionales. Este trabajo se centra en las Redes
Neuronales Quanvolucionales (QNNs), evaluando arquitecturas de circuitos
cuánticos en un contexto novedoso. Aplicamos estas arquitecturas a la clasi-
ficación de modulaciones intrapulso utilizando una base de datos sintética
cuidadosamente elaborada. La computación cuántica, con propiedades como
la superposición y el entrelazamiento cuántico, ofrece un terreno fértil para
repensar enfoques tradicionales en tareas de clasificación. Nuestro estudio
proporciona un análisis emṕırico de varias arquitecturas cuánticas, evaluando
su rendimiento en esta tarea espećıfica, comparándolas con modelos clásicos,
y destacando sus ventajas y limitaciones actuales. Todos los experimentos
se realizan en simuladores cuánticos debido a las limitaciones actuales del
hardware cuántico.

Resum

El còmput quàntic està avançant ràpidament, transformant les capacitats
computacionals convencionals. Aquest treball se centra en les Xarxes Neu-
ronals Quanvolucionals (QNNs), avaluant arquitectures de circuits quàntics
en un context novedós. Apliquem aquestes arquitectures a la classificació
de modulacions intrapuls utilitzant una base de dades sintètica acuradament
elaborada. La computació quàntica, amb propietats com la superposició
i l’enllaç quàntic, ofereix un terreny fèrtil per repensar enfocaments tradi-
cionals en tasques de classificació. El nostre estudi proporciona una anàlisi
emṕırica de diverses arquitectures quàntiques, avaluant el seu rendiment en
aquesta tasca espećıfica, comparant-les amb models clàssics, i destacant els
seus avantatges i limitacions actuals. Tots els experiments es realitzen en
simuladors quàntics a causa de les limitacions actuals del maquinari quàntic.

Abstract

Quantum computing is rapidly advancing, transforming conventional compu-
tational capabilities. This work focuses on Quanvolutional Neural Networks
(QNNs), evaluating quantum circuit architectures in a novel context. We ap-
ply these architectures to the classification of intrapulse modulations using



a carefully crafted synthetic database. Quantum computing, with properties
such as superposition and entanglement, offers fertile ground for rethinking
traditional approaches to classification tasks. Our study provides an empir-
ical analysis of various quantum architectures, assessing their performance
in this specific task, comparing them with classical models, and highlighting
their current advantages and limitations. All experiments are conducted on
quantum simulators due to the current limitations of quantum hardware.



La memoria del TFM del ”EVALUACIÓN DE REDES NEURONALES
CONVOLUCIONALES CUÁNTICAS EN LA CLASIFICACIÓN DE SEÑALES
INTRAPULSO” debe desarrollar en el texto los siguientes conceptos, debida-
mente justificados y discutidos, centrados en el ámbito de la COMPUTA-
CION CUANTICA
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1 Introduction

Convolutional Neural Networks (CNNs) have been a cornerstone in the evolu-
tion of machine learning, especially in tasks involving image and video pro-
cessing. Their unique structure, designed to automatically and adaptively
learn spatial hierarchies of features from input data, has been instrumental
in various breakthroughs in deep learning. CNNs mimic the human visual
system’s ability to recognize patterns and objects, making them exception-
ally efficient in handling complex visual data. This ability has revolutionized
fields such as computer vision, facial recognition, and automated driving
systems, setting the stage for advanced machine learning applications and
inspiring the exploration of quantum-enhanced models like Quanvolutional
Neural Networks (QNNs).

The realm of quantum computing is witnessing a paradigm shift with
its integration into conventional neural network architectures, opening new
frontiers in computational capabilities. This work spotlights Quanvolutional
Neural Networks (QNNs), emphasizing the evaluation of established quan-
tum circuit architectures from the literature in a novel context. We specifi-
cally apply these architectures to tackle the complex challenge of intrapulse
modulation classification using a meticulously crafted synthetic database

Quantum computing, characterized by its extraordinary computational
properties such as quantum superposition and entanglement, provides a fer-
tile ground for rethinking traditional approaches to classification tasks. QNNs,
standing at the confluence of quantum computing and neural networks, har-
ness these properties to offer innovative solutions to classification challenges.
Our research is dedicated to assessing the practicality and performance of
pre-existing quantum architectures when applied to the nuanced task of in-
trapulse modulation classification. The synthetic dataset employed in this
study is designed to closely replicate real-world conditions, providing a robust
platform for evaluating the efficacy of QNNs.

Our study primarily focuses on an empirical analysis of various quan-
tum architectures, particularly in their application to a synthetic dataset
of intrapulse modulation classification. Instead of advancing theoretical as-
pects of quantum-enhanced machine learning, our research rigorously tests
and compares the performance of different quantum neural network architec-
tures. This approach provides a comprehensive understanding of how these
architectures behave under specific machine learning tasks, offering valuable
insights into their practical applications and limitations in complex classifi-
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cation scenarios.
In conclusion, our work contributes to the practical assessment of quan-

tum computing principles in neural network technologies. The findings from
our investigation offer a grounded perspective on the current capabilities of
quantum neural networks.

2 Objectives

The primary objective of this work is to explore the potential of quantum
computing in the field of image classification, specifically focusing on intra-
pulse spectrograms. In particular, we aim to train a quantum circuit to
achieve a certain level of performance in classifying these spectrogram im-
ages.

Our goals include:

• Designing and implementing a quantum circuit capable of handling
image data.

• Training the quantum circuit using a dataset of intrapulse spectro-
grams.

• Evaluating the performance of the quantum circuit in terms of accuracy
and efficiency.

• Comparing the results with classical machine learning approaches to
highlight potential advantages and limitations of quantum methods.

Given the current limitations of quantum hardware, all experiments and
implementations are conducted using a quantum simulator. This allows us
to explore and validate our approach, as real quantum hardware may not yet
be capable of executing the necessary parameterized rotational gates with
the required precision and stability.

By achieving these objectives, we hope to contribute to the growing body
of knowledge in quantum machine learning and demonstrate its applicability
to complex tasks like image classification.
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3 Background

3.1 Principles of Quantum Mechanics

Quantum mechanics is the branch of physics that describes the behavior of
particles at the smallest scales, such as electrons and photons. It operates
fundamentally differently from classical mechanics, introducing concepts that
seem counterintuitive to our everyday experiences. One of the cornerstone
principles is superposition. In classical systems, a bit can be in one of two
states: 0 or 1. However, in quantum mechanics, a quantum bit, or qubit, can
exist in a superposition of both states simultaneously. This means a qubit
can represent both 0 and 1 at the same time, described mathematically by
the state

|ψ⟩ = α|0⟩+ β|1⟩ (1)

where α and β are complex coefficients that represent the probability
amplitudes of the qubit being in state 0 or 1.

Another fundamental principle is entanglement [1]. When particles be-
come entangled, the state of one particle is intrinsically linked to the state of
another, regardless of the distance separating them. This implies that mea-
suring the state of one entangled particle instantly determines the state of the
other, a phenomenon that Einstein famously referred to as ”spooky action
at a distance.” Entanglement is a powerful resource in quantum mechanics,
enabling correlations that are impossible in classical systems.

One of the most fundamental and illustrative examples of quantum en-
tanglement involves a pair of qubits. Consider two qubits, each of which can
exist in a superposition of the states |0⟩ and |1⟩. When these qubits become
entangled, they can form a combined state that cannot be separated into
individual qubit states.

A classic example is the Bell state, specifically the |Φ+⟩ state. This
entangled state is given by:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (2)

Here, |00⟩ represents both qubits being in the state |0⟩, and |11⟩ represents
both qubits being in the state |1⟩. The Bell state |Φ+⟩ is a superposition of
these two possibilities.
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To understand why this state is entangled, consider the general form of
a separable (non-entangled) state for two qubits:

|ψ⟩ = (α1|0⟩+ β1|1⟩)⊗ (α2|0⟩+ β2|1⟩) (3)

Expanding this, we get:

|ψ⟩ = α1α2|00⟩+ α1β2|01⟩+ β1α2|10⟩+ β1β2|11⟩ (4)

For the state |Φ+⟩ to be separable, it must be possible to write it in this
form. However, the Bell state |Φ+⟩ has only two terms (|00⟩ and |11⟩) with
equal coefficients, which cannot be factored into a product of single-qubit
states. Specifically, there are no single-qubit coefficients α1, β1, α2, β2 that
can reproduce the equal superposition of |00⟩ and |11⟩.

