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Abstract
In recent years, artificial intelligence has seen promising applications in healthcare.

From medical image processing to electronic health record analysis, the proliferation

of multiple approaches to AI may help improve healthcare. This is particularly

important in neonatal intensive care units (NICUs), where timely interventions are

critical to the health status of newborns and the amount of real-time information is

immense. This project provides a systematic review of 41 papers on ai, big data, and

the NICU, highlighting the transformative potential of AI in the NICU and its critical

role in shaping the future of neonatal care, while pointing out that challenges such as

data privacy, algorithmic interpretability, and ethical considerations must be addressed

to responsibly deploy AI in neonatal care. Meanwhile, this project retrospectively

analyzed the physiological data of 114 preterm infants from La Fe University and

Polytechnic Hospital de Valencia using the Kmeans clustering algorithm for

unsupervised learning. After preprocessing and bivariate analysis, five features were

selected for clustering in three groups, which resulted in an optimal profile coefficient

of 0.86. Clustering results demonstrate the feasibility of predictive analysis of preterm

infant physiologic data to aid physicians in making medical judgments, laying the

groundwork for further clinical validation in a controlled operational environment.
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摘要

近年来，人工智能在医疗保健领域的应用前景广阔。从医学图像处理到电子健康

记录分析，多种人工智能方法的涌现可能有助于改善医疗保健。这一点在新生儿

重症监护室（NICU）尤为重要，因为及时干预对新生儿的健康状况至关重要，

而且实时信息量巨大。本项目对 41 篇有关人工智能、大数据和新生儿重症监护

室的论文进行了系统综述，强调了人工智能在新生儿重症监护室中的变革潜力及

其在塑造新生儿护理未来中的关键作用，同时指出要在新生儿护理中负责任地部

署人工智能，必须应对数据隐私、算法可解释性和伦理考虑等挑战。与此同时，

该项目采用无监督学习的 Kmeans聚类算法，对来自拉费大学-瓦伦西亚理工医院

的 114名早产儿的生理数据进行了回顾性分析。经过预处理和双变量分析，选择

了五个特征进行聚类，分为三组，得出最佳剖面系数为 0.86。聚类结果证明了

对早产儿生理数据进行预测分析以帮助医生做出医疗判断的可行性，为在受控操

作环境中进一步进行临床验证奠定了基础。

关键词

早产儿、新生儿重症监护室、血气分析、机器学习、无监督学习、聚类、K-Means



Chapter 1: Introduction

1.1 Background Information

1.1.1 AI in Neonatal Care: Transforming NICUs

Artificial intelligence (AI) stands out as one of the most revolutionary technologies

since the industrial revolution. Its impact extends across various sectors, reshaping

personal and professional interactions and facilitating significant advancements. One

area where AI is particularly significant is healthcare, especially in pediatrics and the

neonatal intensive care unit (NICU), which stands as a critical service for newborn

infants facing life-threatening conditions.

As a specialized unit within hospitals, NICUs provide comprehensive medical care

and support to newborns who require intensive monitoring, treatment, and nurturing

during the fragile early stages of life. One of the primary roles of the NICU is to cater

to the needs of premature infants, who are born before completing a full term of

gestation, usually a gestational age between 25-26 weeks and birth weights under 2.5

Kg. Premature birth, a significant global health issue, exposes infants to a myriad of

health risks and complications, ranging from respiratory distress syndrome to

neurological disorders. The NICU serves as a lifeline these patients, offering

trans-specialty advanced medical interventions, respiratory support, and real-time

physiological monitoring to optimize their chances of survival and promote a safe

development.

The NICU serves as a hub of expertise, where skilled healthcare professionals

collaborate to provide tailored treatment plans, rehabilitation services, and

family-centered support to ensure the best possible outcomes for every patient. In this

context AI expands traditional NICU healthcare allowing to extract information to

support real-time decision-making and clinical intervention.



AI has been implemented in healthcare over a wide typology of clinical applications,

for example, from molecular and genetic testing to medical images of different

modalities, diagnostic codes and social media. The ultimate goal of AI is to learn and

identify associations between data and outcomes of interest. AI needs data generated

from healthcare activities such as diagnosis, treatments and follow-up to develop, test

and validate algorithms. Digitalized data in healthcare is available in a wide range of

formats, including structured and non-structured schemas. AI involves a wide variety

of methods that excel traditional statistical techniques and can find patterns that

support the process of decision making as well as the formulation of hypotheses. AI

can provide powerful tools to automate tasks and to support and inform pediatricians,

nurses and other specialists.

1.1.2 Oxygenation in the Neurological Development of the Neonate

Oxygenation is a vital physiological process that refers to the transfer of oxygen from

the respiratory system to the bloodstream and ultimately to the individual cells of the

body. This process is fundamental and necessary for all oxygen-dependent life forms.

In the human body, oxygenation occurs primarily through the lungs, where oxygen

passes through the alveoli and binds to haemoglobin in the red blood cells of the

bloodstream, which subsequently transports the oxygen to all parts of the body to

support metabolic activity and energy production in the cells. Proper oxygenation is

essential for maintaining cellular function, organ health, and overall life activity.

Inadequate or excessive oxygenation can lead to disease or health problems. For

example, hypoxaemia (insufficient oxygen in the blood) may lead to organ

dysfunction and cell death, while oxygen toxicity (excessive oxygen intake) may

damage the lungs and central nervous system[10]

The monitoring and adjustment of oxygenation is particularly important in specific

clinical situations, such as the management of premature infants in neonatal intensive

care units. Healthcare professionals must precisely control the supply of oxygen to

ensure that it neither leads to insufficient oxygen nor causes oxygen toxicity, thus



minimizing potential negative effects on the patient's health.[12]

Oxygenation is critical to the development of the newborn's nervous system as it

directly affects the function and structure of the brain. Newborns, especially

premature babies, whose nervous systems are not yet fully developed, are very

sensitive to oxygen levels. Proper oxygenation promotes the growth and

differentiation of brain cells and contributes to the healthy development of the

nervous system. However, oxygen levels that are too high or too low can have a

detrimental effect on the brain. Excessive oxygen levels may lead to oxygen toxicity,

affecting brain development and even leading to permanent brain damage. Conversely,

insufficient oxygen may lead to hypoxia in brain tissue, affecting the normal function

and development of nerve cells. Therefore, in the care of newborns, especially

preterm infants, the maintenance of appropriate oxygenation levels is essential to

promote healthy maturation of the nervous system[11].

1.2 System Review of Former Studies

1.2.1 Methods

Search Strategy

A systematic literature search was conducted on clinical trials on NICU involving AI

techniques using 4 electronic databases: Cochrane, PubMed, Scopus and IEEE Xplore

using the following search queries (consider Appendix).

Inclusion and Exclusion Criteria

We specified 3 exclusion and 3 inclusion criteria for screening. Records were not

selected if they (i) did not include trials conducted in the NICU, (ii) did not describe

data modelling or (iii) did not present clinical outcomes. Besides, records in other

language than English and published more than 10 years ago were excluded as well.

In the final eligibility assessment, the following inclusion criteria were specified to

limit the scope of the review: (i) the studies must be defined as retrospective or



prospective trials, (ii) they must define specific clinical outcomes in the NICU, and

(iii) they must describe the methodology of data modelling and the sources of the data.

These criteria were designed to evaluate the researching lines in NICUs in the last 10

years, which include the democratization of frameworks and tools for AI application.

Figure1_ paper funneling

Selection Process

Figure 1 shows the flow diagram of the selection process. Records from the scientific

literature were identified in the 4 databases defined in Table 1. The resulting data sets

were combined in an Excel spreadsheet (.xlsx), rearranged by DOI, and checked for

possible erroneous entries. Duplicated records were assessed by comparing DOI

names and titles of the publication. The results were manually reviewed to correct

minor errors due to misspellings of DOI or the title in the record database. The

eligibility criteria for inclusion were then manually evaluated by title and abstract of

each record, and selected records were sought for retrieval. Retrieved records were

fully screened and were dismissed if they did not meet the inclusion criteria or met the

exclusion criteria. Finally, data and details were extracted for included AI studies.

Data Extraction

Based on the selected records, a total of 12 categories and 40 data indicators we

reported . These indicators were adapted from the CHARMS (Critical Appraisal and

Data Extraction for Systematic Reviews of Prediction Modelling Studies) guideline

[13]. Additionally, publication-related data such as author(s), title, journal, year of

publication, and DOI were collected for analysis purposes.

The categories were designed to assess various aspects, including the objective of the

clinical trial and AI, the accessibility and quality of the data development process, the

methodology employed in designing and developing the AI model, the obtained

results, and the discussion provided in the report. These categories not only aimed to



detail the characteristics of the AI models but also to evaluate the differences and

connections between trial design, data collection, and AI implementation.

1.2.2 Data Analysis

In order to gain a deeper understanding of existing research and trends, we conducted

extensive data analysis using Python scripts.Python, as a powerful programming

language with rich data science libraries (such as Pandas, NumPy, and Scikit-learn)

enabled us to efficiently process and analyse complex healthcare datasets, thereby

identifying key trends and patterns .

Although Python is very powerful for data processing and analysis, to manage and

review preliminary data we also utilised the convenience of Excel, whose intuitive

interface and flexible data collation features made preliminary data cleaning and

simple analysis easy and efficient.

For data visualisation, the Draw.io and SankeyMatic tools, as well as Excel's charting

capabilities, were used to present the results of the study.Draw.io was used to create

flowcharts and framework diagrams that clearly show the different stages and key

points of the application of AI in the NICU.SankeyMatic, a dedicated Sankey diagram

generation tool, was used to visualise data flows and transformation paths. This type

of diagram played an important role in explaining how AI could improve the process

of preterm care. Finally, Excel's charting tools were used to generate standard

statistical charts such as pie charts, and bar charts, which visualise key statistical

results and trends.

