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Abstract
The evaluation of machine learning systems has typically been limited to performance measures on
clean and curated datasets, which may not accurately reflect their robustness in real-world
situations where data distribution can vary from learning to deployment, and where truthfully
predict some instances could be more difficult than others. Therefore, a key aspect in
understanding robustness is instance difficulty, which refers to the level of unexpectedness of
system failure on a specific instance. We present a framework that evaluates the robustness of
different ML models using item response theory-based estimates of instance difficulty for
supervised tasks. This framework evaluates performance deviations by applying perturbation
methods that simulate noise and variability in deployment conditions. Our findings result in the
development of a comprehensive taxonomy of ML techniques, based on both the robustness of the
models and the difficulty of the instances, providing a deeper understanding of the strengths and
limitations of specific families of ML models. This study is a significant step towards exposing
vulnerabilities of particular families of ML models.

1. Introduction

The proliferation of machine learning (ML) systems has transformed various fields, including medicine,
finance, social media, and autonomous transport, integrating into our daily lives and shaping
decision-making processes. With the growing influence of these systems, it is imperative to have reliable and
robust ML systems that can function correctly under different conditions and inputs [1]. Robustness, in this
context, refers to the ability of a ML system consistently maintain its predictions despite variations or
perturbations [2].

Traditional evaluations of ML robustness have predominantly focused on resistance to adversarial
examples—deliberately manipulated inputs designed to trick models into making incorrect predictions.
These studies often involve the introduction of noise during training and testing phases to test the model’s
defences against such attacks [1]. These examples are commonly known as adversarial examples, and most
research in the area focuses on measuring robustness against adversarial examples [3, 4]. However, while this
focus is important, it largely overshadows another critical aspect: prediction consistency: understanding a
model’s stability and resilience to input variations, independent of initial training labels. This approach is
motivated by the importance of consistency as a factor in assessing model robustness: a model that returns
the same output for an input regardless of slight perturbations or noise potentially demonstrates a high
degree of robustness against uncertainties or adversarial examples in deployment environments.

We also add an extra dimension in our analysis: the instance difficulty. Robustness is a multifaceted
concept influenced by various factors [5], including the difficulty of the instance (intrinsic or extrinsic).
Understanding where and why a model fails is critical to preventing unforeseen failures and improving
robustness. To the best of our knowledge, this factor has not been considered as a criterion for evaluating
model robustness. In this study, we investigate the uniformity of performance across different levels of
instance difficulty and the sensitivity of instances to changes in the label predicted by a classifier under
perturbations (such as adding noise to the input attributes). Typically, instances with higher difficulty levels
are more sensitive under small perturbations.
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A way of estimating the difficulty of instances is to calculate the average error of a set of systems per
instance as a proxy for difficulty [6]. However, there are risks in using a population of systems, such as
instability of difficulty metrics in the presence of a nonconforming system (failing on easy instances and
succeeding on hard ones). To address these limitations, we utilise item response theory (IRT) [7] to infer
instance difficulty from a matrix of instances and systems, giving more weight to conforming systems. IRT
provides a scaled difficulty metric that follows a normal distribution and can be directly compared to a
system’s ability [7]. Thus, we aim to provide a comprehensive analysis of model robustness, taking into
account instance difficulty and perturbation effects.

In this paper, we present a comprehensive evaluation framework to analyse the robustness of multiple
ML families in a systematic and empirical manner. We factor in instance difficulty as a key consideration in
our evaluation. In addition, we perform hierarchical clustering to categorise families based on their
robustness. Our evaluation framework is versatile, incorporating datasets from diverse domains, a broad
spectrum of ML techniques, and a randomised noise-inducing instance perturbation function. This enables
its adaptability to various needs by adjusting the datasets, models, and perturbation function accordingly. To
measure the robustness of a model, we compare its performance on original and perturbed test sets, taking
into account the difficulty of the instances. The final measure of robustness is determined by the agreement
modulo the instance difficulty. By performing hierarchical clustering, we categorise the ML families based on
their robustness, providing a taxonomy that raises awareness of the vulnerabilities of different families of ML
models. The main findings and contributions of this paper are:

• We highlight the importance of instance difficulty in ML robustness by demonstrating its impact on model
performance and the need to consider it in robustness assessments.

• We provide a versatile evaluation framework designed to assess the robustness of ML systems across various
domains and techniques, focusing on model stability and resilience to input variations.

• We unlock and deepen the relationship between the robustness of MLmodels and the difficulty of instances
subjected to differing levels of noise.

• We introduce a taxonomy of ML families according to their ability to handle input variations and overall
robustness, providing valuable insight into the strengths and weaknesses of different ML models.

• We provide a nuanced guide for practitioners on the judicious use of models in different real-world scen-
arios, taking into account the interplay between noise, instance difficulty and dataset complexity.

The structure of the paper is as follows: section 2 reviews the relevant literature on evaluating ML robustness
in noisy conditions, estimating instance difficulty, and behavioural taxonomies of ML techniques. Section 3
outlines our methodology for analysing model robustness. Section 4 describes the experimental setup, while
section 5 presents the results of our experiments. The insights and implications of our research are discussed
in section 6. Finally, the paper concludes in section 7, where we summarise our contributions and suggest
directions for future work.

2. Background

In this section, we revisit key concepts regarding model robustness, instance difficulty based on IRT, and
behavioural taxonomies of ML techniques.

2.1. Robustness in a noisy framework
Robustness is a defining characteristic of ML systems, used to ensure the system behaves as desired when
faced with changes in data [8]. One common method of simulating these changes is adding noise to the data,
as real-world data often contain noise [9].

There are two types of noise [10]: class noise, which may be due to the presence of contradictory
examples or instances with wrong classes, and attribute noise, that can be due to erroneous attribute values,
missing or unknown attribute values, incomplete attribute or ‘do not care’ values. In this paper we focus on
erroneus values, disregarding other sources of noise.

Working in noisy environments can degrade classifier performance [11]. An alternative to clean training
data is to consider noise during training. Some approaches consider that the noise distribution is known in
advance [12], but most recent approaches propose to use perturbed training data by adding random artificial
noise to attributes and class labels to simulate erroneus values [13–15]. Noise introduction involves changing
the values according to a source distribution, such as a Gaussian distribution or uniform random
distribution for numerical attributes, or randomly changing categorical attributes [9, 16–18].

Injection of altered attribute instances into the training set can be employed for training more robust
systems [19, 20] and for improving the robustness of neural networks [21], and models against adversarial
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attacks [22, 23]. It is also commonly used for data augmentation in order to train more accurate classifiers
[16, 24]. These noise-based techniques can obtain robust models that are relevant in some areas such as, for
instance, speech emotion recognition systems [25–27]. On the other hand, label noise is used to simulate
mislabelled instances or other forms of data corruption. It has been used to evaluate the robustness of
computer vision models [28] and can also improve model robustness by reducing overfitting errors [29].
Perturbation techniques has been proved it can be employed for test model robustness by adding noise to the
test instances. This is often used in adversarial ML, where the goal is to create adversarial examples that are
indistinguishable from the original instances, but result in a change in the model’s output.

