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Abstract: Water distribution networks (WDNs) are vital for communities, facing threats like climate
change and aging infrastructure. Optimizing WDNs for energy and water savings is challenging due
to their complexity. In particular, pump scheduling stands out as a fundamental tool for optimizing
both resources. Metaheuristics such as evolutionary algorithms (EAs) offer promising solutions,
yet encounter limitations in robustness, parameterization, and applicability to real-sized networks.
The encoding of decision variables significantly influences algorithm efficiency, an aspect frequently
overlooked in the literature. This study addresses this gap by comparing solution representations for
a multiobjective pump scheduling problem. By assessing metrics such as execution time, convergence,
and diversity, it identifies effective representations. Embracing a multiobjective approach enhances
comprehension and solution robustness. Through empirical validation across case studies, this
research contributes insights for the more efficient optimization of WDNs, tackling critical challenges
in water and energy management. The results demonstrate significant variations in the performance
of different solution representations used in the literature. In conclusion, this study not only provides
perspectives on effective pump scheduling strategies but also aims to guide future researchers in
selecting the most suitable representation for optimization problems.

Keywords: optimization; solution representation; evolutionary algorithms; multiobjective problem;
NSGA-II; pump scheduling; water distribution networks; EPANET

MSC: 90C26; 90C29; 90C31; 90C90; 49Q12; 76D55

1. Introduction

Water distribution networks (WDNs) and their associated infrastructure are consid-
ered critical structures due to their vital importance to the well-being of communities. It
is forecasted that by 2050, the demand for water systems will intensify as the worldwide
population is expected to increase to between 9.4 and 10.2 billion individuals [1]. WDNs
face various threats that jeopardize their effective operations. One of these threats is climate
change, which leads to extreme weather events such as droughts and floods that impact
the availability and quality of water. Additionally, old pipes and treatment systems can ex-
perience breakdowns, resulting in leaks, water losses, and supply interruptions. Moreover,
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rising energy costs also impact WDNs, as water extraction, treatment, and distribution
require significant energy [2]. Electric power is one of the dominant costs for water utilities,
consuming approximately 5–7% of the total energy produced worldwide [3]. Consequently,
reducing energy consumption levels and conserving available natural resources such as
water are among society’s challenges [4] and the Water Europe Strategic Research Agenda
(SIRA) [5].

The discrete (binary) nature of some variables and the size of the solution space are
among the main difficulties encountered when optimizing water- and energy-saving sys-
tems. In this context, the use of metaheuristics has proven to be suitable for numerous WDN
problems [6]. Researchers have effectively employed evolutionary algorithms (EAs) [7] and
multiobjective EAs (MOEAs) [8] to address various WDN problems. These algorithms have
demonstrated versatility in handling challenges concerning water resources, including leak
detection [9], optimal pipe sizing [10], and water quality optimization [11]. Despite their
utility, EAs and MOEAs present notable limitations, such as issues related to robustness,
accuracy, and parameterization [12]. Various factors, such as objective functions, problem
constraints, algorithmic parameters, and initial conditions, along with the solution repre-
sentation, can influence the performance of these algorithms [13]. Moreover, many studies
have focused primarily on academic cases, which lack practical relevance to real-world
complexities, especially concerning the exponential growth in the problem size. Conse-
quently, enhancements and refinements to optimization methods for addressing these
shortcomings are pressingly needed, emphasizing the imperative for the development of
methodologies and guidelines aimed at enhancing algorithmic efficiency and reducing the
search space, which remain significant research challenges in this field. Within the realm
of metaheuristics, a highly efficacious strategy for enhancing computational efficiency
is to modify the representations of decision variables [14,15]. Properly configuring such
representations simplifies the model formulation process, enabling the achievement of
solutions that are both more precise and optimized. However, the literature lacks in-depth
investigations into how the representations of solutions directly influence the efficiency of
particular EAs.

The electricity consumption linked to the operation of a WDN is primarily attributed
to the operational costs of its water pumps. Approximately 80% of the energy usage is
dedicated to running motors for pumping [16], which is essential for moving water from
collection points to consumers in a manner that satisfies their requirements. In this context,
previous research efforts have been directed towards identifying the optimal pumping
operation [17]. Pump operations are optimized to enable pumps to consume a minimal
amount of energy. Historically, the pump operation process has been formulated as either
an implicit or explicit control problem [18]. In the implicit formulation, the decision
variables of the optimal control problem are pump flows [19], tank water trigger levels [20],
or pump speeds for variable-speed pumps [21]. In the explicit formulation, the decision
variables are the numbers of times that pumps operate (pump scheduling).

The pump scheduling problem has historically been preferred by researchers. Ex-
plicit pump programming is an approach that is used to switch pumps on and off [22]
based on predefined time intervals. Most studies adopt this approach, and its state rep-
resentations during each time interval have been studied using different encodings that
employ binary and integer variables with various levels of discretization [15,18]. Pump
scheduling optimization has proven to be a practical and highly effective method for
reducing energy consumption without affecting the actual infrastructure of the whole
system [23]. Commonly, pump scheduling can be specified by on/off pump switches
during predefined equal time intervals [24,25]. The difficulty encountered in this approach
is mainly caused by the large number of decision variables required for real WDNs with
numerous pump stations, which causes an exponential increase in the size of the solution
space. Other pump scheduling methods [26] reduce the number of variables and the search
space, leading to better computational efficiency and increasing the chance of identifying
higher-quality solutions.
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Given the nondeterministic polynomial-time (NP)-hard nature of pump scheduling
problems [27], various optimization models using both mono-objective and multi-objective
approaches have been proposed. Notably, these studies often select binary or integer
formats for solution representation [28,29] but lack detailed justification for these choices
and assessments of their impact on model efficacy. To address this gap, our study performs a
comparative analysis of various solution representation methods applied to a multiobjective
pump scheduling problem with the goals of:

• Minimizing pumping operation costs.
• Enhancing water quality.

