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Abstract: Somatic markers have been evidenced as determinant factors in human behavior. In particu-
lar, the concepts of somatic reward and punishment have been related to the decision-making process;
both reward and somatic punishment represent bodily states with positive or negative sensations,
respectively. In this research work, we have designed a mechanism to generate artificial somatic
punishments in an autonomous system. An autonomous system is understood as a system capable of
performing autonomous behavior and decision making. We incorporated this mechanism within a
decision model oriented to support decision making on stock markets. Our model focuses on using
artificial somatic punishments as a tool to guide the decisions of an autonomous system. To validate
our proposal, we defined an experimental scenario using official data from Standard & Poor’s 500 and
the Dow Jones index, in which we evaluated the decisions made by the autonomous system based on
artificial somatic punishments in a general investment process using 10,000 independent iterations.
In the investment process, the autonomous system applied an active investment strategy combined
with an artificial somatic index. The results show that this autonomous system presented a higher
level of investment decision effectiveness, understood as the achievement of greater wealth over time,
as measured by profitability, utility, and Sharpe Ratio indicators, relative to an industry benchmark.

Keywords: artificial punishment signals; autonomous system; decision making; investment decision

1. Introduction

From a general interpretation, a somatic marker represents an automatic activation
of bodily or physiological signals in the presence of stimuli internal or external to the
individual. Somatic markers are acquired and developed through the experience of the
individual [1]. Examples of the manifestation of a somatic marker are increased heart rate,
sweating, muscle twitching, or abdominal pain [1]. It is important to note that these bodily
reactions do not occur intentionally but rather as a reflection of the emergence of an emotion
in the presence of an internal or external stimulus. When an adverse situation occurs for an
individual, a somatic marker can reflect through physiological changes that something is
wrong and that it is necessary to update the course of action or make a decision [1,2].

The formation of somatic markers is a process that continues throughout a person’s life,
although it acquires special importance during the stages from childhood to adolescence.
Likewise, the existence of rewards or punishments as a consequence of decision making
impacts the profiling of each somatic marker. Both reward and somatic punishments
represent bodily states with positive or negative sensations, respectively. Within a flow
of uncertain decisions, these positive or negative sensations can configure signals that
alert, anticipate, or suggest courses of action over others [1]. Whether due to an internal
or external stimulus, an individual may experience a reward sensation (e.g., increase in
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a feeling of well-being) or a punishment sensation (e.g., increase feelings of displeasure,
sadness, anger) [3]. These sensations are experienced in real time, that is, when the stimulus
is presented and the individual faces it. Likewise, both the sensations experienced by the
individual and the actions taken by itself are recorded within the experience and contribute
to the formation of somatic markers.

Several studies have been carried out on the effect of somatic punishment on decision
making [4–6]. Also, to a lesser extent, some other studies have explored ways to artificially
implement somatic markers within decision systems [3,7,8]. However, to our knowledge,
no proposals have been developed that specifically address the implementation of artificial
somatic signals arranged as somatic punishments.

In this paper, we present a new mechanism for generating artificial somatic punish-
ments in an autonomous system. Somatic responses and somatic punishments enhance
risk sensitivity, conferring to the system the ability to adapt to dynamic environments.
To do that, the present work addresses (1) the design of an artificial somatic punishment
generation mechanism for an autonomous system, (2) the definition of a decision model
incorporating such a mechanism, (3) the implementation of an evaluation scenario using
official and public data from Standard & Poor’s 500 (S&P500) [9] and Dow Jones Index
(DJI) [10], which correspond to a group of indices that represent the market value of the
companies listed in each of these indices in a time-series format with a daily time unit, and
(4) the evaluation of the proposal through the execution of 10,000 independent experiments
yielding promising results.