The standard method for assessing robustness is to compare the performance of the model in the
presence of noise with its performance in the absence of noise, regardless of whether the noise is present in
the training or test data. The standard classification metrics such as accuracy and F-measure are used to
measure the loss of performance after introducing noise in training. The equalised loss of accuracy metric is
also used to measure the noise robustness of a classifier [11]. Other techniques for assessing robustness
include mixed integer programming [30], abstract interpretation [31], and symbolic execution [32–34].

In this study, we focus on the consistency of model predictions relative to perturbed inputs. Consistency
is an important factor in assessing model robustness: a model that returns the same output for an input
regardless of slight perturbations or noise potentially demonstrates a high degree of robustness against
uncertainties or adversarial examples in deployment environments. We also add an extra dimension in our
analysis: the instance difficulty, a factor previously overlooked in evaluating model robustness. We use the
kappa statistic as evaluation metric to assess the agreement between a model’s predictions on original vs.
perturbed data sets.

2.2. Instance difficulty
The handling of difficult instances during the development of AI systems is crucial, especially for trained
models. Such instances, often associated with noise, outliers or decision bounds, can lead to overfitting or
lack of convergence. While various approaches have been proposed to prevent overfitting by identifying
anomalies or mislabelled instances, they do not clearly define what characterises these instances. In [35],
instance hardness metrics were used to characterise the degree of difficulty of each input sample based on the
empirical definition of classification behaviour. In computer vision and natural language processing (NLP)
related tasks, however, the analysis is limited to global image properties (e.g. salience, memorability, photo
quality, tone, colour, texture) [36–38] or lexical readability and richness [39, 40] in the case of NLP.

Tackling these difficult instances is a problem that is often addressed with domain-specific methods. In
particular, IRT [7], traditionally a branch of psychometrics, has emerged as an innovative method applied to
AI and ML [6, 41–44]. IRT encompasses a collection of models that link the responses of individuals to items
(such as test questions) to the latent abilities of those individuals. Primarily used in educational assessment
and psychometric evaluations, IRT seeks to quantify an examinee’s ability through a battery of questions.

We focus on the dichotomous models where the response can be either correct or incorrect. Let’s define
U ji as the binary response of individual j to item i, where Uji = 1 represents a correct response, and Uji = 0
indicates an incorrect one. The ability of the individual, denoted by θj, reflects their proficiency in the
construct being measured. If an individual’s ability matches the difficulty level of an item, there is an even
chance of a correct answer. As a person’s ability deviates from the item’s difficulty, the probability of a correct
response adjusts accordingly–increasing with a higher ability above the difficulty level, and decreasing with a
lower ability.

In an IRT model, each item has its associated item characteristic curve (ICC) (see figure 1(left)) , which
illustrates how the probability of a correct response varies with the test-taker’s ability. For instance, in the
two-parameter (2PL) IRT model, the ICC and the associated probability of getting the item correct are
defined by a logistic function:

P
(
Uji = 1 | θj

)
=

1

1+ exp
(
−ai

(
θj − bi

)) . (1)

The shape of an ICC is determined by the item’s difficulty (bi) –the parameter that dictates where on the
ability scale the probability of a correct answer is 50%. If a respondent’s ability θj equals the item difficulty bi,
there is an equal chance of answering correctly, depicted by the midpoint of the ICC.

Items are also differentiated by their discrimination parameter (ai), which indicates the slope of the ICC
at the difficulty point. High discrimination values mean even small differences in ability can translate into
significant variations in the potential for correct responses. An item with ai = 1.0 discriminates effectively,
making slight adjustments in ability result in meaningful changes in the probability of a correct answer. The
simplest IRT models, known as 1PL, assume a constant discrimination parameter of 1 for all items; only the

3



Mach. Learn.: Sci. Technol. 5 (2024) 035040 R Fabra-Boluda et al

Figure 1. Left: example of a 2PL IRT ICC curve, with slope a= 2 in red and location parameter b= 3 in blue. Right: example of
SCC curves with different abilities.

respondent’s ability (θj) and the item’s difficulty (bi) need to be inferred. More advanced models, like the
2PL, estimate both discrimination and difficulty parameters, affording a better fit in some instances but also
posing a risk of overfitting.

As all IRT models assume one single parameter for the respondent, their dual plots (known originally as
person characteristic curves, here renamed as system characteristic curves (SCC)), also follow a logistic
function (see figure 1(right)). Respondents who tend to correctly answer the most difficult items will be
assigned to high values of ability. Difficult items in turn are those correctly answered only by the most
proficient respondents. From this understanding and some common assumptions (ability and difficulty
following some particular normal distributions), the latent variables can be inferred from a table of
item-respondent pairs U ji. Some two-step iterative variants of maximum-likelihood estimation (MLE), such
as Birnbaum’s method [45], can be used to infer all the IRT parameters.

IRT difficulty is characterised by being system-independent and domain-generic unlike the other metrics
described above [46]. It also has some advantages over the use of mean performance as a metric of difficulty
in terms of distribution, stability and predictability, as has been explored in the IRT literature [46].

2.3. Behaviour-basedML families
A classic approach to categorising ML techniques is to define families based on their formulation and
learning strategy (e.g. neural networks, decision trees) [47–49]. However, this taxonomy does not take into
account the intrinsic behaviour of a model (as measured by output agreement), especially in sparse domains
where limited training data is available.

To comprehensively evaluate the robustness of ML models, it is necessary to analyse a diverse set of
models under different parameters. In [50], the authors proposed a taxonomy of ML techniques for
classification, grouping them based on the degree of behavioural agreement, i.e. differences in how they
distribute the output class labels across the feature space. Both dense and sparse regions (where training data
is scarce or absent) were considered using Cohen’s kappa statistic [51] to effectively evaluate the difference
between techniques. The use of Cohen’s kappa is a valuable tool in the evaluation of the robustness of ML
models. This statistic provides a means of comparing the behaviour of two models by assessing their
predictions relative to each other, as opposed to the ground-truth. This approach allows for a deeper
understanding of the models’ behaviour, rather than simply their performance on specific tasks. Moreover,
the use of Cohen’s kappa is advantageous due to its robustness against data imbalance, making it a more
reliable metric for comparing models. In dense regions, where training data is abundant, differences between
models may be difficult to detect. However, their responses diverge in areas with sparse or no training data.
In such low-density regions, the differences between ML models become more pronounced as each method
extrapolates differently based on the limited examples available. Figure 2 demonstrates this phenomenon.
The leftmost plot displays the original training data from a bivariate dataset used to train multiple ML
models using diverse techniques. While these models show consistent behaviour in data-rich areas (for
instance, around the point (0, 1)), their outputs are unpredictable in data-sparse regions (like point (1, 0.5)),
which are also more vulnerable [52, 53]. Furthermore, sparse data can have a significant adverse impact on
classifier performance, typically undermining predictive accuracy [50, 54].
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Figure 2. Illustration of the behavior of three different models trained over the same four-class classification dataset (shown on
the leftmost plot). The pictures show the different predictions for particular class regions (known as decision boundaries) in
dense and sparse areas.

Figure 3. Dendrogram representing the hierarchical clustering (18 groups, Ai) of ML models.

The study compared 65 ML models, including variations of hyperparameters, using the pairwise
comparison method and averaging the results over 75 datasets. The authors used hierarchical clustering to
group the models into families based on their behaviour, resulting in 18 model families (see figure 3). The
kappa statistic was used to objectively quantify the differences between two models or model families.
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Figure 4. Graphical outline of the procedure for computing instance difficulty based on model responses using the IRT
framework.

