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Abstract: This paper reviews the published terminology, mathematical models, and the possible
approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals,
mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the
wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer
risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all
the risk characterisation parameters of interest. Therefore, the present study proposes a terminology
and formulation for some risk characterisation parameters based on the guidelines of international
organisations and the literature review. The mathematical model used for non-genotoxic hazards
is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such
as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the
non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly
studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the
works reviewed generally opted for a deterministic approach, although most of those who assessed
the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.

Keywords: health risk; safety margin; cancer risk; margin of exposure; hazard index; hazard quotient

1. Introduction

Chemical substances in food play an important role in nutrition and food preserva-
tion. However, some of the compounds incorporated or formed along the food chain can
endanger the health of consumers [1]. Heavy metals are an example of chemical hazards of
environmental origin, which are transferred from soil, water, air, etc., to raw materials [2,3].
Even at low concentrations, these highly toxic substances are non-biodegradable and accu-
mulate in the body’s target organs. Other contaminants are formed in food processing, such
as acrylamide, which is produced from the Maillard reaction of asparagine with reducing
sugars at high temperatures, or polycyclic aromatic hydrocarbons (PAHs), which form in
processing stages, such as drying or smoking and cooking, e.g., grilling, roasting, and fry-
ing [4–6]. Hazardous compounds can also come from toxins of fungi, plants, and algae [7].
For example, mycotoxins are secondary metabolites of moulds that grow on numerous
foodstuffs and can cause serious illnesses such as cancer or liver disease [8]. Chemical
hazards can also arise from deliberate use to control crop pests, such as pesticides, or from
on-farm veterinary treatments [9], while food contact materials such as formaldehyde,
melamine, and phthalates can also be a source of chemicals [10].

Chemicals were the most frequently reported hazards in the Rapid Alert System for
Food and Feed in 2021 [11], with pesticides in first place (1231 notifications) at 27% of
health-related notifications, and mycotoxins in food in third position (450 notifications).
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The other most frequently reported chemical hazards were allergens (198 notifications) and
food additives and flavourings (176 notifications), mainly due to unauthorised or additive
content levels that were too high.

In 1991, the FAO/WHO Conference on Food Standards, Chemicals, and the Food Trade
recommended that the Codex Alimentarius Commission (CAC) incorporate risk assessment
principles into decision-making processes. Since then, risk analysis has been accepted as
an essential part of food safety consisting of three basic elements: risk assessment, risk
management, and risk communication [12]. These three components represent essential
and complementary parts, which must be integrated and fed back to obtain a practical risk
analysis. In 2003, the working draft for applying risk analysis within the CAC framework
was compiled. In 2007, guidelines were issued for national authorities. The FAO/WHO
meeting in 2009 drafted the harmonisation, updating, and consolidation of principles
and methods for risk analysis of chemicals in food, and in 2010 a guide for chemical risk
assessment was published [13].

Risk management is a decision-making process in which political, social, economic,
and technical factors are considered to control a hazard. Thus, risk managers must weigh
the possible safety measures, choose the most appropriate, implement them, and monitor
their effectiveness. For example, regulating an MRL, defining a safety factor, or banning a
pesticide are risk management decisions. The risk analysis process usually begins with risk
management, which, as a first step, defines the problem, articulates the objectives of the
risk analysis and defines the questions to be answered by the risk assessment.

Risk communication is exchanging information about risk, such as risk assessment
findings, risk management decisions, opinions, etc., throughout the risk analysis process
between risk assessors, risk managers, consumers, industry, the academic community, and
other interested parties.

Risk assessment is defined as the process of calculating the risk to a given target
organism, system, or sub-population, including the identification of inherent uncertainties
following exposure to a particular agent, plus the relationships between exposure and
dose–response adverse effects [14]. This process may be carried out using either a deter-
ministic or probabilistic approach, and the former means that each parameter of the risk
equation takes a single value, e.g., the mean, the 95th percentile, the “worst-case”, etc., so
that the result would be a single value representing the risk for a single virtual consumer.
This method tends to overestimate the risk and does not take into account the uncertainty
inherent to the variability of the input data, such as the food consumption, chemical con-
centrations, physical differences between groups of exposed individuals, etc., [15–18]. To
reduce this drawback, various methods were studied to evaluate the uncertainty-related
results of deterministic models [19].

On the other hand, the probabilistic approach allows for the classification of problems
and outcomes, the consideration and treatment of the variability, and uncertainty of the
input parameters of the risk equation, defined using a probability density function; the
calculations are performed using stochastic methods, such as Monte Carlo simulations [20]
where the result is a risk probability distribution [17] and permits the application of
optimization processes. However, it is pointed out that each probabilistic approach to risk
analysis involves deterministic arguments, which help to decide how the likelihood of
events will be addressed [21].

The bases for risk assessment and implementation are defined by expert advisory
bodies, such as the US Environmental Protection Agency (EPA), the Joint Expert Committee
on Food Additives (JECFA), the Food and Drug Administration (FDA), the European Food
Safety Authority (EFSA), the European and Mediterranean Plant Protection Organisation
(EPPO), the Council of Europe, and the European Centre for Ecotoxicology and Toxicol-
ogy of Chemicals (ECETOC), and research groups have led to the creation of different
approaches and nomenclatures, leading to confusion.
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This review aimed to analyse how quantitative risk assessment is carried out for some
of the most critical chemical hazards, such as pesticides, metals, mycotoxins, acrylamide,
and PAHs. The document is organised as follows: Section 2 describes the materials and
methods used, while Section 3 gives the results: to provide a basis for our findings, the
fundamentals of assessing the risks of chemical hazards in food are first introduced, fol-
lowed by the terms and formulations most frequently used in quantitative risk assessment,
and finally we propose suggestions for harmonizing terminology and formulations. Sec-
tion 4 discusses how the risks of pesticides, metals, mycotoxins, acrylamide, and PAHs are
calculated in food, while Section 5 contains the concluding remarks.

2. Materials and Methods

The review included papers on the quantitative risk assessment (QRA) of heavy
metals, pesticides, mycotoxins, acrylamide, and PAHs with deterministic and probabilistic
approaches [17]. A systematic review was conducted considering the PRISMA guidelines,
including the search strategy, article selection, and evaluation criteria [22].

A total of 348 articles were selected, of which 74 dealt with pesticides, 133 with metals,
63 mycotoxins, 27 acrylamide, and 51 with PAHs. The search strategy was conducted
according to the Cochrane protocol [23], in which the best keywords and synonyms were
found using MeSH terms and checking keywords in relevant articles and review papers.
These terms were used to retrieve all the related articles in the Scopus, Google Scholar,
PubMed, and ISI Web of Science international databases. The title, abstract, and keywords
were used to apply the selection criteria to the articles published between 2015 and 2022.

The exclusion criteria applied were as follows:

- Books, clinical studies, abstracts, presentations, theses, reviews, commentaries, meta-
analyses, conference papers, editorials, and letters to the editor.

- Duplicate content, not written in English, or in non-peer-reviewed journals.
- Articles in which risk was not assessed.
- Acute toxicological endpoint.
- Articles related to environmental risk, soil, water, pollution, and dust.
- Herbal medicines and breastmilk.
- Biomonitoring studies.
- Experimental lab studies to check the influence of treatment conditions, etc.
- Studies with less than five analysed samples.
- Non-marketable products.
- The same authors with the same terminology and risk formulation.

3. Results
3.1. Background of Risk Assessment of Chemical Hazards in Food

Risk assessment consists of four stages: hazard identification, hazard characterisation,
exposure assessment, and risk characterisation. Figure 1 shows an outline of the terms
used in the studies reviewed.

Hazard identification decides whether a chemical present in a given food or group of
foods has the inherent capacity to cause adverse health effects to consumers and should,
therefore, be considered a hazard [24]. All the available data on toxicity and its mode of
action (MOA) must be considered to determine the type and nature of an adverse effect.
The first key question is to identify whether the compound or its active metabolite reacts
covalently with DNA (genotoxic) or whether it has an epigenetic action (non-genotoxic) [25].
In the former case, there is no (threshold) dose that has no potential effect, and DNA damage
increases with the dose administered. However, in non-genotoxic cases, it is often assumed
that there is an exposure level below which no significant effect will be induced [26]. This
difference often determines the choice of the risk assessment methodology.

To identify chemicals that may have an adverse effect on health, risk assessors can
rely on the sources of hazard information published by international organisations. These
include the Openfoodtox database, which compiles chemical and toxicological data on
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chemicals evaluated by EFSA since its inception [27]. CompTox Chemicals Dashboard is the
EPA’s computational toxicological research database that provides chemical, toxicological,
and exposure information on more than 900,000 chemicals, with more than 300 lists of
chemicals, based on their structure or category [28]. Another advisory source for the self-
classification of chemicals, which lists more than 54,000 substances, is published by the
Danish Environmental Protection Agency [29]. The New Zealand Environmental Protection
Agency also publishes detailed information on each chemical’s hazards, classification,
studies, and physical properties [30].

Figure 1. Elements and main parameters of the quantitative risk assessment.

Hazard characterisation describes the relationship between the administered dose
of a chemical and its MOA or adverse health effect [13]. This relationship is obtained by
fitting epidemiological or experimental data obtained from animal or human studies to a
dose–response curve [14,31], so that low or no effects to the dose associated with a hazard
are identified as the point of departure (POD) or reference point (RP), Figure 1 [32,33]. The
no-observable-adverse-effect level (NOAEL) or the lowest-observed-adverse-effect level
(LOAEL) are usually taken as the baselines or PODs for non-genotoxic effects. The reference
dose (BMD) is another POD derived from the dose–response curve. A predetermined
response (BMR) thus identifies a corresponding dose (BMD) or its lower limit (BMDL)
defined using the statistical confidence level, typically with 95% confidence, meaning that
at a 95% confidence level, the chosen BMR is not exceeded [32–34].

The BMD or BMDL can be used for non-genotoxic and genotoxic damages. In the first
case, it is preferred to the NOAEL or LOAEL for several reasons. Firstly, it is a starting-point
estimate based on a NOAEL, which relies solely on identifying a no-effect dose and does
not consider the shape of the dose–response curve, and so does not allow the estimation
of the probability of response for any dose level. The experimental response observed in
the NOAEL may vary between studies, which makes comparison difficult. While NOAEL
identification is highly dependent on sample size, a low response rate will have a lower
statistical sensitivity to detect small changes, so this type of study tends to generate higher
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NOAELs. The NOAEL method does not account for variability and uncertainties in the
data due to random errors such as animal dosing and response measurements [33].