The obtained results show a behavior close to what could be observed in real stock
markets, as well as in other research works such as [7,11]. In this sense, a relevant novelty
of the current research work lies in the design, implementation, and evaluation of a novel
artificial mechanism to be incorporated in autonomous systems, which address to extend
the capability and functionality of autonomous systems for domains where humans can
delegate their own decision making.

2. Literature Review

In 1994, Damasio enunciated the somatic marker hypothesis [1], which states that
decision making is affected by subtle homeostatic changes, originating in the body and
underlying emotions, and it integrates the mind and body in this way. These changes can
take the form of sweating, agitation, heart palpitations, abdominal pain, muscle tension, or
others and represent signs or somatic markers in the face of situations of risk, whether real
or imagined.

Recent research incorporates the use of somatic markers in the study of decision
making under stress [12], under uncertainty [13–15], concerning the difficulty in identifying
and describing emotions or alexithymia [16], in equity profiles and selfishness in financial
decisions [17], and in the perception of happiness in social interactions [18]. In the literature,
it is also possible to find studies that relate somatic markers to aspects such as moral
judgement and decision making [19]. For example, in [20], the effect of somatic markers
and emotional intelligence on risky decision making is studied. The influence of these
markers on decisions about consumer brands in e-commerce has also been evaluated
in [21]. Another interesting example can be found in [22], where somatic markers’ effects
on adolescents’ decision-making processes are evidenced. Applied examples can also be
found in the field of health, relating somatic markers to decisions regarding suicide [23] or
addiction problems [15].

Reward and, particularly, punishment processes influence decision making through
emotional responses [24–27]. Emotional events, expressed in the body, influence decision
making through a circuit or “body loop” of feedback afferent to the brain, whose primary
channel is the vagus nerve [28]. In the case of opioid users, these emotional reactions
appear abnormal [29]. Likewise, it has been seen that the medial prefrontal cortex con-
tributes to the decision-making process that involves the risk of punishment [30]. There is
evidence supporting that several neurobiological mechanisms (including the amygdala,
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GABA, and monoamine neurotransmitters, dopamine, and corticostriatal circuits) influence
punishment [31].

On the other hand, different aspects have been studied concerning the stock market
and decision making, such as investor over-reaction [32]; optimism, volatility, and decision
making [33]; climate risk and stock prices [34]; and relationships between emotions and
market anomalies [35,36], to name a few. There are several studies devoted to analyzing
the human factors’ influence on investment decision making, for example, personal char-
acteristics [37] and psychological factors [38,39]. In a complementary sense, the idea of
developing systems for investment decisions that artificially incorporate affective aspects is
not recent [40–46].

In recent years, work has also been developed relating factors inherently related to
human beings, such as personality or somatic markers, to model investment decisions in
intelligent systems. For instance, an autonomous system based on artificial somatic markers
was presented by [7]. Regarding personality, an artificial autonomous system to support
investment decisions using a Big-Five modeling approach was presented in [47]. This model
was extended in [11] to integrate personality traits and artificial somatic markers. However,
the few known works that have suggested the implementation of artificial somatic markers
in autonomous investment systems have not considered the somatic punishment approach.
In this sense, the present research focuses its analysis on the implementation and evaluation
of an artificial mechanism of somatic punishment, that is, the generation of a negative
impact or consequence in an autonomous system when the result of its decisions deviates
negatively from its objective.

3. Materials and Methods
3.1. Mathematical Formulations for the Autonomous System

In the stock market domain, profitability is understood as the variation in the price of
the market index, determined according to Equation (1):

Pro ft =
SP500t − SP500t−1

SP500t−1
, (1)

where SP500t is the value of the S&P500 index in period t, and SP500t−1 is the value of the
SP500 index in period t − 1. In this sense, the change in the price of the index is understood
as a percentage price variation.