This inability to factorize the state |Φ+⟩ into individual qubit states is
what characterizes it as an entangled state. Measuring one qubit immedi-
ately affects the state of the other, regardless of the distance between them,
demonstrating the quintessential non-local nature of quantum mechanics.

3.2 Bell’s Inequality

The Bell inequality, formulated by physicist John Bell in 1964, is a fundamen-
tal concept in quantum mechanics that tests the difference between classical
and quantum predictions regarding correlations between distant particles.

Classically, under the assumption of local realism, the correlation between
measurements on two entangled particles cannot exceed a certain bound.
This bound is represented by the value 2. In other words, if the measurements
were purely classical and local, the correlation parameter S would satisfy
S ≤ 2.

Quantum mechanically, however, entangled particles can exhibit stronger
correlations that violate the classical bound predicted by local realism. Specif-
ically, quantum theory predicts that the maximum value of the correlation
parameter S can reach 2

√
2.

In the context of the Bell inequality, local realism refers to the idea that
physical properties of objects exist independently of observation (realism)
and that distant objects cannot instantaneously influence each other (local-
ity). The violation of the Bell inequality in quantum experiments implies
that at least one of these assumptions—locality or realism—is not valid in
the quantum realm.
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Experimental tests of the Bell inequality have consistently shown results
where the measured correlation parameter S exceeds the classical limit of
2, often approaching 2

√
2 [2]. This violation of the Bell inequality strongly

suggests that the correlations observed between entangled particles cannot
be explained by classical physics alone. Instead, it indicates the existence of
quantum entanglement, where particles can instantaneously influence each
other regardless of the distance between them, thus confirming the non-local
nature of quantum mechanics.

3.3 Principles of Quantum Computing

Building on these quantum mechanical principles, quantum computing lever-
ages the unique properties of qubits to perform computations in ways that
classical computers cannot. In classical computing, information is processed
using bits that are strictly 0 or 1. Quantum computing, however, uses qubits
that utilize superposition and entanglement to process information [3].

A quantum computer can perform many calculations simultaneously due
to the superposition of qubits. This parallelism allows quantum computers
to tackle complex problems more efficiently than classical computers. For
example, in a system with n qubits, a quantum computer can represent and
manipulate 2n states simultaneously, providing an exponential increase in
computational power.

Entanglement further enhances this power by allowing qubits to be in-
terdependent. Quantum gates, the building blocks of quantum circuits, ma-
nipulate qubits in ways that can create and utilize entanglement, enabling
complex operations that are infeasible for classical computers. These gates
are analogous to classical logic gates but operate on qubits through quantum
operations.

Moreover, quantum algorithms are specifically designed to exploit quan-
tum mechanical phenomena. Shor’s algorithm, for instance, can factor large
numbers exponentially faster than the best-known classical algorithms, pos-
ing a significant challenge to classical encryption methods. Similarly, Grover’s
algorithm provides a quadratic speedup for unstructured search problems,
showcasing the potential of quantum computing in diverse applications.

In summary, quantum computing is built on the principles of superposi-
tion and entanglement, utilizing these phenomena to perform computations
in fundamentally new and powerful ways. As research advances, quantum
computing holds the promise of revolutionizing fields from cryptography to
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material science, offering solutions to problems that are currently intractable
for classical computers.

Bloch Sphere

The Bloch sphere is a fundamental concept in quantum mechanics, providing
a geometric representation of the state of a single qubit in quantum comput-
ing [4].

The Bloch sphere, see Figure 1, maps these quantum states onto the
surface of a sphere. The north pole represents the state |0⟩, where the qubit
is certain to be measured as 0. The south pole represents the state |1⟩, where
the qubit is certain to be measured as 1. Points on the surface of the sphere
between these poles represent superpositions of |0⟩ and |1⟩, where the qubit
has probabilities of being measured as 0 or 1.

Figure 1: Bloch Sphere Representation

Quantum operations, such as rotations and transformations applied to
qubits, are represented as rotations of the Bloch vector around different axes
of the sphere. These operations are fundamental in quantum algorithms,
allowing manipulation of qubit states to perform computations.

The Bloch sphere not only serves as a visualization tool but also helps in
understanding the behavior of qubits under various quantum operations. It
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illustrates how quantum gates, like the Hadamard gate or phase gates, affect
the qubit’s state by altering its position on the sphere.

3.3.1 Quantum Gates

In classical computing, gates manipulate bits. Similarly, in quantum com-
puting, quantum gates manipulate qubits. However, unlike classical gates,
quantum gates can create superpositions and entanglements due to the prin-
ciples of quantum mechanics. Here are some of the most important quantum
gates:

• Pauli-X Gate
The Pauli-X gate is the quantum equivalent of the classical NOT gate.
It flips the state of a qubit:

X =

(
0 1
1 0

)
(5)

If a qubit is in state |0⟩, applying the X gate will change it to |1⟩, and
vice versa.

• Pauli-Y Gate
The Pauli-Y gate introduces a phase flip combined with a bit flip:

Y =

(
0 −i
i 0

)
(6)

This gate changes the state of the qubit and multiplies it by the imag-
inary unit i.

• Pauli-Z Gate
The Pauli-Z gate applies a phase flip to the qubit:

Z =

(
1 0
0 −1

)
(7)

This gate leaves |0⟩ unchanged but multiplies the |1⟩ state by −1.
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• Hadamard Gate
The Hadamard gate creates superpositions by transforming the basis
states:

H =
1√
2

(
1 1
1 −1

)
(8)

Applying the Hadamard gate to |0⟩ creates an equal superposition of
|0⟩ and |1⟩:

H|0⟩ = 1√
2
(|0⟩+ |1⟩) (9)

• Controlled-NOT (CNOT) Gate
The CNOT gate operates on two qubits, flipping the state of the second
qubit (target) if the first qubit (control) is in the state |1⟩:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (10)

• Toffoli Gate
The Toffoli gate, or CCNOT gate, is a three-qubit gate that flips the
state of the third qubit (target) if the first two qubits (controls) are in
the state |1⟩:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(11)

3.4 Current State of Quantum Computers

The current state of quantum computers is in a developmental phase known
as the Noisy Intermediate-Scale Quantum (NISQ) era. NISQ devices have a
limited number of qubits and are subject to significant errors due to noise and
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imperfections in quantum operations. Although they have shown great po-
tential, they are not yet capable of reliably performing complex calculations
on a large scale [5].

Currently, one of the main challenges in quantum computing is main-
taining qubit coherence and minimizing gate errors. Quantum systems are
highly sensitive to their environment, and even slight disturbances can cause
decoherence, leading to errors in computations. Additionally, implementing
error correction codes in quantum systems is still a significant hurdle due to
the overhead required in terms of additional qubits and operations.

Given these limitations, many quantum algorithms and experiments, in-
cluding those presented in this work, are executed using quantum simula-
tors rather than actual quantum hardware. Simulators allow researchers to
model and test quantum circuits with high fidelity, providing insights into
their behavior and performance without the noise and errors inherent in cur-
rent quantum hardware. Specifically, for this work, all experiments involving
parameterized rotational gates were conducted on simulators, as these oper-
ations are not yet feasible on current quantum computers.

All quantum circuits in this study were implemented using the PennyLane
library in Python. PennyLane provides a powerful framework for quantum
machine learning and quantum computing simulations, allowing researchers
to design, optimize, and evaluate quantum algorithms using various quantum
simulators and hardware platforms seamlessly.

In summary, while quantum computers hold immense promise, the tech-
nology is still in its early stages. Simulations play a crucial role in advancing
our understanding and development of quantum algorithms, paving the way
for future breakthroughs when more advanced and reliable quantum hard-
ware becomes available.

