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Abstract: Neutron/gamma pulse shape discrimination (PSD) is essential in applications such as
radiation source analysis, nuclear material detection, detection of pollutants in the soil and cultural
heritage. Neutrons are accompanied by gamma-ray photons due to the interaction with the environ-
ment so neutron detectors require some techniques to differentiate them. There are several methods
enabling such differentiation. In the current submission, a robust estimation of the decay shape is pro-
posed as a new alternative. To do so, a robust estimator computed by a global optimization method
is used. After presenting the theoretical background and explaining the required computations to be
realized, the proposed method is tested in a publicly available large dataset. Evaluations of the figure
of merit and the positive discrimination rate values are used to assess the degree of improvement
attained. A computing code for the method, which is easily adaptable by users to their own datasets,
is also provided.

Keywords: neutron and gamma discrimination; pulse shape discrimination; robust estimation;
global optimization

1. Introduction

Pulse shape discrimination (PSD) techniques have been widely used over the past
decades to separate different radiation sources, such as fast neutrons from a gamma ray
background [1]. Since a radioactive neutron source always emits gamma-ray photons,
neutron detectors, such as scintillators, require techniques to differentiate both signals.
The PSD techniques are based on the differences in the shapes of the scintillation signals:
a gamma-ray excitation of the scintillator will give rise to a short (or prompt) decay
fluorescence component, whereas a neutron interaction with the scintillator will contain
both short (prompt) and long (delayed) fluorescence components [2].

The purpose of enhancing the neutron/gamma discrimination power of an organic
scintillator (either liquid or plastic) can be achieved by specifically selecting the chemical
composition of the material, for instance, by using a ternary fluorophore that shifts the
wavelength [3]. In the field of homeland security, scintillators and discrimination tech-
niques are of primary use in the detection of special nuclear materials (SNM) [4,5]. Some
environmental challenges, such as the detection of pollutants in the soil, are also solved
by making use of them [6,7]. Scintillators and PSD techniques are also employed in other
fields such as non-destructive techniques for restoration studies of art works in cultural
heritage [8].

One of the most common methods in PSD is the charge comparison method (CCM),
see, e.g., [2,9,10]. It has the advantages of stability, reliability and simplicity in computation
along with a high discrimination power [11]. It is considered as a reference to compare
with more recent algorithms of neutron/gamma discrimination that have been recently
proposed, such as the use of convolutional neural networks [12].
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Another simple method for PSD makes use of the determination of the slope for the
falling edge region [13]. It is easy to compute the slope of the straight line connecting two
points (one upper threshold and one lower threshold) but it is less evident how to properly
select these threshold points for them to be representative of the neutron or gamma process
taking place in order to maximize the discrimination capabilities.

Since the decay observed is not linear but exponential, the approach proposed in
the present paper is the determination of the exponential decay shape after the maximum
amplitude for each scintillation pulse and its corresponding characterization so that it can be
used for neutron and gamma discrimination. Some reasons prevent a simple computational
process, however. First, the functional relationship between pulse amplitude and time is
not exactly exponential, due to interactions with the observing environment. Second, it
is quite common that some outlying values appear in the pulse registration. Lastly, even
if the functional model was exactly exponential, the need to linearize the function before
a standard adjustment might have a significantly adverse impact on the results of the
estimation process.

For all these reasons, namely, the inexact functional relationship, the noise in the
observational process and lack of linearity, the standard least-squares (LS) estimator may
be quite adversely influenced and produce a clearly unacceptable solution. In fact, it will
be shown in the application that it provides suboptimal results.

By contrast, robust estimation (RE) techniques were devised in the last decades to
attain a solution for the adjustment problem that is minimally affected by the appearance
of outliers in the data or systematic effects either in the data or in the model (inexactness of
the functional model) while producing a solution close to the LS solution in the case of the
correct functional model and the inexistence of outliers and systematic errors in the data.
For a general reference on RE, the reader may consult [14]. Many robust estimators have
been proposed, some showing better performance than others in coping with undesired
errors of different sizes and distributions. Among them, the minimum L1-norm has been
extensively used [15–17]. Regarding the question of how to compute the solution once
the robust estimator has been selected, the so-called iteratively reweighted least squares
(IRLS) scheme is the normal procedure followed due to the simplicity of recasting the RE
technique in an iterative procedure based on the familiar LS scheme. As proved in [18],
and recognized for many authors after, e.g., [19], this decision is at the cost of critically
undermining the robust estimator capabilities for the most complicated cases (like the non-
linear functional model that is needed to deal with neutron/gamma discrimination) and the
use of a global optimization method is the best alternative to compute the robust estimator.