For its part, financial risk corresponds to the measurement of the volatility of the
financial market, measured as the observed variance in the n previous periods of the return
of the S&P500 market index, according to Equation (2):

Riskt =
n

∑
i=1

(Pro ft−n+i − E[Pro f ])2

n − 1
, (2)

where Pro ft corresponds to the return of the S&P500 index in period t measured in Equation (1),
and Et[Pro f ] = ∑n

i=1
Pro ft−n+i

n corresponds to the average of the returns of the S&P500 index
of the last n periods, which is determined for the specific application.

On the other hand, the accumulated wealth is defined according to Equation (3)
(see [48]):

Wealtht = Wealtht−1(1 + Pro ft), (3)

where Wealth0 = I0, and I0 represents the initial wealth value that the autonomous system
possesses at the beginning of the experimentation. The parameter Pro ft is the same as
Equation (1).

On the other hand, the utility of the autonomous system is defined as a function of
its wealth, specifically a constant relative risk aversion function commonly used in the
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economic literature [49,50], and that allows the evaluation of the experimental results from
an economic perspective. The functional form is defined below:

Utilityt =
(Wealtht)1−σ

1 − σ
, (4)

where Wealtht corresponds to the wealth of the autonomous system in period t and is
defined in Equation (3), and σ corresponds to a risk aversion parameter of the autonomous
system, which usually uses values greater than 1 in economic literature. This way, this
utility function permits to estimate the fluctuations of the agent’s well-being level over
time, thus influencing the measurement of the agent’s performance.

Finally, we define a Sharpe ratio as a measure that relates the expected value to the
standard deviation of the return on the financial asset [51], which allows us to have a
standard against which to compare different asset selection strategies within a portfolio,
which we define as

Sharpe Ratio =
E[Pro ft]− r f

Sd[Pro ft]
(5)

where E[Pro ft] corresponds to the expected value of the return on the financial asset; r f
corresponds to the risk-free rate of the economy which we can consider equal to zero
for the experimentation; and Std[Pro ft] corresponds to the standard deviation of the
financial asset.

3.2. Indexes for Risk, Loss, and Accumulated Loss

This section defines some risk indices that complement the essential decision metrics
in the capital market. First, the risk index is expressed through the difference between the
observed risk value and an upper-risk tolerance limit, according to Equation (6):

RIndext =

{
(Riskt − TolRiskt)ζ + RIndext, if Riskt + ρR,t ≥ TolRiskt

RIndext otherwise,
(6)

where Riskt corresponds to the level of risk observed in period t according to Equation (2);
TolRiskt corresponds to the risk tolerance that the autonomous system has in period t; ζ
corresponds to a sensitivity parameter of the autonomous system to the intensity of the risk
which for this experimentation can take a neutral value equal to 1 and ρR,t corresponds to a
random variable centered on zero that shows the variability perceived by the autonomous
system against the risk observed in period t, which can take values according to the
variability of the capital market. Meanwhile, the loss index is obtained from Equation (7):

LossIndext =

{
(Pro ft − TolLosst)ν + LossIndext, if Pro ft + ρL,t ≥ TolLosst

LossIndext otherwise,
(7)

where Pro ft corresponds to the profitability observed in period t according to Equation (1);
TolLosst corresponds to the tolerance to loss that the autonomous system has in period
t; ν corresponds to a sensitivity parameter of the autonomous system to the magnitude
of the loss which for this experimentation can take a neutral value equal to 1, and ρL,t
corresponds to a random variable centered on zero that shows the variability perceived by
the autonomous system against a loss observed in period t ,which can take values according
to the profitability observed in the capital market for a given period of time. For its part,
the index of accumulated loss in a period is determined according to (8):

CLossIndext =

{
(Pro ft − TolCLosst)η + CLossIndext, if Pro ft + ρC,t ≥ TolCLosst

CLossIndext otherwise,
(8)
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where Pro ft corresponds to the profitability observed in period t according to Equation (1);
TolCLosst corresponds to the tolerance of the autonomous system before the accumulated
loss in period t; η corresponds to a sensitivity parameter of the autonomous system to the
level of accumulated loss in a period of time which for this experimentation can take a
neutral value equal to 1, and ρC,t corresponds to a random variable centered on zero that
shows the variability perceived by the autonomous system against the accumulated loss in
period t.