3.5 Measurement and Expected Value in Quantum Com-
puting

In quantum computing, measurement plays a fundamental role in extracting
information from quantum systems. Unlike classical systems where mea-
surements yield definite outcomes, quantum measurements are probabilistic
due to the principles of superposition and uncertainty inherent in quantum
mechanics.
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3.5.1 Measurement in Quantum Computing

Measurement in quantum computing refers to the process of determining the
state of a quantum system by performing a physical interaction that collapses
the quantum state into one of its basis states [6]. For a qubit, which can exist
in a superposition of states α|0⟩ + β|1⟩, measuring collapses the qubit into
either state |0⟩ or |1⟩ with probabilities |α|2 and |β|2, respectively. This
probabilistic nature arises from the Born rule in quantum mechanics, which
relates the probability of measurement outcomes to the magnitudes of the
probability amplitudes α and β.

In the context of the Bloch sphere representation, measurement can be
understood as projecting the quantum state vector onto one of the basis
vectors, analogous to taking the inner product or scalar projection of the
quantum state vector onto the measurement basis vector. This projection
is influenced by the quantum gates applied to the qubits during computa-
tion, such as controlled rotations, which manipulate the quantum state and
determine the probabilities of measurement outcomes. Consequently, the ex-
pected values obtained from measurement serve as the class labels for the
input data in quantum classification tasks.

3.5.2 Expected Value in Quantum Computing

The expected value in quantum computing refers to the average outcome
of a measurement performed on a quantum state. It is computed as the
sum of all possible measurement outcomes weighted by their probabilities.
Mathematically, the expected value ⟨Ô⟩ of an observable Ô in the quantum
state |ψ⟩ is given by:

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩ (12)

where ⟨ψ| denotes the bra vector conjugate of |ψ⟩. The operator Ô rep-
resents the observable quantity being measured.

In quantum algorithms, such as those used in quantum machine learning
or optimization tasks, computing the expected value of observables plays a
crucial role. It allows researchers to extract meaningful information about
the quantum state and to make decisions based on the outcomes of measure-
ments.

Measurement and expected value calculations are essential components
of quantum algorithms and protocols, enabling quantum computers to pro-
cess information and provide insights into complex systems that classical
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computers may struggle to analyze efficiently.
Let’s consider a specific example to illustrate this concept. Suppose we

have a qubit initially in the state |ψ⟩ = α|0⟩ + β|1⟩, where α and β are
complex numbers (probability amplitudes) such that |α|2 + |β|2 = 1. The
observable we want to measure is the Pauli-Z operator Z, represented in
equation 7 as:

Z =

(
1 0
0 −1

)
To find the expected value ⟨Z⟩ = ⟨ψ|Z|ψ⟩, we perform the following

calculations:
1. Compute ⟨ψ| (bra vector conjugate of |ψ⟩):

⟨ψ| = (α∗, β∗) (13)

where α∗ and β∗ are the complex conjugates of α and β, respectively.
2. Compute the product Z|ψ⟩:

Z|ψ⟩ = Z(α|0⟩+ β|1⟩) = αZ|0⟩+ βZ|1⟩ (14)

Z|0⟩ = |0⟩, Z|1⟩ = −|1⟩ (15)

Z|ψ⟩ = α|0⟩ − β|1⟩ (16)

3. Compute the inner product ⟨ψ|Z|ψ⟩:

⟨ψ|Z|ψ⟩ = (α∗, β∗)

(
1 0
0 −1

)(
α
β

)
(17)

Performing the matrix multiplication:

⟨ψ|Z|ψ⟩ =
(
α∗ β∗)( α

−β

)
(18)

⟨ψ|Z|ψ⟩ = α∗α + β∗β(−1) (19)

⟨ψ|Z|ψ⟩ = |α|2 − |β|2 (20)

Thus, the expected value ⟨Z⟩ represents the difference in probabilities of
measuring state |0⟩ and state |1⟩ in the quantum state |ψ⟩, reflecting the
superposition of |0⟩ and |1⟩ and the probabilities |α|2 and |β|2 associated
with each state.
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3.6 Background of Machine Learning: From Percep-
tron to Convolutional Neural Networks (CNNs)

Machine learning (ML) has evolved dramatically over the decades, beginning
with simple models and advancing to complex architectures that power to-
day’s AI systems. This journey can be traced from the development of the
perceptron to the sophisticated convolutional neural networks (CNNs) used
extensively in image and video recognition tasks.

3.6.1 The Perceptron: The Birth of Machine Learning

The perceptron, introduced by Frank Rosenblatt in 1958, is considered one
of the earliest models of machine learning. It is a type of linear classifier
that makes its predictions based on a linear predictor function combining a
set of weights with the feature vector. Essentially, a perceptron takes several
binary inputs, processes them through weighted sums, and passes the result
through an activation function (typically a step function) to produce a binary
output.

The simplicity of the perceptron model is both its strength and its limita-
tion. While it laid the foundation for later developments in ML, it could only
solve linearly separable problems. This limitation was highlighted by Minsky
and Papert in their book Perceptrons (1969), which slowed down research in
neural networks for several years.

3.6.2 Multilayer Perceptron (MLP): Introduction of Non-linearity

To overcome the limitations of the single-layer perceptron, researchers devel-
oped the multilayer perceptron (MLP). An MLP consists of multiple layers
of perceptrons (neurons), including an input layer, one or more hidden lay-
ers, and an output layer. The hidden layers enable the network to learn and
represent complex non-linear relationships in the data [7].

Each neuron in an MLP uses a non-linear activation function, such as
the sigmoid or tanh function, which allows the network to approximate any
continuous function. The introduction of backpropagation, a method for
training MLPs by efficiently computing gradients, further enhanced their ca-
pability and popularity. Backpropagation, proposed by Rumelhart, Hinton,
and Williams in 1986, enables the adjustment of weights in the network by
minimizing the error between predicted and actual outputs.
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3.6.3 Evolution to Deep Learning

As computational power and data availability increased, so did the depth
of neural networks. Deep learning, a subset of ML, involves training neural
networks with many layers, which can learn representations at multiple lev-
els of abstraction. Deep learning models have revolutionized various fields,
from natural language processing to computer vision, due to their ability to
automatically learn intricate features from raw data [8].

3.6.4 Convolutional Neural Networks (CNNs): A Leap in Image
Processing

Convolutional Neural Networks (CNNs) are a specialized kind of deep learn-
ing model designed to process data with a grid-like topology, such as images.
Introduced by Yann LeCun and his collaborators in the late 1980s and early
1990s, CNNs are particularly effective for image recognition and classification
tasks [9].

A CNN architecture typically includes several types of layers:

• Convolutional Layers: These layers apply a set of filters to the input
data to create feature maps. Each filter detects different features such
as edges, textures, or patterns. The convolution operation helps in
preserving the spatial relationship between pixels by learning image
features using small squares of input data.

• Pooling Layers: Pooling layers reduce the dimensionality of the fea-
ture maps, which decreases the computational load and helps in making
the detection of features invariant to small translations of the input.

• Fully Connected Layers: After several convolutional and pooling
layers, the high-level reasoning is done via fully connected layers, which
have connections to all activations in the previous layer, akin to tradi-
tional MLPs.

• Activation Functions: Non-linear activation functions such as ReLU
(Rectified Linear Unit) are used after convolutional and fully connected
layers to introduce non-linearity into the model, allowing it to learn
more complex functions.
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CNNs have demonstrated outstanding performance in various applica-
tions. Notably, in 2012, a CNN-based model called AlexNet won the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) by a significant
margin, which sparked widespread interest and further research in deep learn-
ing and CNNs.

In summary, machine learning has progressed from the simple perceptron
to complex deep learning models. Each advancement has built upon the
last, leading to the powerful convolutional neural networks that are integral
to modern AI systems, particularly in the field of image and video analysis.

3.6.5 Loss Functions in Machine Learning

In machine learning, loss functions play a crucial role in the training process
of models. They measure how well the model’s predictions match the actual
data, guiding the optimization process to minimize errors and improve per-
formance [10]. Two commonly used loss functions are Mean Squared Error
(MSE) and Cross-Entropy Loss.