This presents a crucial opportunity to thoroughly investigate how different solution
representations impact the performance of optimization models. The performance of each
representation is evaluated using the following metrics:

• Execution time.
• Convergence.
• Pareto front coverage.
• Diversity.
• Sensitivity.

Experiments are conducted in three case studies using representative datasets; the
obtained outcomes are analyzed and compared across different representations to draw
conclusions and provide recommendations on which representations might be most suitable
for the target problem. Adopting a multiobjective approach allows us to consider multiple
objectives simultaneously, providing a holistic evaluation of solutions and facilitating the
development of robust strategies. This approach not only enhances understanding but also
underscores the significant contributions of our study to the field of optimization.

The remainder of this paper is organized as follows: Section 2 introduces the proposed
methodology, detailing the problem statement and exploring the influence of data structure
representations on the performance of optimization algorithms when applied to pump
scheduling problems. Section 3 presents the formulation of the comparison method, the
computational environment, and the case studies examined. Section 4 delivers the results
and discussion, initially focusing on the efficiency of the nondominated sorting genetic
algorithm (NSGA)-II across the reviewed case studies, comparing the tested solution repre-
sentations through their approximate Pareto fronts, and assessing these representations in
terms of diversity and convergence according to various metrics. Finally, Section 5 offers
conclusions, summarizing the key findings and their implications for future research.

2. Model Outline and Encoding Decision Variables in the Pump Scheduling Problem
2.1. Model Outline and Mathematical Notations

Pump programming is often formulated as a cost optimization problem [30,31], which
aims to minimize the operational costs involved in transporting potable water and have
the pumps consume a minimal amount of energy. This work proposes a multiobjective
optimization method that simultaneously considers energy costs and water quality. The
goal is to find the best pumping program in a typical operating cycle, minimizing the total
operational costs while ensuring competent network service without compromising the
quality of the water supply.

When formulating the mathematical optimization problem, we define decision vari-
ables that correspond to the operational decisions of the pumps, specifically their on/off
statuses. The number of variables is dependent on both the number of pumps and the
number of time intervals. For instance, in a pump program denoted as S, when indicat-
ing which pumps will be operational during each time interval, the decision variables
are represented as S(n, t), where n refers to the number of pumps and t refers to the
time interval.

Two objective functions are defined. The first function, represented by Equation (1),
aims to minimize energy costs [30,31], which consist of the sum of the energies consumed
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by different pumps during each time interval. Additionally, this cost is influenced by the
energy price set by electricity tariffs.

Minimize CE =
NP

∑
n=1

NT

∑
t=0

(Pc(n, t)Ec(n, t)S(n, t)) (1)

where NP is the total number of pumps, NT is the number of time intervals (usually in
hours), Pc(n, t) is the energy consumption tariff imposed on pump n for each interval t,
Ec(n, t) is the energy consumption of pump n in interval t, and S(n, t) is the binary state
indicating whether pump n is operating during interval t.

The second objective function is related to improving water quality [17,32,33]. Dete-
rioration in quality is associated with water age (WANET). Consequently, the aim is to
minimize the water retention time. The water age is assessed as the weighted average
water age based on demand (Equation (2)) and represents the average of the calculated
ages, assigning a weight equal to the requested demand at each time step to each node.

Minimize WANET =
∑ND

n=1 ∑NT
t=0 WAn,tQn,t

∑ND
n=1 ∑NT

t=0 Qn,t
(2)

where WAn,t is the water age at the nth node at time t, ND is the number of demand nodes
in the network, NT represents the number of time intervals, and Qn,t is the water demand
requested by node n at time step t.

These two objective functions are in conflict because, while we aim to minimize
the energy cost, doing so can decrease pump operations, thereby increasing the water
retention time.

In general, two different types of constraints are presented in this problem. The first
type consists of hydraulic constraints such as mass and energy conservation constraints,
which define the hydraulic equilibrium state of the system. They are presented in Equations
(3) and (4), respectively.

∑ qin − ∑ qout = Cj (3)

∑ h f − ∑ Ep = 0 (4)

Pipe head losses are estimated here using the Hazen–Williams equation (Equation (5)).

h f =
10.67L1.85

q

CH1.85D4.87 (5)

where qin and qout are the inflows and outflows at a node, respectively, Cj is the consumption
at node j, h f is the head loss due to friction, CH is the Hazen–Williams coefficient, L is the
length of the pipe, and D is the diameter of the pipe.

The second type includes limit restrictions and represents system performance criteria.
For example, maintaining a minimum pressure level at nodes (Equation (6)) is essential for
ensuring optimal water flow and guaranteeing sufficient access, and this is supported by
adequate pressure. This constraint is established to ensure that the pressure at each node
does not drop below a predetermined value.

hi,t ≥ hmin
i (6)

where hi,t is the pressure at node i during time t and hmin
i is the minimum pressure at node i.

Moreover, limiting the maximum flow rate of the pumps is crucial for preventing
the distribution system from becoming overloaded and avoiding pump damage due to
excessive operation. This contributes to maintaining safe and efficient pump operations.

Qi,t ≤ Qmax
i (7)
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where Qi,t is the flow rate of pump i during time t and Qmax
i is the maximum flow rate

supported by pump i.
Additionally, when analyzing the water levels in the tanks after the optimization

period, they must be at least the same as those at the beginning of the process (Equation (8)).
Finally, maintaining appropriate water levels in the tanks is necessary to ensure constant
availability and prevent both emptying and overflowing (Equation (9)), thus contributing
to the stability of the system.

TLi,NT ≥ TLi,0 (8)

TLi,min ≤ TLi,NT ≤ TLi,max (9)

where TLi,NT is the level of tank i during period NT, TLi,0 is the level of tank i during the
0 period, and TLi,NT is the level of tank i during the final period. TLi,min and TLi,max are
the minimum and maximum levels, respectively, for tank i.