The next step is to specify a reference value (RV), defined as the estimated maximum
dose (based on body mass) or concentration of an agent to which an individual can be
exposed during a given period without an appreciable risk or a predetermined change in
the response rate of an adverse effect. To derive an RV from the NOAEL, this POD must
be divided by uncertainty factors to account for interspecies and intraspecies variability,
data quality, and other uncertainties arising from the study [35]. Some of the best-known
RVs are the health-based guideline values (HBGVs), which include the acceptable daily
intake (ADI), developed for food and feed additives, pesticides, and food-contact materials;
the tolerable upper intake levels (UL) for vitamins and minerals; the tolerable daily intake
(TDI) [35]; the tolerable weekly intake (TWI), in cases where compounds tend to accumulate
in the body, such as cadmium, dioxins, or ochratoxin A. The reference dose (RfD) is also an
RV. This term is described as an estimate of the daily oral exposure of the human population
that is likely to have no appreciable adverse health effects [36]. Another possible RV is the
TTC, i.e., threshold of toxicological concern, used for compounds of a known structure, for
which exposure is low, but without sufficient experimental data for a fully quantitative risk
assessment [37]. Finally, PODs such as the LD 50 (lethal dose to 50% of the population), the
T25 (dose that causes a tumour incidence of 25%), and the TD50 (daily dose rate necessary
to halve the probability of animals remaining tumour-free at the end of their lives), divided
by a safety factor can be used as RVs [38,39]. For example, 50,000 is the uncertainty factor
for mycotoxins, equivalent to a risk level of one person in 100,000 inhabitants [40].

To obtain an RV from the BMDL, an increase in response (BMDL%) must be defined,
e.g., p = 1%, which means that the incidence (level of response) has increased by 1% relative
to the background response. A linear dose–response relationship is assumed at very low
doses below the BMDL%, while the increase in the population risk of the effect expressed
by the daily dose of a chemical hazard consumed is called the slope factor (SF), Figure 1.

Exposure assessment is the qualitative or quantitative evaluation of the likely intake of
a chemical via food [41,42] whose calculation is a function of consumption, concentration
of the chemical hazard, and personal weight. As food consumption data are the basis
for assessing human exposure, comprehensive information is needed. In this respect,
EFSA in the database FoodEx2’s harmonised food consumption data across the European
Union (EU). The information is divided by country, food category, age, and sex [43].
The FAO/WHO also provides a chronic individual food consumption database known
as CIFOCOss [44]. To estimate dietary exposure to food chemicals, official bodies have
developed freely available tools for assessing dietary exposure to food chemicals, such as,
DietEx Tool, FAIM for additives, and PRIMO for pesticides, EPA ExpoBox [45–48].

Risk characterisation is the final step in risk assessment and results from the combina-
tion of hazard characterisation and exposure assessment. It is defined as the qualitative
and/or quantitative estimation of the exposure assessment and the severity of known or
potential adverse health effects in a given population [49]. Ratio metrics are applied to
assess the risk of non-genotoxic effects, e.g., the hazard quotation, while there are two
options for genotoxic effects: to estimate the probability of developing cancer or to assess a
ratio, e.g., the margin of exposure (MOE), Figure 1.

3.2. Risk Assessment and Hazards

Figure 2 shows the number of articles published per year (according to hazards
studied) and the trend in using the deterministic or probabilistic approach in risk calculation.
The results indicated that the number of articles published increased annually, especially in
2021, possibly due to the COVID-19 pandemic [50,51]. We also found that the deterministic
approach was the most frequently used.
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Figure 2. Distribution of the number of papers selected by year of publication and hazard using a
deterministic or probabilistic approach to QRA.

Tables 1–5 for pesticides, metals, mycotoxins, acrylamide, and PAHs, respectively,
give the information about the utilised risk assessment approach, i.e., deterministic (D) or
probabilistic (P); the exposure metric (abbreviations in Tables 6 and 7), and the equations
used by the authors (see Section 3.2.1); the damage, indicating the MOA (G = genotoxic
and NG = non-genotoxic) and the RV applied. The last column, on risk characterisation,
gives the metric used to calculate the risk (see Tables 8–10) and the equation used (see
Section 3.2.2).

The articles on pesticides were mainly from China (23.5%), India (10.6%), and Iran
(9.4%). The products analysed were mainly on “fruits, vegetables, and legumes”. Almost
half the manuscripts studied the risk in adults and children (45.9%), followed by the adult
population (38.8%). Exposure was assessed using Equation (1) in 71.8% of cases. The
non-genotoxic risk effect was calculated using the ratio with Equations (4) and (5), using
the ADI as the reference value at 71.2%, followed by the RfD at 22%. The risk of cancer,
Equation (14), was the first option for assessing the genotoxic effect (66.7%).

Table 1. Exposure, damage, and risk characterisation methodology used in pesticide studies.

Reference D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

Beekeeping products
[52] D ADI (1) NG RfD HQ, HI (4), (6)
[53] D Exposure (1) NG ADI HQ, HI (4), (6)
[54] D EDI (3) NG RfD THQ (4)

G SF CR (14)
[55] D NEDI (1) NG ADI %ADI (6)
[56] D EDI (1) NG ADI, RfD HQ, HI (4) **, (6)

G CPF CRk, CR (14) **, (16)

Cereals and bakery products
[57] D EDI (1) NG ADI HI (4)

G CBC HR (12)
[58] P CDI (3) NG RfD HQ, HI (4), (6)
[59] D EDI (2) NG ADI HQ (4)
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Table 1. Cont.

Reference D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

[60] D EDI (1) G CBC HR (12)
[61] D ADD (3) NG RfD HQ, HI (4), (6)

G CSF CR (14)
[62] D EDI (1) NG ADI RQ (4)
[63] P y (1) NG TDI MOS (7)

Fats and oils
[64] P CDI (3) NG RfD THQ, TTHQ (4), (6)

G CSF CR (16)

Fish and shellfish
[65] D EDI (1) NG ADI, RfD HQ (4)

G BMC HR (12)
[66] D - - NG RfD THQ (4) **
[67] D EDI (1) NG TDI HQ (4)

G SF ILCR (14) **
[68] D EDI (3) NG RfD THQ (4)

Fruits, vegs, and legumes
[69] D EADI (1) NG ADI HRI, CHI (4), (6)

G CBC HR (12)
[70] D EDI (1) NG ADI %HQ (4)
[71] D EDD (1) NG ADI HI (4)
[72] D EDI (1) NG ADI %cHQ, HI (4)
[73] D EDI (1) NG ADI HRI, ΣHI (4), (6)
[74] D EDI (2) NG ADI %RQ (4)
[75] D NEDI (1) * NG ADI %RQ (4)

[16] P EDI (1) NG ADI HQ, HI
and p-FSM

(4), (6)
and (8)

[76] D NEDI (1) NG ADI %ADI (6)
[77] D EDI (1) NG ADI %HQ (4)
[78] D EDI (1) NG ADI %HQ, cHI (4), (6)
[79] D Exposure (1) NG ADI %HQ (4)
[80] P EDI (3) NG RfD HQ (4)
[81] D - - NG ADI %ADI (6)
[82] D EDI (1) NG ADI HHI (4)
[83] D EDI (1) NG ADI %HQ (4)
[84] D NEDI (1) NG ADI %ADI, HI (5), (6)
[1] D EDI (1) NG ADI THQ, HI (4), (6)
[85] D EDI (2) * NG ADI HQ (4)
[86] D EDI (1) NG ADI %HQ, cHI (4), (6)
[87] D EDI (1) NG ADI HRI (4)
[88] D EDI (1) NG ADI %ADI (6)
[89] D EDI (1) NG ADI THQ, HI (4), (6)
[90] D EDI (2) * NG ADI IFS (4)
[91] D EDI (1) NG ADI %ADI (6)
[92] D EDI (1) NG ADI, RfD THQ, HI (4), (6)
[93] D EDI (1) NG ADI HQ, HI (4), (6)
[94] D EDI (1) NG ADI %HQ, HI (4), (6)

[95] D AFE (1) NG ADI,
NOAEL

%ADI and
MOE, MOEt (6) and (7), 10

[96] P CDI (3) NG ADI HQ, HI (4), (6)
[97] D EDI (1) NG RfD HI (4) **

G SFO TCR (14) **
[98] D EDI (1) NG ADI HQ (4)
[99] D EDI (2) * NG ADI HQ, HI (4), (6)
[100] D EDI (1) NG ADI %ADI (6)
[101] D EDI (1) NG ADI THQ, HI (4), (6)
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Table 1. Cont.

Reference D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

Milk and dairy products
[102] D EDI (2) NG ADI THQ, HI (4), (6)
[103] D EDI (1) NG RfD HR (4)

G BMC HR (12)
[104] D Exposure (1) NG RfD HQ, HI (4), (6)
[105] D cEDI (1) NG RfD HQ, HI (4), (6)
[106] P CDI (3) NG RfD HQ, HI (4), (6)

G CSF CR (14)
[107] D EDI (1) NG RfD HR (4)

G BMC HR (12)
[108] D EDI (1) NG ADI - (4)

G CBC HR (12)

Miscellaneous
[109] D EDI (1) NG ADI cHQ, cHI (4), (6)
[110] D EDI (1) NG ADI HRI (4)
[111] D EDI (1) NG ADI HQ, HI (4), (6)
[112] D Exposure (1) NG ADI HQ, HI (4), (6)
[113] P EDI (1) NG RfD HI (4)

G CSF LCR (14)

Nuts, nuts products, and seeds
[114] D EDI (1) NG ADI %cHQ (4)
[115] D EDI (1) NG ADI %HQ, cHI (4), (6)
[116] P CDI (3) NG RfD HQ, THQ (4), (6)

G CSF CR (16)

Tea, herbs, and spices
[117] D EDI (1) NG ADI HQ, HI (4), (6)
[118] P LADD (1) NG ADI HQ, HI (4), (6)
[119] P CDI (1) NG RfD %HQ, THQ (4), (6)
[120] D EDI (1) NG ADI HQ, HI (4), (6)

Total diet studies
[121] P IEDI (1) NG ADI HQ, HI (4), (6)
[122] D EDI (1) NG RfD HQ (4)
[123] D EDI (1) NG ADI HQ, HI (4), (6)

* When the exposure units are mg/day per person. ** When the exposure used is Equation (3).

Table 2 shows the results for heavy metals. “Fish and shellfish” were the most studied
group of foodstuffs. Most manuscripts came from China (21.4%), Bangladesh (13.5%),
and Iran (11.16%) and were mainly focused on the adult population (59.6%). Exposure
was assessed using Equations (1) and (3) (approximately 45% for both). Equation (4) was
used to characterise the risk in 98.4% of the non-genotoxic studies, and RfD was the most
frequently used RV (92%). The cancer risk was assessed using Equation (14) for 95.3% of
the cases of studies on the genotoxic effects.

Table 2. Exposure, damage, and risk characterisation methodology used in metal studies.