3.3. Somatic Index and Punishment Factor

The risk index, the loss index, and the accumulated loss index are considered fac-
tors that relate the evolution of financial assets to the artificial somatic reaction that the
autonomous system can experience. In this sense, the somatic index (SIndex) is defined
according to Equation (9):

SIndext =
3

∑
i=1

INDEXi,tWi + SIndext, (9)

where the vector of elements INDEXi,t = (RIndext, LossIndext, CLossIndext) and Wi corre-
sponds to the weight of each of the elements of the vector INDEXi,t which for this research
can take equivalent values, considering a neutral experimentation. It is important to men-
tion that when SIndex reaches or exceeds the MaxSIndex threshold, SIndex is restored to
its initial value. Likewise, the investment portfolio is completely reconfigured. The RIndex,
LossIndex, and CLossIndex flags are also restored to their respective initial values. Associ-
ated with Sindext, a variable called punishmentt is established, which is increased by 1 each
time Sindext reaches or exceeds the MaxSIndex threshold, according to Equation (10). If
the autonomous system experiences a number of periods T without SIndex ≥ MaxSIndex,
then punishmentt = 0; that is, punishmentt is restored to its original value:

punishmentt =

{
punishmentt + 1, if SIndext ≥ MaxSIndex
punishmentt otherwise.

(10)

The punishment that the autonomous system can generate is indirectly linked to
the financial indicators. Furthermore, the punishment observed by the system provides
stability criteria for the decision, since poor financial results have an impact on the somatic
index, leading to a portfolio reconfiguration. This ensures that a poor financial decision
made by the autonomous agent is not permanent.

3.4. Tolerance to Risk, Loss, and Accumulated Loss, and Performance Evaluation

Risk tolerance, loss tolerance, and cumulative loss tolerance are time-varying dimen-
sions, according to Equations (11), (12), and (13), respectively:

TolRiskt =

{
αβpunishmentt + C, if SIndext ≥ MaxSIndex
TolRiskt otherwise,

(11)

TolLosst =

{
γφpunishmentt , if SIndext ≥ MaxSIndex
TolLosst otherwise,

(12)

TolCumLosst =

{
δωpunishmentt , if SIndext ≥ MaxSIndex
TolCumLosst otherwise,

(13)

where α, γ, and δ correspond to constants that define the initial tolerance of the autonomous
system to risk, loss, and accumulated loss, respectively. On the other hand, βst , φst , and
ωst correspond to a factor that represents the sensitivity of the autonomous system against
the risk, loss, and accumulated loss, which vary as the autonomous system reaches the
MaxSIndex threshold. All these parameters must be calibrated for each experimental
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scenario to ensure the stability of the system. For all periods t, the values of the factors βst ,
φst , and ωst are between [0, 1].

To measure the performance of the described model, we can generate an indicator that
can be compared with a benchmark. In this sense, we can use the economic literature to
generate an evaluation of the level of utility, which we describe as follows:

TotPer f ormanceT =

∫ T
0 UtilityAA,te−κtdt∫ T

0 UtilityBench,te−κtdt
=

TotUtAA,T

TotUtBench,T
, (14)

where
∫ T

0 UtilityAA,te−κtdt and
∫ T

0 UtilityBench,te−κtdt correspond to the integrals that gen-
erate the utility of the autonomous system model and a benchmark between an initial
period 0 and a period T, respectively. Note that the utility for any moment in time is
multiplied by e−κt, where κ corresponds to the intertemporal discount rate which the
autonomous system faces and is strongly related to the market interest rates existing at that
moment in time. This approximation allows us to compare the outcome of the autonomous
system with a passive alternative, which in turn allows us to find the best alternative
calibration of the model, considering the time effects of an investment decision.