By using a combination of Python, Excel, Draw.io and SankeyMatic, this study not

only analysed a large amount of complex data in depth, but also presented the

findings in a clear and professional manner. The combined use of these tools not only

enhanced the accuracy and transparency of the study, but also increased its

replicability and accessibility, thus ensuring that the findings are of significant value

to both academia and clinical practice.



1.2.3 Results

Articles Identified From the Database Searching:

The search identified 318 records, all published in English. Excluding 61 duplicates,

257 articles were screened by the eligibility criteria based on the title and abstract.

The screening process concluded with 193 records excluded for not meeting the

exclusion criteria. Thus, 64 records were assessed for eligibility. Of these, and 23

were excluded due to not being identified as a retrospective or prospective trial (n=9),

lacking a complete description of methods and/or data sources (n=7), or not defining a

specific clinical outcome in NICU (n=10). Therefore, a final set of 41 records were

selected for further data analysis.

Clinical/AI Applications:

The main health areas covered by the selected studies included Cardiovascular

conditions (n=9, 21.9%) (references), Digestive functions (n=2, 4.9%), Infections

(n=6, 14.6%), Microvascular diseases (n=1, 2.4%), Neural/Brain conditions (n=8,

19.5%), and Respiratory difficulties (n=8, 19.5%). Another fraction of 6 studies were

focused on clinically relevant parameters other than the aforementioned areas, such as

body positioning or monitoring systems, and were thus classified under the Not

Disease category. Finally, only 1 study was focused on prediction of Mortality (2.4%)

Studies were also classified according to the intended use of the AI modelling in their

respective applications at NICUs (figure 2). The most common category was studies

for Prognosis (n=23, 56.1%), which included studies from all previously defined

health areas except for Microvascular area, followed by Classification (n=14, 34.1%),

Monitoring (n=5, 12.2%), and Forecasting symptoms (n=1, 2.4%).



Figure2_ 2. Applications of AI in NICUs

Characteristics of the studies:
Most of the studies were performed using private data (n=37; 90.2%), while only a

small fraction used publicly available data (n=4, 9.8%). The most used type of

data across the selected studies (figure 3.1) consisted of physiological parameters

—i.e. heart rate (HR) or oxygen saturation (SpO2), (n=37, 90.2%), followed by

imaging data (n=9, 21.9%), measurement data (n=3, 7.3%) and other data (n=1, 2.4%).

A great majority of the studies (n=30, 73.1%) were designed as experimental or

observational trials, while the rest were designed as interventional (either two or

four-arms studies). Regarding how data were treated,, more than half (n=29, n=70.7%)

of the experiments used single-group data, and some used comparison vs control

experiments (n=8) and cross-over arms trials (n=4, 9.8%). Finally, not all studies

reported the sample size (85.3%), 15 of which consisted of 11-50 participants (36.6%),

7 of them 51-100 participants (17.1%), 7 more of them 101-500 participants (17.1%)

and and 2 of them more than 500 participants (4.9%) (figure 3.5 in Multimedia

Appendix).



Figure3_predictors and classes

Characteristics of the AI models:
The studies contained among the selected records use a variety of AI approaches,

including deep learning(n=20, 48.8%), traditional machine learning (n=13, 31.7%)

and ensemble learning methods (n=2, 4.9%) (figure 4.1). The most popular family of

algorithms was Convolution Neural Network (CNN) (n=14, 34.2%), followed by

Random Forest (RF) model (n=7, 17.1%), Logistic Regression (LR) (n=6, 14.6%),

Support Vector Machine (SVM) (n=6, 14.6%), K-Nearest Neighbors (KNN), Naive

Bayes (NB) and XGBoost (XGB) (n=2, 4.9% respectively) (figure 4.1).

These models were implemented on specific predictors selected for each condition,

disease or parameter of interest. In most cases they used a combination of data (n=19,

46.3%). The most common category of predictors was physiological parameters

(n=37, 90.2%), which relates to medical data analysis (ie, ECG, SpO2, HR, RR, ......),

and the second was Image data (n=9, 21.9%), defined as image (n=3, 7.3%) or videos

(n=6, 14.6%) of infants. The rest of predictors consist of bowel sound and chest sound

(n=3, 7.3%) and test records (n=1, 2.4%).

Finally, 90.2% of the studies did not mention missing data (n=37, 90.2%). The most

common strategy to deal with missing data during the preprocessing steps of the data

before modelling was data normalisation (n=12, 29.2%), followed by data



enhancement and data labelling and cleaning (n=7, 17.1% respectively), then feature

extraction (n=5, 12.2%) and algorithm application (n=3, 7.3%). The remaining three

are artefact removal, data stream synchronization and data imputation.

Figure 4_type of model after summary (combined)

1.2.4 Validation

Most of the records reported the algorithm effectiveness evaluation criteria (n=39,

95.1%). Among the most used performance evaluation metrics were Accuracy (ACC)

(n=12), followed by Area Under the Curve and Area Under the Receiver Operating

Characteristic Curve (AUROC) (n=6 respectively). The remaining evaluation metrics



are mean error (MEA) (n=4), F1 score (F1) (n=3), root mean square distance (RMSD),

mean absolute error (n=2 respectively), Sensitivity (Se), Specificity (Sp), Intersection

over Union (IoU), Root Mean Square Error (RMSE), Signal Distortion Ratio (SDR),

Correlation Coefficient (CORR), Feature importance, Descriptiveness,

Recommendation, Neonatal Treatment Severity Index (NTISS) and comparison

between groups (n=1 respectively). between groups) (n=1 respectively).

1.2.5 Principle Findings

The models showcased in these studies performed commendably across a spectrum of

tasks within neonatal intensive care, reflecting a solid performance in machine

learning applications. Many studies reported high accuracy (ACC) scores, with [16]

achieving an ACC of 93.8 ± 2.2% and [17] reporting an ACC of 92.52% alongside an

F1 score of 95.26%. The Area Under the Curve (AUC) and Receiver Operating

Characteristic (ROC) values, crucial indicators of model discrimination capacity, were

also substantial, with [14] noting an AUC of 0.88 and [46] achieving an AUC of 97%.

The balance between precision and recall was captured by the F1-score, suggesting

reliable model performance in identifying true cases while minimizing false positives.

For example, [16] reported an F1-score of 0.93 ± 0.3. Other metrics such as sensitivity

(Se) and specificity (Sp) were also mentioned, with [22] reporting 88.5% and 49%

respectively, emphasizing the models' capacity to correctly identify positive instances.

Quantifying prediction errors, mean absolute error (MAE), and root mean square error

(RMSE) were used, with [23] noting an MAE of 1.71 and RMSE of 1.89. These error

measures are essential for understanding the magnitude of prediction deviations.

Advanced metrics like the Intersect over Union (IoU) and signal-to-distortion ratio

(SDR) provided insights into model precision in spatial tasks and sound quality

enhancement, with [28] achieving an IoU of 0.5 and [44] reporting a median SDR

improvement of 1.5 dB.



Ensemble methods and deep learning approaches, including convolutional neural

networks (CNNs), highlighted the ongoing progression towards sophisticated model

architectures. The study by [21] on asymmetrical convolution demonstrates the

evolution of network generalization capabilities.

Lastly, the interpretability of AI models, which is crucial in clinical settings, was

addressed through feature importance and explainability, as discussed by [36]. In

summation, the array of studies reviewed underscore the efficacy of AI applications in

enhancing neonatal care through reliable and precise monitoring and prediction tools.

The array of performance metrics emphasizes the comprehensive nature of model

evaluation, taking into account both predictive accuracy and clinical relevance as

demonstrated in studies by authors like [16], [17], [14], and others.

1.2.6 Challenges

[14] highlighted a limitation regarding the maturity differences between the patient

groups in their dataset, which could influence the LOS prediction algorithm.

[16] noted that including the surrounding environment in the detection of facial

expressions could introduce confounding factors to the deep convolutional neural

network (DCNN) learning process.

[19] mentioned the challenges with the size and quality of the transformed images

used for early detection of late-onset neonatal sepsis, and the fact that only suspected

cases were considered.

[20] faced difficulties in gathering sufficient data, especially from critically ill

newborns with systemic circulatory disorders.

[22] discussed the clinical relevance of their approach but acknowledged the

limitation of having a small and unevenly distributed number of positive cases,



affecting the reliability of subgroup comparisons.

[24] and [25] raised the issue that selecting a lower gestational age-based threshold

for hypotensive events improves feature discriminatory power but reduces the number

of subjects, impacting the confidence in observed changes.

[27] pointed out that the large set of features required for their model could be

expensive to collect in an ICU setting and the need for explainable AI (XAI) to build

medically acceptable clinical decision support systems.

[28] admitted that while their pressure-sensitive mat (PSM) improved model

performance, it was still not sufficient for deployment in clinical environments.

[31] acknowledged the limitation of their study being conducted in a single hospital,

potentially affecting the generalizability of their model.

[32] noted that they did not account for medical interventions affecting mean

intracranial pressure (ICP), and the length of analyzed recordings was not

standardized.

[34] discussed the challenge of dataset imbalance and the ongoing efforts to improve

it for neonatal bowel sound detection.

[30] mentioned that their data was only obtained from healthy full-term infants at

birth, which limits the application of their method to evaluate maturation post-birth.

[37] indicated that monitoring was limited to the lower right abdomen, and the

necessity to compare bowel sounds from different abdominal quadrants.

[38] faced challenges in recruiting volunteer parents and had limitations in the



experimental setup and number of cases.

[39] pointed out the oversimplification in representing the complex EEG signal with a

single parameter.

[42] aimed to tackle the limitations in future studies by exploring the role of each

feature on model performance using accurate statistical analysis tests and

implementing cost-effective models.

[44] and [49] dealt with the issue of overfitting in their deep learning model and

sought to address it by restricting training epochs and freezing weights in the initial

layers.

[45] recognized the potential for improvement by expanding their dataset, employing

leave-one-subject-out testing, and exploring more robust methods for extracting the

respiration signal from video.