The Mean Squared Error (MSE) is a loss function primarily used for
regression tasks. However, it can also be applied to classification problems,
especially when the output is a continuous value rather than a discrete class
label. It calculates the average squared difference between the predicted
values and the actual values. The MSE is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (21)

where yi represents the actual values, ŷi represents the predicted values,
and n is the number of data points. The MSE penalizes larger errors more
significantly than smaller ones due to the squaring of the differences, making
it sensitive to outliers.

Cross-Entropy Loss, also known as log loss, is widely used for classification
tasks. It measures the performance of a classification model whose output
is a probability value between 0 and 1. Cross-Entropy Loss increases as
the predicted probability diverges from the actual label. The formula for
Cross-Entropy Loss is:

Cross-Entropy Loss = − 1

n

n∑
i=1

C∑
c=1

yi,c log(ŷi,c) (22)
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where yi,c is a binary indicator (0 or 1) if class label c is the correct classi-
fication for observation i, ŷi,c is the predicted probability that observation i
is of class c, and C is the total number of classes. Cross-Entropy Loss ef-
fectively penalizes the model when it assigns low probabilities to the correct
class labels, thus encouraging the model to improve its probability estimates.

In summary, loss functions are essential components in machine learning
that quantify the difference between the predicted outputs and the true la-
bels. MSE is primarily useful for regression problems but can also be applied
to classification tasks, while Cross-Entropy Loss is preferred for classification
tasks. Both loss functions guide the optimization process to improve the
model’s accuracy and generalization capabilities.

3.7 Quantum Machine Learning

Quantum Machine Learning (QML) represents the intersection of quantum
computing and classical machine learning. It aims to leverage the principles
of quantum mechanics to enhance the performance of machine learning algo-
rithms. The potential of QML lies in its ability to process and analyze large
datasets more efficiently than classical computers by exploiting quantum phe-
nomena such as superposition, entanglement, and quantum parallelism [11].

3.7.1 Variational Quantum Circuits (VQCs)

At the heart of many QML algorithms are Variational Quantum Circuits
(VQCs), also known as parameterized quantum circuits. These circuits are
composed of a sequence of quantum gates whose parameters can be tuned to
optimize a certain objective function. The general workflow involves initial-
izing the parameters, running the quantum circuit, measuring the outcome,
and then using classical optimization techniques to adjust the parameters to
minimize or maximize the objective function.

VQCs are particularly powerful because they combine the strengths of
both quantum and classical computing. The quantum part of the compu-
tation can potentially explore the solution space more efficiently, while the
classical part handles the optimization, making the process manageable even
with current noisy intermediate-scale quantum (NISQ) devices.
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3.7.2 Quantum Gates and Rotation Gates

Quantum gates are the building blocks of quantum circuits. They are anal-
ogous to classical logic gates but operate on quantum bits (qubits). Some of
the most important quantum gates in VQCs are the rotation gates. These
gates perform rotations on the state of a single qubit around a specified axis
of the Bloch sphere.

• RX(θ) Gate: Rotates the qubit state around the X-axis by an angle
θ.

• RY(θ) Gate: Rotates the qubit state around the Y-axis by an angle
θ.

• RZ(θ) Gate: Rotates the qubit state around the Z-axis by an angle
θ.

These gates are parameterized by the angle of rotation, and adjusting
these angles allows for the fine-tuning of the quantum state during the opti-
mization process.

3.7.3 Parameter-Shift Rule

To optimize the parameters in a VQC, we need to compute the gradients
of the objective function with respect to the circuit parameters. One of the
methods used for this purpose in QML is the parameter-shift rule. This rule
provides an efficient way to calculate the derivative of the expectation value
of an observable with respect to a parameter of a quantum gate.

The parameter-shift rule for a parameterized gate U(θ) (such as a rotation
gate) is given by:

∂⟨Ô⟩
∂θ

=
⟨Ô⟩(θ + π

2
)− ⟨Ô⟩(θ − π

2
)

2
(23)

where ⟨Ô⟩(θ) is the expectation value of the observable Ô with the parameter
θ.

This rule works by evaluating the quantum circuit at two shifted param-
eter values, θ + π

2
and θ− π

2
, and then combining these results to obtain the

gradient. This approach is particularly advantageous in quantum computing
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because it avoids the need for finite-difference approximations, which can be
numerically unstable.

Quantum Machine Learning is an emerging field that seeks to harness the
power of quantum computing to solve complex machine learning problems.
By using variational quantum circuits, rotation gates, and the parameter-
shift rule, QML algorithms can efficiently explore and optimize high-dimensional
solution spaces. As quantum technology advances, QML holds the promise
of transforming various domains by providing unprecedented computational
power and speed.

4 State of the Art

The landscape of machine learning has been profoundly transformed by the
advent and evolution of Convolutional Neural Networks (CNNs). Since their
inception in the 1990s, CNNs have become a staple in deep learning due to
their unique ability to automatically and adaptively learn spatial hierarchies
of features from input data. This innovation, drawing inspiration from the
human visual system, has spearheaded advances in complex tasks such as
image and video recognition, computer vision, and facial recognition, setting
a benchmark in the field.

The problem of recognizing intrapulse signal modulation using Convolu-
tional Neural Networks (CNNs) and spectrograms has been extensively stud-
ied, yielding promising results. Various research efforts have demonstrated
the effectiveness of CNNs in accurately classifying different types of modu-
lation schemes from radar signals [12]. These studies utilize spectrograms
to convert time-domain radar signals into the frequency domain, allowing
CNNs to exploit their strong feature extraction capabilities. The combina-
tion of CNNs and spectrograms has shown high accuracy and robustness in
modulation classification tasks, highlighting its potential as a powerful tool
in radar signal processing.

Advancements in quantum computing have opened new views in machine
learning, leading to the development of Quantum Convolutional Neural Net-
works (QCNNs). The pioneering work by Cong, Choi, and Lukin in 2019 [13]
marked a significant step in this direction. Their QCNN model, designed for
binary classification tasks, utilized the principles of quantum computing to
efficiently handle input sizes of N qubits. This model showcased the poten-
tial of QCNNs in accurately recognizing quantum states associated with a
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1D symmetry-protected topological phase, demonstrating an edge over exist-
ing approaches. The QCNN model is based on the Multi-scale Entanglement
Renormalization Ansatz (MERA), a tensor network structure that effectively
captures entanglement at multiple scales. Cong and his team innovatively
used a reverse MERA structure, which processes information in a hierarchi-
cal manner, similar to how traditional convolutional neural networks down-
sample and then upsample data. This reverse MERA approach enables the
QCNN to efficiently compress and then reconstruct quantum information,
leading to enhanced performance in quantum state recognition tasks.

In a subsequent development, Henderson presented in 2020 a hybrid
model that combines the advantages of classical neural networks and the
unique capabilities of quantum circuits [14]. This model, referred to as Quan-
volutional Neural Networks (QNNs), integrates quanvolutional layers within
the traditional CNN architecture. These layers use random quantum circuits
to locally transform subsections of the input data, generating feature maps
that are integrated with the classical layers. This hybrid approach not only
improves the model’s accuracy in classification tasks but also accelerates the
training process, thus demonstrating a promising path for the use of quan-
tum computers in the near term, known as NISQ (Noisy Intermediate-Scale
Quantum) devices. In the context of Quantum Convolutional Neural Net-
works (QCNNs), the term hybrid refers to the integration of both quantum
and classical computing elements within a single machine learning model.
This integration can be realized in two primary ways: by combining quan-
tum and classical layers or by using quantum layers exclusively while em-
ploying classical methods for gradient calculation. Here, Henderson use the
first aproach.

Building on this foundation, subsequent studies elaborated by Chalumuri
et al. (2021)[15] and Bokhan et al.(2023) [16] extended the application of
QCNNs to multiclass classification problems. Chalumuri and colleagues pro-
posed a hybrid model using only quantum layers and observed improved
performance by incorporating ancillas. Ancillas are auxiliary qubits used to
encode additional information, enhanced the model’s ability to handle the
complexity of multiclass classification.