Reference Elements D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

Beekeeping products
[124] Cd, Cr, Cu, Mn, Pb, Zn D EDI (3) NG RfD THQ, HI (4), (6)

Cd, Cr G CPS TCR (14)
[52] Mn, Cu, Zn D ADI (1) NG RfD HQ, HI (4), (6)
[125] Fe, Ni, Cu, Zn, Pb D ADI (3) NG RfD HQ, HI (4), (6)

Cr, Cd, As, Ni G SF CR, CRt (14), (16)



Foods 2024, 13, 714 9 of 43

Table 2. Cont.

Reference Elements D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

[126] Pb D DIM (1) NG RfD THQ, HI (4) **, (6)
Pb CDI (3) G CSF ILCR (14)

[54] Pb, Cd, As, Hg, Cu, Zn, Ni D EDI (3) NG RfD THQ (4)
Pb, Cd, As, Ni G SF CR (14)

[127] Hg, Cd, V, Cr, Ni, Cu, As, Sb,
Pb, Ba, Mn D EDI (3) NG RfD THQ, HI (4), (6)

Ni, Cr, Pb, As, Cd G CSF LTCR,
LTCRtot (14), (16)

Beverages

[128] Cd, Co, Cr, Cu, Fe, K, Mn, Na,
Ni, Pb, Zn D EDI (1) NG RfD THQ,

TTHQ (4) **, (6)

Cereals and bakery products

[129] As, Cd, Pb D - - NG PTWI,
TWI HQ, HI (4), (6)

G CSF CR (14)
[130] As, Cd, Fe, Ni, Pb D DIM (3) NG RfD HQ, HI (4), (6)

As, Cd, Ni, Pb G SF CR, TCR (14), (16)
[131] Al, As, Cd, Cu, Mo, Pb P EDI (3) NG RfD HQ, HI (4), (6)

As G SF CR (14)

[132] Zn, Cu, Cd, Pb, As, Al D EDI (3) NG RfD THQ,
TTHQ (4), (6)

[133] Cd, Cr, Pb, Zn, Ni, Cu, Hg, As P EDI (3) NG RfD THQ,
TTHQ (4), (6)

Cd, Cr, Pb, Ni, As G CSF ILCR,
TCR (14), (16)

[134] Cd, As, Sn, Pb, Hg D EDI (3) NG RfD THQ, HI (4), (6)
Pb, As, Cd G CSF TR, TRt (14), (16)

[135] As, Zn, Fe, Cu D ADD (1) NG RfD HQ (4)
As EDI (3) G CSF ILCR (14)

[136] Pb, Cd D EDI (1) NG RfD THQ (4) **

[137] Cd, Cr, Pb, Cu, Fe, Mn, Zn D DED (1) NG RfD and
ADI

HQ, HI
and R

(4), (6)
and (4)

Pb D EDI (1) G CSF CR (14)
[63] As, Cd, Pb P y (1) NG PTDI MOS (7)

[138] Ni, Pb, Zn, Cd, Cr, Cu,
Mn, As, D ADD (3) NG RfD HQ, HI (4), (6)

As, Cr, Ni G CSF ILCR (14)

[139]
As, Al, B, Ca, Cd, Cr, Cu, Fe,
Hg, K, Mg, Mn, Na, Ni, Pb,
Se, Zn

D EDI (1) NG RfD THQ, HI (4), (6)

Coffee, cocoa, and preparations

[140]
Cd, Pb D EDI (1) NG

TWI,
BMDL,
RfD

%TWI,
%BMDL,
THQ, HI

(5), (4), (6)

Cd, Pb CDI (3) G CSF CR (14)

Fats and oils
[141] Pb, Cu, Cd, Cr, As, Zn D CDI (3) NG RfD THQ, HI (4), (6)

As, Cd, Cr, Pb G CSF ILCR,
ΣILCR (15), (16)

[142] Pb, As, Cd, Cr P - - NG RfD THQ,
TTHQ (4) **, (6)

G CFS ILCR (14) **

Fish and shellfish

[143] As, Cd, Hg, Pb D EDI (3) NG RfD THQ,
TTHQ (4), (6)
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Table 2. Cont.

Reference Elements D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

[144] Cd, Cr, Cu, Fe, Mn, Pb, Zn D EDI (3) NG RfD THQ,
TTHQ (4), (6)

Pb G CSF CR (14) **
[145] Al, Sn, Zn D EDI (1) NG RfD HRI (4)
[146] As, Cr, Cd, Pb D EDI (1) NG RfD THQ, HI (4) **, (6)

As, Cr, Cd, Pb G CSF CR (14) **
[147] Hg D EWI (1) NG PTWI %PTWI (5)

[148] As, Cd, Cr, Cu, Fe, Hg, Mn,
Pb, Zn. D EDI (1) NG RfD THQ, HI (4) **, (6)

As, Cd, Pb G CPS TR (14) **
[149] Cd, Cr, Fe, Ni, Zn, Mn, Pb D - - NG RfD THQ, HI (4) **, (6)

Cd, Cr, Ni, Pb G CSF TR (14) **

[150] As, Cd, Cr, Cu, Hg, Mn, Ni,
Pb, Zn D EDI (1) NG RfD THQ, HI (4) **, (6)

Cd, Pb G CPSo TR (14) **
[151] As, Cd, Hg, Pb D - - G LD50 RI (11)
[152] As, Cd, Cu, Cr, Pb, Zn P EDI (1) NG RfD THQ, HI (4) **, (6)

As, Cd, Cr, Pb G CSF Risk,
Σrisk (14) **, (16)

[153] Al, As, Cd, Cr, Fe, Cu, Hg, Ni,
Pb, Zn D EDI (3) NG RfD THQ, HI (4), (6)

As, Cd, Cr, Ni, Pb G SF CR (14)

[154] As, Cd, Hg, Pb D - - NG RfD THQ,
TTHQ (4) **, (6)

[155] As, Cd, Co, Cr, Hg, Mn, Ni,
Pb, Zn D - - NG RfD THQ, HI (4) **, (6)

[156] Hg, Pb, Cd D EDI (3) NG RfD THQ,
TTHQ (4), (6)

[157] Hg, Pb, Cd, Ni, Cr, As, Sn P EDI (3) NG RfD THQ,
TTHQ (4), (6)

[158] Hg D EWI (1) NG PTWI, %Risk (5)
As, Pb, Hg, Cd, De, Sn, Zn, Cr, Fe,
Co, Ni, Al RfD THQ (4) **

[159] Co, Cu, Ni, Pb, Zn P EDI (3) NG RfD THQ,
TTHQ (4), (6)

[160] Cu, Fe, Hg, Zn, Pb D I (3) NG RfD TS (4)
Pb G SF CR (14)

[161] Ag, As, Be, Cd, Co, Cr, Cu, Fe,
Mn, Mo, Ni, Sn, Pb, Zn D EDI,

EWI (1) NG RfD,
PTWI

THQ,
TTHQ (4) **, (6)

iAs, Cr, Ni, Pb CDI (3) G CSF ILCR (14)
[162] As, Cd, Co, Cr, Hg, Pb D DIM (1) NG RfD HRI, HI (4), (6)
[163] Mn, Fe, Co, Ni, Cu, Zn D EDI (1) NG RfD THQ, HI (4) **, (6)

Ni G CPS TR (14) **
[164] Cd, Cr, Mn, Ni, Zn D EDI (1) NG RfD THQ, HI (4), (6)

Mn, Zn, Ni, Pb, Cr, Cd G CSF CR (14)
[165] As, Cd, Cr, Pb D EDI (1) * NG RfD THQ (4) **

As, Cd, Cr, Pb G CSF CR (14) **
[166] Hg, Cu, As, Cd, Pb D EDI (1) NG RfD THQ, HI (4) **, (6)

iAs G CPSo TR (14) **

[167] As, Cr, Cu, Fe, Mn, Ni, Sn, Pb, Zn D EDI (1) * NG RfD THQ,
TTHQ (4) **, (6)

As, Pb G CSF CR (14) **

[168] Pb, Cu, Cr, Zn, Cd, As, Hg P EDI (1) NG RfD THQi,
THQs (4) **, (6)

As, Pb G OSF R (14) **
[169] Zn, Mn, Cu, Ni, Cr, Cd, Pb D EDI (1) NG RfD THQ (4) **



Foods 2024, 13, 714 11 of 43

Table 2. Cont.

Reference Elements D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

[170] As, Cd, Pb, Cr, Cu, Ni Zn D - - NG RfD THQ,
TTHQ (4) **, (6)

As, Cr, Pb G CSF CR (14) **
[171] Pb, As, Mn, Fe, Zn, Ni, Cr D EDI (3) NG RfD HQ, HI (4), (6)

Ni, As, Pb, Cr, Cd G CSF TCR (14)

[172] Cr, Cu, Fe, Pb, Cd D EDI (1) * NG RfD THQ,
TTHQ (4) **, (6)

Pb G CSF CR (14)
[173] Zn, Pb, Cu, Cd, Cr D EDI (1) NG RfD THQ (4) **
[174] Cr, Pb, Fe, Zn Ni D EDI (1) NG RfD HQ, HI (4) **, (6)

Cr, Ni, Pb G CSF CR (14) **
[175] Hg, Cd, Pb D EDI (3) NG RfD THQ, HI (4)

Cd G CSF CR (14)

[176] Pb, Cd, Hg, As, Al, Fe, Zn, Cu, Ni,
Co, Cr D EWI (1) NG RfD THQ, HI (4) **, (6)

[177] As, Cd, Co, Cr, Mn, Mo, Ni, Pb, Se D EDI (1) NG RfD THQ, HI (4) **, (6)
As, Cr, Ni, Pb G CSF CR (14) **

[178] As, Cd, Pb, Hg D PTWI (1) NG RfD HQ (4) **
As, Pb G CSF CR (14) **

[179] Cr, Mn, Cu, Zn, Pb, Co, Rb, V D EDI (1) NG RfD THQ, HI (4) **, (6)
Cr, Pb G CSF CR, TCR (14) **, (16)

[180] Cd, Cu, Pb, Zn D - - NG RfD THQ, HI (4) **, (6)
[181] Cr, Ni, Cu, Zn, As, Cd, Pb D EDI (1) NG RfD - (4)

As, Pb G CSF TR (14) **

[182] As, Cd, Co, Cr, Cu, Mn, Ni, Pb,
Se, Zn D EDI (3) NG RfD THQ,

TTHQ (4), (6)

iAs G CSF CR (14)
[183] Zn, Cd, Mn, Cu, Cr, Pb, Fe, Co D EDI (1) NG RfD THQ, HI (4) **, (6)

Pb, Cr, Cd G CSF CR (14) **
[184] Ni, Zn, Cu, Cr, Cd, Pb D EDI (3) NG RfD THQ, HI (4), (6)

Ni, Cr, Cd, Pb G CPS TR (14) **
[185] Zn, Cu, Cr, Pb, Cd, Hg. D EDI (1) NG RfD THQ (4) **