These challenges underscore the complexities of developing AI systems for neonatal

care. They range from data scarcity and quality, imbalanced datasets, and the need for

model interpretability, to the particularities of clinical environments and

generalizability concerns. Each study's challenges reveal the critical areas for future

research and development in this field.

1.2.7 Opportunities

[14] is looking to expand their study with a larger, cross-center dataset to improve the

validation and generalizability of their sepsis prediction model.

[15] aims to incorporate additional data and other pain modalities, such as body

movements, into their neonatal condition monitoring system.



[16] expresses the intent to extend their work to classify more nuanced neonatal sleep

states and to develop a home-based monitoring system.

[18] is planning a prospective study using the Artemis platform to classify neonatal

spells, aiming to compare its sensitivity and specificity against the gold standard of

polysomnography.

[20] sees the potential in combining their systemic circulation monitoring system with

neural network techniques for enhanced clinical application.

[21] emphasizes the importance of developing lighter, more efficient models for

sustainable, automated, and intelligent monitoring systems, especially in

resource-constrained environments.

[22] suggests data sharing between institutes for external validation of algorithm

performance in various settings and populations, following the promise shown by the

HeRO algorithm.

[24] and [25] point out the promise shown by thermal imaging in reducing neonatal

mortality and suggest that better results could be obtained with more data or advanced

image enhancement techniques.

[27] anticipates that clinical parameters like RDS, jaundice, and septicaemia could

show correlations when applied to larger patient cohorts, potentially yielding valuable

outcomes.

[28] looks to expand their dataset to further explore the generalizability of their

models for false alarm detection in NICUs.

[29] regards the preliminary results as promising and underscores the usefulness of



machine learning algorithms in developing clinical decision tools.

[30] wants to conduct a study with new patients to expand their training set for early

sepsis detection and evaluate real-time monitoring adaptability in NICUs.

[31] plans to extend their monitoring and evaluation from the delivery room to the

NICU, indicating an integrated patient journey approach.

[34] is set to explore additional temporal and spectral features and differentiate

between normal and abnormal peristaltic bowel sounds in future work.

[36] recommends further research into NICU admission practices to understand

hidden patterns contributing to increasing NICU admissions.

[37] intends to focus on whether bowel sound characteristics in neonates are

age-specific and the impact of their technology in clinical settings.

[38] is committed to collecting more cases to improve the robustness of their

photoplethysmography imaging system across diverse conditions.

[39] aims to perform multicenter validation studies with larger datasets for EEG

monitoring in asphyxiated infants, potentially leading to a data-driven EEG

background grading system.

[40] envisions obtaining optimal results from FPGA hardware systems and realizing a

full on-chip system for detecting respiratory failures in neonates.

[42] plans to address the limitations mentioned in their study, likely focusing on

refining their feature set and improving model accuracy and cost-effectiveness.



[44] and [49] see promise in the removal of the need for hand-crafted features by

utilizing deep learning, with improvements in pre-training required for transfer

learning.

[50] contemplates employing ensemble learning and advanced feature selection

technologies to enhance the accuracy and robustness of decision-making systems.

[45] and [52] will extend their methodology to tasks beyond head localization, such as

full pose estimation.

[53] acknowledges the need for further experimentation to develop more efficient

models and to collect and annotate more data.

[54] outlines the clinical relevance of their work but calls for further investigation in

larger cohorts to enable subgroup analysis.

These opportunities represent a roadmap for future innovations in neonatal care,

highlighting the importance of data expansion, methodological enhancements,

interdisciplinary collaboration, and the implementation of advanced computational

techniques.

1.2.8 Conclusion

In conclusion, our comprehensive review of recent advances in health-related

modeling highlights a diverse landscape where machine learning, including both deep

learning and traditional models, alongside other computational methods, plays a

pivotal role in understanding and predicting outcomes across a wide range of medical

fields. Notably, cardiovascular and neural/brain health areas have seen extensive

application of deep learning techniques, reflecting the complex nature of data and the

necessity for sophisticated models to capture the nuances inherent in these domains.

Data types utilized in these models span from traditional vital signs, such as heart rate



(HR) and blood oxygen saturation (SpO2), to more specialized forms like EEG, chest

sounds, and even video of infants, underscoring the multidimensional aspect of health

data.

The exploration into digestive and microvascular health areas, albeit less extensive,

underscores a growing interest in applying deep learning to niche domains, utilizing

specific data types such as bowel sounds and SpO2 measurements. This indicates a

promising direction for future research that could unlock new understandings and

therapeutic approaches in less explored areas.

Infection modeling stands out for its balanced application of deep learning and

traditional machine learning models, driven by a variety of data types including ECG,

HR, and RR, pointing to the critical role of predictive modeling in managing

infectious diseases, especially in the context of early detection and intervention.

Mortality prediction primarily through traditional ML models based on a wide array

of clinical data emphasizes the need for predictive accuracy in critical care and

resource allocation. This is particularly relevant in making informed decisions

regarding patient management and improving outcomes.

Finally, the review reveals an intriguing application of diverse modeling techniques to

non-disease-specific data, suggesting a broader utility of predictive models in health

care beyond disease diagnosis and management. The integration of ensemble learning

and feature engineering models, alongside deep and traditional machine learning,

illustrates a dynamic field that is rapidly evolving to adapt to the complexities of

health data.

This review underscores the importance of interdisciplinary collaboration in

advancing health care through technology. As computational techniques become

increasingly sophisticated and health data becomes more accessible, the potential for

these models to revolutionize health care, from predictive diagnostics to personalized



treatment plans, is immense. However, challenges remain, including data privacy

concerns, the need for robust validation, and ensuring equitable access to the benefits

of these technologies. Future research should aim to address these challenges,

fostering an environment where technological advancements contribute to holistic and

accessible health care solutions.

Table 1: Summary of Review



Chapter 2: Design and Implementation

2.1 Study Design

Observational and prospective study carried out in a cohort of premature babies in a

regional reference Neonatology Unit ( Hospital La Fe). Premature infants with

bradycardic apneic syndrome with a gestational age less than 32 weeks who are stable

at respiratory and metabolic levels will be included. Patients were eligible if they were

<32 weeks at birth, received NICU KC with or without respiratory support. Exclusion

criteria were parents who refused to participate, invasive mechanical ventilation, brain

malformations, severe periventricular haemorrhage (grade 3-4), pharmacological

sedation, chromosomal disorders or severe malformations. During the study time,

oxygen saturation will be continuously monitored by postductal pulse oximetry (24

hours a day for 7 days). Clinical parameters will be recorded (analysis of the pulse

oximetry histogram and clinical variables) and markers of oxidative stress in urine

and hypoxia in plasma (metabolites and microRNAs associated with hypoxia) will be

determined.

After 7 days, patients will be classified into two groups based on the time spent in the

target Sat02 range (90%-95%). To do this, the SatO2 histograms will be analyzed

every 24 hours and the time within said range will be determined. Those who have

remained >50% of the monitored time outside the established range will be assigned

to the experimental group.

The rest will be assigned to the control group. Once the study is completed, a

statistical comparative study will be carried out between both groups. Finally, the

neurological evolution will be analyzed using internationally validated scales (Bayley

III, GMFCS, visual and hearing loss) between 18-26 postnatal months.



Figure 5_Candidates

2.1.1 Inclusion of Patients in Study

I.INCLUSION CRITERIA

Study population: premature neonates admitted to the Neonatal Intensive Care Unit of

the La Fe University and Polytechnic Hospital in Valencia who meet the following

inclusion criteria:

1. Gestational age < 32 weeks

2. Respiratory stability (No respiratory support, high flow oxygen therapy or

non-invasive ventilation)

3. Complete enteral nutrition (100 ml/kg/day)

4. Gain 10 -20 g/kg/d

II.EXCLUSION CRITERIA

1. Invasive mechanical ventilation

2. Congenital heart disease

3. Persistent ductus arteriosus requiring treatment

4. Pathology requiring surgery

5. Severe congenital malformations



6. Chromosomopathies

7. Intra-periventricular hemorrhage grades III/IV

8. Seizures

9. Grade III/IV retinopathy

10. Parents' refusal to participate or sign the informed consent

III. PATIENT RECRUITMENT

The neonatologist responsible for their treatment must inform the parents about the

study and give the Information Sheet to the parents and provide the Consent Sheet.

Once Consent is obtained and it has been reviewed that the patient meets all the

inclusion criteria and none of the exclusion criteria, a Patient Number will be assigned.

This assignment will be made from lowest to highest in order of inclusion in the study.

This number will be noted in the CRD and/or medical record as soon as possible.

Two copies of the informed consent form will be made, one for the parents or legal

representative and the other will be stored in the patient record.

2.1.2 Clinical Management

This study will continuously monitor and record adequate oxygen saturation using a

Masimo Radical 7 monitor, centrally monitored using a different pulse oximeter than

the one worn by the patient, changing position every 4 hours to conform to routine

practice. Monitoring was performed 24 hours a day for 7 consecutive days.

For preterm infants, pulse oximetry alarms will be set at:

1. 990-100% for premature babies without supplemental oxygen need

2. 0-95% for premature babies with supplemental oxygen

3. 92-96% for premature babies with bronchopulmonary dysplasia and

supplemental oxygen.

Patients will maintain routine monitoring during the study, including supplemental



testing and commonly used medications (e.g., caffeine, antibiotics, etc.). Participation

in this study will not preclude patients from concurrently participating in other studies

conducted within the unit.

