
Citation: Peñaranda, C.; Reaño, C.;

Silla, F. A Parallel Compression

Pipeline for Improving GPU

Virtualization Data Transfers. Sensors

2024, 24, 4649. https://doi.org/

10.3390/s24144649

Academic Editor: David Plets

Received: 28 May 2024

Revised: 2 July 2024

Accepted: 16 July 2024

Published: 17 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Parallel Compression Pipeline for Improving GPU
Virtualization Data Transfers
Cristian Peñaranda 1,* , Carlos Reaño 2 and Federico Silla 1

1 Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València,
46022 Valencia, Spain

2 Departament d’Informàtica, Escola Tècnica Superior d’Enginyeria (ETSE-UV), Universitat de València,
46010 Valencia, Spain

* Correspondence: cripeace@gap.upv.es

Abstract: GPUs are commonly used to accelerate the execution of applications in domains such as
deep learning. Deep learning applications are applied to an increasing variety of scenarios, with
edge computing being one of them. However, edge devices present severe computing power and
energy limitations. In this context, the use of remote GPU virtualization solutions is an efficient
way to address these concerns. Nevertheless, the limited network bandwidth might be an issue.
This limitation can be alleviated by leveraging on-the-fly compression within the communication
layer of remote GPU virtualization solutions. In this way, data exchanged with the remote GPU is
transparently compressed before being transmitted, thus increasing network bandwidth in practice.
In this paper, we present the implementation of a parallel compression pipeline designed to be used
within remote GPU virtualization solutions. A thorough performance analysis shows that network
bandwidth can be increased by a factor of up to 2×.

Keywords: deep learning; on-the-fly compression; parallel compression pipeline; network bandwidth;
remote GPU virtualization; CUDA; rCUDA

1. Introduction

Artificial intelligence (AI) is progressively becoming part of our daily life thanks
to the use of deep learning models based on neural networks. These networks are not
new. However, their intensive computing requirements have been recently addressed by
leveraging accelerators such as Graphics Processing Units (GPUs).

Typically, deep learning applications are tied to using powerful computers equipped
with last-generation GPUs [1]. Nevertheless, although this execution environment is fine
for many application domains, there are other novel domains where using lighter devices
could be more advisable. These novel domains include, for instance, environments where
large amounts of data are captured in IoT (Internet of Things) devices to perform timely
and high-quality decisions supported by deep learning models [2].

In these novel application domains, data captured by IoT devices could be sent to a
powerful GPU-equipped computer in the cloud, where the deep learning model is executed,
and decisions would be sent back to the IoT device. However, other approaches are also
feasible. For example, edge/fog computing [3] leverages the decentralization scheme by
carrying out computations close to (or even at) the IoT element that captures the data.
Processing captured data close to the location of the IoT device sampling the real world
provides energy savings and scalability, among other benefits.

However, IoT devices present severe power limitations, limiting their computing
capabilities [4]. In this regard, edge devices used in IoT typically rely on ultra-low power
solutions such as ARM-based CPUs, which are unsuitable scenarios for executing deep
learning models. Even if these ARM-based devices include an accelerator (GPU), their total
computing power is quite small compared to that of a last-generation GPU.

Sensors 2024, 24, 4649. https://doi.org/10.3390/s24144649 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24144649
https://doi.org/10.3390/s24144649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3805-4584
https://orcid.org/0000-0001-7871-9152
https://orcid.org/0000-0002-6435-1200
https://doi.org/10.3390/s24144649
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24144649?type=check_update&version=2


Sensors 2024, 24, 4649 2 of 28

An alternative approach to increase the computing capabilities of edge devices is the
use of remote virtualization of accelerators [5]. This mechanism transparently provides
GPUs located at remote nodes to applications being executed in the edge device. Thus,
edge devices do not pay for an energy increase, and simultaneously they can access a
large number of powerful remote GPUs. As remote GPU virtualization provides GPUs
transparently to applications, their source code does not need to be modified.

Notice that accessing remote GPUs requires a network bandwidth typically larger
than the one available in IoT deployments. In this way, the small bandwidth available in
IoT could limit the applicability of remote GPU mechanisms in this context. However, it
is possible to artificially increase network bandwidth by using compression techniques.
That is, data exchanged with the remote GPU could be compressed on-the-fly before being
injected into the network, and once they arrive at the remote GPU server, they would
be decompressed before being copied to the GPU. On the way back, data transmitted by
the remote GPU server would also undergo this process. It is important to remark that
this on-the-fly compression is carried out by the communication layer of the remote GPU
virtualization solution, and thus, it is transparent to the application, which is unaware of
its data being compressed. In summary, if the compression and decompression stages are
properly designed, it could be possible that they provide the benefit of reducing the size
of data exchanged with the remote GPU (thus increasing network bandwidth in practice),
whereas no extra latency is added to transmissions.

This paper presents the design and implementation of a parallel compression pipeline
system for remote GPU virtualization solutions. We also perform a thorough performance
analysis to investigate how the different parameters of the pipeline influence the overall
bandwidth attained by the system. It should be noted that we do not propose novel
compression algorithms in this paper. On the contrary, we use well-known compression
algorithms to implement and evaluate our parallel pipeline proposal. The key contributions
of this work are as follows:

1. We design and implement a parallel compression pipeline system for remote GPU
virtualization, addressing constraints such as low-performance networks (commonly
present in IoT environments) or data types (lineal, random, sparse, and traced data).

2. We conduct a comprehensive performance analysis to analyze the impact of the
different parameters on the implemented solution, providing insights for optimizing
such systems.

3. We demonstrate how existing compression libraries can enhance network bandwidth
using parallel pipeline mechanisms without introducing significant latency.

The rest of the paper is organized as follows. Section 2 presents the background
required to better understand the research presented in this paper. Next, in Section 3, our
proposal is introduced and later evaluated in Section 4. Finally, conclusions and future
work are presented in Section 5.

2. Related Work

To better understand the rest of the paper, this section presents some background on
remote GPU virtualization systems (Section 2.1) and compression solutions (Section 2.2).

2.1. Remote GPU Virtualization Systems

Remote GPU virtualization solutions allow a GPU application to be executed on a
computer that does not own a GPU. To that end, these solutions use a GPU located in
another computer. In the area of machine learning, NVIDIA GPUs have had a huge impact.
For that reason, in this paper, we focus on systems supporting the CUDA technology
developed by NVIDIA [6].

Remote GPU virtualization solutions typically follow a client–server architecture,
as Figure 1 illustrates. A library provides the same API as CUDA on the client side, where
the GPU application is running. That allows the system to intercept all GPU requests made
by the application. This library processes the intercepted GPU requests and sends them to



Sensors 2024, 24, 4649 3 of 28

the server side over the network. A daemon is listening for new GPU requests on the server
side, where the GPU is physically installed. Once the daemon receives a GPU request, it
executes the request on the GPU and sends the result back to the client side. It should be
noted that application developers do not have to modify the application source code in
order to use remote GPU virtualization solutions. The GPU application is not aware that
the request has been processed by a virtual GPU instead of a local real one. Using remote
GPUs is transparent to the application because all the required details are managed by the
remote GPU virtualization solution.

Figure 1. General architecture of remote GPU virtualization solutions.

There are different remote GPU virtualization solutions. GVirtuS [7] and rCUDA [8] are
probably the most popular ones. Both of them present a similar client–server architecture,
although rCUDA supports more CUDA features. For that reason, we use the rCUDA
middleware in this work.

2.2. Compression Solutions

The volume of data used increases day by day [9]. Compression algorithms are
an excellent approach to reducing the volume of data stored or sent over the network,
for instance. In this sense, different areas have used compression libraries in the past to
achieve performance improvements.

Concerning inter-process communications, Vega et al. [10] use delta compression
techniques in fusion databases to save storage and increase the bandwidth. In contrast,
Hansson and Karlsson [11] utilize the well-known compression libraries Lzo, Lzfx, Lzw,
Lzma, Bzip2, and Lz4 to support lossless message compression. Both studies obtain
promising results, and the last one concludes that Lz4, Lzo, and Lzfx are the fastest libraries.

Liang and Li [12] and Uthayakumar et al. [13] focus on wireless sensor networks.
Due to the limitations of these devices on energy, bandwidth, memory, and processing
capabilities, Liang and Li [12] compare a new proposal with popular lossless compression
algorithms analyzing power and robustness. Alternatively, Uthayakumar et al. [13] in-
troduce a highly reliable and low-complexity compression scheme using a neighborhood
correlation sequence algorithm.

There are also some experiments focused on improving network bandwidth. Welton
et al. [14] investigate compression services that compress and decompress data before
transferring it over the network. Their exploration uses Bzip2, Zlib, and Lzo. Results
show the relevance of the data used to evaluate compression services. Also, Wiseman [15]
proposes a transmission system that is able to select the intensity of the compression
algorithm depending on the CPU cycles and the bandwidth available. On the other
hand, Routray et al. [16] enumerate different compression algorithms used in Internet
of Things environments over low bandwidth networks, such as Narrowband Internet of
Things and Long-Term Evolution Machine Type Communication. They argue in favor of
using compression systems to reduce resources and data transfers done in these networks,
but they do not provide any experimental results.