On the other hand, an algorithmic sequence of the investment decision-making process
is presented below. A graphical representation of this algorithm is depicted by Figure 1.
Meanwhile, Figure 2 shows a representation of the general process, including the follow-
ing system components: Domain Manager, Market Analyzer, Index Analyzer, Tolerance
Analyzer, and Somatic Engine.

Figure 1. Graphical representation of Algorithm 1.
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Algorithm 1 General decision-making process for an autonomous system
Input: updated market data.
Output: an investment decision; updated tolerance level to risk, loss, and accumu-

lated loss.
1: Get market data
2: Update market indicators: profitability and risk [using Equations (1) and (2)]
3: Update accumulated wealth [using Equation (3)]
4: Update utility [using Equation (4)]
5: Determine RIndext [using Equation (6)]
6: Determine LossIndext [using Equation (7)]
7: Determine CLossIndext [using Equation (8)]
8: Get somatic reaction [using Equation (9)]
9: if SIndext ≥ MaxSIndex then

10: Punishmentt = Punishmentt + 1
11: Update (portfolio)
12: else
13: [Maintain Punishmentt value]
14: end if
15: Determine risk tolerance [using Equation (11)]
16: Determine loss tolerance [using Equation (12)]
17: Determine [using Equation (13)]
18: Inform to market (investment decision)

The algorithm requires obtaining updated market data. Based on the above, the
profitability and risk indicators are updated, along with the accumulated wealth and
profitability. Then, from the determination of indices, the somatic reaction is obtained
(represented by the variable SIndex). If said somatic reaction is equal to or greater than
the tolerance limit represented by the MaxSIndex variable, the punishment variable is
increased, the investment portfolio is updated, and the SIndex variable is restored to its
initial value.

Figure 2. Diagram representation of the general process.

The algorithmic contribution lies in the possibility of reflecting human reactions in
autonomous systems, specifically the impact of market performance on the somatic reaction,
and its consequent reflection in somatic punishment, which triggers an increase in the
sensitivity of the autonomous system to risk, loss, and accumulated loss. In other words,
the availability and regulation of somatic reactions and somatic punishments give the au-
tonomous system the ability to adapt to the environment and its dynamic market conditions.
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4. Experimental Scenario
4.1. Scenario Description

The experimental scenario is based on an autonomous system that invests from
1 January 2017 to 31 December 2021, with a daily monitoring of the profitability evolution
of financial assets. A set of 28 stocks belonging to the Dow Jones Index was considered
for configuring investment portfolios. Likewise, to contrast the results obtained by the
autonomous system concerning an industry benchmark, data from the S&P500 index
from 1 January 2017 to 31 December 2021 are considered with a daily monitoring of
their profitability. Only with the purpose of generating the first investment portfolio, the
autonomous system considers, as a reference, data belonging to the Dow Jones Index from
1 January 2016 to 31 December 2016. Finally, for the current experimental scenario, the
value of the MaxSIndex variable was set to 1.

For this experimental scenario, we proceed to use a characterization of parameters
imposed by the researchers, which in principle seems to have a behavior similar to that
which could be observed in a human being. However, the parameters are arbitrary and the
only aim of this characterization is to provide a stable scenario that can be compared with
other specifications. The proper estimation of each of the parameters corresponds to a line
of research that is not part of this study but can be included in future research, following
Bayesian or frequentist statistical methodologies.

Table 1 shows the parameters used in the experimentation, sketching a precise scenario
for analysis. These parameters are linked to the characteristics of the autonomous system,
determining the effects of risk, losses, and cumulative losses indicators in the somatic
index, predominantly based on the observed profitability in financial markets. With this
in mind, the objective is to emulate, through an autonomous system, the effect that can
be observed in real individuals when monitoring market profitability, which may trigger
somatic reaction effects resulting in changes in the investment portfolio’s composition (see
Equations (8)–(12)).