Meanwhile, Bokhan and his team proposed a robust model also employ-
ing ancillas, but they added Toffoli gates at the end of the circuit. This
approach allowed Bokhan’s model to achieve better performance compared
to Chalumuri’s model.

Recent studies have also focused on evaluating the performance of these
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quantum convolutional networks by integrating both quantum and classical
layers, particularly on datasets like MNIST, as discussed in [17].

Our research contributes to this evolving landscape by applying QCNNs
to a synthetic multiclass dataset of intrapulse signals. While previous works
have primarily tested their models on the MNIST dataset, we extend the
evaluation to a different dataset to explore the versatility of QCNNs. We fo-
cus on empirically analyzing various quantum architectures, assessing their
performance in this specific classification context. Our study, while not ad-
vancing theoretical aspects of quantum-enhanced machine learning, provides
a critical evaluation of existing QCNN models, offering insights into their
practical applications in sophisticated classification scenarios.

5 Data

5.1 Our Dataset

Intrapulse modulations are sophisticated variations within a radar pulse,
where the modulation can involve changes in frequency, phase, or amplitude
according to a specific, predefined pattern. These modulations are critical in
advanced radar systems as they enhance the system’s ability to detect and
characterize targets with higher resolution and accuracy. A spectrogram,
which is a visual representation of the spectrum of frequencies of a signal
as they vary with time, serves as an essential tool in analyzing these modu-
lations. It provides a two-dimensional depiction of the frequency spectrum
over the pulse duration, highlighting the temporal evolution of the signal’s
frequency content.

For this study, a simulator was utilized to generate a comprehensive syn-
thetic database of intrapulse modulations. The simulation parameters were
meticulously chosen to reflect realistic operational conditions. The sampling
frequency (fs) was set to 50 MHz to adequately capture the frequency dy-
namics of the modulations. The pulse width (ps) was configured at 50 mi-
croseconds (µs), a typical setting for many radar applications, allowing for
sufficient data collection without excessive signal loss. The signal-to-noise ra-
tio (SNR) ranged from -6 to 10 dB in 2 dB increments, providing a spectrum
of conditions from low to relatively high signal quality.

These modulations techniques are crucial in modern radar systems for
several reasons, enhancing the radar’s capabilities in various operational en-
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vironments. The types of modulations choosen for this study were this four,
represented in Figure 2:

• Linear Frequency Modulation (LFM): Linear Frequency Modula-
tion (LFM) involves varying the frequency of the radar signal linearly
over the pulse duration. Also known as chirp modulation, LFM im-
proves the radar’s range resolution and allows for better discrimination
between targets at different distances. By linearly sweeping the fre-
quency, it spreads the signal’s energy over a broader bandwidth, which
enhances the ability to resolve targets that are close together in range.
This type of modulation is particularly beneficial in environments where
high resolution is necessary to distinguish between closely spaced ob-
jects.

• Multi-Linear Frequency Modulation (MLFM): Multi-Linear Fre-
quency Modulation (MLFM) extends the concept of LFM by incorpo-
rating multiple linear frequency sweeps within a single pulse. This
approach allows for even finer resolution and better clutter rejection.
MLFM is effective in complex environments where multiple targets may
be present, as it helps in distinguishing between different objects by
providing a more detailed frequency signature.

• Quadratic Frequency Modulation (QFM): Quadratic Frequency
Modulation (QFM) involves a quadratic variation of the frequency over
the pulse duration. Unlike LFM, which varies the frequency linearly,
QFM uses a quadratic relationship, which can provide different reso-
lution and sidelobe characteristics. This type of modulation is useful
in scenarios where specific range and Doppler resolution characteris-
tics are required. QFM can also help in reducing the impact of range
sidelobes, improving target detection performance.

• Sinusoidal Frequency Modulation (SFM): Sinusoidal Frequency
Modulation (SFM) modulates the frequency of the radar signal in a
sinusoidal pattern within the pulse. This type of modulation is ben-
eficial for certain types of signal processing techniques, such as those
that exploit the periodic nature of the sinusoidal frequency variation.
SFM can be used to enhance the detection of certain types of targets
or to improve the radar’s resistance to certain types of interference and
jamming.
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For each type of modulation, 1800 unique spectrograms of size 16x16
pixels were generated, culminating in a total of 9000 images. The dataset
was systematically divided into training (70%), validation (10%), and testing
(20%) subsets. This structured partitioning facilitates rigorous model train-
ing and evaluation, ensuring that the quantum convolutional neural networks
developed can be thoroughly assessed across a variety of signal conditions.

(a) LFM (b) MLFM

(c) QFM (d) SFM

Figure 2: Different types of intrapulse signal modulations used to train the
models[12]. (a) LFM, (b) MLFM, (c) QFM, and (d) SFM.

5.2 Data Preprocessing and Quantum Encoding

The preprocessing of spectrograms in our study involves several crucial steps
to ensure the data is suitable for quantum computing applications. Initially,
each spectrogram undergoes normalization to scale the pixel values to a con-
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sistent range, typically between 0 and 1. This step is vital for maintaining
numerical stability and enhancing the effectiveness of the quantum models.

After normalization, each spectrogram undergoes a flattening process,
where the 2-dimensional spectrogram matrix is reshaped into a 1-dimensional
vector. In our specific implementation, this results in an input vector of
size 256. By flattening the spectrograms, we preserve the essential features
extracted during preprocessing while transforming the data into a format
that can be efficiently processed by both classical and quantum machine
learning models.

Following normalization, encoding in quantum computing refers to the
process of translating classical information into a format that can be pro-
cessed by a quantum computer. This is a fundamental step as it allows quan-
tum algorithms to leverage the inherent advantages of quantum mechanics,
such as superposition and entanglement. The choice of encoding method can
significantly influence the efficiency and success of quantum computations.

In the process of quantum encoding, a mapping from classical data to a
quantum state is performed through a unitary transformation Uϕ(x). This
mapping is expressed as x ∈ X → |ϕ(x)⟩ ∈ H, which is equivalent to applying
a unitary transformation Uϕ(x) to the initial state |0⟩n, where n is the number
of qubits.

Various techniques of quantum encoding offer specific approaches, as de-
tailed in the article “Quantum convolutional neural network for classical data
classification” by Hur, Kim, and Park (2022) [18]. In our study, the quantum
encoding technique employed for both quantum models is amplitude embed-
ding. This technique is particularly efficient for encoding high-dimensional
data into quantum circuits, leveraging the principle of superposition to rep-
resent a large amount of information within a quantum state. In amplitude
embedding, the classical data vector x = (x1, x2, . . . , xn) is normalized and
embedded into the quantum state |ψ⟩ such that:

|ψ⟩ =
n∑

i=1

xi|i⟩, (24)

where xi are the components of the classical data vector and |i⟩ represent
the basis states of the quantum system. This encoding process ensures that
the entire classical dataset can be efficiently transformed into a quantum
state, facilitating subsequent quantum operations and computations.
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6 Methodology

In this study, we explored three distinct architectures to evaluate their per-
formance on a synthetic dataset for intrapulse modulation classification. The
architectures include two fully quantum models and one classical model. The
quantum models employ purely quantum convolutional neural networks (QC-
NNs), designed to leverage the unique computational properties of quantum
mechanics. The classical model, a conventional convolutional neural network
(CNN), serves as a benchmark for comparison. Detailed descriptions of these
methodologies and their implementation will be provided in the following sec-
tions.

Given that the quantum circuits require the input spectrogram images to
be flattened into one-dimensional vectors, resulting in the loss of spatial in-
formation, we have chosen to compare the performance of the quantum con-
volutional neural networks (QCNNs) with a multilayer perceptron (MLP)
instead of a conventional convolutional neural network (CNN). This com-
parison is considered fairer as the MLP, like the quantum models, does not
inherently leverage spatial relationships in the data.