Hu [17] studies the possibility of compressing the data sent over the network based
on the available bandwidth in a 10 Mbps network. The author proposes to create a



Sensors 2024, 24, 4649 4 of 28

simple pipeline that splits the data into different chunks and, depending on the available
network bandwidth, it calculates if a chunk must be compressed or not before sending it.
Although the different pipeline stages do not overlap, the results are promising.

Krintz and Sucu [18] present an adaptive on-the-fly compression system to transmit
data over 100 Mbps and 1.7 Mbps networks. The system splits the data into chunks of 32 KB,
checks the available bandwidth on the network, and determines whether it compresses the
chunk (using Lzo, Zlib, and Bzip2) before sending it. Although data are split into different
chunks, unfortunately, the stages of the system do not overlap.

Peterson and Reiher [19] present a system that decides whether to compress or not a
specific chunk of data using Lzo, Zlib, Bzip2, and Xz compression libraries. Data are split
into 32 KB chunks, and a parallel pipeline compression system is used, hiding the compres-
sion and decompression time behind the transfer time. However, despite the acceptable
performance, the study does not compare the results obtained with a compression system
without a pipeline nor does it evaluate different pipeline configurations.

Chowdhury et al. [20] create a novel two-step compression scheme that exploits tem-
poral correlation in the individual streams to be transmitted in order to increase bandwidth
savings. This study obtains a significant reduction in the network resources required at the
expense of being a lossy solution.

Kim et al. [21] introduce a selective data-compression scheme based on data prediction.
In this study, they apply LZ77 encoding and dynamic Huffman coding to compress data.
The prediction method reduces wasted computing resources by avoiding coding data when
necessary. Using this selective compression, they can choose a dynamic or static Huffman
codification to code the result of the LZ77 reduction. The authors also show a compression
pipeline in which LZ77 encoding and Huffman coding overlap. Although the study focuses
on using Huffman codification, there is no research on LZ77 compression. Both algorithms
should be considered; otherwise, the resulting data might be larger than the input data,
and computing resources would have been wasted.

Finally, Peñaranda et al. [22] present the Smash compression abstraction library. It
contains 41 different compression libraries, which can be used with different configurations.

Several of the previously mentioned studies focus on enhancing network communi-
cation. However, none of these studies provide tools or detailed information on how to
implement them. In this article, we develop a parallel mechanism to improve communica-
tions in remote GPU virtualization systems. The publication that most closely aligns with
our work is the system created by Peterson and Reiher [19]. However, this research lacks
prior studies regarding the configuration utilized, which is always the same regardless of
the network employed. We consider that this study is essential to advance the research in
the field.

3. A Parallel Compression Pipeline for GPU Virtualization Data Transfers

As shown in previous work [23], applying a naive on-the-fly compression approach
in the communication layer of remote GPU virtualization solutions such as rCUDA could
translate into a good improvement in performance when network bandwidth is relatively
low. This naive approach compresses all the data before sending it. Once the compressed
data are received, they are decompressed. There is no overlap among compression, trans-
mission, and decompression tasks. Moreover, data are not split into smaller chunks in
order to compress, send or decompress them.

Given the promising results of such a naive approach, in this paper, we propose a
much more sophisticated solution to further increase performance. More specifically, we
propose to research the use of a parallel compression pipeline where compression and
decompression stages overlap with data transfers, thus hiding the cost of compressing
and decompressing data. Additionally, data to be sent are split into chunks, which make
progress along the pipeline. As shown in Figure 2, applying the well-known pipeline
technique could significantly improve performance for two reasons: (1) the total amount of



Sensors 2024, 24, 4649 5 of 28

transmitted data is reduced (as with the naive approach) and (2) the compression and the
decompression stages overlap with the transmission, thus hiding the latency of these stages.

Figure 2. Comparison between a naive compression approach and the parallel compression pipeline
proposed in this paper.

Figure 3 presents a high-level implementation of the proposed parallel compression
pipeline. As can be observed, in the proposal shown in the figure, there are n threads that
work on m data chunks. On the client side, n threads work in parallel in order to compress
data so that the main thread, which sends compressed data over the network, always has a
new compressed data chunk ready to be sent. On the server side, n threads work in parallel
in order to decompress data chunks as they arrive. In this simple example, a compression
thread takes, for instance, 2t to compress a chunk, while the main thread takes, for instance,
1.5t to transfer the compressed chunk. If only one compression thread were used instead
of n, the main thread would have to wait for 0.5t between the current data transfer and
the following one. Having several decompression threads is also necessary to improve
performance. Similar to what happens with compression threads, the decompression thread
takes 2.3t to decompress the compressed chunk. If only one decompression thread were
used instead of n, a latency of 0.8t would be added to the decompression time.

In the example in Figure 3, we can see the importance of appropriately optimizing the
different stages of the pipeline. In particular, in order to obtain the most efficient possible
pipeline, there are some parameters to consider:

• Number of compression/decompression threads. Depending on the size of the data to
be compressed, compression and decompression times are different. For that reason,
it is essential that the main thread, which sends compressed chunks over the network,
has the next chunk compressed and ready to be sent before finishing the current chunk
transfer. To couple the different speeds of producers and consumer threads, it is
necessary to choose the appropriate number of compression/decompression threads.

• Number of data chunks. Splitting the data into multiple data chunks allows compres-
sion/decompression threads not to idle. An adequate number of data chunks should
be selected so that those threads always have work to do.

• Size of data chunks. Choosing the best data chunk size is also important. Compression
takes longer with a large data chunk than with a smaller one. However, the compres-
sion rate is usually better for a large data chunk than for a smaller one. In addition,
better compression could also lead to a faster transfer.



Sensors 2024, 24, 4649 6 of 28

Figure 3. High-level diagram of the implementation of the parallel compression pipeline using n
compression/decompression threads and m data chunks.

Of course, the ideal scenario is one that provides the pipeline with all the data chunks
and all the threads it needs. However, in the real world, that is not always possible due
to resource limitations. It is, therefore, necessary to find a trade-off between the resources
used and the performance achieved. In the next section, we analyze the influence on the
performance of the number of threads, the number of data chunks, and the size of the
data chunks.

4. Experimental Results

In this section, we present and analyze the experimental results. First, we describe the
experimental setup in Section 4.1. In Section 4.2, we present the compression libraries used
in the experiments. Next, we introduce the data used in the experiments in Section 4.3.
Then, in Section 4.4, we describe the mechanism for choosing the best parameters in
the parallel compression pipeline system. Once the best parameters have been chosen,
in Section 4.5, we analyze the impact on transfer time of transferring the compressed
data using the parallel compression pipeline system. Finally, in Section 4.6, we study an
additional improvement consisting of sending or not the compressed chunk depending on
whether the compressed chunk is larger or smaller than the uncompressed chunk.

4.1. Experimental Setup

In our study, we consider the scenarios shown in Figure 4 to explore the benefits of
using a parallel compression pipeline system:

• Scenario A represents the initial scenario where the remote GPU virtualization solution
rCUDA is used. No compression is used.

• Scenario B shows an improvement over the previous scenario: naive compression is
used to compress data transfers carried out within rCUDA.

• Scenario C makes use of our parallel compression pipeline system. The compression
and decompression stages overlap with data transfers done within rCUDA.

Notice that the compression and decompression stages shown in scenarios B and C
are implemented inside the communication layer of rCUDA, and therefore, their use is
transparent to the rest of the system. On the other hand, scenarios B and C will use the
compression libraries described in Section 4.2.



Sensors 2024, 24, 4649 7 of 28

Figure 4. Scenarios explored in the experiments.

In the experiments, we use an Intel(R) Xeon(R) CPU E5-2637 v2 3.50 GHz (Santa
Clara, CA, USA) as the client node, while the server node is an AMD EPYC 7282 16-Core
Processor (Santa Clara, CA, USA) with an NVIDIA A100 GPU (Santa Clara, CA, USA).
The connection between the client node and the server node is a 1 Gbps Ethernet wired
network. The Linux traffic shaper (i.e., tc) is used to reduce the network bandwidth to
that usually available in edge environments, such as WiFi or cell phone networks. More
specifically, we reduce the network bandwidth to 100 Mbps and 10 Mbps, studying these
networks and the 1 Gbps case.

4.2. Compression Libraries Used in the Experiments

In the experiments, we used the compression libraries provided by the Smash [22]
compression abstraction library, which is available at https://github.com/cpenaranda/
smash (accessed on 15 July 2024). In particular, after examining all the compression libraries
that Smash provides, we selected the following four libraries:

• Snappy [24]. The Google team developed this compression library based on the LZ77
algorithm to obtain a fast compressor instead of focusing on compression.

• Gipfeli [25]. The Google team also developed this compression library based on LZ77.
Gipfeli obtains better compression ratios than Snappy but increases the computa-
tion time.

• Lz4 [26]. This LZ77-based compression library focuses on fast compression and de-
compression.

• Lzo [27]. This compression library is another LZ77 derivative. It sacrifices compression
and decompression speed for compression ratio.