In the present work, it is shown that the determination of the shape of the neu-
tron/gamma pulse in the decaying part can be reliably carried out by a robust estimation
method (here, the minimum L1-norm) computed by a global optimization method (here,
the simulated annealing method) and demonstrate that the estimator thus defined is able
to successfully discriminate neutrons from gamma rays.

In the following section, the methods and materials in use are described, including
the openly accessible dataset used for the study. Then, the results and their discussion are
given, and some conclusions are drawn. In the Supplementary Materials, a computer code
for the method is included, which is easily adaptable by users to their datasets.

2. Materials and Methods
2.1. Dataset

A dataset of recorded scintillation signals made accessible by [11] was used for this
study. More specifically, the data to be tested was the raw signal (without any pre- or
post-treatment). It consists of 14,404 scintillation pulses coming from the interaction of the
well-known EJ-299-33 plastic scintillator with neutrons and gamma-rays emitted by an
241AmBe isotope source with an average energy of 4.5 MeV. The resulting radiation field
was measured using an EJ299-33 plastic scintillator and a TPS2000B digital oscilloscope.
The oscilloscope worked under a sampling rate of 1 GS/s, an 8-bit vertical resolution, and
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a bandwidth of 200 MHz. The trigger threshold was set at 500 mV, which corresponded
approximately to an energy of 1.6 MeVee. More details about the registration process of the
scintillation pulses can be found in [11] as well as in its associated Zenodo webpage (see
the Data Availability Statement at the end of this paper).

2.2. Discrimination Methods

As previously mentioned, the charge comparison method is currently the most com-
mon one in PSD. In this method, the discrimination between neutrons and gamma rays is
based on the analysis of the ratio R between the integrated charges of the slow Qs and the
total Q components of the scintillation pulses (Figure 1), respectively.

R =
Qs
Q

(1)

Another simple PSD method, as acknowledged in the introduction, is based on the
computation of the slopes in the falling edge region, Figure 2. The slopes of the straight lines
connecting two points—one upper threshold and one lower threshold for each line—are
easy to compute, but it is less evident how to properly select these threshold points for them
to maximize the discrimination capabilities of the neutron or gamma process taking place.
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Figure 1. Values of the total integrated charge Q and the slow integrated Qs for the charge comparison
method. The ratio Qs/Q is the main criteria of the method to classify pulses as neutron or gamma
interactions with the scintillator. The ranges of integration (here, from 40 to 220 ns) have been chosen
to maximize discrimination capabilities. In the figure, as in the rest of the article, pulse amplitudes
are unitless after having been normalized to the range [0, 1].

Since the decay observed is not linear but exponential, the approach proposed in the
present paper is the robust determination of the exponential decay shape after the maximum
amplitude for each pulse, thus encapsulating the ideas in the two former methods. That
is, it is assumed that the relationship between amplitude A and time t after the maximum
amplitude of the pulse (decaying part) can be modelized as

A(t) = Amaxe−∆t/τ + δA (2)
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where Amax is the maximum amplitude of the pulse, which is achieved at time t0 (the
starting time for the analysis), ∆t is the difference between time t and the initial time
for the analysis t0 (that is, the time increment t − t0), τ is the characteristic decay time,
and δA in the residual amplitude. The latter term, amplitude δA, seems pertinent to
introduce, first, because experimentally the decay does not seem to decay to zero, and,
second, because neutron pulses have typically thicker tails that can be explained by the
physical superposition to the main effect (prompt fluorescence) of a delayed emission
which “originates from the collisional interaction of pairs of molecules (or excitons) in the
lowest excited π-triplet states” [10]. The inclusion of this term effectively increases the
power of discrimination, as will be shown in the numerical examples.
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Figure 2. Scheme of the falling edge slope method: an upper threshold is selected, as well as a lower
threshold for each pulse (as indicated on the picture). The slope is defined as the straight line between
the two points. The steepest slope indicates a gamma-ray pulse.