The workflow for the quantum circuits involves several key steps. First,
the spectrogram image is flattened into a one-dimensional vector. This vec-
tor is then encoded into a quantum state using appropriate quantum encod-
ing techniques. Once encoded, the quantum state is processed through the
quantum circuit. The expectation values of the ancilla qubits are measured
to match the target class in a one-hot encoding scheme, thereby facilitating
the classification task.

In contrast, the workflow for the classical model follows a similar pat-
tern but without the encoding and expectation value measurement phases.
The spectrogram image is flattened into a one-dimensional vector and passed
directly through the classical neural network. The output probabilities ob-
tained from the network are then used to determine the class.

This approach allows us to compare the performance of quantum and
classical models on the same classification task, providing insights into the
advantages or disadvantages of quantum computing for machine learning
applications.

26



6.1 Description of the First Approach: Cong’s Quan-
tum Convolutional Neural Network (QCNN)Model

The Quantum Convolutional Neural Network (QCNN) proposed by Cong,
Choi, and Lukin represents a pioneering approach in the realm of quantum
machine learning, particularly designed to leverage the principles of quantum
computing for enhanced performance in complex classification tasks. This
model extends the classical Convolutional Neural Network (CNN) framework
into the quantum domain, offering novel mechanisms for data processing and
pattern recognition through quantum circuits. A general scheme is presented
in Figure 3.

Figure 3: General scheme for Quatum Convolutional Neural Networks [18]

The final architecture implemented, represented in Figure 4, consists of 8
input wires and 4 ancilla wires. Each input wire corresponds to a qubit that
encodes the quantum state representation of an input image. Given that we
are using amplitude encoding for images of size 16 × 16, which require 256-
dimensional vectors, 8 qubits are employed to handle this high-dimensional
input data efficiently.

Additionally, there are 4 ancilla wires integrated into the circuit design,
corresponding to the number of classes in our classification task. Ancilla
qubits do not directly encode input data but interact with the data qubits
during quantum processing to aid in distinguishing between the different
classes. Their role is crucial in enhancing the measurement outcomes and
enabling multi-class classification capabilities within the quantum circuit.
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Figure 4: Architecture implemented in Pennylane

Key Components

1. Quantum Convolution Layer: The quantum convolution layer op-
erates similarly to its classical counterpart by detecting patterns in
input data, but it uses quantum gates to achieve this. These gates
are applied to pairs of adjacent qubits, transforming their state in a
manner analogous to how classical filters work on pixel values. This
quantum operation helps in identifying hidden states and extracting
relevant features from the input data, see Figure 5.

In our approach, convolutional layers have been implemented using the
U3 gate and Ising gates. The U3 gate is a fundamental single-qubit
gate in quantum computing, characterized by three parameters that
allow for arbitrary rotations of the qubit state around the Bloch sphere.
These parameters control the amplitudes and phases of the quantum
state, enabling precise manipulation and computation within quantum
circuits.

On the other hand, Ising gates in quantum computing refer to gates
that implement interactions similar to the Ising model from classical
physics. These gates are pivotal in quantum annealing and optimiza-
tion algorithms, where they model spin interactions between qubits.
Ising gates are particularly useful in quantum algorithms for addressing
combinatorial optimization problems and for implementing variational
quantum algorithms.

The utilization of U3 gates for rotational operations and Ising gates for
modeling interactions between qubits enables our quantum architecture
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Figure 5: Gates used for the convolutional layer in the first approach

to perform both precise single-qubit rotations and effective pairwise
qubit interactions. This combination supports the implementation of
quantum convolutional layers capable of extracting features and per-
forming computations crucial for quantum machine learning tasks.

2. Quantum Pooling Layer: The quantum pooling layer aims to reduce
the system’s dimensionality by selectively observing qubits or applying
specific quantum gates, such as controlled NOT (CNOT) gates. This
reduction process helps manage the data complexity and prevents over-
fitting, which is crucial for the scalability and efficiency of the model.
By reducing the number of qubits while preserving essential informa-
tion, the pooling layer mimics the down-sampling process in classical
CNNs.

In our case, we have implemented the pooling operation using a controlled-
U3 gate. This means that the U3 gate, is controlled by another qubit.
In quantum computing, a controlled gate operates on two qubits, where
the target qubit (in this case, the qubit undergoing the U3 gate oper-
ation) is only rotated if the control qubit satisfies a specific condition,
usually being in the state |1⟩. This controlled mechanism allows for
conditional operations based on the state of the control qubit, provid-
ing a way to selectively apply transformations and manage information
flow within the quantum pooling layer.

3. Fully Connected Layer: After the data has been processed and
reduced through the convolution and pooling layers, the fully connected
layer is responsible for the final classification task. This layer uses
a quantum circuit to process the extracted features and predict the
output class, similar to the final layers in classical neural networks.

In our implementation, we utilized the PennyLane library’s Strongly
Entangling Layers module for the fully connected layer. This module
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implements a sequence of alternating layers of single-qubit rotations
and entangling gates, such as CNOT gates, across all qubits in the
circuit. The entangling gates ensure that each qubit becomes entangled
with every other qubit in the circuit, fostering strong correlations across
the quantum state space.

4. Integration of Ancillas: In our endeavor to achieve multi-class clas-
sification using quantum circuits, the integration of ancillas plays a
crucial role. Ancillas are additional qubits not directly encoding input
data, interact with data qubits during quantum operations. They fa-
cilitate the manipulation of quantum states and enable measurements
that can differentiate between multiple classes more effectively than
using only data qubits.

The integration of ancillas into quantum circuits for multi-class classifi-
cation is achieved through Controlled-NOT (CNOT) gates, as described
in [15], see Figure 6. These gates entangle ancillas with data qubits,
allowing ancillas to influence and interact with the quantum state dur-
ing computation. This integration enhances the quantum classifier’s
ability to classify multiple classes accurately.

Figure 6: Ancillas mechanism used in the first approach

The QCNN offers several advantages: it operates with logarithmic depth
(O(log(n))), making it significantly more efficient than classical CNNs, which
require quadratic operations; its design is well-suited for implementation on
current small-scale quantum computers and is expected to scale with ad-
vancements in quantum computing technology; and it incorporates Quantum
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Error Correction (QEC) techniques to handle errors inherent in quantum
computing, enhancing the model’s reliability and accuracy.

6.2 Description of the Second Approach: Bokhan‘s
Architecture

The second model employs a quantum architecture that utilizes Toffoli gates,
which are essential for implementing controlled-controlled operations in quan-
tum computation. We use the architecture proposed by Bokhan, Mastiukova,
Boev, Trubnikov, and Fedorov (2022) [16]. This model focuses on leverag-
ing the capabilities of Toffoli gates to enhance the classification process in
quantum neural networks. Initially, the input classical data is encoded into
quantum states, preparing them for processing within the quantum circuit.
The quantum state preparation involves transforming the classical data into
quantum form using appropriate encoding schemes. Once the data is en-
coded, the architecture processes it through several stages of quantum gates
and operations.

Figure 7: General architecture proposed by Bokhan in [16]

In Figure 7, the global architecture scheme as explicitly detailed in the
original paper is presented. The architecture consists of the following key
components:

1. Preliminary Scanning using n-Qubit Filters: The preliminary
scanning layer in our architecture utilizes n-qubit filters to enhance
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the flexibility and accuracy of the learning algorithm. Specifically, for
4-qubit filters, the structure involves the application of rotation gates
RY (θ1), RY (θ2), RY (θ3), and RY (θ4) to individually rotate each of the
four qubits. This is followed by controlled parameterized rotations
RY (ϕ) for entanglement. The parameterized entanglement scheme is an
essential new element in the quantum perceptron structure, providing
higher accuracy in image classification by allowing more flexible adjust-
ments to the degree of entanglement. Unlike the standard controlled-
X gates used in previous works, the approach with parameterized RY

gates enables better control over the non-linearities in the learning pro-
cess, akin to classical activation functions. By transitioning from sepa-
rable (non-entangled) to entangled states, the quantum system mimics
the role of non-linearities in classical learning, thereby improving the
overall classification accuracy. This initial scanning with 4-qubit filters
sets the stage for subsequent detailed analysis with smaller-scale filters,
progressively refining the quantum feature map.