The reason for selecting the aforementioned libraries is twofold: (1) they provide the
best performance and (2) despite being the fastest libraries, they present different features.
For instance, Lzo is much more computationally intense than Gipfeli. While some of
these libraries have existed for several years, their prevalence in current research papers
underscores their ongoing relevance and academic acceptance [28–33]. Our objective in
employing these libraries is not primarily to conduct a comparative analysis to determine
the best option but rather to leverage their differences in functionality within the context of
developing a parallel compression pipeline. This approach allows us to explore broader
insights relevant to our study.

https://github.com/cpenaranda/smash
https://github.com/cpenaranda/smash


Sensors 2024, 24, 4649 8 of 28

4.3. Data Used in Experiments

In order to analyze the benefits of using a pipelined on-the-fly compression approach
to artificially increase network bandwidth, we used the bandwidth test developed by
NVIDIA, which can be obtained when obtaining the CUDA software. Nevertheless, given
that the properties of compression algorithms greatly depend on the exact data being
compressed, we modified the bandwidth test program in order to consider the following
four data types, all of them represented in Figure 5:

• Lineal data. Data start from 0 and increase one by one up to 255. Once the value 255 is
reached, they start again from 0.

• Random data. Data are composed of random numbers between 0 and 255.
• Sparse data. Data contain a random set of 0s followed by a random set of numbers

between 0 and 255.
• Traced data. Traces from real obtained from TensorFlow applications [22]. These data

are actually the data exchanged among the host memory and the GPU memory during
the execution of TensorFlow applications. We sized the data in order to make them
compatible with the CUDA bandwidth test benchmark.

Figure 5. Data used in experiments.

On the one hand, random data are the worst scenario because the information does not
follow any pattern. We expect very low compression ratios and, thus, bad results in general
when using this data type. On the other hand, lineal and sparse data contain repetitive
information and follow patterns, which can help compression libraries to obtain good
performance. Finally, the previous data types were generated synthetically and, therefore,
are useful for obtaining some insights from our study. However, using traced data seems to
be more representative of the environment targeted by this study. This is why, in the next
sections, we will focus on presenting results for this data type. In the Appendix A at the
end of the paper, the results for the other data types can be found.

4.4. Finding the Best Parameters for the Parallel Compression Pipeline

As mentioned in Section 3, the performance of the parallel compression pipeline
depends on (1) the number of concurrent threads used for compressing and decompressing
data, (2) the amount of data chunks that are concurrently being processed within the
pipeline, and (3) the size of these chunks. Given that the design space can be extremely
large, we will only consider the values shown in Table 1 for each parameter. Thus, we will
analyze the performance of the pipeline by varying the number of threads, the number of
data chunks, and the size of those data chunks according to the values in the table.

Table 1. Parameters used to analyze the performance of the parallel compression pipeline.

Number of Threads Number of Chunks Size of Chunks
1 2 512 B
2 4 1 KB
4 8 2 KB
8 16 4 KB

32 32 KB
64 128 KB



Sensors 2024, 24, 4649 9 of 28

On the other hand, notice that if we do not limit the usage of resources (i.e., memory
and CPU usage), the parallel compression pipeline system will usually obtain better perfor-
mance as the amount of available resources increases. For instance, for the parameters in
Table 1, we can expect that using 8 threads provides the best performance. However, it is
likely that the improvement in performance is smaller as the number of threads increases.
That is, we can expect that performance greatly improves when the amount of threads
increases from 1 to 2. However, when the amount of threads increases from 2 to 4, we can
expect a lower improvement in performance. Similarly, increasing available resources from
4 to 8 threads may not improve performance noticeably. Thus, there is a trade-off between
the number of available resources and the performance obtained.

In a real scenario, we are limited by the available resources and should use as few
resources as possible. Therefore, we have developed an equation to model the trade-
off between the performance obtained and the number of resources used to obtain that
performance. We will evaluate performance relative to the number of resources used.

Equation (2) represents the trade-off between the achieved bandwidth and the re-
sources a given parameter configuration uses. Note that BW represents the bandwidth,
Size is defined as the chunk size times the number of chunks, as seen in Equation (1), and
Th is the number of threads. In Equation (2), we first normalize the bandwidth for each
value by dividing it by the minimum bandwidth obtained. Similarly, we normalize the size
and the number of threads. Finally, we weigh the normalized values with the user-defined
constants α, β, and δ. The sum of those constants must be 1. If the α value is close to
1, the user gives more weight (i.e., prioritizes) bandwidth. In contrast, the β or δ values
are close to 1 when the user is concerned about resource utilization. For this study, we
selected the values 0.60, 0.15, and 0.25, for α, β, and δ, respectively. We give more weight
to bandwidth (α is the highest value) because the performance of our approach greatly
depends on it. In addition, in our experimental setup, computing nodes are more limited in
terms of CPU (i.e., the number of threads) than in memory (i.e., the size of the data chunks),
so δ is higher than β.

Size = ChunkSize × NumberChunks (1)

Trade-Off(x) =
(

BWx

BWmin
× α

)
−

(
Sizex

Sizemin
× β

)
−

(
Thx

Thmin
× δ

)
(2)

On the other hand, the design space exploration considering all the combinations of
parameters in Table 1 is unaffordably large. Therefore, in order to reduce the designed
space exploration, we will first focus on analyzing the impact of the size of data chunks.
Then, by selecting the best options for chunk size we will further reduce the design space
exploration by analyzing the impact of the number of chunks. Finally, we will use those
conclusions to study the impact on the performance of the number of threads. Moreover,
we will carry out this analysis considering only messages of 8 MB of data. We have chosen
this message size because it is large enough to keep the pipeline working while measuring
performance. In the next section, we will show the performance of the entire range of
message sizes.

Notice that, due to space limitations, we only show results for the Gipfeli compression
library in this section when using the 1 Gbps network and the traced data. The results for
the rest of the compression libraries, network bandwidths, and data types are available in
the Appendix A at the end of the paper.

In the first step, we researched the best data chunk size depending on the number of
threads and the number of data chunks. Figure 6 presents the results obtained by the Gipfeli
compression library using a 1 Gbps network. As we can see, in all scenarios, achieved
bandwidth increases as more resources are devoted to the pipeline, as expected. However,
the trade-off between resources and bandwidth (denoted as “TO” in the plots) worsens as
the memory used increases. The reason is that the bandwidth does not improve enough to
compensate for the memory increase. The chunk size that achieved the best performance
using one thread is 2 KB, regardless of the number of chunks, as shown Figure 6a. Similarly,



Sensors 2024, 24, 4649 10 of 28

in Figure 6b, we can observe that for almost any number of chunks, the optimal chunk size
when using two threads is 4 KB. The only exception is for 32 chunks, where the best chunk
size is 2 KB. Finally, when using four and eight threads, regardless of the number of chunks,
the best performance is obtained when using chunk sizes of 4 KB, as shown in Figure 6c,d.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

190

380

570

760

950

1140

1330

1520

1710

1900

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) 1 thread all chunks of all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

190

380

570

760

950

1140

1330

1520

1710

1900

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) 2 threads all chunks all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

190

380

570

760

950

1140

1330

1520

1710

1900

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(c) 4 threads all chunks all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

190

380

570

760

950

1140

1330

1520

1710

1900

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(d) 8 threads all chunks all sizes.

Bw 2 Chunks TO 2 Chunks Bw 4 Chunks TO 4 Chunks
Bw 8 Chunks TO 8 Chunks Bw 16 Chunks TO 16 Chunks
Bw 32 Chunks TO 32 Chunks Bw 64 Chunks TO 64 Chunks

Figure 6. Study of data chunk sizes using 1 Gbps network and Gipfeli compression library. The hori-
zontal line in the plots corresponds to a trade-off equal to zero.

Once data chunk sizes have been investigated, the next parameter we study is the
number of threads. Figure 7 presents this analysis, where we have set the bests chunk
size according to results in Figure 6 for each of the thread counts (1, 2, 4, and 8). As can
be observed, as the amount of chunks increases, the trade-off between resources and
bandwidth worsens. The reason is that the total size used increases exponentially. Table 2
summarizes the results showing the best configurations. We selected the configuration that
obtains better bandwidth.

Table 2. Summary of the best parameters for the parallel compression pipeline system using Gipfeli
and 1 Gbps network for each amount of threads used in the pipeline.

Number of Threads Number of Chunks Size of Chunks
1 4 2 KB
2 4 4 KB
4 16 4 KB
8 16 4 KB



Sensors 2024, 24, 4649 11 of 28

Number of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bw Threads 1 TO Threads 1 Bw Threads 2 TO Threads 2
Bw Threads 4 TO Threads 4 Bw Threads 8 TO Threads 8

2 4 8 16 32 64
0

160

320

480

640

800

960

1120

1280

1440

1600

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 7. Study of the number of data chunks using 1 Gbps network and Gipfeli compression library.

Finally, we study the optimal number of threads when chunk size and the number
of chunks are set according to Figures 6 and 7. Again, we use our equation to obtain the
best trade-off between bandwidth and resources used. In Figure 8, we can observe that
the bandwidth increases as the number of threads increases from 1 to 2 and from 2 to 4.
In the case of 8 threads, bandwidth is reduced. However, the best trade-off is achieved with
2 threads. After having studied the three parameters, we can conclude that for the Gipfeli
using a 1 Gbps network, the best configuration is 2 threads, with 4 chunks where chunks
have a size of 4 KB.