2.1.3 Data Collection

The following variables will be collected and recorded in the electronic data recording

sheet:

Exposure variables:

1. Gestational age

2. Birth weight and weight percentile according to Fenton charts

3. Sex

4. Multiple pregnancy

5. Prenatal corticosteroids and dose number

6. Broken bag hours

7. Chorioamnionitis

8. Low amniotic fluid

9. Birth route

10. Apgar

11. Maximum Fi02 in delivery room

12. Umbilical artery gasometry ( Ph , EB, Pco2)

13. Intubation (at some point)

14. Surfactant

15. Previous mechanical ventilation, days, maximum MAP, maximum Fi02.

16. Oxygen exposure time (Fi02>0.21)

17. Systemic postnatal corticosteroids

18. Vertical or nosocomial sepsis

19. PDA without hemodynamic repercussion (ductal diameter less than 2 mm, left

atrium/aorta (LA/AO) ratio < 1.5, no diastolic retrograde flow in the descending

aorta)



20. ECN (Stages I-II according to Bell classification)

21. HIV I-II

22. DBP and grade

23. Postnatal age and corrected gestational age at recruitment

24. Daily weight during the control week

25. Respiratory support at recruitment

26. Medications at the time of recruitment ( caffeine )

Predictor variables:

1. Time elapsed within the target range of Sat02. To do this, the saturation frequency

histograms will be downloaded daily.

2. Number of isolated desaturations ( minimum duration? ) artifacts?

3. Number of desaturations accompanied by bradycardia and duration

4. Number of isolated bradycardias

Response variables:

1. Neurological development at 24 months postnatal:

• Bayley III scale score

• GMFCS

• Visual loss, unilateral or bilateral, gradation?

• Hearing loss

2. Biomarkers of lipid peroxidation in urine

3. Biomarkers of hypoxia ( “ metabolic score ” ) in plasma

4. Determination of circulating microRNAs

2.1.4 Obtaining and Storing Biological Samples

Determinations will be made at the beginning ( time 1, first day of study ) and at the



end of the study (time 2 , 7-8th day of study )

1.Blood: peripheral venous blood sample will be extracted in a tube ( MiniCollect

Tube K3E K3EDTA) containing ethylene - diamine -tetra-acetic acid (EDTA) as an

anticoagulant. The volume to be extracted will be 0.6 mL taking advantage of routine

extractions, and it will be centrifuged immediately at 1500 g for 10 minutes in a

centrifuge refrigerated at 4°C. An aliquot of 30 µL of the plasma will be used for the

determination of the metabolic score and an aliquot of 180 µL for the extraction of the

RNA and 50 µL for the microRNAs standard using RNAseq .

Collect 0.6 ml of blood from the EDTA tube and pipette into the “T1 blood”

eppendorf and centrifuge at 4 ºC and 1500 g in a refrigerated centrifuge (milk bank).

Collect the supernatant plasma:

Plasma 1 -> 50 microL : metabolic score

Plasma 2 -> 180 microL : microRNA extraction

Plasma 3 -> 50 microL : microRNA pattern

Sample identification:

T1- > day 1

T2 -> last day of study (7-8th day)

The 5 eppendorfs will be deep frozen at -80ºC in the milk bank freezer, the remaining

blood and plasma samples will also be preserved to carry out subsequent

determinations if necessary.

2.Urine: will be collected 600 µL of urine by placing a cotton pad in the diaper, which

is centrifuged to extract the urine and immediately frozen at -80°C until processed.



Figure 6_PROCESSING ANDANALYSIS OF BIOLOGICAL SAMPLES
Biological samples will be processed every 3 months.

2.1.5 Processing and Analysis of Biological Samples

Biomarkers of lipid peroxidation in urine

Urine samples are thawed, purified and preconcentrated by solid phase extraction. In

the recovered extracts, F2-isoprostanes, isofuranes , neuroprostanes , neurofurans ,

dihomo-isoprostanes and dihomo-isofurans were determined using liquid

chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The methods

used have been developed, validated and published or are submitted for publication

[55, 56, 57].

Biomarkers of hypoxia ( “ metabolic score ” ) in plasma

The 30 µL aliquot of plasma is thawed on ice and processed for a panel of

characteristic metabolites (hypoxanthine, choline, and 6,8-dihydroxypurine) using

HPLC-MS/MS. These metabolites make up the so-called metabolic score that has

shown its validity in a model of prolonged hypoxia in newborn pigs [58, 59].



Determination of circulating microRNAs

180 µL of thawed plasma will be used, the RNA will be extracted, evaluating its

quantity and quality, and it will be analyzed by RNA- seq . The extraction and

quantification of microRNAs will be determined following the instructions of the

miRNeasy kit. Serum /plasma kit (217184) from QIAGEN while the analysis of the

altered expression levels of the different microRNAs will be evaluated using the

Illumina-Solexa platform Sequencer . Finally, the relevant microRNAs will be

quantified and validated by RT- qPCR from patients with apneic syndrome ( miScript

II RT kit, miScript SUBR Green PCR kit, miScript PCR Controls and miScript Primer

Assays ).

2.1.6 Experimental/Control Group Assignment

Every 24 hours the SatO2 histograms will be analyzed and the time within the range

(90%-95%) and outside of it will be determined. In the case of patients with

bronchopulmonary dysplasia, the alarm limits will be 92-96%. Depending on the time

spent in the target Sat02 range, you will be assigned to one of the two groups.

Those who have remained >50% of the monitored time outside the established range

will be assigned to the high-risk group. The rest will be assigned to the low-risk group

(<50% of the time outside the established saturation range). Once the study is

completed, a statistical comparative study will be carried out between both groups.

2.2 Hardware Introduction

Observational and prospective study carried out in a cohort of premature babies in a

regional reference Neonatology Unit in Hospital Universitari i Politècnic La Fe. SpO2

and HR were continuously measured by oximetry (Radical-7® Pulse CO-Oximeter®;

Masimo®, Irvine, CA, USA) with high-sensitivity settings, neonatal profile, and data

frequency register at 2 Hz. The sensor employed was LNCS Neo (Masimo®, Irvine,

CA, USA) placed in postductal position. Near-infrared spectroscopy (NIRS)



monitoring of cerebral oxygenation has been employed in preterm infants to prevent

brain injury [21-24]. rScO2 was continuously measured by NIRS (INVOS® – 5100;

Medtronic®, Dublin, Ireland) at 0.09 Hz using a specific sensor (OxyAlert™

NIRSensor Infant/Neonatal Sensor; Medtronic®, Dublin, Ireland) located on the

frontotemporal region, avoiding the venous sinus.

The monitoring records of all sessions were downloaded from the oximeters and

NIRS monitors employing Masimo Instrument Configuration Tool – MICT software

(Masimo®) – and INVOS™ Monitoring System Analytics Tool (Medtronic®),

respectively. These data were imported into MATLAB R2022a (MathWorks Inc.,

Natick, MA, USA) writing the corresponding functions considering the specific

format of the records. Then, timetable arrays were created for each session with the

SpO2, HR, and rScO2 as variables.

2.3 Model selection and data pre-processing

Clustering algorithms are a key technique in unsupervised learning that aims to group

datasets into clusters such that data points within the same cluster have a high degree

of similarity while different clusters have a low degree of similarity between them

[60]. These algorithms are widely used in various scenarios such as image analysis,

market segmentation, and community detection in social networks [61]. There are

various clustering methods including K-mean clustering, hierarchical clustering,

DBSCAN and spectral clustering, etc. K-mean clustering optimises the quality of

clusters by iteratively redistributing data points and updating the cluster centres [62],

while DBSCAN relies on the density to form clusters, which is effective in dealing

with noisy and anomalous data points [63]. Choosing the appropriate clustering

algorithm usually depends on the characteristics of the data and the purpose of the

study. A deeper understanding of the theoretical foundations and practical applications

of these algorithms can significantly improve the quality and effectiveness of data

analysis.



This project used the K-means algorithm and the DBSCAN algorithm for cluster

analysis of the dataset. From the initial 30 or so features in the data, identified five

key features through the process of pre-processing and feature selection. For these

five features, two different experimental scenarios were designed and each of which

selected three of the features to perform the clustering operation. With this

methodological design, the data was effectively clustered and draw the relevant

conclusions from my research. This process not only demonstrated the applicability

and effectiveness of the chosen clustering algorithm, but also verified the importance

of feature selection and its significant impact on the clustering results.

2.3.1 K-Means

k-means is an unsupervised learning algorithm which is used in clustering problems.

The algorithm attempts to assign n observations to k clusters (k is a user-specified

parameter) such that each observation belongs to the cluster corresponding to its

nearest mean (i.e., cluster centre). It works as follows:

Initialisation: randomly select 'k' data points as initial cluster centres.

Assignment: assign each point to the nearest cluster centre to form k clusters.

Update: for each cluster, calculate the mean value of all points and set it as the new

cluster centre.

Repeat: the assignment and update steps are repeated until a stopping condition is met

(usually the cluster centres no longer change, or the change is less than a threshold, or

a predetermined number of iterations is reached).

The k-means algorithm is simple and very popular in practice, but it has its limitations.

For example, it assumes that clusters are convex and homogeneous, which means that

it may not work well with clusters that vary greatly in size and density, or that are not

spherical. In addition, since the initial cluster centres are chosen randomly, the



algorithm may fall into local optimal solutions, and different initialisations may lead

to different results.

2.3.2 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a

well-known clustering algorithm for density-based hiring. The main advantages of

DBSCAN are that it does not require a pre-specified number of clusters, it can

identify clusters of arbitrary shapes, and it can effectively deal with noise and

anomalous data points. Due to its unique clustering characteristics and robustness,

DBSCAN has been widely used in fields such as astronomical data analysis,

geographic information systems, medical image analysis, and social network analysis.

The basic idea of DBSCAN is to cluster data points according to their density. There

are two main parameters in the algorithm: ε (epsilon) and MinPts (minimum points). ε

is the radius size of the neighbourhood, and MinPts is the minimum number of data

points required to form a dense region.

2.3.3 Data Composition

Premature infants with bradycardic apneic syndrome with a gestational age less than

32 weeks who are stable at respiratory and metabolic levels will be included. During

the study time, oxygen saturation will be continuously monitored by postductal pulse

oximetry (24 hours a day for 7 days). Clinical parameters will be recorded (analysis of

the pulse oximetry histogram and clinical variables) and markers of oxidative stress in

urine and hypoxia in plasma (metabolites and microRNAs associated with hypoxia)

will be determined.