Cd, Cr, Pb G CSF TR (14)
[186] As D EDI (1) NG RfD HQ, THQ (4), (6)

G CSF CR (14)

[187] As, Cd, Co, Cr, Cu, Hg, Mn, Ni,
Pb, Se, V, Zn D EDI,

EWI (1) NG RfD THQ,
TTHQ (4) **, (6)

[188] Hg, Cd, Pb, V, Ni, Co, Cr, Cu, Zn D EDI (1) NG RfD HQ, HI (4) **, (6)
Cd, Pb, Ni, Cr CDI (3) G CSF ILCR (14)

[189] As, Cr, Cd, Pb D EDI (1) NG RfD THQ (4) **
As G CSF CR (14) **

[190] As, Cd, Cr, Cu, Li, Hg, Fe, Pb, Zn D EWI (1) NG PTWI,
RfD THQ, HI (4) **, (6)

As, Cd, Pb G CSF CR (14) **

[191] Pb, Cd, Cr, As, Hg D EDI (1) * NG RfD THQ,
TTHQ (4) **, (6)

Pb, As G CSF CR (14)
[192] Cr, Mn, Ni, As, Se, Cd, Hg, Pb D EDI (3) NG RfD THQ, HI (4), (6)
[193] Pb, Cd, Hg, As, Cr P EDI (3) NG RfD HQ (4)

Pb, Cd, As, Cr G SF ILCR (14)

[194] Al, V, Cr, Fe, Co, Zn, Cu, Cd Pb D - - NG RfD THQ,
TTHQ (4) **, (6)

[195] Cu, Pb, Zn, Fe, Mn, Cd, Cr, Ba, As D EDI (1) NG RfD THQ (4) **
As, Pb G CSF CR (14) **

[196] Cr, As, Cd, Pb, Zn, Cu, Ni, Hg D - - NG RfD THQ,
TTHQ (4) **, (6)
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Table 2. Cont.

Reference Elements D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

[197] As, Cr, Cd, Hg, Cu, Zn, Pb, Fe D EDI (1) NG RfD THQ,
TTHQ (4) **, (6)

[198] As, Cd, Cr, Cu, Hg, Pb D - - NG RfD THQ, HI (4) **, (6)
As, Cd, Pb G CSF TR (14) **

[199] Pb, As, Cd, Cr, Zn, Cu, Mn, Ni D EDI (1) NG RfD THQ (4) **
iAs G CSF THQcarcin. (14) **

Fruits, vegs, and legumes

[200] Cd, Cr, Co, Cu, Fe, Pb, Zn D EDI (1) * NG RfD HRI and
THQ, HI

(4) and (4)
**, (6)

Cd, Cr, Pb G CPS TCR (14) **
[201] Al, As, Cd, Pb D EDI (1) NG RfD THQ, HI (4) **, (6)

As G CPSo TCR (14) **
[202] Cd, Cu, Hg, Pb, Se, Zn D DIM (1) NG RfD HRI (4)

[203] Cd, Co, Cr, Cu, Fe, Li, Mn, Pb, Zn D - NG RfD HRI and
THQ, HI

(4) and (4)
**, (6)

Cd, Cr, Pb G CSF TCR (14) **
[204] As, Cd, Cr, Cu, Pb, Zn D - - NG RfD THQ, HI (4) **, (6)

[205] Cu, Ni, Zn D EDI (1) NG RfD THQ,
TTHQ (4) **, (6)

[206] Cd, Cr, Cu, Fe, Ni, Pb, Zn D EDI (1) NG RfD THQ, HI (4), (6)
[207] Hg, Pb D - - NG RfD THQ, HI (4) **, (6)
[18] As, Cd, Cu, Pb, Zn P EDI (3) NG RfD THQ, HI (4), (6)

[208] As, Cd, Pb, Cu Zn P EDI (1) NG RfD THQ,
TTHQ (4) **, (6)

As, Pb G SF TR (14) **
[209] Cd, As, Pb D EDI (3) NG RfD THQ, HI (4), (6)

Cd, As, Pb G CPS CR (14)
[210] As, Pb, Cd P EDI (1) NG PTDI %HQ (5)

[211] Fe, Zn, Mn, Cu, Pb, Cr, As, Co, Ni,
Cd, Hg P CDI (3) NG RfD THQ,

TTHQ (4), (6)

Pb, As, Ni, Co, Cd G CSF CR (14)

[212] Cd, Pb, As, Hg, Cr D EDI (1) NG RfD THQ,
TTHQ (4) **, (6)

Cd, Pb, As G CSF CRi, CR (14), (16)
[213] Cd Pb Cr Cu Ni Zn D CDI (3) NG RfD HQ, HI (4), (6)

Cd, Cr, Pb G SF CR, TCR (14), (16)

[214] As, Al, Cd, Co, Cr, Cu, Fe, Hg,
Mn, Mo, Ni, Pb, Zn D EWI,

EDI (1) NG RfD THQ,
TTHQ (4) **, (6)

As, Cd, Cr, Pb G CSF CR, ILCR (14) **, (16)

[215] Al, As, Cd, Co, Cu, Fe, Mn, Pb,
Cr(VI), Ni, Hg, Zn D CDI (3) NG RfD THQ, HI (4), (6)

As, Pb, Cr(VI), Cd, Ni G CSF CR, CCR (14), (16)

[216] Mg, Ca, K, P, Na, Cr, Mn, Fe, Ni,
Cu, Zn, Mo, As, Cd, Pb D EDD (3) NG RfD HQ, HI (4), (6)

[217] Pb, Cd, Cr Ni D DIR (1) NG RfD THQ,
TTHQ (4) **, (6)

[218] Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg,
Mn, Ni, Pb, Zn D EDI (1) NG RfD THQ, HI (4) **, (6)

[219] Cd, Cu, Cr, Pb D EDI (2) NG RfD HQ, HI (4), (6)
Cd, Cr, Pb G CSF CR, TCR (14), (16)

[220] As, Cd, Cr, Hg, Pb D - - NG RfD HQ, HI (4) **, (6)
As G SF CR (14)

[221] As, Cd, Hg, Pb P EDI (3) NG RfD THQ,
TTHQ (4), (6)

As G CSF CR (14)
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Table 2. Cont.

Reference Elements D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

[222] As, Cd, Pb, Cr, Mn, Ni, Cu, Zn D EDI (1) NG RfD THQ, HI (4) **, (6)
As, Pb G Csfo TR (14) **

[223] Cd, Pb D EDI (3) NG RfD HQ, HI (4), (6)
Pb G SF ELCR (14)

[96] As, Pb, Cd, Cr, Cu, Fe, Hg, Ni, Pb P CDI (3) NG ADI HQ, HI (4), (6)
As, Pb G CSF ILCR (15)

[224] Cu, Zn, Cr, Ni, Cd, As, Pb Hg D EDI (3) NG RfD THQ, HI (4), (6)
Cr, As Pb G CSF CR (14)

Tea, herbs and spices
[225] As, Cd, Pb D ADI (1) NG RfD HQ, HI (4), (6)

[226] As, Cd, Hg, Pb D EDI (1) NG RfD THQ,
TTHQ (4), (6)

[227] Cd, Pb, As, Mn, Ni, Cr D EDI (3) NG RfD THQ, HI (4), (6)
[228] As, Cd, Cr, Cu, Hg, Ni, Pb, Zn D ADI (3) NG RfD HQ, THQ (4), (6)

As, Cd, Cr, Pb G SF Risk,
Riskt (14), (16)

[229] Cd, Cr, Cu, Pb, Zn D EDI (1) NG RfD THQ, HI (4), (6)

[230] As, Cd, Hg, Pb D EWI (1) NG RfD THQ,
TTHQ (4) **, (6)

As, Cd, Pb G CSF CR (14) **
[231] Cr, Co, Ni, Cu, Zn, Cd, Pb D ADI (3) NG RfD HQ, HI (4), (6)

Cr, Cd G SF CR (14)

Meat and meat products
[232] Cd, Cr, Cu, Hg, Pb, Zn D EDI (1) NG RfD HQ, HI (4) **, (6)

Cd, Pb D
EDI
and
CDI

(1) and
(3) G BMDL

and CSF
MOE and
ILCR (9) and (14)

[233] As, Fe, Cu, Zn, Mn, Ni, Sr, V, Al,
Cr, Cd, Pb D EWI (1) NG RfD THQ,

TTHQ (4) **, (6)

As, Cd, Cr, Pb G CsF CR (14) **

Milk and dairy products

[234] As, Cd, Cr, Cu, Fe, Hg, Mn, Ni,
Pb, Se, Zn D EDI (1) NG RfD THQ, HI (4), (6)

[105] Cd, Pb, Cu, Zn D cEDI (1) NG RfD HQ, HI (4), (6)

Miscellaneous
[235] As, Cd, Cu, Pb, Zn D D (3) NG RfD HQ, HI (4), (6)

As, Cd, Pb G SF CR (11)

[236] As, Cr, Pb, Ni, Cu, Mn P EDMI (1) NG RfD THQ,
TTHQ (4) **, (6)

As, Pb G CSF TCR (14) **
[237] Cr, Ni, Cu, As, Cd Pb D EDI (1) NG RfD THQ (4) **

As, Pb G CSFo TR (14) **

[238] Pb, As, Cd, Hg D EDI (1) NG RfD THQ,
TTHQ (4) **, (6)

As G SF CR (14)

[239] As, Al, Cd, Cr, Cu, Hg, Mn, Pb,
Se, Zn D DIM (1) NG RfD THQ, HI (4) **, (6)

[240] As Mn Mo Co Zn Hg Pb Ni Cr Se
Cd Al Cu Ag Fe P EDI (3) NG RfD THQ, HI (4), (6)

[241] As, Cd, Hg, Tl, Pb, U, Cr, Mn, Fe,
Ni, Cu, Zn, Se D EDI (1) NG RfD THQ, HI (4), (6)

As G CSF TR (14)
[242] Cu, Zn, TAs, iAs, MeHg, Se, Cd, Pb P ADD (3) NG RfD HQ, HI (4), (6)

iAs G CSF ILCR (14)
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Table 2. Cont.

Reference Elements D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

[243] Cd, Cr, Pb, Hg, As P EDI (1) NG RfD THQ,
TTHQ (4) **, (6)

Prepared dishes and snacks
[244] Cd, Pb, Cr, Mo, Co, Ni, As P EDI (1) NG NOAEL MOE (7)

Total diet studies

[245] Cd, Hg, Ni, Cu, Mo, Zn P - - NG TDI,
TWI, UL

Factor of
RV (4)

iAs, Pb G BMDL MOE (9)
[246] As D EDI (1) G BMDL MOE (9)

[247] As, Pb P EDI (1) G BMDL MOE and
POE (9) and 13

[248] Pb D DDI (1) G BMDL MOE (9)
[249] Hg P I (1) * NG RfD THQ (4) **

* When the exposure units are mg/day per person. ** When the exposure used is Equation (3).