Number of Threads

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bandwitdh Tade-Off

1 2 4 8
0

160

320

480

640

800

960

1120

1280

1440

1600

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 8. Study of the number of threads using 1 Gbps network and Gipfeli compression library.

Due to space limitations, we have only shown plots for the Gipfeli compression
library and 1 Gbps network (plots for the rest of the compression libraries and networks
are available in the Appendix A). However, Table 3 summarizes the best configurations
obtained for all the compression libraries used in this work. As shown in the table, using
1 Gbps, Gipfeli obtains better bandwidth than others, despite being Lzo, the compression
library with the best compression ratio. This is because the compression and decompression
time is the bottleneck in an environment with 1 Gbps networks, and Lzo takes more time to
compress and decompress than Gipfeli. However, we can see the importance of obtaining a
good compression ratio by reducing the network bandwidth. Thus, when using 100 Mbps
and 10 Mbps networks, Lzo performs better than the other compression libraries because
transfer time compensates for the extra time spent in compression and decompression. It
can also be seen that when network bandwidth decreases, Lzo requires fewer resources.



Sensors 2024, 24, 4649 12 of 28

Table 3. Summary of the best parameters for the parallel compression pipeline system using different
compression libraries and networks.

N
et

w
or

k

Li
br

ar
y

T
hr

ea
ds

C
hu

nk
s

Si
ze

(K
B

)

R
at

io

C
om

pr
es

si
on

+
D

ec
om

pr
es

si
on

Ti
m

e
(µ

s)

B
an

dw
id

th
(M

b/
s)

Snappy 1 2 4 2.25 17.81 1345.68
Gipfeli 2 4 4 2.36 55.39 1565.04

Lz4 4 8 2 2.24 74.26 1190.93

1
G

bp
s

Lzo 8 8 2 2.52 159.54 763.29
Snappy 1 4 1 1.49 7.96 127.41
Gipfeli 1 4 1 1.54 21.84 135.02

Lz4 1 4 1 1.73 40.43 134.24

10
0

M
bp

s

Lzo 2 4 1 1.94 91.56 148.42
Snappy 1 4 1 1.49 7.96 12.74
Gipfeli 1 4 1 1.54 21.84 13.51

Lz4 1 2 1 1.73 40.43 13.48

10
M

bp
s

Lzo 1 2 1 1.94 91.56 14.87

4.5. Impact on the Performance of the Parallel Compression Pipeline

In the previous section, we selected the best configuration parameters for our par-
allel compression pipeline system when 8 MB messages were used. In this section, we
evaluate the performance of the scenarios described in Section 4.1 for the entire range of
message sizes. Figures 9–11 illustrate the results obtained using 1 Gbps, 100 Mbps, and
10 Mbps network speeds, respectively. The figures present the results for five different cases:
(i) rCUDA without using compression, shown as ‘No Compression’, (ii) rCUDA using
the parallel compression pipeline system with Gipfeli, displayed as ‘Gipfeli Pipeline’,
(iii) rCUDA with a parallel compression pipeline system using Lzo, referred to as ‘Lzo
Pipeline’, (iv) rCUDA using compression with Gipfeli but without pipeline, shown as
‘Gipfeli Naive’, and finally (v) rCUDA using compression with Lzo but without pipeline,
displayed as ‘Lzo Naive’. The different cases are evaluated with datasets of different sizes,
always using traced data (refer to the Appendix A for other data types). Note that ‘Gipfeli
Pipeline’ and ‘Lzo Pipeline’ use the best configuration obtained in Section 4.4, and these
configurations depend on the network bandwidth, as shown in Table 3.

Figure 9 presents the results using a 1 Gbps network. As we can see, ‘Gipfeli Pipeline’,
which uses the parallel compression system, performs best. It achieves a bandwidth of over
1500 Mbps for the bigger datasets under analysis. The benefit of the parallel compression
pipeline system becomes more noticeable when comparing it to ‘Gipfeli Naive’, which
uses compression but without the pipeline. In that case, the bandwidth is below 750 Mbps,
and no compression presents better results (almost 1000 Mbps).

Figure 10 presents the results using a 100 Mbps network. As can be observed, except for
‘Lzo Naive’, all the approaches using compression obtain better results than not using
compression. In these experiments, using the parallel compression pipeline system with
Lzo provides a performance increase of over 100 Mbps compared to using compression
without the pipeline. However, this is not the case for Gipfeli, where compression without
the pipeline (‘Gipfeli Naive’) presents better results. In fact, ‘Gipfeli Naive’ obtains the best
values in this scenario, attaining a maximum bandwidth of over 300 Mbps. We implement
the parallel compression pipeline system to hide the compression and decompression time
by overlapping it with the transfer time. Nevertheless, the compression system without
a pipeline performed better when using Gipfeli in the last experiments. As explained in
previous sections, the client of the compression system without the pipeline compresses all
the data before sending them over the network. The server decompresses the data once



Sensors 2024, 24, 4649 13 of 28

received. Despite not using a pipeline to hide the compression and decompression times,
this approach performs better in this specific case. The reason for this is explained next.

Size

B
an

dw
id

th
 (

M
b

/s
)

No Compression
Gipfeli Pipeline
Lzo Pipeline
Gipfeli Naive
Lzo Naive

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

500

1000

1500

2000

Figure 9. Results using a 1 Gbps network. Different scenarios are considered: ‘No Compression’
(rCUDA without using compression); ‘Gipfeli Pipeline’ and ‘Lzo Pipeline’ (rCUDA using the parallel
compression pipeline system with Gipfeli and Lzo, respectively); ‘Gipfeli Naive’ and ‘Lzo Naive’
rCUDA using compression with Gipfeli and Lzo, respectively, without the pipeline. The scenarios
are evaluated with datasets of different sizes. More details about these scenarios can be found in
Section 4.1.

Size

B
an

dw
id

th
 (

M
b

/s
)

No Compression
Gipfeli Pipeline
Lzo Pipeline
Gipfeli Naive
Lzo Naive

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

100

200

300

400

Figure 10. Results using a 100 Mbps network. Different scenarios are considered: ‘No Compression’
(rCUDA without using compression); ‘Gipfeli Pipeline’ and ‘Lzo Pipeline’ (rCUDA using the parallel
compression pipeline system with Gipfeli and Lzo, respectively); ‘Gipfeli Naive’ and ‘Lzo Naive’
rCUDA using compression with Gipfeli and Lzo, respectively, without the pipeline. The scenarios
are evaluated with datasets of different sizes. More details about these scenarios can be found in
Section 4.1.

In Section 4.4, we evaluated the parallel compression pipeline system and selected the
best configuration parameters depending on the network bandwidth and the compression
library used. Table 3 presents a summary of that selection. According to that table,
the resources needed (i.e., threads and data chunks) to optimally configure the parallel
compression pipeline when using 100 Mbps and 10 Mbps networks are lower than the
resources required for a 1 Gbps network. This means the bottleneck is in the network’s
speed rather than the compression and decompression times. In Table 4, we show the sum
of compression and decompression times and also the compression ratio when both Gipfeli
and Lzo compress: (i) the 1 KB chunk used by the parallel compression pipeline (‘Gipfeli



Sensors 2024, 24, 4649 14 of 28

Pipeline’ and ‘Lzo Pipeline’), and (ii) the 8MB data compressed by the compression system
without pipeline ‘Gipfeli Naive’ and ‘Lzo Naive’ (remember that, as shown in Table 3, 1 KB
is the optimal chunk size for our parallel compression pipeline when using these libraries
over 100 Mbps and 10 Mbps networks). As we can observe in Table 4, both the compression
ratio and the time used to compress and decompress data increase with data size in both
libraries. Notice that a compression ratio increment means that the transfer time is reduced.
Thus, given that the bottleneck is the speed of the network bandwidth in slow networks
such as 100 Mbps or 10 Mbps, having a larger compression ratio may compensate for
the larger compression/decompression time. This is what happens with Gipfeli. For this
reason, ‘Gipfeli Naive’ performs better than the ‘Gipfeli Pipeline’ in this specific case. This
does not happen with ‘Lzo Naive’ because compression and decompression times take too
long and do not compensate for the reduction in transmission time.

Table 4. Compression ratio and the total compression and decompression time obtained using Gipfeli
and Lzo when compressing 8 MB traced data and a 1 KB chunk of this data.

Library Data

Compression
+

Decompression
Time (µs)

Compression
Ratio

Chunk (1 KB) 21.84 1.54Gipfeli Whole (8 MB) 40,468.28 2.22
Chunk (1 KB) 91.56 1.94Lzo Whole (8 MB) 1,662,723.10 2.65

Finally, Figure 11 presents the results using a 10 Mbps network. As we can see, all the
approaches using compression obtain better results than those that do not use compression.
Additionally, compression without a pipeline performs better than the parallel one. ‘Gipfeli
Naive’ obtains values near 30 Mbps with some peaks of 37 Mbps, while ‘Gipfeli Pipeline’
obtains values near 20 Mbps. ‘Lzo Pipeline’ obtains values near 22 Mbps with some peaks
over 25 Mbps, while ‘Lzo Naive’ obtains values near 30 Mbps with some peaks over
35 Mbps. As noted before, these results are due to the fact that the compression ratio
and the time used to compress and decompress increase proportionally to the data size.
The size of the data to be compressed is even more relevant in this case because the 10 Mbps
network is ten times slower than the 100 Mbps network.