2.2. Encoding Decision Variables

The representation of a solution in the formulation of an optimization problem refers
to how the information describing a potential solution to the problem is structured [34].
Each decision variable is encoded so that it can be manipulated and evaluated by the
employed optimization algorithm.

Common representations include binary, integer, and real-valued encodings [35].
Furthermore, the chosen representations determine how parameters and operators are
used, which in turn affects the performance of the search process. The choice of a suitable
representation type may have a considerable impact on the effectiveness and efficiency of
the optimization algorithm used, significantly affecting its ability to effectively explore and
exploit the search space.

In the context of the pump scheduling optimization problem, the use of binary or
integer encodings varies significantly depending on the approach utilized and the desired
solution type. The number of decision variables in an evolutionary algorithm can influence
its performance, though it is not necessarily directly correlated with better outcomes. A
higher number of decision variables can increase problem complexity, requiring more com-
putational resources and time, potentially impeding algorithm convergence and optimal
solution finding. Conversely, a lower number of variables may lead to an underspecified
problem, limiting the algorithm’s effectiveness in finding solutions. Striking a balance
between an appropriate number of variables and efficient representation is often crucial for
optimal performance in an evolutionary algorithm. Historically, binary encoding has been
predominantly favored in situations where decisions involve representing on/off states
directly, such as in the context of operating pumps at various time intervals. Therefore, an
abundance of research has been conducted on binary encoding in this specific context due
to its intuitive nature and efficiency. On the other hand, integer encoding is better suited for
more complex contexts where decisions cover multiple levels or states in the operations of
the pumps or when more detailed time or sequencing considerations are needed. Despite
the extensive literature on this subject, empirical evidence that definitively indicates which
of the two encodings is superior in terms of efficiency, accuracy, and applicability in dif-
ferent pump scheduling contexts is notably lacking. A detailed comparative study would
not only fill this gap in the existing research but also provide practical guidance for those
involved in optimizing pumping systems, helping them to choose the most appropriate
encoding strategy based on the specific characteristics of their problem.

In this context, this article compares five types of representations that have been used
in the literature for the pump scheduling problem.

• Binary Representation (bin) [24–26,31]: This strategy is used to represent the pump
states observed in each time interval using accepted values s, where s ∈ [0, 1]. Here,
0 and 1 are representative of the off and on states, respectively. The size of the
solution vector is determined by the number of time intervals (NT) and the number of
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pumps (NP), and it is calculated as NT · NP. Additionally, the search space for this
representation type equals 2(NT·NP).

• Integer Representation (int) [36]: The operations of pumps are represented by integers,
which are in the range

{
x ∈ Z | 0 ≤ x < 2NP}, where NP is the number of pumps.

Once the valid values are defined, a conversion from each integer to its binary equiva-
lent is performed to represent the state of each pump. For example, if we have a time
interval NTi and obtain the corresponding integer value, we convert it to a binary
number. Each bit of the binary number is used to define the state of each pump in the
interval NTi. In this representation, the size of the solution space is the same as that
in the binary representation, i.e., 2(NT·NP), and the size of the solution vector is equal
to NT.

• Restricted Formulation (int_r) [18,37]: In this variant, the decision variables represent
the start and end times of pump operations, and they are bounded between 0 (pump
off) and ∆t (the duration of the time interval). To determine the number of decision
variables, the ranges of the time intervals (NTR) are defined. For example, if we con-
sider a total of 24 h and define NTR as 4, we have a total of 6 decision variables for each
set of pumps (NP). In general, the formula for calculating the total number of decision
variables is (NT/NTR) · NP, and the total search space is (NTR · 2 + 1)((NT/NTR)·NP),
where NTR ≡ 0 (mod NT).

• Absolute Time-Controlled Triggers (int_at) [15]: In this representation strategy, the
decision variables are absolute times, meaning that each decision variable represents
the time elapsed from the start of the scheduling period until the point at which
the status of a pump changes. A pair of decision variables represents the operating
interval during which the associated pump is active. This representation approach
allows for scheduling the turning on and turning off of pumps at specific times, and a
maximum change limit (SW) must be defined. The total number of decision variables
is (SW · 2) · NP, and the size of the search space is (NT)((SW·2)·NP).

• Relative Time-Controlled Triggers (int_rt) [15]: For decision variables that represent
relative time intervals, each pair signifies the duration from the beginning of the
scheduling period to the first state change exhibited by the corresponding pump. In
other words, they denote the periods of inactivity and activity for a pump, respectively.
The number of decision variables is (SW · 2) · NP, and ∑

(SW·2)·NP
i=1 xi ≤ 24 must be

satisfied, where xi represents each decision variable in the vector.

Additional details on how to calculate the number of decision variables in each
representation, along with specific examples demonstrating the process, are available in
the Supplementary Materials.

3. Materials and Methods
3.1. Solution Representation Comparison Methodology

The aim of this study is to conduct a comprehensive comparison between different
solution representations for a given multiobjective optimization problem. A multiobjective
optimization problem can be mathematically defined as:

Minimize F(x) = ( f1(x), . . . , fm(x))
T

subject x ∈ Ω
(10)

where Ω is the (non-empty) decision space and x ∈ Ω is the decision vector. F(x) con-
sists of m ≥ 2 conflicting objective functions fi : Ω → R, i = 1, . . . , m where Rm is the
objective space.

To achieve this goal, a rigorous methodology was developed and applied to as-
sess the performance of each representation strategy through a comprehensive set of
performance indicators.
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The first step is to run the optimization algorithm. To ensure the reliability of our
findings, thirty independent experiments were conducted. This approach enables us to
assess the consistency of the outcomes achieved with each solution version across various
quality indicators. The consistency of the results is crucial for confirming the reliability
and replicability of this study. The data acquired from these trials are presented in the
tables in the Results section, highlighting the median values obtained for each quality
indicator associated with the different solution representations. This allows for an effective
comparison between the different representation variants and a determination of their
stability throughout the thirty experiments.