Table 3 gives the results for mycotoxins, of which “nuts, nut products, and seeds” and
“milk and dairy products” were the most studied foodstuffs, and are mainly from China
and Iran (28%). The most studied age groups were adults (50.6%), followed by adolescents
and children, and adults and children (around 12% in each age group). Almost all the
authors opted for Equation (1) (91.5%) to calculate exposure. Equation (4) was used for
non-genotoxic studies in half the cases, mainly using the TDI as the RV. For the genotoxic
effect, 37% of the authors assessed the MOE (Equation (9)) and 19% the Hazard index
(Equation (11)). In total, 7% assessed the cancer risk using Equation (14), and 35% assessed
both the MOE and the cancer risk.

Table 3. Exposure, damage, and risk characterisation methodology used in mycotoxin studies.

Reference Mycotoxins D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

Beverage
[250] AFT D Exp a - G BMDL MOE (9)
[251] AFT D EDI (1) G TD50/Safety factor HI (11)

Cereals and bakery products
[252] FB1, FB2, FB3, DON P - - NG PMTDI, %PMTDI (5)

ZEA TDI %PMTDI (5)
[253] OTA, FB1, FB2, DON, NIV P - - NG PMTDI, PTWI HQ, HI (4), (6)

AFB1, AFB2, AFG1, AFM1 P - - G BMDL MOE,
MOET (9), (10)

[254] AFB1 P CDI (1) G BMDL MOE (9)
[255] AF, OTA, DON D EDI (1) G TD50/Safety factor HI (11)

[256] AFB1 D EDI (1) G BMDL and PCP MOE and
CR (9) and (14)

[257] AFB1 D Exp (1) G BMDL and
Pcancer

MOE and
CR (9) and (14)

[258] DON, ZEN, OTA, TeA D EDI (1) NG TDI, TTC %HQ (4)
AME, AOH G TTC HQ (11)

[259] AFB1, AFB2, AFG1, AFG2 D EDI (1) G TD50/Safety factor HI (11)

[260] AFB1, AFB2, AFG1, AFG2 D EDI (1) G BMDL and
Pcancer

MOE and
Risk (9) and (14)

[261] ZEA, BEA, DAS, STER D EDI (1) NG PMTDI %HQ (4)
AFB1 G AP Risk (14)
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Table 3. Cont.

Reference Mycotoxins D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

[262] AFB1 D APDI (1) G BMDL and AP MOE and
cancer rate (9) and (14)

[263] FUM, OCHRA, DON D EDI (1) NG TDI HQ (4)
AFT G BMDL MOE (9)

[63] AFB1, DON, OTA P y (1) NG PTDI, PMTDI MOS (7)

Coffee, cocoa, and preparations
[264] OTA and FB2 D (1) NG HBGV %HBGV (5)

CIT, ENA, ENA1, ENB1, BEA D - (1) NG HBGV, TTC %HBGV
and %TTC (5) and (4)

AME G TTC %TTC (11)
AFB1, STC G BMDL MOE (9)

[265] 21 mycotoxins D EDI (1) NG TDI, PTWI %TDI (5)

[266] OTA, TENT, AME, AOH, ENB,
ZEN D PDI (1) NG TDI % TDI (5)

OTA, AFs, STG G BMDL MOE (9)
[267] OTA P CDI (3) NG TDI HQ (4)

G BMDL MOE (9)

Eggs
[268] DON, ZEN D EDI (1) NG TDI HQ (4)

AFB1, OTA G BMDL MOE (9)

Fats and oils
[142] AFB1 P Exp - G BMDL and AP MOE and Pr (9) and (14)

Fruits, vegs, and legumes
[269] OTA D DDE (1) NG PTWI MOE (7)

AFB1 G BMDL MOE (9)
[270] Patulin D I (2) NG PMTD HQ (4)

Tea, herbs and spices
[226] AFB1, TAF D EDI (1) G BMDL MOE (9)
[271] OTA and FB1 D PDI (1) NG TDI %TDI (5)

AFB1 G BMDL MOE (9)
[272] HT2 D PDI (1) NG TDI HQ (4)

AFB1, AFB2, TAF, OTA, STE G BMDL MOE,
MOET (9), (10)

[273] AFB1, AFB2, AFG1, AFG2 P ADD (1) G SF R (14)

[274] AFB1, AFB2, AFG1, AFG2,
ZEA D EDI (1) NG TDI %TDI (5)

[275] OTA, ZEN, DON, T-2, and FB D ADD (1) NG RfD HQ, HI (4), (6)
AFT P ADD (1) G SF R (14)

Meat and meat products
[276] AFB1, AFB2, AFG1, AFG2 D DE (1) G BMDL MOE (9)

Milk and dairy products
[277] AFM1 D EDI (1) NG ISIRI HI (4)

G TD50/Safety factor HI (11)

[278] AFM1 D EDI (1) G BMDL
and Pcancer

MOE
and Risk (9) and (14)

[279] AFM1 P DE (1) G
BMDL and
TD50/safety factor
and Pcancer

MOE and
HI and CR

(9) and (11)
and (14)

[39] AFM1 P ADI (1) G TD50/Safety factor
and BMDL and CP

HI and
MOE and
LCR

(11) and (9)
and (14)

[280] AFM1 D DE (1) G
BMDL and
Pcancer and
TD50/Safety factor

MOE and
CR and HI

(9) and (14)
and (11)
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Table 3. Cont.

Reference Mycotoxins D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

[281] AFM1 P EDI (1) NG TDI HI (4)

AFM1 G TD50/Safety factor
and Pcancer HI and HCC (11)

and (14)

[282] AFM1 D EDI (1) G BMDL and AP MOE and
risk (9) and (14)

[283] OTA D EDI (1) NG PTWI %PTWI (5)
AFM1 G TD50/Safety factor HI (11)
AFB1 G BMDL MOE (9)

[284] AFM1 D EDI (1) G TD50/Safety factor HI (11)

[285] AFB1 D EDI (1) * G BMDL
and Pcancer

MOE and
CR (9) and (14)

[40] AFM1 P EDI (1) G
BMDL and
Pcancer and
TD50/Safety factor

MOE and
HCCrisk
and HI

(9) and (14)
and (11)

Miscellaneous
[286] OTA, OTB, FB1, FB2 D EDI (1) NG TDI, TWI EDI/TDI (4)

AFB1 G BMDL MOE (9)

[287]

DON, 3ADON, 15ADON, T-2,
HT-2, NEO, NIV, ZEA, ENNB,
ENNB1, ENNA, ENNA1, BEA,
AFG2, OTA, DAS, βZAL.

D PDI (1) NG TDI %TDI (5)

[288] OTA, FB1, ZEN D Exp (1) NG PMTDI, PMTWI %HBGV (4)

AFB1 G BMDL
and AP

MOE
and PR (9) and (14)

[289] 26 mycotoxins D APDI (1) G BMDL and AP MOE
and LCR (9) and (14)

[290] AFB1, AFB2, AFG1,
AFG2, AFT D PDI (1) G BMDL MOE (9)

[291] OTA D ADD (3) NG RfD HQ (4)

[292] AFM1, AFT D DE (1) G BMDL
and Pcancer MOE and R (9) and (14)

[293] AFB1, AFB2, AFG1, AFG2 D EDI (1) G BMDL MOE (9)
[294] AFB1, MCLR P DI (1) G Toxicity factor ORP (9)

[295] AFB1 D EDI (1) G BMDL
and Pcancer

MOE
and CR (9) and (14)

[296] FBs, OTA D PDI (1) NG TDI, TWI HBGV (5)
AFB1, AFT, BEA, CIT D PDI (1) G BMDL MOE (9)

Nuts, nuts products and seeds

[297] AFB1 D PDI (1) G BMDL and AP MOE and
PR (9) and (14)

[298]
OTA, FB1, FB2, ZEA, DON,
15AC-DON, 3AC-DON,
T-2, HT-2

D EDI (1) NG TDI, PMTDI, PTWI %TDI (5)

[299] AFB1, AFB2, AFG1, AFG2 D ADD (3) G BMDL MOE (9)
[300] BEAU, CPA D PDI (1) NG TDI %TDI (5)

AFB1, AFT G BMDL MOE (9)

[301] AFB1, AFB2, AFG1, AFG2,
AFT, STC, BEA D EDI (1) NG RfD HQ (4)

AFB1, AFB2, AFG1, AFG2,
AFT, STC G BMDL and AP MOE

and LCR (9) and (14)

[302] AFT D EDI (1) G BMDL and AP MOE
and CR (9) and (14)

[303] AFT P DE (1) G BMDL and
Cancer potency

MOE and
PR (9) and (14)
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Table 3. Cont.

Reference Mycotoxins D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

Prepared dishes and snacks
[304] AFB1, AFT, OTA D DE (1) G BMDL MOE (9)

[305]
AFB1, AFB2, AFG1, AFG2,
OTA, ZEA, FB1, FB2, FUS,
BEA, ENB, ENB1, ENA, ENA1

D EDI (1) NG TDI %EDI-TDI (5)

Total diet studies
[306] OTA D Exp (1) NG PTWI MOS (7)

[307] AFB1 P EDI (1) G BMDL, T25 and
Pcancer

MOE and
CR (9) and (14)

* When the exposure units are mg/day per person. a Exp = Exposure.

Table 4 gives the results for acrylamide. The most often studied products were “cereals
and bakery products” and “prepared dishes and snacks”. Most publications come from
Iran (28.6%), followed by Lebanon and China (both with 9.52%). Adults were the most
studied population group (38%), followed by adolescents and children (31%). Equation
(1) was the most frequently used equation for exposure (71.4%). Equation (4) was used
for 76.9% of the cases to characterise the non-genotoxic risk with RfD (69%) as the RV. The
MOE was chosen for around 61.5% of the cases, and the cancer risk (Equation (14)) in 26.9%
for the genotoxic effects.

Table 4. Exposure, damage, and risk characterisation methodology used in acrylamide studies.

Reference D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

Cereals and bakery products
[308] D CDI (3) NG RfD THQ (4)

G OSF CR (14)
[309] D CDI (3) NG RfD THQ (4)

G CSF ILCR (14)
[310] P CDI (3) NG RfD THQ (4)

G BMDL and CSF MOE and ILCR (9) and (14)

Coffee, cocoa and preparations
[311] D Y (1) NG RfD MOE (7)

G BMDL MOE (9)
[312] P EDI (2) G BMDL and PF MOE and Risk (9) and (14)

Fruits, vegs and legumes
[313] D DE (1) G BMDL MOE (9)

Tea, herbs and spices
[314] D EDI (1) G BMDL MOE (9)

Meat and meat products
[315] P CDI (3) NG RfD THQ, HI (4), (6)

G SF ILCR (14)

Miscellaneous
[316] P E (1) NG BMDL MOE (7)

G BMDL MOE (9)
[317] D ADD (1) NG RfD HI (4)

G CPS TR (14)
[318] D E (1) G BMDL MOE (9)
[319] P DE (1) G BMDL MOE (9)
[320] D Y (1) G SF AC (14)
[321] P DDE (1) G BMDL MOE (9)
[322] D DE (1) G BMDL MOE (9)
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Table 4. Cont.