2. Quantum Convolutional Neural Network Layer with Pooling:
Following the preliminary scanning, the quantum state undergoes fur-
ther processing with convolutional layers that include pooling mecha-
nisms to distill essential features from the quantum-encoded data. The
quantum state of 8 qubits, containing encoded feature maps after the
preliminary scanning step, is analyzed in detail by the next layer (see
Figure 7). The role of this layer is to extract and prioritize the most
significant features from the feature maps. Specifically, in the pooling
circuit of Figure 8, a controlled RZ rotation is activated if the first
qubit is in state 1, while a controlled RX gate is used when the upper
qubit is in state 0. These mechanisms allow the quantum convolu-
tional layers to effectively distill essential information and enhance the
discriminative power of the model.

Figure 8: Pooling mechanism using in Bokhan model
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3. Regular Layers: The architecture incorporates several regular layers
after the convolutional layers, enhancing the quantum network’s capa-
bility to capture detailed patterns and information from the input data.
Similar to the classical convolutional neural network (CCNN) approach,
our architecture includes 8 additional layers, as depicted in Figure 9.
These layers play a crucial role in refining the quantum states further
to extract more accurate results. Following individual rotations, dou-
ble entanglement procedures are introduced to increase the complexity
and discriminatory power of the quantum network. This involves im-
plementing entanglement operations between qubits twice within the
circuit, akin to the strategy employed in classical CNNs to enhance
feature extraction.

Additionally, after the convolutional layers, two pooling procedures are
applied to reduce the number of qubits in the circuit and refine the
quantum feature map. The final filter added at the end of the quantum
circuit is instrumental in structuring the network to achieve the desired
classification outcomes. These architectural enhancements ensure that
the quantum network not only processes but also refines and extracts
intricate features from the quantum-encoded data, thereby improving
its ability to perform accurate and discriminating classifications.

Figure 9: One regular layer used stacked in the final model

4. Toffoli and Controlled Rotation Gates: The final layers involve
the application of Toffoli gates (controlled-controlled-NOT gates) and
other controlled rotation gates. These gates are crucial for performing
complex controlled operations necessary for the classification process.
The Toffoli gate implementation involves decomposing the gate into
two-qubit operations to facilitate practical execution on current quan-
tum hardware, but it’s equivalent to the mechanism shown in Figure
10.
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Figure 10: Toffoli gates mechanism proposed by Bokhan in [16]

5. Measurement: The quantum state is eventually measured, collapsing
it into a classical state. The measurement results correspond to the
expected values of each qubit, which are interpreted as the class labels
for the input data, concluding the classification process.

By incorporating Toffoli gates, the architecture ensures that the final deci-
sion is made through controlled interactions between multiple qubits, enhanc-
ing the model’s capability to handle complex multiclass classification tasks.
This model, grounded in quantum convolutional principles and enriched by
the sophisticated logic operations of Toffoli gates, demonstrates robust and
accurate classification results, particularly for tasks requiring high precision
and the handling of intricate data patterns.

6.3 Description of a Classical Approach: Simple Mul-
tilayer Perceptron (MLP)

The classical model used in our study is a simple Multilayer Perceptron
(MLP). This model serves as a benchmark to compare the performance of
quantum models.

The MLP follows a straightforward data flow, described in figure 11:
the input is passed through the first dense layer, followed by activation and
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dropout, and then through the second dense layer to produce the final output.
This architecture allows us to evaluate basic performance and establish a
baseline for comparison with more complex quantum models.

Figure 11: Architecture of the classical model used for comparison. One
hidden layer with two neurons and the final layer with four neurons
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7 Results

Now, we turn our attention to the presentation of our results. This section
will detail the outcomes of our experiments, comparing the performance of
quantum and classical machine learning models in the task of classifying
spectrogram data. We aim to discuss the relative strengths and weaknesses
of each approach, providing a comprehensive understanding of their capa-
bilities and potential applications. All evaluations and metrics have been
calculated using the test dataset to ensure an unbiased assessment of model
performance.

7.1 Evaluation Metrics

To evaluate the performance of our models, we use three key metrics: accu-
racy, macro F1 score, and the confusion matrix.

Accuracy is the ratio of correctly predicted instances to the total in-
stances in the dataset. It is a simple and intuitive metric to understand the
overall effectiveness of the model. Mathematically, accuracy is defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(25)

This metric provides a direct measure of how often the model’s predictions
are correct.

We also use the F1 score to assess our model. The macro F1 score is the
harmonic mean of precision and recall, calcu- lated for each class individually
and then averaged. The formula for the F1 score is shown in equation 26.
This metric provides a balanced measure of performance across the different
classes, taking into account both precision and recall.

F1 = 2 · Precision · Recall
Precision + Recall

(26)

Precision is the number of true positive results divided by the number
of all positive results, including those not correctly identified. It measures
the accuracy of the positive predictions made by the model. The formula for
precision is:

Precision =
True Positives

True Positives + False Positives
(27)
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Recall is the number of true positive results divided by the number of
positives that should have been identified. It measures the ability of the
model to find all the relevant cases within a dataset. The formula for recall
is:

Recall =
True Positives

True Positives + False Negatives
(28)

The confusion matrix is a table used to describe the performance of a
classification model on a set of test data for which the true values are known.
It provides detailed insights into not only the errors being made by a classifier
but also the types of errors. Each row of the matrix represents the instances
in an actual class, while each column represents the instances in a predicted
class. The diagonal elements represent the number of instances for which the
predicted label matches the true label, while off-diagonal elements represent
misclassifications as shown in Figure 12.

Figure 12: Generic example of the Confusion Matrix
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7.2 Cong’s Quantum Convolutional Neural Network

The QCNN model proposed in Section 6.1, following the architecture of Cong
and incorporating the ancillas from Chamuri, has a total of 204 trainable
parameters. To train this model, the following hyperparameters were used:
a learning rate of 0.001, a batch size of 8, and 60 epochs. The training process
took 43 hours, using Mean Squared Error (MSE) as the loss function.

With these settings, the model achieved an accuracy of 0.692 and a
macro F1 score of 0.678. Although the performance is modest, these results
demonstrate that the model is capable of learning certain patterns in the
images.

To further illustrate the performance of the QCNN model, the confusion
matrix shown in Figure 13 provides a detailed view of the model’s classifica-
tion results. The confusion matrix highlights how well the model classified
each class and where it made errors, offering insights into specific areas where
the model could be improved.

Figure 13: Confusion Matrix of the first quatum model
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7.3 Bokhan‘s Architecture

The QCNN model proposed in Section 6.2, following the architecture by
Bokhan that uses Toffoli gates to integrate ancillas, consists of a total of 272
trainable parameters. To train this model, the following hyperparameters
were employed: a learning rate of 0.001, a batch size of 32, and 100 epochs.
The training process took 45 hours, using Mean Squared Error (MSE) as the
loss function.

Under these settings, the model achieved an accuracy of 0.7639 and a
macro F1 score of 0.7582. Although there is still room for improvement,
these results surpass the performance of the previous model, demonstrating
that the QCNN is capable of learning more complex patterns in the data.

To further illustrate the performance of the QCNN model, the confusion
matrix shown in Figure 14 provides a detailed view of the model’s classifica-
tion results. The confusion matrix highlights how well the model classified
each class and where it made errors, offering insights into specific areas where
the model could be improved.

Figure 14: Confusion Matrix of the second quatum model
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7.4 MLP Architecture

The MLP model proposed in Section 6.3 consists of a total of 526 trainable
parameters. To train this model, the following hyperparameters were em-
ployed: a learning rate of 0.0001, a batch size of 64, and 500 epochs. The
training process took 2 minutes, using MSE Loss as the loss function.

Under these settings, the model achieved an accuracy of 0.718 and a
macro F1 score of 0.696. These results demonstrate a reasonable level of
performance given the simplicity of the model, showing that the MLP is
capable of recognizing certain patterns in the images.