Then, the second step of the methodology is to define a real or reference Pareto front.
In our optimization problem (pump scheduling), the true Pareto front was unknown.
Consequently, this analysis was carried out by constructing an approximate Pareto front
derived from the amalgamation of all solutions from all simulations conducted under the
various representations considered. Within such a set, some solutions improve one or more
objectives yet exhibit not-so-great values in the rest of the objectives. These solutions can
be formalized using the following definitions:

Definition 1. A vector u = (u1, . . . , um)
T strongly dominates another vector v = (v1, . . . , vm)

T ,
denoted as u ≺ v, iff ∀i ∈ {1, . . . , m}, ui < vi.

Definition 2. A vector u = (u1, . . . , um)
T weakly dominates another vector v = (v1, . . . , vm)

T ,
denoted as u ≼ v, iff ∀i ∈ {1, . . . , m}, ui ≤ vi and ∃j ∈ {1, . . . , m} such that uj < vj.

Definition 3. A feasible solution x∗ ∈ Ω of Equation (7) is called a Pareto optimal solution,
if ∄y ∈ Ω such that y ≼ x∗. The set of all the Pareto optimal solutions is called the Pareto set (PS),
denoted as: PS = {x∗ ∈ Ω | ∄y ∈ Ω, y ≼ x∗}.

Definition 4. The image of the Pareto set in the objective space is called the Pareto front (PF):
PF = {F(x) | x ∈ PS}.

Figure 1 exemplifies the process of constructing an approximate Pareto front. This
procedure enables us to inspect a wide range of efficient solutions and systematically
compare them.
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Initially, all non-dominated solutions generated by each representation used in the
case studies were collected. These points are represented in black in the figure. Among all
non-dominated solutions, those that are not dominated by any other solutions within the
set are selected to form the reference Pareto front. These points are highlighted in red in
the figure. It is important to note that some representations may contribute one or more
points to the reference Pareto front, while others may not contribute any. This is due to the
variability in the performance of different representations in exploring the solution space.
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Finally, the last stage involves calculating the performance indicators. In the realm of
multiobjective optimization, unlike single-objective optimization, it is impractical to rely on
a single performance evaluation metric due to the inherently complex nature of comparing
solutions that simultaneously address multiple objectives. This complexity stems from the
need to evaluate various dimensions concurrently. Therefore, the performance indicators
selected for this evaluation focus on three fundamental areas: the computational time,
diversity, and convergence of the algorithm.

On the one hand, computational time is a fundamental indicator that evaluates the
practical efficiency of each solution representation in terms of the resources consumed
during the search process. Its importance is especially highlighted in the context of large-
scale problems, where time and computational resource constraints can have substantial
impacts on the feasibility of proposed approaches. In this study, all experiments were con-
ducted using a computer system equipped with two 2.00-GHz Intel Xeon Gold 6330 CPUs,
each with 28 cores and 56 execution threads. This environment contains 256 GB of RAM
and offers a storage capacity of 2.7 TB on an HDD and 894 GB on an SSD. To achieve
enhanced performance, a multiprocessing parallelization module was implemented to
facilitate the creation of secondary processes for parallel task execution, fully leveraging
the processing resources available in the multiple cores and threads of each processor. The
results section addresses the practical efficiency of each solution representation in terms
of the resources consumed during the search process, focusing on execution time as a
key indicator.

On the other hand, evaluating diversity and convergence is essential for ensuring a
wide range of alternatives. Diversity is crucial for preventing premature convergence to-
wards locally optimal areas of the solution space, allowing for more thorough explorations.
It is considered an indispensable metric when determining the effectiveness of the tested
algorithms. In the multiobjective optimization literature, numerous metrics have been
designed to assess the diversity of the solutions generated by algorithms. The choice of the
most appropriate metric depends on the specific study objectives and the characteristics
of the problem under consideration, with several metrics commonly used to obtain more
robust and comprehensive analyses.

In our study, we not only aimed for solutions that exhibit variability but also strived
to make them as close as possible to the reference Pareto front. Therefore, we adopted the
inverted generational distance plus (IGD+) [38] metric, which measures diversity relative
to a reference set, thereby providing a comprehensive perspective of the dispersion of the
observed solutions along the reference Pareto front. The mathematical formulation of IGD+
is based on calculating the distance between the set of solutions obtained by a multiobjective
optimization algorithm and a reference Pareto front. The results of the IGD+ index offer
deep insights into the performance of multiobjective optimization algorithms, where low
IGD+ values indicate notable proximity between the generated solution front and the
reference Pareto front, thus demonstrating high solution quality in terms of convergence
and diversity. Conversely, high IGD+ values suggest a significant discrepancy between
both fronts, which can be interpreted as an indication that the tested algorithm is not
converging effectively or that the generated solutions lack the necessary diversity.

Convergence evaluates the proximity of the obtained solutions to the real or reference
Pareto front. This indicator is essential for determining the degree of effectiveness with
which a method can approximate the optimal solutions to multiobjective problems. In the
context of pump scheduling, convergence ensures that the solutions found are optimal
in terms of their energy costs and water quality levels. Typically, the Epsilon [39] and
hypervolume [40] metrics serve as relevant measures of convergence in multiobjective
optimization experiments.

The Epsilon metric provides a measure of how much a set of solutions needs to
improve to reach another reference set, or the true Pareto front, quantifying the distance of
the solutions from the Pareto front. It is fundamental for assessing how close the solutions
found are to the Pareto front, indicating the quality of the approximation. Epsilon is
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interpreted by considering its numerical value in relation to the reference Pareto front. An
Epsilon value equal to zero signifies that the generated solution front is identical to the
reference Pareto front; hence, the closeness of Epsilon to zero implies better convergence
and solution quality.