Amax and its corresponding time t0 are easy to determine by inspection of the pulse
data. However, to obtain the unknowns τ and δA, there is a non-linear relationship,
Equation (2). For all the data points in every pulse, it is possible to compose a system of
equations of the form

Ax = k + r (3)

where the A matrix (in bold, not to be confused with a particular amplitude A) and the
independent term vector k have the forms

A =


Amax

∆t1
τapprox2 e−∆t1/τapprox 1

Amax
∆t2

τapprox2 e−∆t2/τapprox 1

. . . . . .
Amax

∆tn
τapprox2 e−∆tn/τapprox 1

 (4)

k =


A1−Amaxe−∆t1/τapprox

A2−Amaxe−∆t2/τapprox

. . .
An − Amaxe−∆tn/τapprox

 (5)
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for the unknown vector x

x =

(
dτ
δA

)
(6)

and the vector of observation residuals r to be determined after the adjustment. Then the
characteristic decay time and residual amplitude of the pulse will be

τ = τapprox + dτ (7)

and δA, respectively.
In Equations (4) and (5), the amplitudes and times for data points 1, 2, . . . n in a given

pulse are used, that is, A1, A2, . . . An, and ∆t1, ∆t2, . . . ∆tn, respectively.
In this linearization, an approximate value τapprox has been used. This approximate

value can be set either by experience, or by inspection of the pulse shape in a first deter-
mination, which can also be subsequently improved by iteration: one simple strategy is
to use a certain time ∆t and the corresponding amplitude A (for example, one like the
lower threshold in Figure 2) and then obtain τ from Equation (2) neglecting δA. Other
values can be obtained by evaluating a few points just to obtain a suitable value to start the
algorithm. Thus, for the current dataset, an approximate value of 12 ns is obtained. The
selection of a poor approximate value will have an adverse effect on the results of the least
squares adjustment but not so much on the results after robust estimation, due to its high
insensitivity to systematic errors in the model.

The solution by least squares is simple and well-known:

x =
(

ATA
)−1

ATk (8)

r = Ax−k (9)

Cx =
rTr

n−2

(
ATA

)−1
(10)

where Cx is the covariance matrix of the unknowns, which has in the diagonal the squared
values of the estimated standard errors of the unknowns, that is, στ and σδA, respectively.

For solution by robust estimation, it is proposed to use the minimum L1-norm com-
puted by a global optimization method: the simulated annealing method, which is based
on the analogy with the self-construction process of crystalline networks. Instead of mini-
mizing the sum of squared residuals, now, the objective is to find a solution that minimizes
the L1-norm of residuals, that is, the function ρ defined as

ρ(r) = ∑n
i=1|ri| (11)

To start the algorithm, an initial solution x0 is selected (sensible choices are the approx-
imate value for tau τapprox mentioned before and zero for δA, or their corresponding values
obtained after the least squares solution). Then a search domain centered on this initial
solution is defined: a certain number of times, 3 or 5, the standard deviation of the least
squares solution could be a possible choice to define the boundaries of the search domain.
It has to be taken into account that a too large search domain will require a slower, more
thorough, search, while an excessively small search domain might leave outside the global
optimum that is sought for. An initial movement amplitude σ0 (a vector with the standard
deviation of the least squares solution for each unknown or similar values that could be
used to explore all regions of the search domain in a few steps) is also set up. A final
movement amplitude σfinal is also selected, with a size that can be considered negligible
for the problem to solve (σfinal = σ0/100 may be a reasonable choice). A cooling factor β
with a value close to one (such as β = 0.999) has to be defined as well, taking into account
that the closer to one the slower the optimization process (or, in the analogy, the cooling
process of the solid hopefully becoming a crystalline network). Finally, a small probability
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value p (such as p = 0.01) has to be selected to allow for the occasional selection of worse
solutions (configurations of higher energy in the analogy).

With the initial solution x0, the residuals are computed by means of Equation (9)
and the corresponding value for the objective function ρ(r) is obtained by means of
Equation (11). These values are stored as xprevious and ρprevious, respectively, to start the
following iterative process. They are also stored as xbest and ρbest. The initial movement
amplitude is stored as σprevious.

1. A new solution xcurrent is obtained by taking the previous one as a base for a movement
of amplitude σcurrent, where

σcurrent = βσprevious (12)

∆x~N(0, σcurrent) (13)

xcurrent = xprevious + ∆x (14)

and where the increment ∆x has been taken from the multivariate normal distribution with
zero mean and σcurrent standard deviation. It has to be checked that xcurrent belongs to the
search domain, otherwise a new solution in the search domain needs to be obtained again
by Equations (13) and (14).