3. Robustness evaluationmethodology

In this section, we describe a methodology for evaluating the robustness of ML to noise and instance
difficulty. Using an extensive collection of model responses, we estimate instance difficulty using a robust
evaluation framework informed by IRT and visualised by SCCs. We ensure representative noise introduction
that reflects diverse real-world disturbances by perturbing datasets in a controlled manner. To identify
patterns of resilience, we construct robustness taxonomies by clustering models based on their consistency of
performance despite noise and varying levels of difficulty. This integrated approach aims to provide a
nuanced understanding of model behaviour, facilitating informed decisions in the deployment of resilient AI
systems.

3.1. Estimation of difficulty
The estimation of instance difficulty requires a preliminary check to ensure that each benchmark has a
sufficient number of model scores (i.e. responses per instance, here referred to as ‘items’) [55]. In addition,
these responses should come from a variety of model architectures and technologies to provide a robust
assessment of difficulty. Figure 4 shows a schematic of the procedure applied to estimate instance difficulty,
highlighting the process of aggregating model responses from different architectures to form the response
matrix U. We collect responses for instances that the models have not encountered during training, typically
using the test folds. This ensures that our performance scores truly reflect the models’ ability to handle new
data. The collection of model performances forms a J× I matrix , denoted U, containing all binary responses
U ji. From this we can obtain the ICCs, which graphically represent the probability of a correct model
prediction for instances as a function of their estimated difficulty and the model’s ability. These curves are
useful for understanding the behaviour of different models in relation to the complexity of different
instances. By visually analysing the ICCs, we can assess the discriminative power of items and the consistency
of model performance as difficulty varies across a range of instances.

To effectively compute the instance difficulty, we adopt the IRT framework as recommended by [46],
which use 1PL IRT models for simplicity where we set the discrimination parameter ai = 1.0 for all items.
Consequently, our focus shifts to inferring only two parameters: the ability θj of the models and the difficulty
bi of the instances.

In order to provide more transparency into our approach, in appendix A we present a detailed
description of our procedure for estimating the difficulty of instances using synthetic data.

3.2. Introduction of noise
To evaluate model behaviour in different noise scenarios, including adversarial attacks, we need a versatile
and universal noise generation method. Our approach will consider noise levels as a reflection of different
contexts. Random noise will be introduced using standard probability distributions, as demonstrated in
previous research [56]. This will help to standardise the process of noise introduction across different
settings. We will handle the perturbation of instances by modifying attribute values within an appropriate
range. For numerical attributes we use a Gaussian distribution to create values related to the original
distribution. Using Gaussian distribution provides more flexibility in controlling the characteristics of the
noise (through its parameters) compared to other artificial noise distributions such us the uniform noise.
Additionally, Gaussian noise has been used on certain real world problems, such as sensor data processing
[24, 57], image denoising [58], speech recognition [59] or differential privacy [60]. For nominal attributes,
we employ a method that involves recalculating the probabilities for each category within an attribute to
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simulate errors in data encoding or collection that might occur during real-world data handling. Thus, the
noise injection is done as follows:

• Numerical attributes: Let ν be the level of noise to be injected into a numerical attribute at, and σ the
standard deviation of all values of at. Then, a value x in at is modified as x ′ ∼ N(x,σ · ν), i.e. we follow a
normal distribution using x as mean and σ multiplied by the noise level ν as standard deviation.

• Nominal attributes: Let {at1, . . . ,atm} be the set of them possible values of a nominal attribute at, and p the
vector that represents the empirical distribution of at, that is, p= (pat1 , . . . ,patm), where, pi is the frequency
of value i. Consider we have an instance of value x= atj in at, we represent as the vector t= (tat1 , . . . , tatm)
with tati = 0 ∀i ∈ {1..m}, i ̸= j, and tatj = 1. To insert a noise level ν, we calculate α= 1− e(−ν), and then
compute a new vector of probabilities p ′ = α · p+(1−α) · t. The value of α, which ranges from 0 to 1,
depends on the ν parameter. It balances the influence of the original distribution and the instance value on
the updated probability vector p′ that selects the noise value. Finally, we use p′ in order to sample the new
value x′ of the attribute.

To measure the impact of noise on the models’ performance, we will compare the predictions from the
original test set with those from the noisy sets using the Kappa statistic. This comparison aims to quantify
how noise influences model reliability and accuracy.

3.3. Measuring model robustness to noise and difficulty
To assess the robustness of ML models from different families, we apply all models to classify the same
benchmark test set with progressively increasing the percentage of noisy instances. The degree to which a
model is affected by noise provides an insight into its robustness. This can be assessed quantitatively using
Cohen’s kappa statistic [51]. The Cohen’s kappa statistic is formulated as follows. Let ŷ1 = {y11,y12, . . . ,y1N}
and ŷ2 = {y21,y22, . . . ,y2N} be the predictions of two modelsm1 andm2, on a test set of N instances. The
Cohen’s Kappa metric is defined as:

κ(ŷ1, ŷ2) = 1− 1− p0 (ŷ1, ŷ2)

1− pe (ŷ1, ŷ2)
(2)

where p0(ŷ1, ŷ2) can be defined as the relation of the number of coincidences between the predictions of the
two models and the size of the test set:

p0 (ŷ1, ŷ2) =
1

N

N∑
i

(δ (ŷ1i, ŷ2i)) (3)

where δ is the Kronecker’s delta. If we define nic as the number of times that the model i predicted the class
c ∈ C, we can formulate pe(ŷ1, ŷ2) as:

pe (ŷ1, ŷ2) =
1

N2

C∑
c

n1c · n2c. (4)

We use the Cohen’s Kappa statistic for measuring the agreement between a model’s predictions on the
original test set and those on its noisy counterpart. For this purpose, let us consider T as the Universe of all
possible data sets that can be derived from different inputs. Given a test set T ∈ T , we define a perturbation
function ϕ : T → T that applies noise to a data set, resulting in a perturbed test set T ′ = ϕ(T). If we have
two models,m1 andm2, each trained on the same data, and they make predictions ŷm =m(T) on the original
test and ŷ ′m =m(T ′) on the perturbed test, modelm1 is considered more robust thanm2 if the kappa
consistency between its predictions on T and T′ is greater than that ofm2, i.e. κ(ŷm1 , ŷ

′
m1
)> κ(ŷm2 , ŷ

′
m2
).

It is important to clarify that our goal is not simply to evaluate the overall performance of a model, but
rather to understand how its behaviour is affected by different intensities of noise applied to instances of
varying difficulty. For this reason, we disregard the actual class label in this context, recognising that
introducing noise into an instance’s attributes may alter its true class.