The hypervolume (HV) indicator captures the size of the objective space dominated by
the solutions, enabling an assessment of the coverage extension within the objective space.
Indirectly, it also provides diversity information by calculating the volume occupied by the
proposed solutions. Notably, while Epsilon focuses more on the proximity of the solution
set to the Pareto front, HV captures both the proximity and dispersion of solutions; the
latter is highly valuable because of its ability to simultaneously evaluate multiple aspects
of algorithmic performance. A higher HV indicates better coverage of the Pareto space,
implying closer convergence to the ideal Pareto front and a greater diversity of solutions in
the set. Conversely, a lower HV reflects less coverage of the objective space, suggesting
that the solutions may be more dispersed or not converging efficiently towards the optimal
Pareto front.

As a final step, the Wilcoxon statistical test is applied to analyze the values of the
three quality indicators (IGD+, Epsilon, and HV). The Wilcoxon test is a widely recognized
and utilized nonparametric statistical tool for comparing two related or paired samples.
This test provides a robust statistical framework for determining whether the observed
differences in quality indicators are statistically significant or simply a result of the inherent
variability of the data. This last step not only adds an additional layer of methodological
rigor to the study but also ensures the reliability and validity of the findings by providing
solid statistical evidence regarding the performance differences among the various solution
representations in the context of multiobjective optimization.

3.2. Computational Environment

To solve the optimization model, a computational method is needed. Specifically, this
work uses an elitist NSGA-II [41]. NSGA-II ranks the given population by considering the
dominance relationship of each solution. Solutions are organized into different groups, fa-
cilitating the identification and selection of higher-quality solutions during the evolutionary
process. Nondominated solutions are classified into the first group, and these are followed
by those that are surpassed by at least one individual from the previous group, and so
on. The choice of NSGA-II is justified because it is one of the most popular algorithms for
solving multiobjective optimization problems [42,43]. Additionally, it stands out due to its
ability to adapt to the different representation forms considered in this study, facilitating
the evaluation of how different encodings influence the resulting performance.

The implementation of NSGA-II is carried out through jMetalPy, an open-source
Python library dedicated to addressing both single-objective and multiobjective optimiza-
tion problems. Drawing inspiration from the Java-based jMetal library, jMetalPy showcases
a suite of evolutionary algorithms, local search techniques, and hybrid approaches for
various optimization tasks [44]. This work specifically harnesses Python 3.10 as its pro-
gramming language. The objective function call is implemented according to the guidelines
described in Section 3.1. This framework is capable of performing extensive simulations,
working in conjunction with a hydraulic network solver for comprehensive analysis pur-
poses. In this regard, hydraulic simulations are carried out using the programmer toolkit
of the EPANET software [45]. This is widely used open-source software developed by the
U.S. Environmental Protection Agency (EPA) for modeling water distribution systems. The
EPANET 2.2 library is efficiently integrated into this parallelization environment; this step
is facilitated by the Python library owa-epanet, which serves as a wrapper for the EPANET
hydraulic toolkit. This software provides tools for modeling, simulating, and analyzing the
hydraulic behavior of RDAs with different pump activation and deactivation patterns.

To ensure a minimum level of statistical confidence in the results, 30 experiments were
performed and analyzed. Each independent experiment begins with the prior selection of a
solution representation. Subsequently, NSGA-II is implemented, starting with an initial
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population of individuals whose quantity is predefined and remains constant throughout
the process. This initial population is affected by the operators in each generation and
concludes when the established criterion is satisfied, which in this study involves reaching
a total number of evaluations. Upon completion of the algorithmic execution, a final
population of solutions is obtained. Importantly, this final population may contain repeated
individuals, as well as feasible and infeasible solutions. The observed diversity is attributed
to both the implementation of the algorithm and the influence of the representation used,
reflecting the dynamic process of the solution search.

Regarding the NSGA-II operators, a version of the SBX crossover [46] is used for
integer representations, and the SPX crossover [47] is used for binary representations. These
operators combine the characteristics of the selected individuals to generate offspring that
inherit information from both parents. In terms of mutation, the polynomial mutation [46]
is applied in its integer version, and the Bit Flip mutation [47] is applied for integer and
binary representations. These operators induce random changes in individuals to explore
new solutions in the search space.

Importantly, in the int_at representation, it is noted, following the original article [15],
that the crossover and mutation operators have the potential to produce invalid solutions
by breaking the ascending order of values. To address this issue, an additional process is
introduced to sort the resulting values in ascending order. This measure is implemented to
ensure the consistency and validity of the generated sequence. In the same manner, the
int_rt representation poses an additional challenge wherein the solutions generated by the
operators can violate representation constraints by exceeding the NT scheduling period. In
response to this observation, the value of a randomly selected time interval is iteratively
reduced by one unit of time. This repair strategy is designed to incrementally adjust the
solution until the total sum complies with the NT constraint. Both operator adjustments
were proposed and justified in the original article [15] as effective solutions for enhancing
the consistency and validity of different representations.

Finally, the behavior of algorithms is conditioned by properly adjusting their parame-
ters. In the case of NSGA-II, population size (P), crossover frequency (Pc), and mutation
frequency (Pm) are the main parameters affecting the performance of the algorithm. It is
important to highlight that operators such as crossover and mutation must be specifically
designed for the chosen representation. For instance, in a binary representation, mutation
involves changing one or more bits in the chain. In contrast, in an integer representation,
this process entails exchanging integer values between two solutions [35]. Furthermore,
in the context of EAs, the number of evaluations (Ne) determines how much time the em-
ployed algorithm has to converge towards a solution. An insufficient number of evaluations
may result in inadequate exploration of the solution space, whereas a limit that is too high
might allow the algorithm to continue iterating without significant improvements, thereby
wasting resources. For this study, we utilized values that are commonly recommended in
the literature as baselines. To determine the optimal parameter combination, we conducted
a grid search. This method assesses a matrix of values for each parameter to identify
the set that yields the best performance. The optimal values determined for the different
parameters are as follows: P = 300, Pc = 0.9, Pm = 0.05 and Ne = 45,000.