Reference D/P Exposure Damage (Effect) Risk Characterisation

Metric Eq. MOA RV Metric Eq.

[323] P DE (1) NG RfD THQ (4)
G BMDL and SF MOE and ILCR (9) and (14) **

[324] P CDI (3) NG RfD THQ (4)
G CSF ILCR (14)

[325] D Exp (1) NG RP RPQ, RPI (4), (6)
[326] D Exp (1) G BMDL MOE (9)

Prepared dishes and snacks
[327] D EDI (1) NG TDI HQ (4)

G BMDL MOE (9)
[328] D DE (1) G BMDL MOE (9)
[329] D DI (1) G BMDL MOE (9)
[330] D EDI - NG TDI MOE (7)

G BMDL, T25 MOE (9)
[244] P DI (1) NG NOAEL MOE (7)

G BMDL MOE (9)
[331] P EWI (1) NG TWI MOE (7)

Exp (1) G BMDL MOE (9)

Total diet studies
[332] D D (1) NG NOAEL MOE (7)

G BMDL MOE (9)
[333] D EDI (1) G CSF ELCR (14) **
[334] D E (1) NG RfD (5)

G BMDL MOE (9)

** When the exposure used is Equation (3).

Table 5 gives the PAH results. Most of the authors dealt with “fish and shellfish”. Iran
(16%), Nigeria (14.3%), and China (12.5%) were the main countries of publication, while
the adult population was the most studied group (65.5%). When calculating exposure, 68%
of the studies opted for Equation (1). Equation (4) was applied to characterise the risk of
non-genotoxic effects in all cases, using the RfD as RV in 93%. Equations (14) and (9), for
genotoxic effects, were used in percentages of 43% and 29.4%, respectively.

Table 5. Exposure, damage, and risk characterisation methodology used in PAH studies.

Reference PAH D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

Beekeeping products

[126] BaP, 4PAH, 8PAH,
16PAH and BaPeq D CDI (3) G BMDL and CSF MOE and ILCR (9) and (14)

Cereals and bakery products

[335] BaP, 2PAH, 4PAH
and 8PAH D EDI (1) G BMDL MOE (9)

[136] 8PAH and BaPeq D ED (1) * G SF ILCR (14) **

Fats and oils
[336] 15PAH, 7PAH and BaPeq D - - G SF ILCR (14) **
[337] 4PAH and BaPeq D DE (1) G BMDL MOE (9)
[338] 16PAH and BaPeq P ED (3) G SF ILCR (14)
[339] 15PAH and BaPeq D EDI (1) * G SF ILCR (14) **
[340] 13PAH and BaPeq P CDI (3) G BMDL and SF MOE and ILCR (9) and (14)

Fish and shellfish
[341] 6PAH D EDDI (1) NG RfD THQ, HI (4) **, (6)

11PAH and BaPeq G SV and Q HR and ILCR (12)
and (14) **
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Table 5. Cont.

Reference PAH D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

[342] 8PAH D - - NG RfD HI (4) **
7PAH and BaPeq D ED (1) * G SF ILCR (14) **

[343] 8PAH D ADD (2) NG RfD HQ, HI (4), (6)
7PAH G SV and CSF HR and Risk (12) and (14)

[344] 4PAH P Exposure(1) G BMDL MOE (9)
[151] 16PAH D - - G LD50 HI (11)
[345] 7PAH D EDI (1) NG RfD THQ (4) **

16PAH, BaPeq EDI (1) G CSF CR (14) **
[346] BaP, 4PAH D DDE (1) G BMDL MOE (9)
[347] 2PAH, 4PAH and 8PAH D EDI (1) G BMDL MOE (9)
[348] 7 PAH P EDI (1) NG RfD HQ (4)

2PAH, 4PAH, 8PAH
and BaPeq - - G BMDL and SF MOE and ILCR (9) and (14) **

[349] 8PAH and BaPeq D CDI (3) G BMDL MOE (9)

[350] 16PAH and BaPeq D - - G SV and CSF HR and ILCR (12)
and (14) **

[351] BaP and 4PAH D I (1) G BMDL MOE (9)
[352] 7PAH D - - NG RfD THQ, HI (4) **, (6)
[353] BaPeq, 7PAH D EDI (1) NG RfD HQ (4)

G OSF CR (14) **

[354] 4PAH, 8PAH, 16PAH
and BaPeq D DDI (1) * G BMDL and CSF MOE and ILCR (9) and (14) **

[355] 6PAH D I (1) NG RfD THQ (4)
6PAH G SF TR (14)

[356] 39PAH and BaPeq P CDI (1) NG RfD THQ, HI (4) **, (6)

EDI (1) G SV and SF HR and ILCR (12)
and (14) **

[357] 4PAH and BaPeq D DDI (1) * G SV and SF HR and ECR (12) and (16)
[358] 6PAH D EDI (1) NG RfD THQ (4) **

7PAH and BaPeq G CSF CR (14) **
[359] 8PAH D - - NG RfD HQ (4)

16PAH andBaPeq G CSF ILCR (14) **
[360] 16PAH and BaPeq D - - G SF ILCR (14) **

Fruits, vegs and legumes
[96] 16PAH and BaPeq P CDI (3) G BMDL and CSF MOE and ILCR (9) and (14)
[361] 15PAH and BaPeq D ADD (3) G CSF ILCR (15)

Tea, herbs and spices

[362] 16PAH D LADD (3) G SF RI, ΣRI (14) ** and
(16)

[363] 15PAH and BaPeq P - - G CSF R (14) **
[364] BaP, 2PAH and 4PAH P - - G BMDL MOE (9)

Meat and meat products
[365] BaP, 4PAH and 8PAH D EDI (1) G BMDL MOE (9)
[366] 8PAH, 14PAH and BaPeq D ED (1) * G SF ILCR (14) **
[367] BaPeq D LADD (3) G CSF CR (14)
[368] BaP and 4PAH D Exposure(1) G BMDL MOE (9)

Milk and dairy products
[369] 7PAH P ADD (1) NG RfD HQ, THQ (4), (6)

16PAH and BaPeq CDI (3) G CSF ILCR (14)
[370] 7PAH P ADD (1) NG RfD HQ, THQ (4), (6)

16PAH and BaPeq CDIBaP (3) G CSF ILCR (14)
[371] 16PAH and BaPeq P ED (3) G BMDL and SF MOE and ILCR (9) and (14)

Miscellaneous
[372] 16PAH and BaPeq P ED (1) * G SF ILCR (15)
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Table 5. Cont.

Reference PAH D/P Exposure Damage (Effect) Risk Characterisation
Metric Eq. MOA RV Metric Eq.

[373] 2PAH, 4PAH, BaP
and BaPeq P

EDI
and
ED

(1)
and
(1) *

G BMDL and CSF MOE and ILCR (9) and (14) **

[374] 4PAH and BaPeq D EDI (1) G BMDL MOE (9)
[375] 8PAH and BaPeq D DI (1) G BMDL MOE (9)

[376] 8PAH and BaPeq D CDI (3) G BMDL and BaP’s
cancer risk MOE and ILCR (9) and (14)

[377] 16PAH and BaPeq P I (1) G SF CR (14) **

[378] 4PAH, 16PAH and BaPeq D CDI (3) G BMDL, BaP’s
cancer risk MOE and ILCR (9) and (14)

[379] 7PAH P ADD (1) NG RfD HQ, THQ (4), (6)
16PAH, BaPeq D CDI (3) G CSFBaP ILCR, ILCRact (14), (16)

[380] BaP, 2PAH, 4PAH
and 8PAH D DI (1) G BMDL MOE (9)

[381] 16PAH and BaPeq D CDI (3) G SF CR (14)

Total diet studies
[334] 4PAH D E (1) G BMDL MOE (9)

* When the exposure units are mg/day per person. ** When the exposure used is Equation (3).

3.2.1. Exposure Assessment Equations and Nomenclature

Equation (1) was the formulation most used by the authors reviewed. Exposure
was usually expressed as mg/kgBw/day, although the authors also used mg/day per
person [382]. This second possibility is indicated in Tables 1–5 with an asterisk next to the
equation number, i.e., (1*).

Exposure (mg/kgBw/day) =
Concentration of chemical in food (mg/kg)×Food consumption

(
kg

day

)
Body weight (kgBw)

(1)

The standard terminology (EHC 240) should be used for the consistent understanding
and application of exposure. In this framework, Table 6 provides the different names used
to designate exposure, while Table 7 gives the terminology used for the parameters in
the equations, i.e., the concentration of the chemical hazard present in the food and food
consumption, respectively.

Table 6. Abbreviations and description of the terminology for exposure.

Parameter Description Parameter Description

ADD Average daily dose EADI Estimated average daily intake
ADI Average daily intake ED Daily dietary exposure
AFE Average food exposure EDD Estimated dietary doses
APDI Average probable daily intake EDDI Estimated dietary daily intake
cEDI Aggregated exposure EDI Estimated daily intake
CDI Chronic daily intake EDMI Daily metal intakes
D Total daily exposure EWI Estimated weekly intake
DC Daily consumption Exp Exposure
DDE Daily dietary exposure Exposure Dietary exposure
DDI Dietary daily intake I Intake
DE Dietary exposure IEDI International estimated daily intake
DED Daily exposure dose LADD Lifetime average daily intake
DI Dietary intake NEDI National estimated daily intake
DIM Daily intake of metals PDI Probable daily intake
DIR Daily intake rates PEC Potency equivalent concentration
E Exposure/Total daily exposure Y Daily intake
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Table 7. Abbreviations and description of concentrations and food consumption.

Parameter Concentration Description Parameter Food Consumption Description

C Concentration of chemical
pollutants/residual concentration AC Average daily food consumption

CM Average concentration C Estimated consumption of commodity
Cr Concentration CR Consumption rate
R Food pesticide residues D Daily intake

RC Average residue concentration F Consumption of food/daily food
consumption/food consumption rate

RL Residue level FER Food eating rate
RLi Occurrence of each residue Fi Average food consumption
STMR Standard test of residual values FIR Daily intake

I Ingestion
IR Ingestion rate
VIR Daily ingested vegetable rate
W Average daily consumption

Some authors adapt the calculation of daily exposure by adding an adaptation factor
to Equation (1) to convert it to Equation (2). This factor is intended to simulate, for example,
the possible effect of process conditions on the variations in pesticide concentration present
in food [59,72,75,90,383].