2. The residuals are computed by Equation (9) for the current solution and then, by
Equation (11), the value for the objective function, ρcurrent, is computed. If this value is
smaller than the previous one ρprevious, the current solution is selected as base solution
for the next iteration (that is xcurrent becomes xprevious and ρcurrent becomes ρprevious).
Furthermore, if ρcurrent is smaller than ρbest then xcurrent is also stored as xbest and
ρcurrent as ρbest. Otherwise, if ρcurrent is not smaller than the previous one ρprevious,
then with the small probability p, the new solution is accepted as base solution or,
otherwise, it is rejected so that the solution of the previous iteration is kept for the
next iteration.

The process is stopped if the current movement amplitude σcurrent is smaller than
the desired final movement amplitude σfinal. Otherwise, the algorithm turns back to step
1 above.

3. If the cooling process has been slow enough, at the end of the algorithm execution, the
current solution must be coincident with the best solution (up to negligible differences
of the order of σfinal). Furthermore, it is a necessary (though not sufficient) condition
to attain the global minimum that repeated executions of the algorithm yield the same
results (again, up to negligible differences of the order of σfinal).

More details on the application of the simulated annealing to the computation of
this robust estimator can be found in [18]. Furthermore, the computer code given in the
Supplementary Materials includes this algorithm.

2.3. Discrimination Performance Criteria

To evaluate the performance of neutron/gamma separation of the scintillator with the
different methods, it is customary to use the figure of merit (FOM) value, which is given by

FOM =
S

FWHMn + FWHMγ
=

|µn − µγ|
2.35(σn + σγ)

(15)

where S is the separation between neutron and gamma-ray maxima for the variable of
the particular method (for example, the charge ratio in the case of the charge comparison
method), and FWHMn and FWHMγ represent the full widths at half maximum of the neu-
tron and gamma-ray contributions, respectively, Figure 3. Both components are assumed
to be able to be adjusted by Gaussian functions, so that µn and µγ are the mean positions
and σn and σγ are the standard deviations, respectively, of the neutron and the gamma
ray contributions.
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evaluated, as the full widths at half maximum for each gamma and neutron lobes, respectively.

The crossing line (CL) to separate gamma-ray and neutron pulses can be set, follow-
ing [11], as

CL =
(µγ + 3σγ) + (µn − 3σn)

2
(16)

3. Results and Discussion

The determination of τ (characteristic decay time) and δA (residual amplitude) for each
pulse, in accordance with Equation (2), will be used for discrimination between neutron
and gamma pulses.

As a reference, the FOM value that is obtained with the charge comparison method
for the same dataset (raw values) is taken. In [11], it is said that the FOM value for
the application of the charge comparison method to this dataset is 1.3285, but a close
inspection of the calculation of this value has revealed that a factor of ln(2) was missing
in the denominator of their formula for FOM computation (QCSCM.m file); that is, 1.667
was used instead of 2.35 in Equation (15), so that the correct FOM value for the charge
comparison method applied to this dataset is 0.9405.

First, the results obtained in each pulse for τ (in ns) and δA (unitless) in Equation (2)
after their determination by standard least squares adjustments are presented. As can be
seen in Figure 4, the values of τ alone obtained by least squares do not permit the separation
of the neutron from gamma pulses: the corresponding FOM value is 0.4064.
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The τ values obtained by robust estimation allow for a better discrimination, Figure 5,
but are still insufficient for a good separation; the FOM value is 0.6128.
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Figure 5. Discrimination by tau (τ) values obtained by robust estimation: a slightly better discrimina-
tion ability (FOM value 0.6128) than in the previous case is achieved. τ values in ns.