3.3. Case Studies

In EPANET, various key elements serve specific functions: junctions represent con-
nection points in the WDN, such as tanks, reservoirs, and pipe intersections, facilitating
water flow and distribution. Pipes connect nodes and represent conduits through which
water flows in the network, enabling effective water transportation. Pumps symbolize
devices that propel water through the network, crucial for maintaining adequate flow
and pressure. Valves are markers representing control devices regulating water flow in
specific network sections, allowing precise adjustments in the distribution system. Tanks
are symbols depicting water storage tanks in the network, utilized for strategic reserves and
pressure stabilization. The reservoirs indicate water sources in the network, like water wells
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or external supplies, serving as crucial entry points that feed the water distribution system.
These elements play vital roles in modeling and simulating water distribution networks in
EPANET, enabling detailed and efficient analysis of hydraulic network operation.

To apply the methodology described above, three case studies were conducted. On the
one hand, the Anytown and Anytown Modified WDNs [26] are well-known benchmarking
networks and have been tested in some previous works. On the other hand, the Curicó
network [48] is a real WDN located in the city of Curicó (Chile). The hydraulic analysis
was conducted for one day, dividing the duration into one-hour periods. However, for the
int_r representation, the time intervals were adjusted to half-hour periods, as this approach
allows such flexibility by definition. Consequently, the demand patterns were also adjusted
to align with the half-hour time intervals. The patterns used to characterize the time and
cost variations in demand and information about the nodes and pipelines can be found in
the Supplementary Materials. A brief description of each case study is provided below.

The Anytown (AT) case study is composed of an infrastructure that includes 41 pipelines,
16 nodes with demand, 1 tank, a supply source and 1 pumping station equipped with 4
pumps. Figure 2 shows the topology of the Anytown WDN called the AT network.
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The modified Anytown (Figure 3) case study consists of 41 pipelines, 19 nodes with
demand, 3 tanks, a supply source and 1 pumping station with 3 identical parallel pumps.
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Finally, the Curico WDN is part of the water supply network of the city of Curico (Chile).
The network is depicted in Figure 4 and comprises 5217 pipes, 3983 nodes with water demand,
4 tanks, a supply source and 1 pumping station equipped with 5 identical pumps.
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4. Results and Discussion

This section is divided into two subsections. First, Section 4.1 emphasizes the results
achieved through NSGA-II, analyzing the numbers of unique, feasible, and nondominated
solutions obtained with each solution representation in the three analyzed case studies.
Next, an overview of the approximate Pareto diagrams constructed from the set of all solu-
tions obtained for all the utilized representations is provided. This enables us to compare
each representation individually with the approximate Pareto front. Section 4.2 delves into
solution diversity and convergence evaluations through metrics such as HV, Epsilon (EP),
and IGD+. These metrics are crucial for assessing the quality of different representations
in various case studies, providing insights into how well these representations perform in
addressing the optimization problems at hand. Additionally, a Wilcoxon test is employed
to determine the differences between the datasets, shedding light on the statistical signif-
icance of the outcomes. Alongside these analyses, a focus on computational efficiency
draws attention to the execution times of different representations across diverse networks,
offering valuable insights into the trade-offs between speed and solution quality.

4.1. Overview of the Simulation Results

Table 1 encapsulates the findings obtained from the 30 experiments conducted for each
representation strategy. It is crucial to note that every experiment comprises 300 indepen-
dent solutions, resulting in 9000 cumulative simulations per row in the table. The outcomes
are presented both as aggregate totals and as averages per experiment. These include the
number of unique, feasible, and nondominated solutions for each representation and case
study examined. Unique solutions refer to those not replicated within the population and
serve as a measure of diversity among the explored solutions. Feasible solutions satisfy all
the stipulated constraints imposed on the problem, while nondominated solutions are those
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that cannot be simultaneously improved upon across all objectives by any other solution
within the experiment.

Table 1. Summary of solutions for each case study.

Network Representation
Total Solutions

Average Unique Solutions
per Experiment (%)Unique Feasible Nondominated Feasibility (%) Contribution to the

Reference Front (%)

Anytown

bin 7743 7173 11 93.7 93.0 0.0
int 2372 2099 13 27.0 88.6 58.8

int_r 253 245 9 2.8 96.8 41.2
int_at 476 465 16 5.4 97.7 0.0
int_rt 297 297 12 3.5 100.0 0.0

Anytown
Modified

bin 5961 5961 13 67.3 100.0 0.0
int 538 538 23 6.3 100.0 9.7

int_r 424 424 33 6.7 100.0 90.3
int_at 245 245 19 3.3 100.0 0.0
int_rt 69 69 12 2.8 100.0 0.0

Curicó

bin 8125 470 7 97.3 5.7 0.0
int 153 153 6 1.7 100.0 20.0

int_r 214 214 9 2.4 100.0 60.0
int_at 235 229 11 2.6 97.4 0.0
int_rt 131 131 8 1.5 100.0 20.0

The results demonstrate how the binary representation strategy excels in terms of the
number of unique solutions generated, which can arguably indicate that this representation
is particularly effective at extensively exploring the solution space. Regarding feasibility,
the solutions generated through binary representation exhibit feasibility levels of 93% and
100% for the benchmarking cases of Anytown and Anytown Modified, respectively. In
contrast, in the more complex Curicó network, the feasibility drastically decreases to 5.7%.
This contrast is not observed in the integer representations, where the feasibility levels
reach 100% in most experiments.

The dominance assessment reveals that the nondominated solutions, which are de-
fined as those that cannot be outperformed with respect to simultaneously optimizing all
objectives by other solutions, exhibit comparable quantities across the different represen-
tations. This suggests that, regardless of the employed representation, a comparable set
of solutions is obtained in terms of their dominance. However, the similarity among the
numbers of nondominated solutions obtained for the different representations does not
necessarily imply that these solutions are clustered near the approximate Pareto front.