Table 1. General parameters for the experimental scenario.

Parameters Value Equation

σ 2 (4)
ζ 1 (6)

ρR,t rand(0, 0.002) (6)
ν 1 (7)

ρL,t rand(−0.0005, 0.0005) (7)
η 1 (8)

ρC,t rand(−0.0005, 0.0005) (8)
W1 0.33 (9)
W2 0.33 (9)
W3 0.34 (9)
α 0.005 (11)
β 0.9 (11)
C 0.002 (11)
γ 0.0032 (12)
φ 0.9 (12)
δ 1 (13)
ω 0.9 (13)

4.2. Experimental Results

The general investment process was performed 10,000 times independently to ensure
the stability of the distribution function of the results. In both investment modalities
(autonomous system and benchmark), USD 10,000 are available to begin the investment
process. The obtained experimental results are shown in Table 2, representing the last
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observed value of the indicator for a specific year, given a sequence of daily returns
monitored by the autonomous system. The column “Investment Metric” indicates the
investment metrics considered in the present work: accumulated wealth, utility, and Sharpe
ratio considering as financial assets the S&P500 index and the average of the evolution of
the portfolio generated by the autonomous agent. For its part, the value for each investment
metric available year by year corresponds to the final value that the said metric reached on
the last business day of said year.

Table 2. Experimental results.

Investment Metric 2017 2018 2019 2020 2021

Autonomous System
Wealth 11,166 13,554 18,664 22,176 22,962
Utility 0.96 1.963 2.819 3.018 3.049

Sharpe Ratio 0.036 0.101 0.149 0.082 0.026

SP500 Benchmark
Wealth 11,930 11,195 14,666 17,838 23,171
Utility 1.37 0.957 2.277 2.746 3.065

Sharpe Ratio 0.177 −0.011 0.135 0.049 0.126

Total Performance TotUtAA,T
TotUtBench,T

0.68 0.89 1.10 1.16 1.12

At the end of 2017, the benchmark outperforms the autonomous system in all in-
vestment metrics. At the beginning of 2018, the autonomous system recovered and out-
performed the benchmark, then fell again and recovered again, reaching a better result
than the benchmark in both investment metrics at the end of 2018. For its part, the supe-
riority of the autonomous system during the years 2019 and 2020 is evident. Then, after
the first half of the year 2021, the autonomous system begins to perform worse. At the
end of 2021, the benchmark reaches and slightly exceeds the autonomous system in both
investment metrics.

Figures 3 and 4 show the behavior of accumulated wealth and utility, respectively.
The observable shadow on the autonomous system curve represents the variability along
the time of the results obtained. Figure 3 shows that the evolution of accumulated wealth
associated with the autonomous system decreased in mid-2017, representing inefficient
decision making when configuring the investment portfolio, which changes when reconfig-
uring the portfolio at the end of 2018. The greater degree of efficiency is reflected at the
beginning of the year 2020 when the fall of the financial markets caused by the financial
crisis of COVID-19 was contained by the autonomous system by timely reconfiguring
the investment portfolios. Meanwhile, Figure 4 shows the evolution of the level of utility,
which more clearly shows the softening of the utility of the autonomous system in the year
2020 (corresponding to the COVID crisis).

From Table 2 and Figure 4, we can observe how the performance metric of the cu-
mulative utility level starts to improve over time, implying that the strategy proposed for
the autonomous system provides greater stability when considering the full history of the
investments made by the autonomous system.

On the other hand, Figure 5 shows a sample path that illustrates the behavior of sIndex
associated with one of the 10,000 independent experimental runs. Figure 5 shows that at
the end of 2018, the sIndex variable reaches and exceeds the threshold represented by the
MaxSIndex variable, which triggers both a portfolio change and a restoration of the sIndex
variable, which visibly decreases its current value by the following investment period.
Subsequently, it is possible to observe that a new maximum occurred in the first quarter
of 2020, followed by three more events during the same year. During the year 2021, an
equivalent level of maximums was observed.
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Figure 3. Accumulated wealth behavior.