Figure 5 illustrates the complete methodology to estimate the SCCs of a given dataset d. First, we estimate
the instances difficulty as explained in section 3.1. Then, we group the instances difficulties into bins of equal
size B = {B1,B2, . . . ,BK : Bi > Bj, i > j}, where Bi represents the average difficulty of the instances within
that bin. The original dataset d is used to learn multiple classification modelsM= {m1,m2, . . . ,mM} under
a k-fold cross validation setting. The function ϕ injects different grades of noise
Λ = {λ1,λ2, . . . ,λN : λi > λj, i > j} in the test set T⊂ d. Take the function ŷ(m,T,B,λ) as the set of
predicted labels from a modelm ∈M applied to data test T after noise has been added at a rate of λ ∈ Λ

7



Mach. Learn.: Sci. Technol. 5 (2024) 035040 R Fabra-Boluda et al

Figure 5. Description of the methodology to estimate the SCCs.

within the difficulty bin B. Meanwhile, κ(ŷ(m,d,B,0), ŷ(m,d,B,λ)) shows the kappa score contrasting the
predictions given by modelm on the original dataset d in difficulty bin B with the predictions made with the
λ-noisy instances. For brevity, we denote this measure simply as κ(ŷ(m,d,B,λ)). To visualise this measure,
we employ the SCCs. To construct an SCC, we plot the mean difficulty of each bin B ∈ B on the x-axis
against the performance metric kappa on the y-axis (see figure 5(right)). For illustrative purpose, we chose to
use three bins in this example. The number of bins represents a practical compromise between the
granularity of detail and the simplicity required for effective interpretation.

3.4. Robustness-based taxonomies
As mentioned earlier, a SCC visualises how a model’s responses change as it processes examples of varying
difficulty, with the addition of noise interference. However, it falls short of revealing the overall patterns of a
model’s behaviour relative to others. To fill this gap, we aim to create robustness taxonomies for ML models.
These taxonomies categorise models based on their persistence in maintaining consistent predictions despite
the introduction of noise and the complexity of the instances they evaluate. The task of clustering models in
this way is a complex one, compounded by the different characteristics inherent in each dataset.
Notwithstanding these complexities, we have developed three methods to synthesise the collective behaviour
of multiple models.

We start with our first approach, the differences across noise (DAN) method. This technique computes
the average change in kappa acrossD = {d1,d2, . . . ,dL} a set of datasets, as we step from one noise
component λj to the next λj−1, all arranged in the matrix AM,K,N. The description of this calculation follows:

Am,Bi,λj =
1

L

L∑
d=1

(
κ
(
ŷ
(
m,dd,Bi,λj

))
−κ

(
ŷ
(
m,dd,Bi,λj−1

)))
1⩽i⩽K, 1<j⩽N

. (5)

Our second method, differences across difficulty (DAD), averages the differences in kappa between
consecutive bins, for each level of noise. In this case, the matrix BM,K,N is computed as follows:

Bm,Bi,λj =
1

L

L∑
d=1

(
κ
(
ŷ
(
m,dd,Bi,λj

))
−κ

(
ŷ
(
m,dd,Bi−1,λj

)))
1<i⩽K, 1⩽j⩽N

. (6)

Our last method, differences across noise and difficulty (DAND), is a hybrid approach that combines the
results of the two previous methods:

C= (A | B) . (7)

The matrices we have created serve as profiles for each model, capturing how its predictions change
across different levels of noise when tackling instances of varying difficulty. These matrices allow us to
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construct a pairwise dissimilarity matrix, which averages the discrepancies in model responses across the
datasets, iteratively adjusted for different noise levels and instance complexity. Computing this matrix gives
us the tools to examine how models vary in their robustness; in other words, we can quantify the relative
distances between models in terms of their noise tolerance.

Once we have constructed the dissimilarity matrix, it allows us to cluster models based on the similarity
of their responses under these conditions. By applying hierarchical clustering analysis, we can further refine
these categories into a taxonomy that organises models into a hierarchy of nested groups. In particular, this
clustering approach ensures that models with closely aligned performance across a spectrum of instance
difficulty are grouped together. This method of clustering not only provides us with a systematic and
empirical framework for understanding model similarities within families of ML algorithms, but also brings
to light the models that stand out in terms of robustness.

3.5. Averageκ loss analysis
The hierarchical clustering provides a taxonomy that groups the models with similar resilience against
difficulty under different noise conditions. However, the taxonomy does not show intrinsic characteristics of
the robustness of the groups, thus, we cannot assess to which extent the different groups are resilient against
difficulty, noise injection, or both. To cover this flaw, we developed the average κ loss analysis, which
accounts for the average loss in κ in function of the noise injection and instances difficulty.

Definition 1 (κ Gradients). Let Beasy =min(B) be the easiest difficulty bin, Bhard =max(B) be the hardest
difficulty bin, λmax =max(Λ) be the maximum amount of noise introduced in the dataset d, and λmin be the
minimum amount of noise injected in the dataset d.

Given the model m and the dataset d, we define the easy κ gradient, ∆m,d
easy, as the difference in the easiest

bin between the κ score at the maximum presence of noise and the κ score in the minimum presence of noise

∆m,d
easy = κ

(
ŷ
(
m,d,Beasy,λmin

))
−κ

(
ŷ
(
m,d,Beasy,λmax

))
. (8)

Similarly, the hard κ gradient,∆m,d
hard, is defined as

∆m,d
hard = κ(ŷ(m,d,Bhard,λmin))−κ(ŷ(m,d,Bhard,λmax)) . (9)

Finally we define the following loss functions:

Definition2 (AverageκLosses). Given themodelm, a set of datasetsD = {d1,d2, . . . ,dL}, and theκ gradients
∆m,d

easy and∆m,d
hard, the average κ loss in difficulty, L̄mdiff, is defined as

L̄mdiff =
1

L

L∑
d=1

|∆m,d
easy −∆m,d

hard| (10)

and the average κ loss by noise, L̄mnoise, is defined as

L̄mnoise =
1

L

L∑
d=1

∆m,d
easy +∆m,d

hard

2
. (11)

Note that L̄mdiff takes into account the kappa loss between the hardest and easiest bins, while L̄mnoise takes
into account the kappa loss due to noise, as it calculates the mean of the losses in both extreme bins. We can
visualize the result of these equations with a scatter plot, so we can visualize both equations, each one in
function of the other. This allows us to have a combined view of the robustness against different instances
difficulties under the presence of noise.

4. Experimental setting

We conducted our experiments by utilising the R language and the caret package [61]. All models were
trained from scratch, without the use of any pre-trained models. The IRT 1PL models were estimated using
the MIRT R package [62] following the experimental setting in [46]), and the predictions of a diverse range of
models were obtained through the OpenML API [63]. The experiments involved up to 2000 evaluations per
dataset. For the sake of clarity and balance in our visual representation, we choose to use five difficulty bins.
Our experiments generate noisy test datasets with a predefined noise level ν= 0.2. We will adjust the
proportion of instances altered by noise, parameterized by λ, across various bins. These proportions will
range from λ= 0 (where the original test set is unaltered) to λ= 0.5 (where the half of the test set is
perturbed). The process to estimate the SCCs used a 5-fold cross-validation framework.
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Table 1. List of benchmarks for the experiments, sorted by size, characterised by the number of instances, attributes, classes and
complexity. Class distribution per benchmark is shown in figure B1.