The last column of Table 1 shows that only two representations (int and int_r) con-
tribute to the approximate Pareto diagram in the Anytown and Anytown Modified net-
works. However, in the case of the Curicó network, three representations contribute to
this Pareto front (int, int_r, and int_rt). Overall, the int_r representation contributes most
significantly. Figures 5–7 highlight this comparison by showing the approximate Pareto
front (marked in red) along with the specific Pareto fronts obtained for each representation
and case study, emphasizing the differences near the theoretical optimum.

Figures 5–7 display the nondominated solutions obtained during all independent
experiments conducted for each case study. On the one hand, the results show that the
binary representation strategy does not contribute to the approximate Pareto front in any
of the case studies. This demonstrates that despite obtaining the highest number of unique
and/or feasible solutions, the majority of these solutions are of lower quality than those
of the other representations. Consequently, despite offering greater solution diversity,
this approach does not benefit the optimization problem studied in this work. On the
other hand, this qualitative analysis illustrates the unique contributions of the int and int_r
representations in shaping the approximate Pareto fronts pertaining to each problem. In
particular, the int_r representation stands out for its superior generation of nondominated
solutions, signifying its ability to produce higher-quality solutions than those of the other
examined representations.
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Nevertheless, it is crucial to consider that a visual assessment of the nondominated
solutions may be insufficient for comparing the various representations in terms of quality
and performance. Therefore, it is imperative to resort to statistical indicators and infer-
ence methods to obtain a more rigorous and objective evaluation of the superiority and
performance of each representation. This approach allows for a precise identification of
whether the observed disparities between the representations are statistically significant.
Additionally, it provides a deeper understanding of how each representation addresses the
problem objectives and determines if any of them significantly outperforms the others in
terms of the quality of their generated nondominated solutions.
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4.2. Performance Metrics

To assess the diversity and convergence of the solutions obtained for each representa-
tion, the HV, Epsilon, and IGD+ metrics are calculated for each independent experiment.
Table 2 displays these metrics in terms of their medians. Given the fact that the exact data
distribution is unknown, these measures are less susceptible to the influence of outliers, en-
suring a more stable and reliable evaluation of the central tendencies and dispersion trends
in the results. To aid in the interpretation and analysis of the tables, the representation
producing the best value for each metric is highlighted in gray.

Table 2. Median metric values.

Network Quality
Indicator bin int int_r int_at int_rt

Anytown
HV 0.65 0.70 0.73 0.70 0.70
EP 0.09 0.05 0.01 0.06 0.05

IGD+ 0.05 0.02 0.01 0.02 0.02

Anytown
Modified

HV 0.29 0.30 0.35 0.28 0.24
EP 0.07 0.07 0.01 0.09 0.13

IGD+ 0.05 0.04 0.00 0.06 0.09

Curicó
HV 0.15 0.19 0.22 0.16 0.16
EP 0.10 0.06 0.03 0.09 0.09

IGD+ 0.05 0.02 0.01 0.04 0.04

The HV metric measures the space covered by the solutions found, where a higher
value indicates greater diversity and coverage in the objective space. In all three analyzed
scenarios, the int_r representation stands out by yielding the highest values, suggesting
its extensive coverage in the objective space. Regarding the Epsilon metric, which is an
indicator of proximity to the optimal Pareto front, lower values indicate higher quality.
Once again, the int_r representation excels by producing the lowest values in all three
cases, indicating closer proximity to the reference optimum. IGD+, which assesses the
distance from a reference set of solutions to those found, considers both convergence to the
Pareto front and the diversity of the output solutions. This is crucial because it evaluates
not only the diversity of the solutions but also their proximity to the approximate Pareto
front. Across all studied cases, the int_r representation achieves the lowest IGD+ values,
reflecting its superior performance in terms of convergence and diversity.



Mathematics 2024, 12, 1994 16 of 21

A Wilcoxon test is now introduced to provide a robust statistical framework for
determining whether the observed differences among the quality metrics are statistically
significant or simply the result of inherent data variability. By utilizing this analysis
approach, the previous findings can be reliably validated.

The Wilcoxon test compares the differences between two related datasets. Conse-
quently, it is necessary to choose a sample or reference representation for comparison with
the other four representations. This is carried out for the five representations studied in
this work. Additionally, each sample contains quality metrics (HV, EP, and IGD+ values)
for each case study. To facilitate data interpretation and follow the methodology proposed
by Salgueiro et al. [49], Table 3 summarizes the comparisons between each reference rep-
resentation and the remaining representations for each case study. We define the Null
Hypothesis (H0) as there being no significant difference in performance between the com-
pared representations. For each of the pairwise tests, if the p-value is ≤ 0.05, we reject H0
and conclude that there are significant differences between the samples. This results in a
total of twelve comparisons for each evaluated quality metric (4 representations compared
× 3 case studies). Each cell in the table indicates the number of times a statistically sig-
nificant result is observed in favor of the reference representation (‘+’), in favor of the
compared representation (‘−’), or lacking significant differences (‘=’).

Table 3. Wilcoxon test results.

bin int int_r int_at int_rt

HV EP IGD+ HV EP IGD+ HV EP IGD+ HV EP IGD+ HV EP IGD+

+ 2 2 2 5 5 5 12 12 12 2 2 2 2 2 2

− 8 8 8 6 6 6 0 0 0 8 8 8 7 7 7

= 2 2 2 1 1 1 0 0 0 2 2 2 3 3 3

An analysis of the results demonstrates that the superiority of the int_r representation
in terms of the studied quality metrics (HV, EP, and IGD+) is not a result of randomness;
rather, statistically significant differences in favor of this representation are observed in
all case studies. Consequently, this representation is the most suitable strategy for this
particular optimization problem.

In contrast, the Wilcoxon test reveals that the binary representation approach not only
achieves poorer numerical performance in 8 out of the 12 comparisons made for each metric
(Table 3) but also that this unfavorable discrepancy is statistically significant and not a
result of chance. Additionally, significantly favorable differences with respect to the binary
representation are observed only in two out of the twelve comparisons for each metric.
Therefore, despite being common in the literature, the binary solution representation
strategy does not seem to be the most suitable technique for this type of optimization
problem based on pump scheduling.