Figure 4. Utility behavior.

Figure 5. Example of SIndex behavior.

5. Discussion

Regarding the experimental scenario, it is important to distinguish the mode of opera-
tion of each investment option first. On the one hand, the autonomous system adopts an
active investment strategy, which means that it modifies its investment portfolio according
to how it perceives its internal tolerance levels for risk, loss, and accumulated loss. In
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contrast, the S&P500 benchmark option represents that the autonomous system adopts a
passive investment strategy. This means that the autonomous system invests only once
in the said index at the beginning of the experiment and does not change its decision
throughout the experiment.

Regarding the experimental results, a better behavior of the performance of the au-
tonomous system is generally observed in the active investment strategy over the passive
strategy option (i.e., following the benchmark), both in accumulated wealth and in utility.
That said, the third quarter of 2021 sees a drop in performance on the active investment
strategy. From the first quarter of 2020 to the second quarter of 2021, the high frequency of
the portfolio’s reconfiguration made it possible to maintain the values of the investment
metrics positively. However, this high frequency of portfolio reconfiguration did not allow
the autonomous system to fully adapt to the high volatility conditions in the markets
derived from COVID-19.

This research uses standard criteria for calculating return and risk, all according to the
modern Markowitz portfolio theory [52]. The risk, loss, and accumulated loss indices are
considered in their calculation, as well as the tolerance level to risk, loss, and accumulated
loss, respectively. In this sense, the relationship between risk tolerance and greater volatility
could increase the risk index. For its part, the relationship between the tolerance level for
loss and a capital loss could increase the loss index. Meanwhile, the interaction between
the tolerance level to accumulated loss and a sustained occurrence of capital losses could
increase the index of accumulated loss.

The previously mentioned indices are considered when calculating the somatic index,
called SIndex. This index is intended to reflect, period by period, the effect of the decisions
made by the autonomous system during the investment process. Every time the SIndex
variable reaches or exceeds the threshold represented by the MaxSIndex variable in the
autonomous system, an artificial somatic signal is generated, which induces an increase
in the punishment variable. This variable seeks to represent bodily states with negative
sensations in accordance with the somatic marker hypothesis. A higher frequency of
increase in the punishment variable directly affects risk tolerance, loss tolerance, and
accumulated loss tolerance, which can affect the SIndex variable. For this purpose, we have
carried out 10,000 independent simulations in order to have a distribution of the results
and to understand the expected value as the main indicator that determines the efficiency
of the proposed algorithm in this research.

On the other hand, it is important to mention that the tolerance levels to risk, loss,
and accumulated loss are conditioned by the history of the autonomous system, which
is reflected in the variation of the risk, loss, and accumulated loss, respectively. In other
words, the autonomous system lowers its risk tolerance when market volatility reaches or
exceeds its current level of risk tolerance, lowers your loss tolerance when you experience
a loss that exceeds your current level of principal loss, and lowers your cumulative loss
tolerance when it exceeds your cumulative loss tolerance threshold.

Additionally, this research incorporated a new efficiency metric based on the computed
utility or welfare of the autonomous system. This metric differs from those that are usually
used in the market, such as the direct measurement of the result of the investment process
(accumulated wealth), which allows us to think of the autonomous system as an entity that
measures not only a specific result in time but also as an agent that has the history of the
whole process as part of its measurement. This strategy makes it possible to seek alternatives
that maximize utility, prioritizing the stability of the results in a scheme that tries to emulate
the behavior that a human being might have when faced with investment decisions.

The design and incorporation of a mechanism to generate artificial somatic punish-
ments for autonomous systems try to reflect negative sensations that could emerge in
people when making decisions. These feelings of punishment can guide the decision-
making process of an autonomous system. The technological potential of the above is the
option of delegating human decision making to artificial devices, objects, or systems that
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can represent the interests of people and society in environments or decision environments
of higher complexity.