Dataset # Instances # Attributes # Classes Complexity value Complexity

Nursery 129 60 9 5 0

Simple

Wall-robot-navigation 5456 5 4 0
Artificial-characters 102 18 8 10 0.01
Page-blocks 5473 11 5 0.01
GesturePhaseSegmentationProcessed 9873 33 5 0.02
Letter 200 00 17 26 0.02
Waveform-5000 5000 41 3 0.02
Spambase 4601 58 2 0.03
Satimage 6430 37 6 0.03
Mfeat-morphological 2000 7 10 0.03
Analcatdata_dmft 797 5 6 0.04
First-order-theorem-proving 6118 52 6 0.05
Gas-drift 139 10 129 6 0.06
Segment 2310 20 7 0.06
Yeast 1484 9 10 0.06

Texture 5500 41 11 0.08

Complex

Optdigits 5620 65 10 0.12
Vowel 990 13 11 0.14
Mfeat-zernike 2000 48 10 0.24
Mfeat-karhunen 2000 65 10 0.32
Mfeat-fourier 2000 77 10 0.38
Gina_prior2 3468 785 10 2.26
CNAE-9 1080 857 9 7.14

4.1. Data and classifiers
Estimating IRT difficulty requires datasets with results from multiple models for each instance. However,
obtaining instance-wise results, meaning a J× I matrix displaying the performance of each system j ∈ {1..J}
for each instance i ∈ {1..I}, can be challenging as it is not easy to find experiments that are not reported in an
aggregated format. OpenML [64] is a valuable resource for this, as it allows sharing of data sets and results in
detail, including curated datasets like OpenML-CC18, from which we selected a set of 23 benchmarks for
supervised learning (detailed in table 1 and figure B1 in appendix B) that met the criteria of a sufficient
number of items I and models J. The aim was also to achieve a diverse set of benchmarks, including datasets
with different number of instances (up to 200 00 in our selection), attributes (up to 857), as well as cover
diverse domains, including handwriting recognition, chemical sensor measurements, spam detection, and
yeast gene identification.

For implementing the calculus of instance difficulty using IRT, we use the MIRT [62] R package, which
allows us to use the Birnbaum method for estimation. An advantage of IRT-based packages such as MIRT is
the inclusion of goodness-of-fit indicators. These indicators assess whether the observed data fit well with the
expected results under the statistical IRT model. If the statistics of an item do not fit well, this may indicate
that the IRT model does not adequately represent the data-generating process, potentially leading to biased
parameter estimates. However, in our case, no estimated models were discarded due to poor item fit statistics
or inconsistencies, indicating confidence in the validity of our inferences.

Our experiments have shown that certain characteristics of datasets, including the total number of
instances (#ins), the number of attributes (#att), and the diversity of classes (#clas), play a critical role in
influencing the performance of the model. In order to quantify the complexity of a dataset, we have
developed a metric that encapsulates these aspects. This complexity metric is formulated as the product of
the number of attributes and the number of classes divided by the number of instances, as shown in
equation (12).

Complexity=
#att ·#clas

#ins
. (12)

According to this measure, a dataset is considered more complex if it contains a higher number of classes and
attributes, especially when combined with a lower number of instances [65]. We use this metric to classify
datasets into categories such as ‘simple’ and ‘complex’. Specifically, we classify a dataset as ‘complex’ if its
complexity metric exceeds 0.08 (see table 1). This threshold was chosen based on our observation that
complexity escalates significantly beyond this point.
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Table 2. List of the 18 models employed for the experiments, along with the hyperparameters used (∗ indicates that the default
hyperparameters have been used).

Technique (ID) Parameters

C5.0 (C5.0) trials = 1, winnow = False∗

Conditional inference tree (CI_T) mincriterion = 0.05
Flexible discriminant analysis (FDA) degree = 1, nprune = 17
Stochastic gradient boosting machine (GBM) interaction.depth = 2, n.trees = 50
Propositional rule learner (JRip) NumOpt = 2, NumFolds = 3, MinWeights = 2∗

K-nearest neighbor (3NN) K = 3
Learning vector quantization (LVQ) size = 50, K = 3
MultiLayer perceptron (MLP) 1 hidden layer, 7 neurons
Multinomial logistic regression (MLR) summ = 0, censored = FALSE∗

Naive bayes (NB) laplace = 0, usekernel = FALSE∗

Rule-based classifier (PART) threshold = 0.25, pruned = `yes'∗

Radial basis function network (RBF) size = 5∗

Regularised discriminant analysis (RDA) gamma = NA, lambda = NA
Random forest (RF) mtry = 64
Classification and regression trees (RPART) cp = 0.01∗

Partial least squares (PLS) ncomp = 3
Support vector machines (SVM) Poly, degree = 2
Random forest rule-based model (RFRules) mtry = 64

In terms of ML models, we used a set of 18 MLmodels from different ML families (from [50]), as detailed
in table 2. These families were derived from a large pool of 65 models that were evaluated on a variety of
datasets and grouped into families based on their performance, as described in section 2.3. To represent each
family, we selected a single model (the centre or centroid of each cluster) to be representative of its family.
This approach allowed us to have a diverse set of models, providing a comprehensive understanding of the
robustness of different ML families. Unless otherwise specified, we use the default hyperparameters for the
models trained. Different hyperparameters were selected after initial exploratory experiments (e.g. to correct
execution and performance problems for different dataset and model combinations).

4.2. Experimental questions
The purpose of posing different research questions is to gain insight into the relationship between the
robustness of ML models and the difficulty of instances, which have been altered by varying levels of noise.
For this, we set 4 experimental questions.

• Q1: What is the distribution of the IRT-difficulty metric across different benchmarks? This question seeks
to understand how the estimated difficulty of instances varies across different benchmarks, using the IRT-
difficulty metric.

• Q2: Are there noticeable differences in the robustness of different models, considering the difficulty of
instances? This question aims to determine if there is a relationship between the difficulty of instances and
the robustness of different ML models.

• Q3: Can we group ML models based on their robustness, taking into account the difficulty of instances?
This question seeks to identify if it is possible to categorise models into groups based on their robustness,
considering the influence of instance difficulty. The results of this question could provide valuable insights
into the design and selection of ML models for specific tasks and domains.

• Q4: How does dataset complexity influence the robustness ofML to noise and instance difficulty? This ques-
tion seeks to analyse the interplay between dataset complexity (from simpler datasets with few features or
classes to more complex ones with a high number of features or classes), noise levels, and instance difficulty.

5. Results

5.1. Difficulty distribution per benchmark
The IRT difficulty parameters are usually characterised by a normal distribution with a standard deviation of
1, and different locations for each dataset. The acceptable range for the difficulty parameter is determined by
the goal of the test and the group of individuals being tested. For example, in educational assessments, values
around 1 are common, while in health evaluations, values around 4 are more typical. In the case of ML
benchmarks, values around−6 to 6 are generally accepted , as demonstrated in [6, 46]. To avoid extreme
values, any instances with difficulties outside the range of [−6, 6] were discarded in our experiments, which
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Figure 6. IRT-difficulty distribution per dataset. Benchmarks sorted by average difficulty.

affected less than 0.1% of instances in all benchmarks. The IRT difficulty distribution for each benchmark is
presented in figure 6 and shows a standard deviation of around 1 for most cases.