Size

B
an

dw
id

th
 (

M
b

/s
)

No Compression
Gipfeli Pipeline
Lzo Pipeline
Gipfeli Naive
Lzo Naive

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

5

10

15

20

25

30

35

40

45

Figure 11. Results using a 10 Mbps network. Different scenarios are considered: ‘No Compression’
(rCUDA without using compression); ‘Gipfeli Pipeline’ and ‘Lzo Pipeline’ (rCUDA using the parallel
compression pipeline system with Gipfeli and Lzo, respectively); ‘Gipfeli Naive’ and ‘Lzo Naive’
rCUDA using compression with Gipfeli and Lzo, respectively, without the pipeline. The scenarios
are evaluated with datasets of different sizes. More details about these scenarios can be found in
Section 4.1.



Sensors 2024, 24, 4649 15 of 28

4.6. To Send or Not to Send Compressed Data

As commented, the parallel pipeline compression system presented in this paper
compresses the data on-the-fly before sending them over the network. However, depending
on the exact data contents, the resulting compressed data size can be larger than the original
uncompressed data. This happens more often for small messages. For that reason, in this
section, we evaluate an improvement consisting in checking the size of the compressed
data in order to decide whether to send the data compressed or uncompressed. Note that
the latter will also avoid the time needed to decompress the data in the server.

We evaluate this improvement using the Gipfeli compression library with 1 Gbps,
100 Mbps, and 10 Mbps networks. Figures 12–14 show the results obtained by ‘No Compres-
sion’, where no compression libraries are used, ‘Gipfeli Pipeline’, where the compressed
chunk is always sent, and ‘Gipfeli Pipeline V2’, where the parallel compression pipeline
decides whether sending the uncompressed chunks instead of the compressed ones. These
results were normalized to the ‘No Compression’ ones. Thus, ‘No Compression’ values
are always 1, while ‘Gipfeli Pipeline’ and ‘Gipfeli Pipeline V2’ obtain values greater than 1
when they improve ‘No Compression’.

Figure 12 illustrates the results obtained with a 1 Gbps network. As we can see, ‘Gipfeli
Pipeline V2’ obtains better values than ‘Gipfeli Pipeline’ when using data sizes lower than
16 KB. Both obtain similar results with bigger data sizes, with ‘Gipfeli Pipeline’ being
slightly better. Both approaches improve the bandwidth obtained by ‘No Compression’
when data sizes are greater than 256 KB.

Size

N
or

m
al

iz
ed

 B
an

dw
id

th

No Compression
Gipfeli Pipeline
Gipfeli Pipeline V2

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0.75

1

1.25

1.5

1.75

2

2.25

Figure 12. Normalized bandwidth obtained over a 1 Gbps network by ‘Gipfeli Pipeline’ and ‘Gipfeli
Pipeline V2’. The latter only sends the compressed data if the size is smaller than the original
uncompressed data.

Similar results are obtained using a 100 Mbps network, as shown in Figure 13. Again,
‘Gipfeli Pipeline V2’ only achieves better values than ‘Gipfeli Pipeline’ for data sizes lower
than 16 KB. Both enhance ‘No Compression’ for data sizes greater than 32 KB. Note that
the 16 KB threshold is lower than the one shown in Figure 12 for a 1 Gbps network, which
was 256 KB.

Last but not least, the experiment shown in Figure 14 presents the results obtained
using a 10 Mbps network. The differences between ‘Gipfeli Pipeline V2’ and ‘Gipfeli
Pipeline’ become lower as we reduce the network bandwidth. The network is the bottleneck,
so they obtain similar results in this case. With data sizes lower than 16 B, ‘Gipfeli Pipeline
V2’ achieves better performance than ‘Gipfeli Pipeline’. For values over 16 B, there are a
lot of variabilities. In this scenario, ‘Gipfeli Pipeline V2’ and ‘Gipfeli Pipeline’ improve
‘No Compression’ for data sizes larger than 4 KB. It should be noted that this threshold
from which the pipelined versions improve the approach of not using compression reduces



Sensors 2024, 24, 4649 16 of 28

together with the network’s speed. Thus, compression becomes more relevant as the
network is slower, as was expected.

Size

N
or

m
al

iz
ed

 B
an

dw
id

th

No Compression
Gipfeli Pipeline
Gipfeli Pipeline V2

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0.5

0.75

1

1.25

1.5

1.75

2

2.25

Figure 13. Normalized bandwidth obtained over a 100 Mbps network by ‘Gipfeli Pipeline’ and
‘Gipfeli Pipeline V2’. The latter only sends the compressed data if the size is smaller than the original
uncompressed data.

Size

N
or

m
al

iz
ed

 B
an

dw
id

th

No Compression
Gipfeli Pipeline
Gipfeli Pipeline V2

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Figure 14. Normalized bandwidth obtained over a 10 Mbps network by ‘Gipfeli Pipeline’ and
‘Gipfeli Pipeline V2’. The latter only sends the compressed data if the size is smaller than the original
uncompressed data.

To better understand the previous results, Figure 15 shows the percentage of com-
pressed chunks used by ‘Gipfeli Pipeline V2’ when using data with different sizes. A 0 value
means no compressed information has been sent because the compressed result is larger
than the original uncompressed data. On the other hand, a 100 value indicates all data sent
over the network have been compressed before being sent. As can be observed, the system
does not compress the data transferred over the network until the data size is equal to or
larger than 32 B. From that value, the compression is relevant. For some data sizes, such as
2 KB, we can detect lower percentages of compressed chunks. In general, the percentage of
chunks that are sent compressed is larger for larger data sizes.



Sensors 2024, 24, 4649 17 of 28

P
er

ce
nt

ag
e 

of
 c

om
pr

es
se

d
 ch

un
ks

Size

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
0

25

50

75

100

Figure 15. Percentage of compressed chunks sent to the network with ‘Gipfeli Pipeline V2’ when
using data with different sizes.

In this section, we evaluated an improvement to our parallel compression pipeline
system, which consists of checking the compressed data size to decide whether to send the
compressed or uncompressed data. As observed in the experiments, this improvement only
provides better results for smaller data sizes. For larger data sizes, it performs similarly to
the previous version of the system. In addition, as network speed decreases, the achieved
improvement is smaller.

5. Conclusions

In this paper, we have presented the implementation and performance evaluation
of a parallel compression pipeline intended to be used within the communication layer
of remote GPU virtualization solutions such as rCUDA. The purpose of this parallel
compression pipeline is to artificially increase network bandwidth by reducing the size of
data being exchanged between the CUDA application and the remote server that owns
the real GPU. Compression is carried out on-the-fly so that applications are not aware that
data exchanged with the remote GPU server are compressed. Remote GPU virtualization
solutions are transparent to CUDA applications. Therefore, the source code of applications
does not need to be modified in order to benefit from using a remote GPU.

The performance analysis presented in this paper has been carried out for different
network bandwidths. Namely, we have considered 1 Gbps, 100 Mbps, and 10 Mbps
networks. We have also used several data patterns, given that compression greatly depends
on the exact data to be processed. In this regard, in the paper, we have presented results
using the data exchanged to/from the GPU during the execution of TensorFlow deep
learning applications.

The analysis presented in the paper raises several interesting conclusions. The first one
is that, by using compression, network bandwidth can be artificially increased up to a factor
of 2× when the size of data exchanged with the remote GPU is large enough. In conrast,
for very small data sizes, using compression reduces network performance. However, we
have seen that as networks becomes slower, the benefits of using compression become much
more noticeable. Despite improving the ‘No Compression’ results, pipeline compression
works worse than naive compression, where all the data are compressed before sending
them, with slow networks and traced data. That occurs because the transfer time is the
bottleneck in this scenario, so compressing all the data obtains a better compression ratio
and, therefore, a better transfer time than pipeline compression.

There are several opportunities that this work provides for future work. For instance,
given that the remote server owns a GPU, using the remote accelerator for compressing and
decompressing data in the server should provide further performance improvements, thus
making the use of on-the-fly compression even more appealing. Another possibility for
future work is using adaptive compression; that is, instead of using a single compression
library, several of them could be simultaneously considered depending on the size of



Sensors 2024, 24, 4649 18 of 28

the data to be compressed as well as the actual network bandwidth and CPU cycles
available (CUDA programs are concurrent applications that concurrently exchange data
with the GPU from their threads). Considering the use of different compression libraries
depending on the data type being exchanged is also possible. To that end, a simple neural
model could be used to quickly decide which compression algorithm to use. Moreover,
a communication layer that does not make use of compression for very small data sizes
should also be considered. As can be seen, the study in this paper opens a lot of future
research directions to further improve available network bandwidth.

Finally, in this paper, we have focused on improving network bandwidth. However,
this research is intended to be used in the edge scenario, so future work should also consider
a thorough energy analysis.