To further illustrate the performance of the MLP model, the confusion
matrix shown in Figure 15 provides a detailed view of the model’s classifica-
tion results. The confusion matrix highlights how well the model classified
each class and where it made errors, offering insights into specific areas where
the model could be fine-tuned for even better performance.

Figure 15: Confusion Matrix of the second quatum model
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8 Final Discussion

In Table 1, a summary of results is presented, comparing not only accuracy
but also the number of parameters and computational time. While the MLP
performed worse than the quantum model in this instance, it is noteworthy
that the MLP is designed with simplicity in mind for a fair comparison
with quantum models. Although modern convolutional neural networks can
achieve accuracies above 0.9 [12], particularly on synthetic datasets, such
comparisons would not be equitable with quantum models.

Regarding the performance of quantum models, they demonstrate capa-
bility in learning patterns. However, due to the use of simulators, train-
ing times are notably prolonged. These algorithms necessitate training in
a simulator to infer on quantum computers. Nonetheless, the current state
of quantum computers does not yet allow for the implementation of mod-
erately complex models. The precise adjustment of rotational gate angles
remains practically unachievable, making it impractical to test models in-
volving nearly 300 rotational gates.

In summary, variational quantum circuits exhibit potential for learning
specific patterns. However, the practical application for tasks like image
processing or problems requiring classical input-output remains uncertain.
These algorithms may find future utility as tools for conducting quantum
experiments related to research, where the inputs and outputs are purely
quatum.

Model Accuracy Nº de Params Comp. Time
First Quantum Model 0.692 204 43 hours
Second Quantum Model 0.764 272 42 hours

Classical Model 0.718 526 4 mins

Table 1: Accuracy results for the different models used in our study, along
with number of parameters and computation time.
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9 Conclusion

9.1 Work Review

In conclusion, we can state that the objectives set for this study have been
successfully achieved:

Firstly, we designed and implemented a quantum circuit capable of han-
dling image data. This was accomplished by developing a sophisticated quan-
tum architecture that integrates various quantum gates and layers, allowing
for the effective encoding and processing of image information.

Secondly, we trained the quantum circuit using a dataset of intrapulse
spectrograms. By employing appropriate training algorithms and optimizing
hyperparameters, we ensured that the quantum model could learn and adapt
to the specific patterns present in the spectrogram data.

Thirdly, we evaluated the performance of the quantum circuit in terms
of accuracy and efficiency. The assessment was conducted by measuring
key performance metrics, such as accuracy and macro F1 score, as well as
considering the computational time required for training.

Finally, we compared the results with classical machine learning ap-
proaches to highlight potential advantages and limitations of quantum meth-
ods. Despite the simplicity of the classical MLP model used for comparison,
the quantum models demonstrated comparable performance, illustrating the
potential of quantum computing in pattern recognition tasks. However, the
high computational cost and current limitations of quantum hardware were
also noted.

Overall, these achievements demonstrate the feasibility and potential of
using quantum circuits for image data processing.

9.2 Contributions to the United Nations Sustainable
Development Goals

This research contributes to the advancement of several United Nations Sus-
tainable Development Goals (SDGs) by leveraging quantum computing and
machine learning techniques to address complex problems. The primary
SDGs impacted by this work include:

• SDG 4: Quality Education
The development and dissemination of quantum computing technolo-
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gies and methodologies can play a crucial role in enhancing educa-
tion quality. By integrating advanced topics such as quantum machine
learning into academic curricula, we can provide students with cutting-
edge knowledge and skills. This fosters a more informed and skilled
workforce, capable of driving innovation in various sectors.

• SDG 9: Industry, Innovation, and Infrastructure
Our work on Quanvolutional Neural Networks (QNNs) and their ap-
plication in classification tasks exemplifies the spirit of innovation and
the development of resilient infrastructure. By exploring the potential
of quantum computing, we contribute to the creation of new techno-
logical paradigms that can lead to more efficient industrial processes
and advanced scientific research capabilities.

• SDG 11: Sustainable Cities and Communities
The advancements in quantum computing and machine learning have
the potential to transform urban development and management. For
instance, improved data processing and analysis can enhance smart city
initiatives, optimize resource allocation, and improve urban planning.
Our research into sophisticated classification algorithms can be applied
to various urban data analytics tasks, contributing to the development
of more sustainable and efficient cities.

• SDG 13: Climate Action
By harnessing the computational power of quantum computers, we can
better model and understand complex climate systems. This can lead
to more accurate climate predictions and effective strategies for miti-
gating climate change. Our study, which focuses on the practical appli-
cations of quantum machine learning, contributes to the broader effort
of developing tools and technologies that can address environmental
challenges.

• SDG 17: Partnerships for the Goals
The interdisciplinary nature of quantum computing research fosters
collaboration across various fields, including computer science, physics,
and engineering. By engaging in collaborative research efforts, we sup-
port the development of global partnerships aimed at solving complex
problems. Our work demonstrates the importance of cross-disciplinary
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and international cooperation in advancing technological frontiers and
achieving sustainable development.

10 Future Research Lines

The future of quantum computing holds immense promise. As advancements
continue, several key areas are expected to shape the development and ap-
plication of quantum technologies.

Firstly, the future of quantum computers is highly anticipated to be dom-
inated by advancements in photonic quantum computing [19]. Photonic
quantum computers use photons as the fundamental unit of information,
leveraging the unique properties of light to perform complex computations.
These systems offer significant advantages in terms of speed and scalability,
as photons can interact with each other in ways that can be harnessed for
efficient quantum operations. As research progresses, we can expect photonic
quantum computers to play a crucial role in overcoming current limitations
related to qubit coherence and error rates.

In the specific context of Quantum Machine Learning (QML), the po-
tential applications are vast and varied. QML can revolutionize fields such
as cryptography, optimization, and materials science by providing compu-
tational capabilities far beyond those of classical systems. For instance,
QML algorithms can be utilized to enhance cryptographic protocols, making
them more secure against potential quantum attacks. Similarly, optimization
problems that are intractable for classical computers can be tackled more effi-
ciently with quantum approaches, benefiting industries ranging from logistics
to finance.

Moreover, QML has the potential to significantly impact the field of ar-
tificial intelligence (AI). By leveraging the principles of quantum mechanics,
QML algorithms can explore vast solution spaces more effectively, leading to
improved performance in tasks such as image recognition, natural language
processing, and generative modeling. This convergence of quantum com-
puting and AI could pave the way for the development of highly advanced
intelligent systems.

In practical applications, quantum computing is poised to make signif-
icant contributions to areas such as drug discovery, climate modeling, and
financial modeling. For example, quantum computers can simulate molecular
interactions at an unprecedented level of detail, accelerating the discovery of
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new pharmaceuticals and materials. In climate modeling, the ability to pro-
cess and analyze vast amounts of data with high precision can lead to more
accurate predictions and better strategies for mitigating climate change. In
finance, quantum algorithms can optimize trading strategies, risk assessment,
and portfolio management, providing a competitive edge in the market.

In the realm of research, quantum computing opens up new frontiers for
scientific exploration. Researchers can use quantum systems to simulate com-
plex physical processes, gain deeper insights into quantum mechanics, and
develop new theories that were previously unattainable. Additionally, quan-
tum computing can facilitate experiments in quantum physics, enabling the
observation and manipulation of quantum phenomena with unprecedented
precision.

However, it is important to acknowledge the critical arguments and chal-
lenges facing quantum computing. One major concern is the issue of error
rates and qubit coherence. Quantum systems are highly susceptible to de-
coherence and noise, which can lead to errors in computations. Developing
robust error correction methods and improving qubit stability are essential
for the practical implementation of quantum computers. Additionally, the
current limitations of quantum hardware, such as the difficulty in scaling up
the number of qubits, the precision required for quantum gate operations
and the large times of computing in sumulators, present significant hurdles
that need to be addressed.

Overall, the future of quantum computing is incredibly promising, with
significant advancements expected in both the technology itself and its wide-
ranging applications. As quantum hardware continues to evolve and QML
algorithms become more sophisticated, we can anticipate groundbreaking
discoveries and innovations that will transform numerous industries and sci-
entific disciplines.
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