The data consisted of two parts: the electronic data recording sheet, and the SpO2 and

rScO2 (NRIS) data. electronic data recording sheet data format is described in detail

in figure 7.2 data collection. the SpO2 and rScO2 (NRIS) data are in csv format and

record two values from 114 different beds at different moments in time, with three to

seven csv files storing the two types of data for each bed, totalling 109 levels of data.



Figure 7.1_SpO2 csv file

Figure 7.2_Clinical data collection

2.3.4 Data Pre-processing

For SpO2 and rScO2 data, the Data points with alarm messages (e.g., low perfusion,

sensor off, ambient light, or low signal), HR <40 bpm, SpO2 < 60% (with abnormal

pulse wave), or rScO2 < 15 were considered outliers and they were discarded. The

obtained clean timetables were aligned employing the synchronize function

resampling rScO2 with linear interpolation and the FtOE was computed for each point

in percentage as FtOE = (SpO2-rScO2)/SpO2*100.

Hypoxic events were defined as mild when SpO2 < 90% and >85% for >5 s,

moderate when SpO2 < 85% and >80% for >5 s, and severe when SpO2 < 80% for >5



s. Bradycardic events were defined as moderate when HR <100 bpm for >5 s and

severe as HR <80 bpm for >5 s [10, 13, 14, 25, 26]. Besides, events that included both

bradycardia and hypoxia were also analyzed. Furthermore, hemodynamic changes

defined as HR decreases more than 20 bpm and as rScO2 increases or decreases more

than 10 points were also analyzed. Finally, normal ranges were defined as

SpO2 >90% in patients without supplementary oxygen and as SpO2 between 90%

and 95% in patients with supplementary oxygen (FiO2 > 0.21) [27]. Likewise, it was

considered cerebral regional hypoxia when rScO2 was <55 and cerebral hyperoxia

when rScO2 was >85 [22].

According to the above definition, the purpose of this preprocessing step is to

calculate the ratio of abnormal events to total time for SpO2 data and the ratio of

hyperoxia and brain region hypoxia time to total time for rScO2 data using a python

script program.

Figure 8_SpO2 csv file 2



Figure 9.1_Python Script for data pre-processing

Figure 9.2_Python Script Structure

The data preprocessing script code can be divided into three parts: document merging,

splitting based on date, and final scaling.

The initial csv document format is prem_n1_spo_n2.csv, where ns1 is the bed number

and n2 is the document number. Each bed has three to seven different csv documents.

The first step of the script is to merge the documents of the same beds into one and

also, for the documents where headers exist, delete the duplicate headers.



For the merged documents, the data is fetched from different dates. So, the second

step is to read the data from different dates separately and then calculate the

percentage of time that does not satisfy the range. At the same time, the date data

format of different beds is different, and it is also necessary to make a judgement in

the code.

The reading interval of Spo2 and HR data is 2s, therefore, the time ratio can be

calculated according to the formula r=n (amount of data with spo2<90, HR<100 and

lasting for five seconds)/n (amount of total effective data). The calculation results are

as follows:

Figure 10_spo2 and HR data ratio

Two different approaches to normalization were tried: firstly box-cox normalization +

normalization, which did not reach good enough results, so the second approach,

simple normalization, was tried and the final clustering was better than after box-cox

normalization.



Figure 11_Data after two procedures

Ph data, hco3 data and pco2 data were missing respectively. In order to avoid

affecting the clustering effect, two ways of data supplementation were adopted: the

first was to populate the mean values, which were 7.29 (ph), 24.3 (hco3) and 50.5

(pco2); the second was assisted by a test technologist (Dr Yue Zhang, Department of

Clinical Medical Laboratory Medicine, Shandong Provincial Hospital affiliated to the

First Medical University of Shandong, Shandong Province, China), who was assisted

by a test technologist based on the kit reference interval and sample patient status for

predictive filling.

Parameters Range reference Unit
pH 7.35～7.45 pH
pCO2 35～48 mmHg
pO2 83～108 mmHg
Na+ 136～145 mmol/L
K+ 3.4～4.5 mmol/L
Ca+ 1.15～1.33 mmol/L
Cl- 98～107 mmol/L

Chart 1_Reference intervals for some parameters



Figure 11_Populated clinical data collection

For the other data selected for use: blood ph, hco3, pco2, neonatal weight and

gestational age, normalization was taken for pre-processing.

Figure 12_Data sheet after perprocessing



Chapter 3. Modeling and Outcome

Based on the data characteristics of this project, the machine learning algorithm

chosen is the unsupervised learning clustering algorithm. After comparison, Kmeans

algorithm was selected for clustering operation. For the parameters from the e-clinical

dataset, seven parameters that differed significantly between patients were selected for

bivariate analysis. After bivariate analyses and comparisons, five data were selected,

namely, the proportion of time with spo2<90, the proportion of time with hr<100,

blood ph values, hco3 values, and pco2 values. Three types of data were randomly

selected for cluster analysis, and three types of clusters were found to be more

effective: spo2, hr, ph, spo2, hr, hco3 and spo2, hr, pco2, and the profile coefficients

of the two clusters reached 0.86, 0.79, and 0.79, respectively.

3.1 Bivariate analysis

Binary analysis is an analytical method in statistics used to study the relationship

between two variables. This type of analysis focuses on whether there is some

association or dependence between two data variables and attempts to describe the

nature and extent of this relationship. Of the more than thirty parameters included in

the Clinical data collection, many binary data such as sex, whether or not there was a

multiple pregnancy, and whether or not antenatal corticosteroids were used, which are

difficult to analyse bivariately, as well as data such as the number of hours of rupture

of membranes, rScO2, and other data with a percentage of absence of more than 40%,

which could not be manually supplemented, were not included in the binary analyses.

Seven clinical parameters were entered into the binary analysis: birth weight,

gestational age, spo2 value <90, proportion of time with HR <100, blood ph, hco3

value and pco2 value.

After binary analysis, newborn weight and gestational age did not show significant

correlation with the other parameters, and thus the other five parameters were selected

for the next clustering operation.



3.2 Modeling Outcome

For the five selected parameters: the proportion of time with spo2<90, the proportion

of time with hr<100, blood ph values, hco3 values, and pco2 values, we selected these

two parameters in combination with the other three parameters based on the fact that

oxygen saturation and heart rate are the most intuitive ways to reflect the state of

tissue oxygenation. We selected these two parameters to be combined with the other

three parameters to run the kmeans clustering algorithm. Among them, two clusters

were set, the weights of spo2 and HR parameters were set to 1, and the weights of the

remaining parameters were 0.5.

A combination of profile coefficients, the Davies-Bouldin index and the

Calinski-Harabasz index were used to assess the clustering results. The contour

coefficient is a measure of how similar each point is to other points in its cluster and

how dissimilar it is to points in other recent clusters. Its value ranges from -1 to 1. A

high contour coefficient means that the points within a cluster are similar and very

dissimilar to the points in the nearest cluster; the Davies-Bouldin index evaluates the

quality of clustering based on the closeness of the distances within a cluster and the

separation of the distances between clusters. The smaller this index is, the better the

clustering is; the Calinski-Harabasz index (also known as the variance ratio criterion)

evaluates the effectiveness of clustering by the ratio of intraclass variance to interclass

variance. The larger this ratio, the better the clustering is usually.



Figure 13.1_hr-spo2-ph clustering image

Figure 13.1_hr-spo2-ph clustering elbow

Figure 13.1_hr-spo2-hco3 clustering image

Figure 13.1_hr-spo2-hco3 clustering elbow



Figure 13.1_hr-spo2-pco2 clustering image

Figure 13.1_hr-spo2-pco2 clustering elbow

ph:

Silhouette Coefficient: 0.86

Davies-Bouldin Index: 0.218

Calinski-Harabasz Index: 1464.030

hco3:

Silhouette Coefficient: 0.79

Davies-Bouldin Index: 0.327

Calinski-Harabasz Index: 607.315

Pco2:

Silhouette Coefficient: 0.79

Davies-Bouldin Index: 0.329

Calinski-Harabasz Index: 595.849



The results show that by analysing data on spo2, hr and other blood gas metrics,

patient data can be effectively clustered, laying the groundwork for the next steps in

clinical validation in an operating environment under controlled conditions and

pathophysiological risks identifications.



Chapter 4. Conclusion and Future work

In order to explore the prospect of the use of Artificial Intelligence in the Neonatal

Intensive Care Unit (NICU), and to identify the development trend of Artificial

Intelligence-driven technologies and their roles in the diagnosis, monitoring, and

treatment of neonatal diseases, this project firstly selected 318 articles published in

MEDLINE, EMBASE, Cochrane, and IEEEXplore for the period of January 2013 to

December 2023, and finally selected 41 articles to form a systematic review paper.

Through a series of screening processes, 41 articles were selected for systematic review,

resulting in a review paper: A Systematic Review on the use of Artificial Intelligence in

the Neonatal Intensive Care Unit: far beyond the potential impact, which is expected to be

published. beyond the potential impact, which is expected to be published in Paediatric

Research, the official journal of the American Academy of Paediatrics, the European

Society for Paediatric Research and the Society for Paediatric Research. Meanwhile,

based on the retrospective preterm physiological data given by the Neonatal Intensive

Care Unit of the La Fe University and Polytechnic Hospital in Valencia, a kmeans

clustering algorithm based on unsupervised learning of machine learning was used to

select five physiological data for a retrospective analyses, yielding clustering results with

profile coefficients of 0.86 and 0.79, respectively.