Finally, Table 4 shows data related to the average execution times of the different
representations across the three case studies. For each network and representation, the
average execution time is recorded.

Table 4. Computational times of the tested methods.

Network
Average Times (s)

bin int int_r int_at int_rt

Anytown 216.46 212.58 209.72 218.08 212.88
Anytown
Modified 203.15 206.00 215.18 214.52 205.32

Curicó 28,729.87 26,842.75 36,730.12 20,756.05 15,807.77
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The computational efficiency metrics reveal that all representations exhibit similar
execution times for the Anytown and Anytown Modified benchmarking networks, which
are comparable in size and topology. Consequently, the enhanced solution quality of ‘int_r’
over that of the other representations does not come at the expense of its computational
speed, making it the most efficient representation for this particular problem size.

In contrast, significant differences exist among the representations with respect to the
Curicó network, which is known for its increased complexity and size. In this scenario,
‘int_r’ incurs the highest computational cost, yet it also delivers the highest solution quality,
as observed previously. Interestingly, ‘int_rt’ proves to be the representation executing
simulations most swiftly in this case, and it attains average performance in terms of solution
quality, as depicted in Figure 7. The choice between one representation or another in this
case depends on the specific objectives of the optimization problem of interest.

4.3. Benefits and Disadvantages of the Suggested Solution Codification

In this section, we provide a comprehensive evaluation of the benefits and disadvan-
tages of the int_r method. This analysis is supported by the metrics discussed in Sections 4.1
and 4.2. The aim is to present a balanced view of the method’s performance, highlighting
its strengths in achieving convergence and diversity as well as its potential limitations in
terms of problem simplification and resource consumption. By examining these aspects,
we aim to offer valuable insights for researchers and practitioners in water distribution
network optimization.

Benefits:

• Enhanced Convergence: The int_r method achieves superior convergence towards
the Pareto front, as indicated by the lower Epsilon (EP) and IGD+ values across all
networks (Table 2). The int_r representation consistently shows the closest proximity
to the reference Pareto front, ensuring high-quality solutions that balance energy costs
and water quality objectives.

• Improved Solution Diversity: The int_r representation excels in generating diverse
solutions, as evidenced by the higher Hypervolume (HV) values in all three case
studies (Table 2). This indicates extensive coverage in the objective space, which
enhances the robustness and applicability of the solutions.

Disadvantages:

• Problem Simplification: The int_r representation significantly simplifies the problem
by reducing the number of decision variables. While this leads to faster convergence,
it also means that the method might not explore the entire search space thoroughly.
Consequently, it could potentially miss some solutions that are closer to the optimal,
which might be found using more detailed representations.

• Resource Consumption: The int_r method, while efficient in some scenarios, can be
resource-intensive, particularly for larger and more complex networks like Curicó. As
observed in Table 4, the execution time for the Curicó network is significantly higher
(36,730.12 s) compared to the other representations. This indicates that the compu-
tational demands increase with the complexity and size of the network, potentially
requiring substantial computational resources and longer processing times.

The detailed metrics and statistical analyses support the conclusions and demonstrate
the robustness of the int_r representation in solving the pump scheduling optimization
problem. However, these results should not be generalized to other kinds of mathematical
optimization problems.

5. Conclusions

Enhancing energy efficiency in pumping systems is crucial for reducing operational ex-
penses for water supply companies. Pump scheduling optimization is a common approach,
utilizing different encoding techniques such as binary and integer variables. However,
the complexity increases with the number of decision variables, leading to challenges in
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modeling real-world water distribution networks (WDNs). In this study, five solution
representations were compared for a multiobjective pump scheduling problem, aiming to
minimize energy costs and improve water quality. NSGA-II was chosen for its effective-
ness in solving multiobjective optimization problems. Through analysis and comparison
using convergence and diversity metrics across three case studies, significant insights
were gained.

- The binary representation strategy excels at generating a high number of unique
solutions, implying robust exploration of the solution space. However, this advantage
does not necessarily translate into higher solution quality, as indicated by the lower
feasibility levels observed, especially in complex networks like Curicó. In contrast,
integer representations demonstrate higher feasibility rates across most experiments,
showcasing their effectiveness in meeting problem constraints. Furthermore, the anal-
ysis of nondominated solutions reveals comparable quantities across representations,
suggesting that each strategy yields solutions with similar dominance characteristics.

- However, a closer examination shows that certain representations contribute more
significantly to shaping the approximate Pareto front, particularly the int_r represen-
tation. The visualizations provided in Figures 5–7 highlight the unique contributions
of specific representations to the Pareto fronts, emphasizing differences near the
theoretical optimum.

- To quantitatively evaluate solution diversity and convergence, metrics such as HV,
Epsilon, and IGD+ were calculated. The results consistently favor the int_r representa-
tion, indicating its superior performance in terms of solution diversity, proximity to
the Pareto front, and convergence.

- Statistical analysis using the Wilcoxon test confirms the significance of these differ-
ences, establishing int_r as the most suitable representation strategy for the optimiza-
tion problem studied. Conversely, the binary representation strategy demonstrates
inferior numerical performance across comparisons, suggesting its inadequacy for
this type of optimization problem.

- Regarding computational efficiency, int_r maintains competitive execution times
across benchmarking networks, indicating that its enhanced solution quality does
not compromise computational speed. However, in more complex scenarios like the
Curicó network, where computational costs vary significantly among representations,
the choice depends on specific optimization objectives.

In conclusion, the findings underscore the importance of selecting an appropriate
solution representation strategy based on the problem’s complexity and objectives. While
binary representation may offer extensive exploration of the solution space, it does not
necessarily lead to high-quality solutions. On the other hand, integer representations,
particularly int_r, demonstrate superior performance in terms of solution quality, diversity,
and convergence, making them more suitable for this optimization problem.
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//www.mdpi.com/article/10.3390/math12131994/s1, SM1. Calculation of the number of decision
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