Exposure (mg/kgBw/day) =
Concentration of chemical in food

(
mg
kg

)
×Food consumption

(
kg

day

)
×Adapting factor

Body weight (kgBw)
(2)

The US Environmental Protection Agency recommends Equation (3) to estimate the
average daily potential dose of an ingested contaminant through the consumption of food,
water, soil, and dust [384]. In this case, the average daily exposure to a contaminant is the
result of the total ingested concentration, measured in units of mass or volume per food,
for example, in mg or L per kg food; the ingestion rate, e.g., the amount of contaminated
food ingested by an individual during a given period expressed in units of mass or volume
per unit time, such as kg/day or L/day; the duration of exposure or the amount of time
an individual is exposed to the contaminant (e.g., years); and the frequency of exposure,
e.g., in days per year, all divided by the average exposure time (e.g., days) and body
weight (kgBw).

Exposure (mg/kgBw/day) =

Chemical concentration
(

mg
kg

)
×Intake rate

(
kg

day

)
×Exposure frequency

(
days
year

)
×Exposure duration(years)

Body weight (kgBw)×Average time (days)

(3)

3.2.2. Risk Characterisation Equations and Nomenclature

• Non-genotoxic chemical hazards

The risk ratio is the formula applied to characterise chemicals with a threshold level.
The ratio is obtained by dividing the potential exposure to a non-genotoxic chemical hazard
by the reference value at which no adverse effects are expected. The result is numerical but
dimensionless and is considered a negligible risk when the value obtained is less than one.
However, the ratio is also commonly expressed as a percentage obtained by multiplying
the numerator of Equation (4) by 100. The risk ratio is given various names in the scientific
literature (see Table 8).

Risk ratio (non− dimensional) =
Exposure (mg/kgBw/day)

Reference Value (mg/kgBw/day)
(4)



Foods 2024, 13, 714 22 of 43

Table 8. Abbreviations and description of risk ratio.

Parameter Description Parameter Description

cHI Consumer health risk MOE Margin of exposure
HHI Health hazard index MOS Margin of safety
HI Hazard index R Risk
HQ Hazard quotation/hazard quotient RQ Risk quotient/Risk of ingestion
HRI Hazard risk index/Health risk index %RV * Percentage of a reference value
IFS Index of food safety THQ Target hazard quotient

TS Toxicity score

* E.g., % ADI, when RV is ADI.

Equation (5) is a particular case of Equation (4), where the RV is a HBGV (e.g., ADI,
TDI, PTWI, etc.) and the chronic risk is expressed as a percentage (%HBGV).

%HBGV (non− dimensional) =
Exposure (mg/kgBw/day)

HBGV (mg/kgBw/day)
× 100 (5)

As the risk assessment of a single chemical is known to be insufficient, when the
chemicals considered have the same MOA, the cumulative effect of multiple chemicals and
multiple via routes should be considered, Equation (6) [121,385]. Table 9 gives the different
terms used to define the cumulative risk.

Cumulative risk (non− dimensional) = ∑N
i=1 Risk ratio(i) (6)

Table 9. Abbreviations and descriptions used for cumulative risk.

Parameter Description Parameter Description

cHI Cumulative hazard index THQ Total hazard quotation
HI Hazard index TTHQ Total target hazard quotient

The ratio for assessing the risk of non-genotoxic effects can also be obtained by calculat-
ing the margin of safety (MOS) (Equation (7)), where for similarity with the MOE equation,
some authors use denomination MOE instead of MOS for non-genotoxic hazards [244,316].

Margin of Safety (non− dimensional) =
Reference value (mg/kgBw/day)

Exposure (mg/kgBw/day)
(7)

Doménech and Martorell [16] proposed the probabilistic safety margin (p_FSM)
(Equation (8)), which represents the probability of exposure to a hazard i exceeding the
safety limit (herein the ADIi), although this formulation can be extended to other RVs. The
value obtained from this metric also lies between zero and one, so that a value close to one
indicates a wide margin, i.e., exposure to this hazard is very unlikely to have consequences
for health, while a margin close to zero implies a strong probability of a non-genotoxic
adverse effect.

pFSM(Hi)
(non− dimensional) = Pr{HQ(Hi) < 1} =

∫ ADIi

0
EDI(Hi)dH = 1−

∫ ∞

ADIi

EDI(Hi)dH = 1− EP(Hi) (8)

• Genotoxic chemical hazards

(a) Ratio metrics

To support risk management in hazards with genotoxic effects, the JECFA (Joint
FAO/WHO Expert Committee on Food Additives) and the EFSA (European Food Safety
Authority) proposed the margin of exposure (MOE) as the indicator of the level of de-
served concern, Table 10. This approach makes no implicit assumptions of a “safe” in-
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take and has been more widely used to assess substances that are both genotoxic and
carcinogenic [14,31,386,387]. The MOE is quantified as the ratio between a defined RV for
the adverse effect on the dose–response curve—generally, the BMDL% is related to a per-
centage increase in the response—and human exposure (Equation (9)) [388]. Equation (10)
is used to assess the combined effect of substances with the same MOA.

Margin of exposure (non− dimensional) =
Reference value (mg/kgBw/day)

Exposure (mg/kgBw/day)
(9)

MOET(non− dimensional) =
1

1
MOE1 + 1

MOE2 + 1
MOE3 + . . .

(10)

Alternatively, some authors use the hazard index metric or risk quotient for genotoxic
effects (Equation (11)). This equation is very similar to the risk ratio (Equation (4)) proposed
for non-genotoxic effects. In this case, the exposure is divided by a genotoxic reference
value such as TD50/U.

Hazard index (non− dimensional) =
Exposure (mg/kgbw/day)

Genotoxic reference value (mg/kgbw/day)
(11)

The hazard ratio or the excess cancer risk can also be calculated to assess the margin
for genotoxic hazards (Equation (12)). It can be estimated in terms of the incremental
probability of developing cancer over a lifetime of total exposure to a potential carcinogen
to humans. The cancer benchmark concentration is calculated by dividing the maximum
acceptable risk level (1 × 10−6) by the slope factor, multiplying the value obtained by the
body weight, and dividing this result by the consumption [57].

Hazard ratio (non− dimensional) =
Exposure (mg/kgbw/day)

Cancer benchmark concentration (mg/kgbw/day)
(12)

For the PAHs, the authors adapted Equation (12) through changing the exposure for
the potency equivalent concentration values and dividing this value by the screening value
(SV), calculated in the same way as the cancer benchmark concentration [343].

The POE is a complementary metric that represents the probability of the dose of
exposure to a carcinogenic hazard exceeding the benchmark [247]. It is a measure of the
probability—and, therefore, is dimensionless—of the change in the population’s response
exceeding the predefined reference value. It could also be interpreted as the fraction of
the total population exposed to an increased risk. One of the main advantages of the
POE metric is that it considers the entire exposure distribution, represented with f(E) in
Equation (13).

POE (non− dimensional) = Pr(Exposure > Reference value) =
∫ ∞

RV
f(E) dE (13)

The POE metric is thus especially appropriate for characterising public health risks
when the distribution of the exposure to a hazard with a genotoxic effect is positively
skewed, and thus helps draw risk-informed conclusions, or for example if the MOE is
below 10,000.

(b) Risk metrics

Different terms are used to estimate the cancer risks (see Table 10). This metric assesses
the potential risk associated with exposure to carcinogens over a lifetime. It is obtained
by multiplying the exposure by a slope factor (see Equation (14)). The slope factor is a
toxicity value that quantifies a linear dose–response per mg/kgBw/day exposed, which is
referenced to the abbreviations given in Table 11.

Cancer risk (non_dimensional) = Exposure (mg/kgBw/day) × slope factor(mg/kgBw/day)−1 (14)
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Table 10. Abbreviations and description for genotoxic effect.

Parameter Description Parameter Description

AC Annual number of cases MOE Margin of exposure
CR Cancer risk MOET Total margin of exposure
CCR Cumulative cancer risk ORP Overall risk probability
ECR Excess cancer risk POE Probability of exceedance
ELCR Excess lifetime cancer risk PR Population risk
HCC Risk of hepatocellular carcinoma R Risk
HQ Hazard quotation Risk Risk of cancer
HR Hazard ratio TCR Total cancer risk/ Target cancer risk
ILCR Incremental lifetime cancer risk THQcarcinogenic Target hazard quotient for carcinogenic risk
LCR Lifetime cancer risk TR Total risk
LTCR Lifetime cancer risk

Table 11. Abbreviations and description of slope factor.

Parameter Description Parameter Description

AP Average potency CSF Cancer slope factor
BMC Cancer benchmark concentration OSF Oral slope factor
CBC Cancer benchmark concentration Pcancer Carcinogenic potency
CFS Cancer slope factor PCP Population cancer potency
CPF Cancer potency factor Q Oncogenic potency/BaP carcinogenic potency
CPSo Oral cancer slope factor SF Slope Factor

CPS Carcinogenic potency
slope/carcinogens potency slope oral PF Potency factor

In the particular case of mycotoxins, the slope factor, also named carcinogenic potency
(Pcancer), population cancer potency (PCP), or average potency (AP) were derived from
a model with epidemiological data of individuals exposed to AFB1 testing positive for
the hepatitis B surface antigen (HBsAg+) and testing negative for the hepatitis B surface
antigen (HBsAg−) [389,390].

Some authors introduce an age-dependent adjustment factor to represent the increase
in the probability of cancer from oral exposure, according to the population group, generally
considered to be three for children and one for adults (see Equation (15)). Finally, the total
cancer risk was assessed using Equation (16).

Cancer risk (non− dimensional) =
Exposure (mg/kgBw/day)×Slope factor (mg/kgBw/day)−1×Age_dependent factor

(15)

Total cancer risk (non− dimensional) = ∑N
i=1 Cancer risk (i) (16)

3.2.3. Harmonisation of the Terminology and Formulation

This work has shown how different authors use different terms and equations to define
and formulate some of the parameters related to risk assessments. This section presents
a proposal for terminology and formulation, considering the publications and guidelines
recommended by some of the leading international organizations and their frequency of
use in the literature review.

The term most frequently used for exposure by the FDA [391], JECFA [392], EFSA [393]
and CAC [394] is the EDI (estimated daily intake). As shown in Figure 3A, it is also the
most reported term by the authors (59%), so it seems appropriate to recommend EDI for
exposure. Concerning its formulation, Equation (3) is the most complete, and it is simplified
to Equation (1) when the product of exposure frequency per the exposure duration is equal
to the average time.
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Figure 3. Metrics and terminology used by more than 1% of the authors reviewed: (A) exposure;
(B) risk characterisation for non-genotoxic hazards; (C) risk characterisation for genotoxic hazards
calculating a margin; and (D) calculating the risk.