There are still some problems in the retrospective analysis part of the data in this project:

the overall data set is small, and some outliers may interfere with the clustering effect; the

data set is incomplete, and some important data, such as rScO2, are seriously missing

leading to the impossibility of using it for clustering, and, at the same time, there is no

exact quantitative relationship between certain physiological parameters of preterm

infants, such as hco3, and others so far, leading to the impossibility of, for the filled in

data, to guarantee that it is fully justified from a medical diagnostic point of view. Future

work will be based on these issues and will focus on ensuring and validating the

soundness and completeness of the dataset from a medical point of view. Also, as part of a

joint project between the Universidad Politécnica de Valencia (UPV) and La Fe



University and Polytechnic Hospital in Valencia, the next step of the project will be to

carry out a clinical validation in an operational environment under controlled conditions,

leading to the delivery of a systematic validation report of iNeom in a period of

approximately 24 months.
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1. Requirement Analysis

Neonatal Intensive Care Units (NICUs) are specialized medical facilities
dedicated to the critical care of newborns facing various health challenges[1].
Common reasons for neonates to require NICU care include premature birth,
low birth weight, respiratory distress, concerns about infections, hypoglycemia,
surgical needs, and genetic conditions. NICUs operate as complex ecosystems,
staffed by skilled healthcare professionals with diverse roles and equipped with
various medical devices, such as incubators, ventilators, and monitoring
equipment[2].

The adoption of Electronic Medical Records (EMRs) in recent years has
enabled the collection of comprehensive clinical data in the NICU. This data-
rich environment offers opportunities for applying advanced analytics
techniques, potentially improving healthcare outcomes for neonates[3-4].

During a neonate's stay in the NICU, a substantial amount of data is generated
from diverse sources, including extensive imaging data, physiological data
(heart rate, oxygen saturation, etc.), and data from monitoring devices. The
integration of pervasive sensing technology and artificial intelligence has
ushered in autonomous and granular healthcare monitoring. Analyzing this
wealth of data may reveal critical factors influencing neonatal
neurodevelopment[5-9].

In this context, AI and machine learning have the potential to enhance
predictive capabilities and clinical outcomes in the NICU.This project aims to
analyze data from various monitoring instruments in the NICU by using
artificial intelligence and big data technologies, which can be used to help
healthcare professionals predict clinical outcomes and give treatment
recommendations.

2. Techniques to be employed

Literature review: A comprehensive, structured analysis of existing scientific
literature on the specific context of AI and NICUs will be performed. Based on
PRISMA methodology, we aim to identify, evaluate, and synthesize relevant
studies, providing a balanced summary of current knowledge about data
sources, variables and modelling techniques.
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Supervised learning: Various prediction models and scoring systems have been
developed to aid decision-making by providing early predictions of the onset of
morbidities, mortality, and planned LOS. These models and scoring systems
often utilize selected attributes (referred to as risk factors) in predicting the
clinical state [10-14]. These measurements are done at different time points of a
neonate’s stay in NICU, capturing treatment data such as clinical assessments,
medications, laboratory investigations, and procedures to generate standardized
clinical scores. With the availability of voluminous EMR data for each neonate,
scoring tools have improved and they can quickly update neonate-specific
predictions.

3. Main Tasks

A. Technical specifications of the iNeom system (Document). Synthesis o the
state of the art (outcomes of the systematic review) and specifications according
to the functional requirements, type of devices, communication protocols and
hardware connectivity.
B. Data modelling and clinical alerts in Neonatal ICU (Document and software).
State of the art on predictive modelling techniques in the Neonatal ICU.
C. iNeoM Prototype (Software). Development of the software and hardware
modules.
D. iNeom System Validation (Document). Testing of the models and the
platform.
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1. Data privacy and security: When training with open datasets, sensitive
personal health information may be involved, and the collection, storage and
processing of this data needs to comply with relevant data protection
regulations.
Solution:

1. Ensure data anonymisation or de-identification to protect individual
privacy.

2. Comply with local and international data protection laws and
regulations, such as the EU's General Data Protection Regulation
(GDPR).

3. Implement strict data security measures, such as encryption and access
control.

2. Algorithmic bias and accuracy: Machine learning algorithms may be biased
by biases in the training data, leading to an increased risk of misdiagnosis for
certain groups.
Solution:

1. Use diverse and representative datasets for training to reduce bias.
2. Regularly review and adjust the algorithms to ensure the accuracy of

their judgements and predictions.
3. Collaborate with healthcare professionals to ensure the medical

accuracy and applicability of the algorithms.
3. Legal responsibility and accountability: Determining liability attribution can
be complicated when a system error or failure results in patient harm.
Solution:

1. Clarify system usage guidelines and liability limitations.
2. Establish error reporting and response mechanisms to ensure issues are

addressed in a timely manner.
3. Work with legal experts to develop an appropriate liability framework.

4. Infant's right to privacy: Although infants are unable to make their own
decisions, their medical information and biometric data are still protected by the
right to privacy.
Solution:

1. Obtain explicit consent from parents or legal guardians for data
collection and use.

2. Ensure that strict privacy protection standards are adhered to during
data processing.

5. Parent and Family Involvement: Health monitoring of infants not only
involves the healthcare team, but also profoundly affects their family members.
Solution:

1. Provide parent education and training to help them understand the
system's capabilities and limitations.

2. Facilitate communication between parents and the healthcare team to
ensure they are adequately involved in the decision-making process.

6. Compliance with Child Protection Laws and Ethical Guidelines: Child
protection laws and ethical guidelines require that any medical intervention with
children, including infants, should be done with extreme caution.
Solution:

1. Strictly adhere to relevant child protection laws and ethical guidelines.
2. The well-being of infants is always the first priority in the design and
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implementation of the system.

7. Incidental findings: When analyzing retrospective data, unexpected
information may be discovered, such as undiagnosed diseases or genetic risks.
These findings can have significant implications for patients and families. How
to deal with these unexpected findings, especially when they may influence
healthcare professionals' decisions about patient care, is a complex ethical issue.
Solution:

1. Establish clear protocols for handling: Develop clear guidelines on how
to handle unanticipated discoveries, including when and how to notify
health-care workers and patients' families, and ensure that these
protocols are consistent with medical ethics and legal requirements.

2. Before using retrospective data, make clear to the patient or family the
likelihood that unknown information may be found and ensure that they
understand and agree to the process in such cases.

The project has been approved by the Ethical Committee on Clinical Research
of the Universidad Politécnica de Valencia(UPV) and the partner hospital.

中期目标
Mid-term
target.

It must be
tangible
outcomes,
E.g. software,
hardware or
simulation.

It will be
assessed at the
mid-term oral.

1. Complete the technical specifications of the iNeom system (Document).
2. Completion of predictive modelling and clinical alerts prototype in Neonatal
ICU.
3. Complete the analysis of the state of the art on predictive modelling
techniques in the Neonatal ICU.
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Work Plan (Gantt Chart)
Fill in the sub-tasks and insert a letter X in the cells to show the extent of each task

Nov
1-15

Nov
16-30

Dec
1-15

Dec
16-31

Jan
1-15

Jan
16-31

Feb
1-15

Feb
16-28

Mar
1-15

Mar
16-31

Apr
1-15

Apr
16-30

Task 1 Technical specifications of the iNeom system (Document). Specifications
according to the functional requirements, type of devices, communication protocols
and hardware connectivity.
Summary of the types, functions and data

types of the devices used. X X X X
Selecting and testing communication

protocols. X X
Test the viability of the existing hardware
used to read data from different devices. X X
Write technical specification documents of

the iNeom system. X X X X X
Task 2 Data modelling and clinical alerts in Neonatal ICU. State of the art on
predictive modelling techniques in the Neonatal ICU.

Relevant papers read, collected and
screened X X X

An analysis of state of the art on predictive
modelling techniques in the Neonatal ICU. X X X X X
Summarize data types for each device and

build analytical models. X X X

Debugging and testing for the model. X X X X
Task 3 iNeoM Prototype (Software). Development of the software and hardware
modules.

Data analysis and data set selection. X X X X

Model selection and training. X X X X

Software front-end construction. X X X X

Task 4 iNeom System Validation (Document). Testing of the models and the
platform.
Data validation: validate data set quality

and data decoding process X X X X

Testing of data models X X X X

System Integration Testing X X X X X
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Security and privacy testing X X X
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1. Literature search

Literature sources：PubMed, IEEE, SCOPUS.
Keywords：neonates OR neonatal OR newborn OR NICU"big data" OR A OR "artificial
intelligence"OR oxygen OR heart OR respiratory OR blood OR ventilation OR monitoring OR
"real time
Exclusion: Adult, Children, Animal
Year Range: 5 years.
Search result: 133 papers in total (excluding duplicate articles)

2. Paper Screening

Method: System Review

Step 1: Exclusion
The article must not meet all three of the following criteria in order to proceed to the next step:

EXCLUSION Criterion 1: Not NICU: The article must include NICU-related content.
EXCLUSION Criterion 2: Not including stats and modelling: the article must include data analysis.
EXCLUSION Criterion 3: Not clinical outcome: articles must include clinical outcomes.

A total of 42 articles met all three Exclusion criteria.

Step 2: Inclusion
The article must meet all three of the following criteria in order to be successfully selected:

INCLUSION Criterion 1: Retrospective/Prospective trial. This criterion has the objective of only
including studies which were implemented on real data. This data can be prospective or
retrospective, so it also includes existing data sets (private or open). The idea is to exclude
theoretical or design studies which do not use data for modelling/validation.

INCLUSION Criteria 2: Description of Methods and data sources. Apparently no problem with
this.

INCLUSION Criteria 3: Defines Specific Clinical Outcome in NICU. The objective of this
criterion is to include studies which have a clear and concrete principal clinical outcome in the
context of the NICU. This clinical outcome can be a clinical condition or an event (e.g.: high blood
pressure, apnea, low body temperature.. etc). As clinical outcome we can classify them with ICD
codes ( bronchopulmonary dysplasia, respiratory distress syndrome, persistent fetal circulation,
anemia, meningitis, sepsis, bradycardia….). Note that this criterion does not refer to the
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context/location of the study – only to the presence of a clinical objective.

A total of 10 articles fulfilled the above three Inclusion conditions.