Author Contributions: Software, C.P.; Investigation, C.P.; Writing—review & editing, C.P., C.R.
and F.S.; Supervision, C.R. and F.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the project “AI in Secure Privacy-Preserving Computing
Continuum (AI-SPRINT)” through the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 101016577. It was also supported by the Spanish Ministry of Science and
Innovation under Grant RTC2019-007159-5.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Additional Material

Appendix A.1. Finding the Best Parameters for the Parallel Compression Pipeline

In Section 4.4, we focused on showing the experiments conducted to obtain the optimal
parameters when we use Gipfeli with traced data and 1 Gbps. The methodology used to
obtain the optimal parameters was the same for the rest of the compression libraries, data
types, and network bandwidths. Presenting that parameter selection for all the experiments
would mean that more than 200 figures should be shown. Thus, for brevity, we will not
show those results that are similar to the ones previously shown.

Appendix A.1.1. Traced Data

These data are a trace of the transfers conducted by a TensorFlow application when
it is run on the GPU virtualization system rCUDA. In Section 4.4 of the paper, the Gipfeli
compression library was used to show the selection process of the best parameters when a
1 Gbps network is used. Now in this appendix, we present the same process for 100 Mbps
and 10 Mbps networks.

Figures A1 and A2 present the research of the best parameters for a 100 Mbps network,
whereas Figures A3 and A4 show the exploration carried out in a 10 Mbps network.
The bandwidth achieved by the different parameters in 100 Mbps and 10 Mbps networks is
quite similar, contrary to the results shown in Section 4.4 for 1 Gbps. This happens because
the network is the bottleneck for 100 Mbps and 10 Mbps.

Table 3 in Section 4.4 summarized the results obtained by all the compression libraries
with this type of data.



Sensors 2024, 24, 4649 19 of 28

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

22
44
66
88

110
132
154
176
198
220

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(a) 1 thread, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

22
44
66
88

110
132
154
176
198
220

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(b) 2 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

22
44
66
88

110
132
154
176
198
220

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(c) 4 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

22
44
66
88

110
132
154
176
198
220

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(d) 8 threads, all chunks, and all sizes.

Bw 2 Chunks TO 2 Chunks Bw 4 Chunks TO 4 Chunks
Bw 8 Chunks TO 8 Chunks Bw 16 Chunks TO 16 Chunks
Bw 32 Chunks TO 32 Chunks Bw 64 Chunks TO 64 Chunks

Figure A1. Study of data chunk sizes using 100 Mbps network and Gipfeli compression library using
traced data.

Number of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bw Threads 1 TO Threads 1 Bw Threads 2 TO Threads 2
Bw Threads 4 TO Threads 4 Bw Threads 8 TO Threads 8

2 4 8 16 32 64
0

14

28

42

56

70

84

98

112

126

140

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) Study of the number of data chunks.

Number of Threads

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bandwitdh Tade-Off

1 2 4 8
0

14

28

42

56

70

84

98

112

126

140

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Study of the number of threads.

Figure A2. Study of the number of data chunks and the number of threads using 100 Mbps network
and Gipfeli compression library using traced data.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

2.1
4.2
6.3
8.4

10.5
12.6
14.7
16.8
18.9

21

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(a) 1 thread, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

2.1
4.2
6.3
8.4

10.5
12.6
14.7
16.8
18.9

21

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(b) 2 threads, all chunks, and all sizes.

Figure A3. Cont.



Sensors 2024, 24, 4649 20 of 28

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

2.1
4.2
6.3
8.4

10.5
12.6
14.7
16.8
18.9

21

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(c) 4 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

2.1
4.2
6.3
8.4

10.5
12.6
14.7
16.8
18.9

21

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(d) 8 threads, all chunks, and all sizes.

Bw 2 Chunks TO 2 Chunks Bw 4 Chunks TO 4 Chunks
Bw 8 Chunks TO 8 Chunks Bw 16 Chunks TO 16 Chunks
Bw 32 Chunks TO 32 Chunks Bw 64 Chunks TO 64 Chunks

Figure A3. Study of data chunk sizes using 10 Mbps network and Gipfeli compression library using
traced data.

Number of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bw Threads 1 TO Threads 1 Bw Threads 2 TO Threads 2
Bw Threads 4 TO Threads 4 Bw Threads 8 TO Threads 8

2 4 8 16 32 64
0

1.4

2.8

4.2

5.6

7

8.4

9.8

11.2

12.6

14

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) Study of the number of data chunks.

Number of Threads

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bandwitdh Tade-Off

1 2 4 8
0

1.4

2.8

4.2

5.6

7

8.4

9.8

11.2

12.6

14

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Study of the number of threads.

Figure A4. Study of the number of data chunks and the number of threads using 10 Mbps network
and Gipfeli compression library using traced data.

Appendix A.1.2. Lineal Data

This data pattern was described in Section 4.3. For brevity, we only show the study
for the Lz4 compression library for this type of data. The analysis for the other three
compression libraries is similar. Moreover, we only show results for the 1 Gbps network.
In the case of the 100 Mbps and 10 Mbps networks, the results follow the same trend
as those shown for the Gipeli compression library in Appendix A.1.1. Again, network
bandwidth is the bottleneck in those cases.

Figures A5 and A6 show the exploration carried out for the 1 Gbps network, where
some experiments achieve ten times more bandwidth than without compression.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

1300
2600
3900
5200
6500
7800
9100

10400
11700
13000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(a) 1 thread, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

1300
2600
3900
5200
6500
7800
9100

10400
11700
13000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(b) 2 threads, all chunks, and all sizes.

Figure A5. Cont.



Sensors 2024, 24, 4649 21 of 28

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

1300
2600
3900
5200
6500
7800
9100

10400
11700
13000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(c) 4 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

1300
2600
3900
5200
6500
7800
9100

10400
11700
13000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(d) 8 threads, all chunks, and all sizes.

Bw 2 Chunks TO 2 Chunks Bw 4 Chunks TO 4 Chunks
Bw 8 Chunks TO 8 Chunks Bw 16 Chunks TO 16 Chunks
Bw 32 Chunks TO 32 Chunks Bw 64 Chunks TO 64 Chunks

Figure A5. Study of data chunk sizes using 1 Gbps network and Lz4 compression library using
lineal data.

Number of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bw Threads 1 TO Threads 1 Bw Threads 2 TO Threads 2
Bw Threads 4 TO Threads 4 Bw Threads 8 TO Threads 8

2 4 8 16 32 64
0

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) Study of the number of data chunks.

Number of Threads

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bandwitdh Tade-Off

1 2 4 8
0

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Study of the number of threads.

Figure A6. Study of the number of data chunks and the number of threads using 1 Gbps network
and Lz4 compression library using lineal data.

As a summary for all the compression libraries using lineal data, Table A1 shows the
optimal parameters obtained by compression libraries when they are run using lineal data.

Table A1. Summary of the best parameters for the parallel compression pipeline system using lineal
data and different compression libraries and networks.

N
et

w
or

k

Li
br

ar
y

T
hr

ea
ds

C
hu

nk
s

Si
ze

(K
B

)

R
at

io

C
om

pr
es

si
on

+
D

ec
om

pr
es

si
on

Ti
m

e
(µ

s)

B
an

dw
id

th
(M

b/
s)

Snappy 2 2 32 18.29 18.46 8830.11
Gipfeli 1 4 4 8.94 6.96 3863.49

Lz4 1 2 32 83.17 24.86 10,245.63

1
G

bp
s

Lzo 4 8 4 14.52 55.32 2697.30
Snappy 1 4 4 9.16 5.01 885.22
Gipfeli 1 4 4 8.94 6.96 854.13

Lz4 1 2 32 83.17 24.86 7423.55

10
0

M
bp

s

Lzo 2 4 4 14.52 55.32 1288.82
Snappy 1 4 4 9.16 5.01 88.79
Gipfeli 1 2 4 8.94 6.96 86.63

Lz4 1 2 128 168.26 67.77 1574.96

10
M

bp
s

Lzo 1 2 32 75.16 352.52 698.11



Sensors 2024, 24, 4649 22 of 28

Appendix A.1.3. Random Data

The behavior of all compression libraries is similar when they work with this type
of data. In this section, we have chosen Snappy in order to show the exploration of the
best parameters. As in the previous section, we only show results for the 1 Gbps network
given that the results for 100 Mbps and 10 Mbps follow a similar trend as for Gipfeli in
Appendix A.1.1.

Figures A7 and A8 display the exploration results when Snappy compresses random
data with a 1 Gbps network.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(a) 1 thread, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(b) 2 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(c) 4 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(d) 8 threads, all chunks, and all sizes.

Bw 2 Chunks TO 2 Chunks Bw 4 Chunks TO 4 Chunks
Bw 8 Chunks TO 8 Chunks Bw 16 Chunks TO 16 Chunks
Bw 32 Chunks TO 32 Chunks Bw 64 Chunks TO 64 Chunks

Figure A7. Study of data chunk sizes using 1 Gbps network and Snappy compression library using
random data.

Number of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bw Threads 1 TO Threads 1 Bw Threads 2 TO Threads 2
Bw Threads 4 TO Threads 4 Bw Threads 8 TO Threads 8

2 4 8 16 32 64
0

100

200

300

400

500

600

700

800

900

1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) Study of the number of data chunks.