If the values of δA alone obtained by least squares and robust estimation are analyzed,
Figures 6 and 7 are obtained, respectively, with corresponding FOM values of 0.9521 and
0.9525, which are very similar, and only slightly better than the value of 0.9405 obtained by
the charge comparison method.
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The fact that higher values for τ are obtained in the case of neutron pulses (values
around 13 ns) than for gamma pulses (values around 11 ns) and, at the same time, higher
values for δA are obtained in the case of neutron pulses (values around 0.044) than for
gamma pulses (values around 0.024)—which can be explained by the above-mentioned
contribution of the delayed emission—may suggest that the estimator obtained by multi-
plying the two, that is τδA, will provide a much better discrimination. In any case, having
a look at the variances and covariances in the covariance matrix, it was observed that the
correlation coefficient between τ and δA has an average (very stable) value of 0.4688. Thus,
the variables are moderately correlated and it can be hoped that the discrimination can
indeed be slightly enhanced by the combination of the two variables. The quantity τδA
obtained for each pulse after the estimation of τ and δA by least squares (Figure 8) and ro-
bust estimation (Figure 9) provides in effect, a much better discrimination between gamma
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(lower values) and neutron (higher values) pulses. Their corresponding FOM values are
0.9265 and 1.0356, for the cases of least squares and robust estimation, respectively.
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Since the biggest difference between the results obtained by standard least squares
and robust estimation occurs for the determination of the characteristic decay time (τ), one
may suspect that this estimation is particularly difficult to obtain by least squares using a
time window starting exactly at the peak, that is, using all the data points in the pulse with
times equal or higher to the time where the maximum amplitude is found. If it is used for
the determination of τ and δA, only a time window starting a few τ times after the peak, in
a similar strategy to the time window for the computation of the Qs value (Figure 1), the
values estimated for the characteristic decay time (τ) by least squares improve indeed, with
their results now being much similar than those obtained by robust estimation.

The values obtained for τ by least squares and robust estimation for a time window
starting at 3τapprox (that is 36 ns) after each pulse peak are shown in Figures 10 and 11,
respectively. They have FOM values of 0.6897 and 0.7614, respectively.
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Figure 10. Discrimination by tau (τ) values obtained by least squares with a time window here chosen
to be 3τapprox, thus 36 ns. Evaluation of FOM gives 0.6897. As a reminder, the same method with
no time window resulted in an FOM of 0.4064, with no clear separation between gamma-rays and
neutrons (see Figure 4). τ values in ns.
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The discrimination by the δA values obtained with the time window are shown in
Figures 12 and 13, with the FOM values having worsened slightly for least squares (0.9089)
and improved slightly for robust estimation (0.9973).
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36 ns (3τapprox). The FOM value is 0.9089. The previous computation with no setup of a time window
gave an FOM value of 0.9521 (see Figure 6). δA values are unitless.
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Figure 13. Discrimination by deltaA (δA) values obtained by robust estimation with a time window
of 36 ns, which gives an FOM value of 0.9973. The same method without any use of a time window
gave an FOM of 0.9525 (see Figure 7). δA values are unitless.

In these latter figures, Figures 12 and 13, the existence of other peaks apart from the
main gamma peak (around 0.02) and the main neutron peak (around 0.04) became evident:
those to the left and the right sides of the main gamma peak with respective peaks of
around 0.015 and 0.025. These peaks were already present, though not so clearly visible in
the previous Figures 6 and 7. The discussion of this phenomenon is deferred until the end
of the section so as not to interfere with the current presentation of results since, as it will
be shown, it is not caused by the method proposed.

Finally, the discrimination capabilities of τδA after the estimation of τ and δA with
the time window by least squares (Figure 14, FOM value of 0.9876) and robust estimation
(Figure 15, FOM value of 0.9896) are similar; only slightly worse than the best results
obtained without the time window, that is, those for τδA by robust estimation.
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The results obtained above are summarized in the following table of FOM values
for the different approaches, Table 1. Those clearly improving the separation ability of
the classical charge comparison method (FOM value 0.9405) come from τδA computed
by robust estimation (FOM value 1.0356), with moderate improvements over the charge
comparison FOM for the τδA obtained with the data window by least squares and robust
estimation, and δA with the data window and robust estimation.

Table 1. FOM values for the different parameters computed, data windows and the two computation
strategies: least squares (LS) and robust estimation (RE).

Parameters Data Window FOM Value after LS Computation FOM Value after RE Computation

τ All decaying parts 0.4064 0.6128
δA All decaying parts 0.9521 0.9525

τδA All decaying parts 0.9265 1.0356

τ 36 ns after the peak 0.6897 0.7614
δA 36 ns after the peak 0.9089 0.9973

τδA 36 ns after the peak 0.9876 0.9896
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As a note of caution, it is highlighted the fact that the resulting uncertainties in τ and
δA are around 0.01 and 0.05 times the respective values obtained in the adjustment, so,
even if the FOM values above are given with four decimal places, differences of one percent
or less in FOM values are not statistically significant.

The scatter plot for the best solution in terms of FOM value, that is, for the discrimina-
tion by τδA with data from all the decaying parts by means of robust estimation, is given
in Figure 16.
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Figure 16. Scatter plot for τδA by robust estimation and data from all the decaying parts. A clear
separation between neutron and gamma-ray pulses can be seen.