Step 3: Data Extraction

3. Literature Review

In Neonatal Intensive Care Units (NICU), newborns are monitored extensively, generating a vast
array of data. This includes detailed imaging, physiological measurements like heart rate and
oxygen levels, and other metrics captured by advanced monitoring systems. The integration of
pervasive sensor technology with artificial intelligence has enabled more precise and continuous
medical surveillance. Analyzing this comprehensive data set is crucial for identifying factors that
influence the neurological development of neonates. Artificial intelligence and machine learning
technologies are increasingly seen as vital tools for enhancing predictive accuracy and overall
clinical results in NICUs. The goal of this initiative is to apply AI and big data solutions to interpret
the data gathered from various NICU monitoring tools. This approach aims to assist medical
professionals in forecasting clinical outcomes and formulating appropriate treatment strategies.

In the field of neonatal intensive care, monitoring haemodynamic conditions is essential as they
often indicate the severity of cardiovascular and other diseases. Xiu-Lin Chen, Bo-Sheng Lin, and
their team developed a sophisticated system for non-invasive monitoring of blood perfusion, which
aids in determining the severity of illnesses. This system first calculates specific indices by
measuring changes in haemoglobin parameters using a multi-wavelength approach for optical
density attenuation. It then selects key indicators through various feature selection methods,
including the t-test, Kruskal-Wallis test, Relief, and several entropy-based methods such as
information gain, information gain ratio, and symmetric uncertainty. These indicators are used as
inputs for a Radial Basis Function Neural Network (RBFNN), which serves as the classifier.
Experimental findings revealed significant differences in blood perfusion indicators among
neonates with varying levels of disease severity. Furthermore, the neural network proved effective
in differentiating between mild and severe cases of the disease.

In neonatal intensive care units (NICUs), newborns are often at risk for respiratory failure that may
necessitate tracheal intubation. Timely intubation is critical, as delays can lead to increased
complications and mortality, particularly in emergency situations. Accurate and real-time
prediction of intubation needs can allow for better preparation, reducing the risks associated with
late intubation and enhancing overall safety.

Jueng-Eun Im and colleagues conducted a retrospective analysis on 128 neonates with respiratory
distress in the NICU. They developed a multimodal network capable of predicting the need for
intubation up to three hours in advance. This network combines two subsystems: a multilayer
perceptron (MLP) for analyzing numerical data and a transformer block for handling time series
data. The network integrates feature vectors from both systems into a fully connected layer to
estimate the likelihood of needing intubation.

Péter Földesy and his team created a novel deep learning algorithm for a camera-based respiratory
monitoring system. This algorithm identifies significant respiratory patterns by analyzing periodic
movements and incrementally trains a deep neural network to detect breathing in complex
situations, like bursty or motion-intensive environments. The algorithm, which continuously
evolves without a forgetting mechanism, can adapt to varying breathing patterns.

S Navaneeth and associates utilized thermography and deep learning to classify respiratory rates
non-invasively. They developed a neural network using Keras, which categorizes breathing into
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four types: rapid, slow, healthy, and inconclusive. The model demonstrated high recall and
precision rates, evidencing its effectiveness in identifying respiratory disorders.

The traditional approach for early detection of neurodevelopmental disorders in premature infants
involves manual inspection of their movement patterns by skilled professionals. To streamline this
labor-intensive and qualitative process, Lucia Migliorelli and her team have introduced a novel
deep learning model designed for precise estimation of limb positions using depth images. Their
algorithm, named TwinEDA, employs a convolutional neural network with specialized
architectural units. These units are optimized to perform fewer computations without compromising
on the accuracy of predictions. This network was tested on a substantial dataset comprising 27,000
depth video frames from 27 preterm infants, gathered in actual clinical settings. When compared to
leading algorithms in the field, TwinEDA demonstrated a twofold increase in processing speed for
individual depth frames and required only a quarter of the memory, while maintaining a
comparable level of accuracy, as indicated by a Dice similarity coefficient of 0.88.

Cristhyne León and her team conducted a study focused on neonatal late-onset sepsis (LOS), a
significant cause of morbidity and mortality in very preterm infants. Their research in a neonatal
intensive care unit (NICU) involved analyzing heart rate variability (HRV) data from 49 preterm
infants. These infants were divided into two groups: one that received antibiotics post-birth (LOS
group) and a control group that did not receive antibiotics. The study compared the HRV
characteristics of the LOS group against those of the control group, as well as against baseline
values established during a calibration period. Using automated feature selection, they trained four
machine learning models: k Nearest Neighbours (KNN), Logistic Regression (LogR), Random
Forest (RandF), and Support Vector Machines (SVMs). Logistic regression emerged as the most
effective in detecting LOS, highlighting the value of incorporating a visibility chart index in HRV
analysis for predicting neonatal sepsis.

In a separate study, Saim Ervura and colleagues aimed to identify respiratory abnormalities in
newborns using a non-invasive, non-ionizing method: thermography. They employed CNN models
and data augmentation techniques to detect respiratory issues in neonates. The study categorized
newborns into two groups: those with respiratory abnormalities and those with cardiovascular or
abdominal issues. The accuracy of classifying these conditions improved from 84.5% to 90.9%
when the number of images was quadrupled through data enhancement. This increase underscores
the impact of data augmentation on the classification results in medical diagnoses using artificial
intelligence.

Critical congenital heart disease (CCHD) is a subset of CHD and represents the most severe form
of CHD. delayed or missed detection of CCHD can lead to severe, preventable morbidity as well as
death. However, approximately 900 newborns with CCHD are still missed each year in the U.S.
Zhengfeng Lai et al. designed an interpretable machine-learning model that can be directly
incorporated into current stand-alone SpO2 screening systems with automated feature selection to
further improve the sensitivity of CCHD detection with minimal impact on specificity[12].

Neonatal apnea, a critical condition observed in preterm infants, is characterized by a pause in
breathing for over 20 seconds, often accompanied by a slowed heartbeat, skin discoloration
(bruising or pallor), and decreased muscle tone. This condition poses a significant risk of brain
damage and is predominantly found in preterm infants. To address this, Omiya Hassan and
colleagues developed a machine learning-based hardware model for detecting neonatal respiratory
failure in neonatal intensive care units (NICU). Their system includes a pyroelectric transducer-
based respiratory monitor and a pulse oximeter for identifying apnea episodes. The system captures
signals from the transducer, which are then digitized and processed. The respiratory data, enhanced
through a charge amplifier, is digitized in a range between 0 and 1. In contrast, pulse oximetry data
is normalized within a 0 to 5 range. This data is then analyzed using a Fully Connected Neural
Network (FCNN) to determine the presence of apnea, particularly effective in cases where both
respiratory rate and SpO2 levels are low. Omiya Hassan's model boasts a remarkable accuracy rate
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of about 99% in detecting respiratory failure in neonates.
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下一步 Next steps:
An analysis of state of the art on predictive modelling techniques in the Neonatal ICU.
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Development and implementation of an Intelligent Neonatal Monitoring system
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是否完成任务书中所定的中期目标？Targets met (as set in the Specification)?
Completed with Exceptions.
Reasons for non-completion of established tasks: Otitis media prevented normal work; was overly
optimistic in setting goals for the previous phase of the assignment, underestimated the amount of
work involved in the systematic review of the assignment, and did not realize that Supervisor wants to
write a review paper when he set the goals.
Catch up plan: The planned Task 1: iNeom system technical specifications (documentation) and
Task 3: iNeom prototype (software) need to be carried out after the completion of the current tasks
(i.e. the system review) and the preliminary analysis of the monitoring data on or around 3 March.
The two tasks can be carried out simultaneously and compressed to be completed by the end of
March.
已完成工作 Finished work:
1. System review of An analysis of state of the art on predictive modelling techniques in the
Neonatal ICU.

Literature sources：PubMed, IEEE, SCOPUS.
Keywords：neonates OR neonatal OR newborn OR NICU"big data" OR A OR "artificial
intelligence"OR oxygen OR heart OR respiratory OR blood OR ventilation OR monitoring OR "real
time
Exclusion: Adult, Children, Animal
Year Range: 5 years.
Search result: 260 papers in total (excluding duplicate articles)

Paper Screening:

Method: System Review

Step 1: Exclusion
The article must not meet all three of the following criteria in order to proceed to the next step:

EXCLUSION Criterion 1: Not NICU: The article must include NICU-related content.
EXCLUSION Criterion 2: Not including stats and modelling: the article must include data analysis.
EXCLUSION Criterion 3: Not clinical outcome: articles must include clinical outcomes.

Step 2: Inclusion
The article must meet all three of the following criteria in order to be successfully selected:

INCLUSION Criterion 1: Retrospective/Prospective trial. This criterion has the objective of only
including studies which were implemented on real data. This data can be prospective or retrospective,
so it also includes existing data sets (private or open). The idea is to exclude theoretical or design
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studies which do not use data for modelling/validation.

INCLUSION Criteria 2: Description of Methods and data sources. Apparently no problem with this.

INCLUSION Criteria 3: Defines Specific Clinical Outcome in NICU. The objective of this criterion
is to include studies which have a clear and concrete principal clinical outcome in the context of the
NICU. This clinical outcome can be a clinical condition or an event (e.g.: high blood pressure, apnea,
low body temperature.. etc). As clinical outcome we can classify them with ICD codes
( bronchopulmonary dysplasia, respiratory distress syndrome, persistent fetal circulation, anemia,
meningitis, sepsis, bradycardia….). Note that this criterion does not refer to the context/location of the
study – only to the presence of a clinical objective.

A total of 42 articles fulfilled the above three Inclusion conditions, which are finally selected for data
extraction.

Step 3: Data Extraction

Columns:

Objective
ICD-11 3º level
ICD Disease Name
Aim (develop, update, validate a model, Re-development...)