Number of Threads

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bandwitdh Tade-Off

1 2 4 8
0

100

200

300

400

500

600

700

800

900

1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Study of the number of threads.
Figure A8. Study of the number of data chunks and the number of threads using 1 Gbps network
and Snappy compression library using random data.

The optimal parameters used by the compression libraries, when they work with
random data, are shown in Table A2. As expected, the bandwidth results achieved by
the different compression libraries are similar, and no library can achieve a bandwidth
higher than the network bandwidth. This is because the nature of data makes compression
difficult. Thus, compression libraries do not obtain a good compression ratio, directly
affecting the bandwidth.



Sensors 2024, 24, 4649 23 of 28

Table A2. Summary of the best parameters for the parallel compression pipeline system using random
data and different compression libraries and networks.

N
et

w
or

k

Li
br

ar
y

T
hr

ea
ds

C
hu

nk
s

Si
ze

(K
B

)

R
at

io

C
om

pr
es

si
on

+
D

ec
om

pr
es

si
on

Ti
m

e
(µ

s)

B
an

dw
id

th
(M

b/
s)

Snappy 1 2 2 0.998 6.82 919.43
Gipfeli 1 2 2 0.992 6.39 920.18

Lz4 2 4 1 0.995 26.37 895.98

1
G

bp
s

Lzo 8 8 4 0.995 359.52 878.50
Snappy 1 2 1 0.995 5.33 97.00
Gipfeli 1 2 1 0.981 5.66 95.57

Lz4 1 2 1 0.995 26.37 97.00

10
0

M
bp

s

Lzo 1 4 1 0.992 80.45 96.56
Snappy 2 2 1 0.995 5.33 9.71
Gipfeli 1 2 1 0.981 5.66 9.57

Lz4 1 2 1 0.995 26.37 9.71

10
M

bp
s

Lzo 2 4 1 0.992 80.45 9.68

Appendix A.1.4. Sparse Data

Last but not least, the Lzo compression library was used to explore performance when
using sparse data.

Using a 1 Gbps network, Lzo is not able to obtain a good performance, as we can
see in Figures A9 and A10. When network bandwidth is reduced, results follow the same
trend as for Gipfeli in Appendix A.1.1. For brevity, we do not show results for 100 Mbps
and 10 Mbps networks. As in previous sections, Table A3 summarizes the parameters for
best performance.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(a) 1 thread, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(b) 2 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(c) 4 threads, all chunks, and all sizes.

Size of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

512B 1KB 2KB 4KB 32KB 128KB
0

100
200
300
400
500
600
700
800
900

1000

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3

(d) 8 threads, all chunks, and all sizes.

Bw 2 Chunks TO 2 Chunks Bw 4 Chunks TO 4 Chunks
Bw 8 Chunks TO 8 Chunks Bw 16 Chunks TO 16 Chunks
Bw 32 Chunks TO 32 Chunks Bw 64 Chunks TO 64 Chunks

Figure A9. Study of data chunk sizes using 1 Gbps network and Lzo compression library using
sparse data.



Sensors 2024, 24, 4649 24 of 28

Number of Chunks

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bw Threads 1 TO Threads 1 Bw Threads 2 TO Threads 2
Bw Threads 4 TO Threads 4 Bw Threads 8 TO Threads 8

2 4 8 16 32 64
0

100

200

300

400

500

600

700

800

900

1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) Study of the number of data chunks.

Number of Threads

B
an

dw
id

th
 (

M
b

/s
)

T
rade

-O
ff

Bandwitdh Tade-Off

1 2 4 8
0

100

200

300

400

500

600

700

800

900

1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Study of the number of threads.

Figure A10. Study of the number of data chunks and the number of threads using 1 Gbps network
and Lzo compression library using sparse data.

Table A3. Summary of the best parameters for the parallel compression pipeline system using sparse
data and different compression libraries and networks.

N
et

w
or

k

Li
br

ar
y

T
hr

ea
ds

C
hu

nk
s

Si
ze

(K
B

)

R
at

io

C
om

pr
es

si
on

+
D

ec
om

pr
es

si
on

Ti
m

e
(µ

s)

B
an

dw
id

th
(M

b/
s)

Snappy 1 2 4 20.50 7.12 3401.36
Gipfeli 1 4 4 18.63 7.86 3445.01

Lz4 1 2 1 69.37 27.83 385.93

1
G

bp
s

Lzo 2 8 1 80.02 22.77 833.96
Snappy 1 2 1 19.35 2.22 1889.86
Gipfeli 1 2 4 18.63 7.86 1727.83

Lz4 2 4 1 69.37 27.83 750.15

10
0

M
bp

s

Lzo 2 8 1 80.02 22.77 828.20
Snappy 1 2 4 20.50 7.12 174.77
Gipfeli 1 4 1 15.41 2.49 141.61

Lz4 2 4 2 104.31 57.15 657.80

10
M

bp
s

Lzo 2 4 1 80.02 22.77 531.81

Appendix A.2. Impact on the Performance of the Parallel Compression Pipeline

The results obtained by all compression libraries using their optimal parameters are
shown in Figure A11 for 1 Gbps network, Figure A12 shows results for the 100 Mbps
network, whereas Figure A13 presents results for the 10 Mbps network. In these results,
we can appreciate how compression libraries present different behavior depending on the
exact data type used. In summary:

• Traced data were explained in Section 4.5. Figures A11d, A12d and A13d show more
detailed information with 1 Gbps, 100 Mbps, and 10 Mbps networks.

• No compression library improves the bandwidth obtained with random data, nor
with the naive version, where all the data are compressed before sending them, nor
with the pipeline version, as we can observe in Figures A11b, A12b, and A13b with
1 Gbps, 100 Mbps, and 10 Mbps networks. That behavior correlates with the data
obtained in Table A2.

• Lineal data results are presented in Figure A11a with a 1 Gbps network, Figure A12a
with a 100 Mbps network, and Figure A13a with a 10 Mbps network. Most compression
library results are better than ‘No Compression’ ones, highlighting naive versions.
They achieve great results thanks to their compression ratio. As a result, network
bandwidth is greatly increased.



Sensors 2024, 24, 4649 25 of 28

• Compression libraries obtain an interesting behavior when they work with sparse data.
Using a 1 Gbps network, the fastest compression libraries (Gipfeli and Snappy) achieve
the best bandwidth using their pipeline version, as seen in Figure A11c. Figure A12c
shows how the naive version of these compression libraries benefits when we reduce
the network bandwidth to 100 Mbps. Finally, the slowest compression libraries
(Lz4 and Lzo) obtain the best bandwidth using a 10 Mbps network, as Figure A13c
illustrates. In this last scenario, the network bandwidth is the bottleneck, and that
makes them achieve the best performance because these compression libraries obtain
the best compression ratio, as we can observe in Table A3.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

2000

4000

6000

8000

(a) Lineal data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

1000

250

500

750

(b) Random data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

400

800

1200

1600

2000

2400

2800

3200

3600

(c) Sparse data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

500

1000

1500

2000

(d) Traced data.
No Compression
Snappy Pipeline
Gipfeli Pipeline

Lz4 Pipeline
Lzo Pipeline
Snappy Naive

Gipfeli Naive
Lz4 Naive
Lzo Naive

Figure A11. Final results where the best parameters have been selected by compression library using
1 Gbps and all data types.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

2000

4000

6000

8000

(a) Lineal data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

100

25

50

75

(b) Random data.
Figure A12. Cont.



Sensors 2024, 24, 4649 26 of 28

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

500

1000

1500

2000

(c) Sparse data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

100

200

300

400

(d) Traced data.
No Compression
Snappy Pipeline
Gipfeli Pipeline

Lz4 Pipeline
Lzo Pipeline
Snappy Naive

Gipfeli Naive
Lz4 Naive
Lzo Naive

Figure A12. Final results where the best parameters have been selected by compression library using
100 Mbps and all data types.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

500

1000

1500

2000

2500

(a) Lineal data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

2

4

6

8

10

(b) Random data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

100

200

300

400

500

(c) Sparse data.

Size

B
an

dw
id

th
 (

M
b/

s)

1B 4B 16
B

64
B

25
6B 1K

B
4K

B
16

KB
64

KB

25
6K

B
1M

B
4M

B
16

M
B

0

5

10

15

20

25

30

35

40

45

(d) Traced data.
No Compression
Snappy Pipeline
Gipfeli Pipeline

Lz4 Pipeline
Lzo Pipeline
Snappy Naive

Gipfeli Naive
Lz4 Naive
Lzo Naive

Figure A13. Final results where the best parameters have been selected by compression library using
10 Mbps and all data types.

References
1. Papadokostaki, K.; Mastorakis, G.; Panagiotakis, S.; Mavromoustakis, C.X.; Dobre, C.; Batalla, J.M. Handling Big Data in the Era

of Internet of Things (IoT). In Advances in Mobile Cloud Computing and Big Data in the 5G Era; Springer: Cham, Switzerland, 2017;
pp. 3–22.

2. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future
Directions. Future Gener. Comput. Syst. (FGCS) 2013, 29, 1645–1660. [CrossRef]

3. Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [CrossRef]
4. Capra, M.; Peloso, R.; Masera, G.; Ruo Roch, M.; Martina, M. Edge Computing: A Survey on the Hardware Requirements in the

Internet of Things World. Future Internet 2019, 11, 100. [CrossRef]

http://doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.3390/fi11040100


Sensors 2024, 24, 4649 27 of 28

5. Cecilia, J.M.; Morales-García, J.; Imbernón, B.; Prades, J.; Cano, J.C.; Silla, F. Using Remote GPU Virtualization Techniques to
Enhance Edge Computing Devices. Future Gener. Comput. Syst. (FGCS) 2023, 142, 14–24. [CrossRef]

6. NVIDIA Corporation. CUDA (Compute Unified Device Architecture). 2022. Available online: https://developer.nvidia.com/
cuda-toolkit (accessed on 15 July 2024).

7. Giunta, G.; Montella, R.; Agrillo, G.; Coviello, G. A GPGPU Transparent Virtualization Component for High Performance
Computing Clouds. In Proceedings of the Euro-Par 2010-Parallel Processing: 16th International Euro-Par Conference, Ischia, Italy,
31 August– 3 September 2010; pp. 379–391.

8. Silla, F.; Iserte, S.; Reaño, C.; Prades, J. On the Benefits of the Remote GPU Virtualization Mechanism: The rCUDA Case. Concurr.
Comput. Pract. Exp. (CCPE) 2017, 29, e4072. [CrossRef]

9. Duranton, M.; De Bosschere, K.; Gamrat, C.; Maebe, J.; Munk, H.; Zendra, O. The HiPEAC Vision 2017; HiPEAC High-Performance
Embedded Architecture and Compilation: Barcelona, Spain, 2017.

10. Vega, J.; Ruiz, M.; Sánchez, E.; Pereira, A.; Portas, A.; Barrera, E. Real-Time Lossless Data Compression Techniques for Long-Pulse
Operation. Fusion Eng. Des. 2007, 82, 1301–1307. [CrossRef]

11. Hansson, E.; Karlsson, S. Lossless Message Compression. 2013. Dissertation. Available online: https://urn.kb.se/resolve?urn=
urn:nbn:se:mdh:diva-21434 (accessed on 15 July 2024).

12. Liang, Y.; Li, Y. An Efficient and Robust Data Compression Algorithm in Wireless Sensor Networks. IEEE Commun. Lett. 2014,
18, 439–442. [CrossRef]

13. Uthayakumar, J.; Elhoseny, M.; Shankar, K. Highly Reliable and Low-Complexity Image Compression Scheme Using Neighbor-
hood Correlation Sequence Algorithm in WSN. IEEE Trans. Reliab. 2020, 69, 1398–1423. [CrossRef]

14. Welton, B.; Kimpe, D.; Cope, J.; Patrick, C.M.; Iskra, K.; Ross, R. Improving i/o Forwarding Throughput With Data Compression.
In Proceedings of the 2011 IEEE International Conference on Cluster Computing (Cluster), Austin, TX, USA, 26–30 September
2011; pp. 438–445.

15. Wiseman, Y. Unlimited and Protected Memory for Flight Data Recorders. Aircr. Eng. Aerosp. Technol. (AEAT) 2016, 88, 866–872.
[CrossRef]

16. Routray, S.K.; Javali, A.; Sharmila, K.; Semunigus, W.; Pappa, M.; Ghosh, A.D. Lossless Compression Techniques for Low
Bandwidth Networks. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS),
Thoothukudi, India, 3–5 December 2020; pp. 823–828.

17. Hu, N. Network Aware Data Transmission with Compression. In Proceedings of the Selected Papers from the Proceedings of the
Fourth Student Symposium on Computer Systems (SOCS-4), Pittsburgh, PA, USA, 6 October 2001; p. 33.

18. Krintz, C.; Sucu, S. Adaptive On-the-Fly Compression. IEEE Trans. Parallel Distrib. Syst. (TPDS) 2005, 17, 15–24. [CrossRef]
19. Peterson, P.A.; Reiher, P.L. Datacomp: Locally Independent Adaptive Compression for Real-World Systems. In Proceedings

of the 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016;
pp. 211–220.

20. Chowdhury, M.R.; Tripathi, S.; De, S. Adaptive Multivariate Data Compression in Smart Metering Internet of Things. IEEE Trans.
Ind. Inform. 2020, 17, 1287–1297. [CrossRef]

21. Kim, Y.; Choi, S.; Lee, D.; Jeong, J.; Kwak, J.; Lee, J.; Lee, G.; Lee, S.; Park, K.; Jeong, J.; et al. Low-Overhead Compressibility
Prediction for High-Performance Lossless Data Compression. IEEE Access 2020, 8, 37105–37123. [CrossRef]

22. Peñaranda, C.; Reaño, C.; Silla, F. Smash: A Compression Benchmark with AI Datasets from Remote GPU Virtualization Systems.
In Proceedings of the International Conference on Hybrid Artificial Intelligence Systems (HAIS), Salamanca, Spain, 5–7 September
2022; Springer: Cham, Switzerland, 2022; pp. 236–248.

23. Peñaranda, C.; Reaño, C.; Silla, F. Exploring the Use of Data Compression for Accelerating Machine Learning in the Edge with
Remote Virtual Graphics Processing Units. Concurr. Comput. Pract. Exp. (CCPE) 2022, 35, e7328. [CrossRef]

24. Google. Snappy—A Fast Compressor/Decompressor. 2021. Available online: https://github.com/google/snappy (accessed on
15 July 2024).

25. Google. Gipfeli, a High-Speed Compression Library. 2022. Available online: https://github.com/google/gipfeli (accessed on 15
July 2024).

26. LZ4. Lz4 Website. Available online: https://lz4.github.io/lz4/ (accessed on 25 October 2022).
27. Oberhumer, M.F. Lzo Website. Available online: http://www.oberhumer.com/opensource/lzo/ (accessed on 25 October 2022).
28. Chen, H.; Liu, L.; Meng, J.; Lu, W. AFC: An adaptive lossless floating-point compression algorithm in time series database. Inf.

Sci. 2024, 654, 119847. [CrossRef]
29. Gao, R.; Li, Z.; Tan, G.; Li, X. BeeZip: Towards An Organized and Scalable Architecture for Data Compression. In Proceedings of

the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, La Jolla,
CA, USA, 27 April–1 May 2024; Volume 3, pp. 133–148.

30. Afroozeh, A.; Felius, L.; Boncz, P. Accelerating GPU Data Processing using FastLanes Compression. In Proceedings of the 20th
International Workshop on Data Management on New Hardware, Santiago, Chile, 10 June 2024; pp. 1–11.

31. Jaranilla, C.; Choi, J. Requirements and Trade-Offs of Compression Techniques in Key–Value Stores: A Survey. Electronics 2023,
12, 4280. [CrossRef]

http://dx.doi.org/10.1016/j.future.2022.12.038
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://dx.doi.org/10.1002/cpe.4072
http://dx.doi.org/10.1016/j.fusengdes.2007.06.014
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-21434
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-21434
http://dx.doi.org/10.1109/LCOMM.2014.011214.132319
http://dx.doi.org/10.1109/TR.2020.2972567
http://dx.doi.org/10.1108/AEAT-06-2015-0152
http://dx.doi.org/10.1109/TPDS.2006.3
http://dx.doi.org/10.1109/TII.2020.2981382
http://dx.doi.org/10.1109/ACCESS.2020.2975929
http://dx.doi.org/10.1002/cpe.7328
https://github.com/google/snappy
https://github.com/google/gipfeli
https://lz4.github.io/lz4/
http://www.oberhumer.com/opensource/lzo/
http://dx.doi.org/10.1016/j.ins.2023.119847
http://dx.doi.org/10.3390/electronics12204280


Sensors 2024, 24, 4649 28 of 28

32. Gao, C.; Xu, X.; Yang, Z.; Lin, L.; Li, J. QZRAM: A Transparent Kernel Memory Compression System Design for Memory-Intensive
Applications with QAT Accelerator Integration. Appl. Sci. 2023, 13, 10526. [CrossRef]

33. Karandikar, S.; Udipi, A.N.; Choi, J.; Whangbo, J.; Zhao, J.; Kanev, S.; Lim, E.; Alakuijala, J.; Madduri, V.; Shao, Y.S.; et al. CDPU:
Co-designing compression and decompression processing units for hyperscale systems. In Proceedings of the 50th Annual
International Symposium on Computer Architecture, Orlando, FL, USA, 17–21 June 2023; pp. 1–17.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app131810526

	Introduction
	Related Work
	Remote GPU Virtualization Systems
	Compression Solutions

	A Parallel Compression Pipeline for GPU Virtualization Data Transfers
	Experimental Results
	Experimental Setup
	Compression Libraries Used in the Experiments
	Data Used in Experiments
	Finding the Best Parameters for the Parallel Compression Pipeline
	Impact on the Performance of the Parallel Compression Pipeline
	To Send or Not to Send Compressed Data

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.1.1
	Appendix A.1.2
	Appendix A.1.3
	Appendix A.1.4

	Appendix A.2

	References