The positive discrimination (PD) rates for gamma and neutron are also given for the
different methods in Table 2. They account for the number of gamma (or neutron) pulses
that were correctly classified according to the CL in Equation (16). As can be seen, the best
approaches according to Table 1 are, in general, also delivering the best results in terms of
PD rates. In particular, the best FOM resulted for τδA, determined by robust estimation
from data for all decaying parts, which also gave the best PD rates: 0.9830 and 0.9968 for
gamma and neutron, respectively.

Table 2. PD rates for gamma (γ) and neutron (n) for the different parameters computed, data windows
and the two computation strategies: least squares (LS) and robust estimation (RE).

Parameters Data Window PDγ after LS
Computation

PDn after LS
Computation

PDγ after RE
Computation

PDn after RE
Computation

τ All decaying parts 0.9123 0.6173 0.9174 0.9320
δA All decaying parts 0.9517 0.9932 0.9268 0.9921

τδA All decaying parts 0.9297 0.9926 0.9830 0.9968

τ 36 ns after the peak 0.8061 0.9762 0.9701 0.9864
δA 36 ns after the peak 0.8769 0.9926 0.9489 0.9077

τδA 36 ns after the peak 0.8946 0.9950 0.9479 0.9956

Now, it is time to discuss the origin of the two abnormal peaks in the δA plots, namely,
those to the left and the right sides of the main gamma peak with respective peaks of
around 0.015 and 0.025 (unitless), see Figures 12 and 13. It could be thought that they come
from artifacts of the algorithm. However, a close inspection of the pulses whose δA values
result around 0.015, say Area I, and those whose δA values result around 0.025, say Area II,
reveals that the problem is coming from the dataset.

Figures 17 and 18 show two sample pulses having δA values around 0.015 (Area I, left
of the main gamma peak), pulse numbers 98 and 348 in the dataset.
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Figure 18. Amplitude of a second example pulse in Area I (peak to the left of the main gamma peak).
Some amplitudes have negative values. Pulse amplitudes are unitless.

As said, the amplitudes in the dataset were said to be normalized between 0 and 1.
However, this is clearly not the case of the pulses having δA values in Area I, since they
have several values with negative amplitudes.

Similarly, two example pulses are shown in Figures 19 and 20 for δA values around
0.025 (Area II, right of the main gamma peak), pulse numbers 3371 and 5624 in the dataset.
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Figure 20. Amplitude of a second example pulse in Area II (peak to the right of the main gamma
peak). The maximum amplitude exceeds 1. Pulse amplitudes are unitless.

Now, apart from a few values with negative amplitude, the most evident problem is
that the supposedly normalized amplitudes surpass the value of 1. Also, in the very final
part of the pulse, the amplitude seems to grow rather than decrease.

All these abnormalities could have been caused by undesired pulse reflections coming
from cables and electronic components or by calibration issues. In any case, this cannot be
known at this stage.

The Matlab computing codes, working along with the library and datasets given
in [11], give the results for all decaying parts by least squares (S1) and robust estimation



Appl. Sci. 2024, 14, 5532 16 of 17

(S2), and for the time window by least squares (S3) and robust estimation (S4) and are
provided in the Supplementary Materials.

4. Conclusions

The robust determination of the decay shape as a new alternative for neutron/gamma
discrimination has been proposed. It has been shown that the determination of the pulse
shape in the decaying part by a robust estimation method can be used to successfully
discriminate neutrons and gamma rays. For a given dataset, the corresponding FOM
value improves on the FOM value of the standard charge comparison method by 10%.
The determination of the pulse shape with a time window starting a little after the time
of maximum amplitude can also provide satisfactory results, though of slightly lower
quality, both by least squares and robust estimation. In terms of computing time, the robust
estimation algorithm is around one order of magnitude slower than least squares, with
computing times of tens of seconds instead of a couple of seconds for the dataset in use
with a standard personal computer (Intel Core i5-12400 with 32 GB RAM). Additional
research in order to test the proposed method (and the corresponding computing codes
provided) in other datasets seems necessary to better assess its effectiveness.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14135532/s1, Computer code S1: Shape_discrimination_1.m,
least squares results for all decaying part; Computer code S2: Shape_discrimination_2.m, robust
estimation results for all decaying part; Computer code S3: Shape_discrimination_3.m, least squares
results for the time window; Computer code S4: Shape_discrimination_4.m, robust estimation results
for the time window.
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