Data

Accessibility (Public/Private)
Data treatment from study
Study design
Origin

Participants (descriptores
de alto nivel) Participant recruitment method

Outcome quality (grano
grueso)

Outcome description
Outcome in AI
Purporse of AI
Was the outcome defined (described) and used consistently in all
patients (otucome and measure)?
Single or combined outcome?
Blinded outcome? (Y/N) *As outcome assessed without knowledge
of the candidate predictors

Predictors
Type of predictors (nature, type - continuous/categorical)
Timing of predictor measurement
Preprocessing of predictors? (categorization, normalization, etc…)

Sample Size Sample Size calculation and statistical power (Y/N)
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Number of participants
Nº samples with outcome

Missing data
Mentions missing data?
Nº Samples with missing data
Handling of missing data

Model development

Type of modeling (statistical, Supervised, Unsupervised, Semi, RL)
Type of model (regression, bayesian, SVM, CNNs, ……)
Method for selection of candidate predictors
Shrinkage of predictors

Model Performance

Calibration
Classification/Discrimination Measures (metric: S, Sp, AUC, C-
statistic, Accuracy….)
Model significance (Y/N)

Model Evaluation

Type Validation
Method for testing model
Adjusting or updating the model?
Performance metrics (actual value)

Discussion

Interpretation of models (Y/N)
Comparison of models with other studies (Y/N)
Challenges (Ctrl+V)
Opportunities (Ctrl+V)

Summary:
1. Objective
1.1 ICD Disease Group Analysis
ICD Disease Group Number of Articles
Unknown (Monitor Only) 16
General symptoms, signs or clinical findings 8
Disorders of cerebrospinal fluid pressure or
flow 1

Symptoms, signs or clinical findings of the
respiratory system 2

Structural developmental anomalies of the
circulatory system 2

Diseases of the nervous system 4
Certain infectious or parasitic diseases 1
Cerebrovascular diseases 1
Pleural, diaphragm or mediastinal disorders 4
Functions of the cardiovascular,
haematological, immunological and
respiratory systems

1

1.2 Aim: All Developed

2. Data
2.1 Accessibility
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2.2 Data treatment from study

2.3 Study design
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2.4 Origin
All Own Study

Participants (descriptores de alto nivel)
Participants (descriptores de alto nivel)

3. Outcome quality (grano grueso)
3.2 Outcome in AI
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3.3 Single or combined outcome?

3.4 Blind outcome?
No blind outcome

4. Predictors
4.1 Type of predictors
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4.2 Preprocessing of predictors? (categorization, normalization, etc…)

5. Sample Size
5.1 Sample Size calculation and statistical power (Y/N): Y
5.2 Number of participants
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6. Missing data
6.1 Mentioned missing data: 6 Articles have mentioned
6.2 Handling of missing data
N-fold cross-validation
fill with average value
fill with average value
fill with average value
data imputation
Decision Tree

7. Model development
7.1 Supervised or Unsupervised

7.2 Type of model (regression, bayesian, SVM, CNNs, ……)
CNN 14
LSTM 5
KNN 4
SVM 4
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RF 4
DNN 3
Decision trees 3
XGB 3
LR 3
DNN 3
NB 2
RBFNN 2

8. Model Performance
8.2 Classification/Discrimination Measures (metric: S, Sp, AUC, C-statistic, Accuracy….)
Not Reported 9
ACC 11
AUC 5
AUROC 3
Sen 6
Spc 6
F1-Score 2
DSC 1
RMSE 1
MAE 1
PCC 1
SDR 1
SIR 1

2. Analysis of monitor data examples and database construction

This task consists of two parts: the creation of the database and the writing of the python scripts used
to understand the data and organise the data. The data given to the monitors was in xls format, and the
data has been changed to csv format in order to make it easier for the script to analyse. The data has a
total of four columns, which are data type, value, timestamp and temperature box number. There are
more than 600,000 pieces of data in total.

Data Example(in cvs or excel files.):

For the database, a total of three tables were created: patient, monitor and data table.
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For scripts, two types have been prepared so far. The first is a script that summarizes the number of
data types, used to summarize how many different types of monitor data there are in total; the second
is the change in a particular piece of data over time for a single bed, which can be used to analyse the
patient's condition; and the third is used to clean the data by deleting all rows in the table that contain
null for import into the sql database.
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尚需完成的任务Work to do:

1. Write technical specification documents of the iNeom system.
2. Build analytical models.
3. Model selection and training.
4. Front-end construction.
5. Testings.

存在问题 Problems:

Data types are complex and difficult to understand, and the data formats of each monitoring
instrument are different and complex.

拟采取的办法 Solutions:

Data cleansing is performed using scripts to convert non-compliant data formats.

论文结构 Structure of the final report: (Chapter headings and section sub headings)

Abstract
Keywords
1. Introduction

1.1 Background Information
1.2 Formal Studies

2. Design and Implementation
2.1 Hardware Introduction
2.2 Data Composition and Pre-processing
2.3 Modelling

3. Results and Discussion
3.1 Result Analysis

4. Conclusion and Future Work.
5. References
6. Acknowledgement
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Supervision log
Date: 24/10/2023
Supervision type: Email
Summary: Say hello and book a time for the next formal meeting

Date: 16/11/2023
Supervision type: Online
Summary: Project introduction and discussion of project specification

Date: 23/11/2023
Supervision type: Online
Summary: Systematic review introduction and tasking

Date: 8/12/2023
Supervision type: Online
Summary: Progress review and discussion about Exclusion Criterion(Part of System
review)

Date: 15/12/2023
Supervision type: Online
Summary: Progress review and discussion about Inclusion Criterion (Part of System
Review)

Date: 26/12/2023
Supervision type: Online
Summary: Progress review and discussion about the early term report

Date: 10/01/2023
Supervision type: Online
Summary: Discussion about the early term report

Date: 14/01/2023
Supervision type: Online
Summary: Progress review and discussion about the System Review

Date: 18/01/2023
Supervision type: Face-to-face
Summary: Discussion about the System Review

Date: 03/02/2023
Supervision type: Face-to-face
Summary: Progress review, discussion about the System Review and introducing the
data examples analysis



Date: 19/02/2023
Supervision type: Face-to-face
Summary: Progress review, discussion about the System Review the data examples
analysis

Date: 25/02/2023
Supervision type: online
Summary: Progress review, discussion about the midterm report

Date: 04/03/2023
Supervision type: online
Summary: Progress review, discussion about the further tasks

Date: 15/03/2023
Supervision type: online
Summary: Progress review, discussion about the System Review data extraction file

Date: 22/03/2023
Supervision type: online
Summary: Meeting with the physician to discuss the envisaged target and procedures
of regression analysis of the data modeling

Date: 28/03/2023
Supervision type: online
Summary: Systematic review of draft mandate notifications and assignments

Date: 08/04/2023
Supervision type: online
Summary: Discuss the draft final report

Date: 11/04/2023
Supervision type: online
Summary: Discuss the draft of the systematic review

Date: 18/04/2023
Supervision type: online
Summary: Discussed the harmonization of icon formats in draft systematic review
papers and the data analysis procedures



Additional Appendices

Abbreviations

AI: artificial intelligence

CONSORT: Consolidated Standards of Reporting Trials

CHARMS: Critical Appraisal and Data Extraction for Systematic Reviews of
Prediction Modelling Studies

EQUATOR: Enhancing the Quality and Transparency of Health Research

ICD-11: International Classification of Diseases 11th Revision

IEEE: Institute of Electrical and Electronics Engineers

MI-CLAIM: Minimum Information About Clinical Artificial Intelligence Modeling

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PROBAST: Prediction Model Risk of Bias Assessment Tool

RCT: randomized clinical trial

SPIRIT: Standard Protocol Items: Recommendations for Interventional Trials

SVM: support vector machine

TRIPOD: Transparent Reporting of a Multivariable Prediction Model of Individual
Prognosis or Diagnosis
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Table 1: Summary of Review
Health Area Type of modelling Data type

Cardiovascular

Deep Learning[20, 28, 41,
44,47]
Traditional ML
Models[33, 39,46]
Other Models[46]

BLOOD PERFUSION
INDEXES and
HEMOGLOBIN[20];
HR, SpO2, PIA[33];
Skin Image[38];
EEG[39];
RR[41];
Video of infants[28];
HR[46];
ECG, HR, RR, SpO2[47];
Chest Sound[44]

Digestive Deep Learning[34, 37] Bowel Sound[34, 37];

Infections

Deep Learning[19];
Traditional ML
Models[14, 29, 30, 54]
Other Models[15]

ECG[14, 15, 29, 30];
HR[15, 19, 30, 54];
RR, SpO2[19, 54];
CI[14]

Microvascular Other Models[26] SpO2[26]

Mortality Traditional ML
Models[42]

vital signs, hospital
records, fluid information,
laboratory tests, treatment
orders, and free-text
medical records[42]

Neural/Brain

Deep Learning[16, 21, 27,
48]
Feature Engineering
Models[23]
Traditional ML
Models[17, 22]

EEG[16, 17, 27]
Video of infants[16, 21]
Image of infants[23]
ICP[48]

Not disease

Deep Learning[28, 49]
Ensemble Learning[36]
Feature Engineering
Models[43]
Traditional ML
Models[28, 30]

HR[28, 30, 43]
SpO2[28, 43]
StO2[28]
GA[30]
Not Mentioned[36]
Video of infants[28, 49]

Respiratory

Deep Learning[24, 25, 40,
50, 51]
Traditional ML
Models[31]
Other Models[18, 44]

SpO2[18, 31, 40, 50]
RR[40, 50]
HR[18, 31, 50]
BP, PR, GA,...[31]
Thermal imaging[24, 25]
Video of infants[51]
Chest Sound[44]



Possible Risks

Description of
risks

Description of
impact

Likelihood
rating

Impact rating Preventative
actions

When predictive
analysis is
performed on real
patients in the
NICU, the
patient's family
may have
opinions that
prevent the
experiment from
being conducted

The
experiment
was interrupted
and samples
were selected
again for
analysis

2 3 The patient's
family should
be informed in
detail before
the
experiment,
and other spare
samples should
be selected in
advance
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