Regarding the location of the IRT difficulty parameters (Q1), it is observed that the analcatdata_dmft
benchmark contains more challenging instances, with a mean difficulty of 1.33± 1.12. On the other hand,
the nursery dataset contains less difficult instances, with a mean difficulty of−2.50± 1.56. While the
difficulty distributions across different benchmarks often exhibit a bell-shaped pattern, deviations from a
perfect normal distribution can be observed, indicating varying levels of skewness and kurtosis. Some
benchmarks exhibit a skewed distribution (e.g. artificial-characters, mfeat-morphological), while others have a
multimodal distribution (e.g. analcatdata_dmft, spambase, satimage), indicating that the instances are
grouped into different levels of difficulty. This variation in the distribution could be attributed to the diverse
range of systems used for difficulty estimation, as reported in [46].

In general, it is important to consider the location and distribution of IRT difficulty parameters when
designing and interpreting the results of ML benchmarks. The diversity in the distribution of IRT difficulty
parameters can affect the generation and results of the tests and the evaluation of the models (see, e.g. those
approaches related to adversarial data collection [66, 67], which focus on modifying the most difficult
instances in ML benchmarks). On the other hand, the standard deviation of 1 in most cases suggests that the
parameters are relatively well calibrated and consistent across benchmarks. However, the presence of outliers
and variations in the distributions highlights the importance of considering the characteristics of each
benchmark when interpreting the results.

5.2. Model robustness based on noise and difficulty
Here we aim to determine the relationship between the difficulty of instances and the robustness of different
ML models in terms of their behaviour (Q2). To do this, we evaluate the performance of each technique
listed in table 2 by comparing its predictions on the original test sets for each dataset in table 1 with its
predictions on noisy test sets using the kappa metric. A model that is highly robust against both noise and
difficulty would exhibit a kappa of 1, meaning its predictions remain unchanged regardless of the level of
noise or difficulty. Conversely, as more noise is introduced to increasingly difficult instances, the behaviour
of the model may change, resulting in a decrease in the kappa values shown in the SCCs.

Figure 7 shows four representative examples of SCCs (kappa values plotted against difficulty bins), with
the average difficulty per bin shown on the x-axis, to illustrate the general behaviour observed when
analysing the performance of different models under the influence of noise for instances of varying difficulty.
However, there are other models that show different (and less common) behaviour. A more comprehensive
analysis of the SCCs obtained for all the models and datasets in tables 1 and 2 is provided in the appendix C.

In general, for all SCC, kappa equals 1 when the test set is not perturbed (λ= 0), as the output labels of
the different trained models are compared with themselves. As we increase the number of perturbed
instances (maintaining the same proportion for each bin of difficulty), differences in the behaviour of the
analysed techniques become apparent. Moving to the different performances, the model behaviour depicted
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Figure 7. Examples of model behaviour (SCCs), given by the kappa vs difficulty for different models and benchmarks, varying the
proportion of noisy instances (λ) for each difficulty bin.

in figure 7(a) shows lines that are almost horizontally parallel (i.e. barely affected by difficulty) since
performance remains nearly constant for all difficulty bins. However, the curves move closer to the x-axis
(decreasing kappa values) as more noise is introduced. This suggests that the models following this pattern
are robust to difficulty but weak to noise.

In contrast, models that exhibit behaviour similar to that shown in figure 7(b) are more susceptible to the
difficulty of instances. This is the most common behaviour found in our analysis: as more noise is added to
the most difficult instances, the performance of the model becomes increasingly degraded (decreasing kappa
values), while the effect of noise on easy instances is less pronounced. This implies that this type of model is
robust to noise in easy instances, but weaker in the face of noise in more difficult bins. Our research shows
that the introduction of noise generally leads to misclassification of instances in the hardest bins in favour of
a single class. The more noise that is introduced, the more instances are misclassified into that class, resulting
in a greater decrease in the kappa metric. This phenomenon may also indicate that the more difficult
instances are close to the decision boundary or in regions where classes overlap, making the behaviour of
most techniques in these regions more unpredictable than in less difficult regions.

Figure 7(c) shows the opposite behaviour. The predictions become less susceptible to noise in the more
difficult bins, while the easier bins see a significant decrease in Kappa. Upon closer examination, this is
attributed to the class distributions in the simpler bins (see appendix B, figure B2). These bins often consist
of mostly instances of a single class, but they can be misclassified as noise increases, leading to a decrease in
kappa. The model’s tendency to focus on a single class in these bins results in over-specialisation and
sensitivity to even minor changes in predictions.

It is worth mentioning that due to the variety of models and datasets used, there may be other, less
common behaviours (or variations of the behaviours described above) that can be observed. For example,
there are models that are minimally or not at all affected by noise and/or difficulty, as shown in figure 7(d).
This underlines the significance of also conducting individualised analysis of the robustness of models,
taking into account the further properties of the models and datasets in question.

In general, we have seen that our analysis is affected by several factors, not only the amount of injected
noise and the difficulty of the instances, but also the intrinsic properties of the dataset, such as the class
distribution and the number of instances and attributes. To further refine our analysis and gain a deeper
understanding, in the following section we will introduce a third dimension to our analysis: the complexity
of the benchmark in terms of the number of instances, attributes and classes. As a result, we will examine
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Table 3. The Silhouette Width (SilD) and Average between Cluster (AvgBC) distance are calculated for each method (DAN, DAD and
DAND) with a varying number of clusters, ranging from 2 to 10. Bold values indicate the highest value for each metric among the three
methods for each cluster count.

Number of clusters

Metrics Method (Differences across) 2 3 4 5 6 7 8 9 10

AvgBC
Noise (DAN) 0.09 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.06
Difficulty (DAD) 0.15 0.14 0.13 0.13 0.13 0.13 0.12 0.12 0.12
Noise and Difficulty (DAND) 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14

SilW
Noise (DAN) 0.47 0.44 0.40 0.29 0.23 0.22 0.22 0.21 0.20
Difficulty (DAD) 0.42 0.34 0.27 0.26 0.28 0.30 0.26 0.22 0.21
Noise and Difficulty (DAND) 0.35 0.27 0.30 0.32 0.31 0.30 0.30 0.32 0.27

three scenarios: (1) all 23 datasets, (2) simple datasets, and (3) complex datasets. The complexity of the
datasets was established following the equation (12), and it is shown in table 1.

5.3. Robustness-based behaviour taxonomy
Building on Q3, we seek first to confirm the validity of the three approaches we proposed for aggregating
System Characteristic Curves (SCCs), namely DAN, DAD, and DAND, as detailed in section 3.4. To evaluate
the effectiveness of these aggregation methods, we use two well-established cluster quality metrics: the
Average Between Clusters (AvgBC) distance [68], which evaluates the separation between clusters, and the
Silhouette Width (SilW) [69], considers both the inter-cluster distance and the intra-cluster tightness. These
metrics help to determine the distinctiveness and coherence of the clusters formed by our methods.

As shown in table 3, the DAND method tends to delineate more distinct clusters, a sign of superior
clustering quality. In particular, at around five clusters, the DANDmethod—taking into account variances in
both noise and difficulty—outperforms the other methods in maintaining separability and coherence of
clusters. We observe that fewer clusters result in more separation but less compactness, as indicated by higher
AvgBC but lower SilW values. Using the elbow method [70], we also inferred that the optimal number of
clusters is around five. Figure 8(left) presents the hierarchical clustering taxonomy that considers all datasets.