In this research, we present a way of measuring the total performance of the investment
strategy of the autonomous agent (Equation (14)), which measures the evolution of the
utility levels generated over time by the autonomous agent compared to that which would
be generated by a passive strategy based on investing in a stock market index. This way of
measuring performance allows us to take into account the impact of the volatility of each
strategy on the evolution of the price level, giving more importance to events close in time,
which seeks to simulate the decision making that a human being would make. This metric
allows us to incorporate information for long-term decision making, generally favoring
strategies that smooth investment results over time, similar to other indicators such as
the Sharpe ratio, but with the difference that the Sharpe ratio is a static measurement of
financial results, unlike the proposal, which allows for a dynamic measurement.

The obtained results show a behavior close to what could be observed in real capital
market investment contexts, as well as in other works, such as [7,11,42,47]. Nevertheless,
the present research explores the behavior of an autonomous system with a built-in artificial
somatic punishment mechanism, which allows us to make an advancement in the design
and implementation of artificial autonomous systems to which humans can delegate their
decision making.

To the best of our knowledge, it has not been possible to find other proposals that
consider the implementation and evaluation of an artificial somatic punishment mechanism
for an autonomous decision system. In this sense, and in order to have a first approximation
of the advantages and limitations of such a mechanism, the present research work started its
evaluation with a single set of parameters for such a mechanism. From this perspective, it is
certainly an area for future research to explore the expansion of the initial set of parameters,
for example, by following strategies such as Monte Carlo simulations.

6. Conclusions

This work presented the design of a mechanism for the generation of artificial somatic
punishments for an autonomous system. This system was evaluated by considering an
experimental scenario based on the use of official data from Standard & Poor’s 500 [9]
and Dow Jones [10]. Comparatively, observing all the investment periods, it is possible
to affirm that the autonomous system, under an active investment strategy and using an
artificial somatic index, presents a higher level of effectiveness of the investment decision,
also offering periods of sustained accumulation of wealth and utility. That said, the level
of intensity and the degree of influence of artificial somatic punishment on the decision
making of the autonomous system is an aspect that requires further tuning and calibration.

We also present a way to measure the overall performance of the autonomous agent’s
investment strategy by measuring the evolution of the level of profit generated by the
autonomous agent over time compared to that which would be generated by a passive
strategy based on investing in a stock index.

Although the experimental results were obtained from 10,000 independent executions,
a limitation of the current research work is that these results derive from a single configura-
tion of parameters (presented in Table 1). Another limitation is that the somatic punishment
variable called “punishment” is due to a single way of representing the punishment in the
autonomous system. Other previous studies share limitations regarding the experimental
quantity and the definition of a variable by considering a unique central mechanism. In
this sense, the present research emphasizes the need for an artificial mechanism to reflect
the effects of negative decision consequences on decision makers. In humans, negative
sensations derived from decision making can directly influence the next decision-making
process, allowing for evaluating, redirecting, or correcting one’s own decisions.

Different future lines of research can be derived from the results obtained in the present
work. First, it would be interesting to study the effect of diversifying the decision strategies
contained in the autonomous system. Secondly, developing new experiments to avoid or
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contain the processes of excessive over punishment by the autonomic system would be
necessary. This could be carried out using an exploratory analysis in which a calibration of
the punishment variable would be performed. This way, it would be possible to sensitize
it and adjust it to different risk contexts. Another potential line of future research is to
increase the modes of actualization of somatic punishments and study their effects on
the autonomous system’s decision-making process, as well as to carry out a convergence
analysis of the experimental scenarios as their complexity increases. Finally, examining
how the proposed model behaves when applied to other highly complex decision scenarios,
such as flexible passenger transportation, would be appropriate.
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