Due to space constraints, while all SCCs for both models and datasets are included in the appendix C, we
have chosen to focus on presenting the behaviour of a prototype model for each cluster. These prototypes,
which are considered to be the most representative of their respective groups, encapsulate the range of model
behaviours under evaluation. The SCCs of these prototypes are shown in figures 9–11, corresponding to
scenarios with all datasets, simpler datasets and more complex datasets respectively. This selective
presentation makes it easier to understand the cluster-specific model behaviour.

The joint analysis of the taxonomy and the SCCs of each prototype conveys the following findings:

• Group A1 with the PARTmodel as its prototype, contains models that show a notable sensitivity to noise (see
figure 9(a) for its SCCs). The SCCs of these models tend to be parallel and horizontal, suggesting that the
difficulty of the instances has a muted effect on their performance relative to noise. Models in this group,
which often use decision rules, decision trees or nearest neighbours, reflect findings in the literature that
emphasise their vulnerability to noisy data. This finding is critical when applying these models in real-world
scenarios where data may be contaminated with various types of noise.

• Group A2 is characterised by models that are highly sensitive to noise, as evidenced by the increasing
separation of their SCCs with increasing noise levels (figure 9(b)). The Naive Bayes (NB) model stands
out as the prototype of this group, suggesting that its simplifying assumptions may contribute to a less
damped response to noise. NB has been found to exhibit a distinct and unique behaviour during our experi-
mental phase. This peculiar behaviour suggests that NBmodels may require additional noise handling tech-
niques, or should be carefully considered when selecting them for applications where data quality cannot
be guaranteed.

• Group A3 is led by the Learning Vector Quantization LVQ model, which is more robust to noise but more
sensitive in the face of complex instances (figure 9(c)). The similarity of its SCCs across different noise
intensities suggests an inherent robustness to noise, but as the difficulty of the instances increases, perform-
ance varies. This robustness to noise can be exploited in scenarios where data corruption is a concern, but
additional strategies may be required to deal with more difficult instances.

• Group A4 represents models that are more easily perturbed by noise than by the intrinsic complexity of the
instances (figure 9(d)). The prototypes in this group, such as the Conditional Inference Trees (CI_T), show
a marked separation in their SCCs following the introduction of noise, suggesting that noise has a more
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Figure 8. Robustness taxonomy and the representation of robustness against difficulty and noise of each cluster. (Left) Robustness
taxonomy by aggregating across levels of noise and difficulty bins. (Right) Average loss κ difference considering noise and
difficulty. We show the representation considering all the datasets, the simple datasets, and the complex datasets.

pronounced effect on these models than complexity. This finding is important when selecting models for
situations where noise is present and reliability is critical, such as in medical or financial applications.

• Group A5, is exemplified by the multi-layer perceptron MLP model. The susceptibility of this group seems
to be more influenced by the difficulty of the instances, especially the most difficult ones, while being less
influenced by noise (figure 9(e)). This category of models, which includes neural networks, has been extens-
ively studied for its robustness, often in the context of image processing and adversarial attacks. Our results
suggest that their resilience extends to tabular data affected by random noise, positioning them as a viable
option when robustness to noise is a priority.

5.4. Dataset complexity andmodel robustness
An intriguing outcome from our experiments is the relative robustness exhibited by models in the face of
complex datasets (Q4). This observation suggests that the complexity of a dataset may buffer the impact of
noise and difficulty, potentially due to factors such as a higher number of classes. This effect is discussed
further in figure 8(right), which showcases the average κ loss across difficulty levels and noise intensities.
This figure provides a visual summary of the robustness or vulnerability of each model cluster under varying
conditions. The first plot encapsulates all datasets, providing an overarching view of each cluster’s behaviour
when exposed to noise and difficulty. Subsequent plots segment the analysis into datasets categorised by
complexity: the middle plot covers datasets with fewer distinguishing features (simple), and the bottom plot
focuses on those with a greater number of features or classes (complex). Within these plots: (a) a cluster’s
proximity to the zero mark on the x-axis indicates robustness to instance difficulty; these models maintain
their predictive consistency regardless of how challenging the data is; and (b) the y-axis measures the
sensitivity of each cluster to the introduction of noise; a higher value corresponds to a greater divergence in
model performance when noise is introduced.
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Figure 9. SCCs of each cluster prototype, including all the datasets.

It is noteworthy that almost all clusters show more robust behaviour with complex data sets, as reflected
by a lower average kappa loss in the face of both noise and difficulty. This pattern suggests an adaptive
resilience that complex datasets seem to induce in the models, possibly because their rich feature sets provide
a buffer against noise and instance difficulty. In contrast, for simpler datasets, the observed effects of noise
and instance difficulty are more pronounced. One reason for this phenomenon could be the tendency for
bins in simpler datasets to specialise in fewer classes (see figure B2 in the appendix B). The relative rarity of
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Figure 10. SCCs of each cluster prototype, including only the simple datasets.

classes in such datasets increases the likelihood that certain bins will become dominated by one class, leading
to a pronounced variance in kappa. Example datasets such as nursery or first-order theorem-proving, where the
simplest instances tend to cluster in a single class, illustrate this specialisation. This specialisation effect can
be seen as a marked drop in kappa within the easiest bins of their respective SCCs (reflected in figure 10).

In this regard, we find that cluster A1 remains consistent and shows negligible variation in its behaviour
whether applied to simple or complex datasets, while cluster A2 is resilient to noise but is more challenged by
the difficulty of instances in simpler datasets. The cluster A3 models are the least disturbed by noise and are
adept at handling difficult instances, especially evident in simpler datasets where they rival the consistency of
A1 but surpass it in noise immunity. In contrast, cluster A4 contains the most vulnerable models, heavily
influenced by both noise and difficulty in simpler datasets, although their robustness increases amidst the
intricacies of complex datasets. Cluster A5 follows an interesting arc; its models struggle with difficulty in
simple landscapes, but adapt to maintain a stronger defence against both difficulty and noise when
navigating the multifaceted terrain of complex datasets.

In essence, figure 8(right) not only highlights the importance of considering dataset complexity when
assessing model robustness, but also reveals intricate patterns in how different models respond to the
challenges posed by noise and instance difficulty.

6. Implications of model robustness taxonomy

Our robustness-based taxonomy provides invaluable insights into the resilience of ML models under the
stress of noise and fluctuating instance difficulty. Given the diverse nature of real-world data, these insights
provide a nuanced guide for practitioners in the selection and deployment of models across domains.
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Figure 11. SCCs of each cluster prototype, including only complex datasets.

Our study reveals a cohort of models within cluster A1 that exhibit a robust nature, maintaining
consistent performance regardless of dataset complexity. This predictability is essential in high-reliability
situations where the cost of failure is high, such as healthcare diagnostics or autonomous vehicle navigation.
The assurance of consistent performance facilitates the extensive validation process that might otherwise be
required across different data types.

Cluster A2 explores models that are good at dealing with noise, but reveal weaknesses in addressing the
fundamental challenges posed by the data. This finding underscores the importance of fully understanding
the characteristics of the dataset—not just the presence of noise—when selecting models for specific tasks.
For developers and data scientists, this distinction requires heightened attention to the complexities and
nuances of dataset components, to ensure that models are tailored to deftly handle the inherent difficulties of
the data.

The exemplary robustness of models in cluster A3 to both noise and instance difficulty signals a
compelling choice for applications with simple but noisy data. This resilience makes them suitable candidates
for use in industrial settings where the data may not vary significantly, but is potentially corrupted by noise,
allowing for accurate and stable model performance.

A fascinating nuance uncovered by cluster A4 suggests that more elaborate datasets, characterised by
higher dimensionality and richer features, can sometimes enhance a model’s robustness by reducing its
susceptibility to noise and difficulty. This finding can inform the development and deployment strategies of
ML models for complex systems, suggesting that complicated data can indeed be an ally in improving
performance reliability.

The models aggregated in cluster A5 demonstrate an adaptive robustness that is able to significantly
improve on complex datasets, while potentially struggling with simpler datasets. This ability to dynamically
adjust robustness in response to the complexity of the data landscape highlights the potential of ML models
to exploit complex data features, offsetting the perturbations caused by noise and difficult instances.

The taxonomy also brings to the fore the impact of class distribution on robustness metrics, particularly
in simpler datasets where bins may specialise in single classes. This observation highlights the need for
careful consideration of class distribution in model evaluation, training, and validation processes to achieve
robust performance. Taken together, the extended discussions derived from our refined taxonomy provide
data-driven advances in the fundamental understanding of ML model behaviour under different operational
conditions. For practitioners, these discussions serve as a strategic compass for navigating ML model
selection and deployment, ensuring that robustness is prudently matched to the unique requirements of each
application. This attention to robustness, when effectively incorporated, paves the way for the creation of
reliable and trustworthy AI systems that are tailored to thrive amidst the complexities of real-world data.
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7. Conclusions and future work

Our evaluation framework and taxonomy provides a comprehensive approach for examining the robustness
of ML models in the presence of noisy instances, offering a systematic and thorough evaluation environment
for practitioners to assess the resilience of models under various conditions. By taking into account the
difficulty of instances, our research provides critical information so that practitioners can better understand
the strengths and weaknesses of models and make informed decisions about selecting robust, fit-for-purpose
models that can withstand the noise of real-world scenarios.

We have shown that the SCCs can help to identify the most appropriate models based on their robustness
to different levels of difficulty. In cases where the difficulty values of instances in a test or validation set are
unknown, there are several straightforward methods for estimating them, such as averaging the difficulty
values of the most similar examples in the original training set, or training a difficulty estimator (as in [46]).
This can be done on small sets or even on individual instances, allowing the best model to be determined for
each instance. By using difficulty predictions, practitioners can limit the use of models to only those
instances that are considered easy and for which the models are robust. This approach provides a starting
point for further research into the robustness of ML models, and sheds light on the limitations and strengths
of different models and families.

The SCCs also show that it is common for the kappa value in simple bins, where the majority of instances
belong to the same class, to drop significantly when appropriate noise is introduced. This information can be
used to develop countermeasures against adversarial attacks. If a new instance to be classified falls into this
difficulty bin and is classified by the model as being in a different class from the expected class for that bin, it
may have been deliberately altered to become adversarial.

We plan to extend our evaluation framework to include benchmarks from additional domains, such as
vision and text, and a broader range of perturbation functions. This will provide deeper insights into the
robustness of different ML models and improve the diversity and generalisability of our approach.
Specifically, we will investigate scenarios such as object detection in autonomous vehicles, where sensor
inaccuracies, environmental factors and equipment wear introduce complex noise. We may also use noise
injection techniques, such as modifying sensory data or adding artificial noise to imagery and radar data, to
mimic specific real-world conditions. Additionally, we will examine NLP models by challenging them with
text perturbations (e.g. character or word-level perturbations [71]), to test their ability to maintain context
understanding under distorted input conditions. We intend to use existing datasets that naturally contain
noise variations, and may also use noise injection techniques to simulate real-world conditions by modifying
sensory data or adding artificial noise to imagery, radar and textual data. In addition, this extension may
require the creation of difficulty estimators [46] and specialised perturbation functions [72] to generate
noisy inputs so that we can assess the robustness of systems to different levels of challenge.

In addition, we plan to explore alternative settings of our framework to gain further insight into the
behaviour of ML models. For example, we may investigate the robustness of models when only the most
relevant attributes are perturbed, or by using alternative noise injection methods. All in all, our ongoing
efforts promise to uncover a wealth of information about the robustness of ML models and provide
cutting-edge insights for practitioners in the field.
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Figure A1. Difficulty distribution of the benchmarks.

Figure A2. Difficulty distribution at instance level for each benchmark.

Appendix A. Experiments on synthetic data

We illustrate the Robustness Evaluation Methodology described in section 3 through the use of synthetic
datasets to demonstrate the capabilities of our framework. More concretely, we include the estimation of
difficulty and the construction of the SCCs for different grades of noise injected in the data. We use three
common synthetic datasets characterised asmoons, circles and linearly_separable, showing that even in data
with limited pattern diversity, difficulty distributions often assume a normal distribution, as shown in
figure A1. Figure A2 further visualises this by mapping individual instances, with difficulty indicated by
colour gradients, showing that the most difficult instances tend to cluster near their respective class
boundaries.

Going beyond difficulty estimation, we employ 18 models spanning different ML families, which are
described in section 2.3. We deliberately introduce varying degrees of noise into the test set and assess the
impact on model performance using the SCCs. Figure A3 shows the SCCs for the synthetic datasets, which
illustrate the different responses of models to both instance difficulty and injected noise, highlighting the
complex dynamics at play that affect model robustness.
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Figure A3. SCC for the benchmarks.

Appendix B. Original class distribution per dataset and difficulty bin

The figure B1 shows the original class distribution for each dataset. In addition, the figure B2 shows the class
distribution for each bin of difficulty for all datasets. These figures allow us to have an insight into the class
imbalance that may occur for different levels of difficulty in the datasets, and how this may affect the
performance of the models.

21



Mach. Learn.: Sci. Technol. 5 (2024) 035040 R Fabra-Boluda et al

Figure B1. Class distribution of the benchmarks (real label).
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Figure B2. Class distribution of the benchmarks per difficulty bin.
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Figure B2. (Continued.)

Appendix C. System characteristic curves of all models and datasets

The SCCs allow us to visually compare the models and gain insight into their strengths and weaknesses in
presence of noise and instance difficulty. Our analysis of the SCCs in the figures C1–C3 shows that models do
not always perform similarly on different datasets. Some models that perform well on one dataset may not
perform as well on another. This highlights the impact that other factors, such as the number of instances,
features, and classes can have on robustness. These factors are regarded by the complexity measure that we
explained in section 5.4.
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Figure C1. The SCCs obtained from all the datasets and models.
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Figure C1. (Continued.)
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Figure C1. (Continued.)
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Figure C2. The SCCs obtained from the simple datasets.

The figures C2 and C3 show the results of the SCCs for simple and complex datasets, respectively. In
general, it is observed that simple datasets are more sensitive to noise and, thus, models perform worse as
more instances are noisy perturbed. This observation also suggests that for simple datasets, models tend to
overfit the data. The noise tend be more influential in specific difficulty bins, i.e. the same amount of noise
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Figure C2. (Continued.)

causes higher variations in some particular difficulty bins, while the others are less affected by noise. This
suggest that the interaction between noise and instances difficulty is complex to disentangle. The methods
explained in sections 3.4 and 3.5 attempt to shed light on this challenge.
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Figure C3. The SCC obtained from the complex datasets.
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