The metric to characterise the risk of non-genotoxic hazards suggested by EFSA [393],
EPA [395] and ATSDR [396] is the ratio HQ (hazard quotient), which is obtained with
Equation (4). However, Figure 3B shows that 43% of the reviewed articles used the target
hazard quotient (THQ), compared to 34% that used the HQ. Nevertheless, it should be
noted that most papers that used the THQ were related to the study of metals, whereas
the HQ was used more on the other hazards studied. Therefore, HQ is the proposed
terminology for general application to chemical hazards. On the other hand, since the
international organisations mentioned and 71.8% of the papers have used the hazard index
(HI) to estimate the cumulative effect of hazards, it seems that there is enough consensus
on the use of this term and Equation (6) for its formulation.

A margin and/or a risk can be calculated to characterise the risk of genotoxic hazards.
In the first case, EFSA [386], EPA [395] and JECFA [397] among others, propose the margin
of exposure (MOE), obtained with Equation (9). This formulation is also the ratio most
used by the authors in the reviewed works (78%), Figure 3C. For this reason, the terms’
MOE for a single hazard and MOEt for the combined effect of several hazards with a
genotoxic effect are proposed to assess the margin. This study also recommends combining
the MOE with the POE, as the information they provide complements each other. On the
other hand, international organisations such as ATSDR [27] use the term CR (cancer risk)
to measure risk. This term is the one most frequently used by the authors (67%), Figure 3D,
and, therefore, the one suggested to be found using Equation (14). In turn, in Equation
(14), the slope factor is mostly referenced as CSF (cancer slope factor) in the studies and,
therefore, the one proposed in this section. Finally, the term TCR (total cancer risk) and
Equation (16) are recommended to calculate the cumulative risk of cancer.
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4. Discussion

Figure 4 shows the MOA considered to assess the risk characterisation for each studied
hazard. In pesticides, most of the authors reviewed calculated the non-genotoxic effect (79.7%),
while the study of the genotoxic and non-genotoxic effect (59.4%) was the preferred option
for metals. However, only the genotoxic effect was studied for mycotoxins, acrylamide, and
PAHs in more than half of the cases (57.14%, 51.8%, and 71.1%, respectively), Figure 4.

Figure 4. Percentage of studies considering the MOA per hazard, i.e., genotoxic, non-genotoxic, or
the authors reviewed studied both effects.

The findings show that the deterministic approach is the most frequently chosen
option (see Table 6). This fact may be due to the advantages of this type of approach, such
as its simple calculations and speed. Personnel do not need to be experts in risk analysis,
and the results are usually sufficient for internal safety management [196]. However, for
the genotoxic effects, the authors who assessed the risk characterisation of acrylamide,
with the ratio and the risk, and the risk of mycotoxins, opted for a probabilistic approach
with a higher percentage. An equal percentage was found in manuscripts that assessed
the ratio and risk of metals. These findings may be related to the fact that more and more
scientific papers need better realistic estimates that consider the entire distribution of model
parameters. The main limitation here is that some input variables remain fixed in practice,
so probabilistic and deterministic features appear in all models.

Focusing on hazards, 66.7% of the publications calculated the pesticide risk, and
33.3% assessed the ratio, Table 12. Risk was the most used option for metals (92.9%). The
ratio was calculated in 58.9% of the publications on mycotoxins, while 37.5% calculated the
ratio and the risk. In acrylamide, the ratio was calculated in 61.5% of the cases. The PAH
risk was assessed using risk (43.1%), ratio (31.4%), and both metrics (25.5%).

Table 12. Percentage of publications considering the MOA, risk characterisation metric, hazard,
and approach.

Hazard
Non-Genotoxic Genotoxic
Ratio Ratio and Risk Ratio Risk
% %D %P % %D %P % %D %P % %D %P

Pesticides 100 83.6 16.4 - - - 33.3 100 - 66.7 60 40
Metals 100 82.7 17.3 2.4 50 50 4.7 75 25 92.9 83.5 16.5
Mycotoxins 100 81.5 18.5 37.5 71.4 28.6 58.9 83.9 16.1 7.1 25 75
Acrylamide 100 61.5 38.5 11.5 - 100 61.5 81.3 18.8 26.9 71.4 28.6
PAHs 100 80 13.3 25.5 61.5 38.5 31.4 87.5 12.5 43.1 72.7 27.3
Total 100 82 18 15.4 61.5 38.5 37.3 84.7 15.3 47.4 77 23

D = Deterministic approach and P = Probabilistic approach.
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5. Conclusions

The development and application of risk assessment in different scientific fields world-
wide has given rise to a wide variety of terms used for the same concepts. The present
work analysed the terminology and formulations gathered from the field of risk characteri-
sation of pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons
(PAHs), and reached the following conclusions.

The MOA of the chemical hazard determines the formulation used in risk characteri-
sation. The ratio between the exposure and an RV is the only mathematical model used for
non-genotoxic effects. This metric provides information on the level of concern. The most
used ratios are the HQ for a single hazard and the HI for the cumulative effect of several
hazards. For genotoxic effects, a margin and/or a risk can be calculated to characterise
the risk. In the first case, the MOE is the author’s preferred metric in the literature review.
Many studies highlight that using different RVs in the equations makes it difficult to com-
pare the results. On the other hand, the metric adopted to characterise the risk of these
genotoxic-chemical hazards is the cancer risk.

A deterministic approach is generally preferred to characterise risks, although differ-
ences can be found depending on hazards and metrics. Thus, a probabilistic approach is
mainly used in the acrylamide articles when risk and ratio metrics are calculated. The same
was true for mycotoxin studies when only a risk metric is calculated.

Based on the results found in the publications of international organisations and
researchers, there appears to be a majority consensus on the parameters of risk charac-
terisation and their formulation. This is why authors bring the following proposal for
harmonisation: (1) exposure assessment is to be referred to as EDI (estimated daily in-
take); (2) the risk characterisation of a single non-genotoxic hazard uses the HQ (hazard
quotient) metric and the HI (hazard index) for cumulative effect; (3) when a margin is
used to characterise the risk of a single genotoxic hazard, the MOE (margin of exposure)
metric combined with the POE (probability of exceedance) is to be selected, and when a
risk metric is used in this context, the CR (cancer risk) measure is to be adopted, which,
in turn, should be obtained using the CSF (cancer slope factor); (4) wherever possible,
a probabilistic approach should be adopted for risk characterisation studies to take into
account the effect of uncertainties in the quantification of parameters.
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139. Zioła-Frankowska, A.; Karaś, K.; Mikołajczak, K.; Kurzyca, I.; Kowalski, A.; Frankowski, M. Identification of metal (loid) s
compounds in fresh and pre-baked bread with evaluation of risk health assessment. J. Cereal Sci. 2021, 97, 103164. [CrossRef]
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risk assessment of aflatoxin m1 for children aged 1 to 9 years old in Serbia. Nutrients 2021, 13, 4450. [CrossRef]
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291. Hajok, I.; Kowalska, A.; Piekut, A.; Ćwieląg-Drabek, M. A risk assessment of dietary exposure to ochratoxin A for the Polish
population. Food Chem. 2019, 284, 264–269. [CrossRef]

292. Kabak, B. Aflatoxins in foodstuffs: Occurrence and risk assessment in Turkey. J. Food Compos. Anal. 2021, 96, 103734. [CrossRef]
293. Kholif, O.T.; Sebaei, A.S.; Eissa, F.I.; Elhamalawy, O.H. Determination of aflatoxins in edible vegetable oils from Egyptian market:

Method development, validation, and health risk assessment. J. Food Compos. Anal. 2022, 105, 104192. [CrossRef]
294. Li, Y.; Wang, J.; Li, J.; Sun, X. An improved overall risk probability-based method for assessing the combined health risks of

chemical mixtures: An example about mixture of aflatoxin B1 and microcystin LR by dietary intake. Food Chem. Toxicol. 2020,
146, 111815. [CrossRef] [PubMed]

295. Nugraha, A.; Khotimah, K.; Rietjens, I.M. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in
Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food Chem. Toxicol. 2018, 113, 134–144.
[CrossRef]

296. Ojuri, O.T.; Ezekiel, C.N.; Sulyok, M.; Ezeokoli, O.T.; Oyedele, O.A.; Ayeni, K.I.; Eskola, M.K.; Šarkanj, B.; Hajšlová, J.; Adeleke,
R.A.; et al. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in
Nigeria. Food Chem. Toxicol. 2018, 121, 37–50. [CrossRef] [PubMed]

297. Adetunji, M.C.; Alika, O.P.; Awa, N.P.; Atanda, O.O.; Mwanza, M. Microbiological quality and risk assessment for aflatoxins in
groundnuts and roasted cashew nuts meant for human consumption. J. Toxicol. 2018, 2018, 1308748. [CrossRef] [PubMed]

298. Cunha, S.C.; Sa, S.V.; Fernandes, J.O. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food
Chem. Toxicol. 2018, 114, 260–269. [CrossRef] [PubMed]

299. Kong, D.; Wang, G.; Tang, Y.; Guo, M.; Khan, Z.U.H.; Guo, Y.; Gu, W.; Ma, Y.; Sui, M.; Li, J.; et al. Potential health risk of areca nut
consumption: Hazardous effect of toxic alkaloids and aflatoxins on human digestive system. Food Res. Int. 2022, 162, 112012.
[CrossRef] [PubMed]

300. Oyedele, O.A.; Ezekiel, C.N.; Sulyok, M.; Adetunji, M.C.; Warth, B.; Atanda, O.O.; Krska, R. Mycotoxin risk assessment for
consumers of groundnut in domestic markets in Nigeria. Int. J. Food Microbiol. 2017, 251, 24–32. [CrossRef]

301. Pongpraket, M.; Poapolathep, A.; Wongpanit, K.; Tanhan, P.; Giorgi, M.; Zhang, Z.; Li, P.; Poapolathep, S. Exposure assessment of
multiple mycotoxins in black and white sesame seeds consumed in Thailand. J. Food Prot. 2020, 83, 1198–1207. [CrossRef]

302. Qin, M.; Liang, J.; Yang, D.; Yang, X.; Cao, P.; Wang, X.; Ma, N.; Zhang, L. Spatial analysis of dietary exposure of aflatoxins in
peanuts and peanut oil in different areas of China. Food Res. Int. 2021, 140, 109899. [CrossRef] [PubMed]

303. Wang, X.; Lien, K.W.; Ling, M.P. Probabilistic health risk assessment for dietary exposure to aflatoxin in peanut and peanut
products in Taiwan. Food Control 2018, 91, 372–380. [CrossRef]

304. Celik, D.; Kabak, B. Assessment to propose a maximum permitted level for ochratoxin A in dried figs. J. Food Compos. Anal. 2022,
112, 104705. [CrossRef]

305. Quiles, J.M.; Saladino, F.; Mañes, J.; Fernández-Franzón, M.; Meca, G. Occurrence of mycotoxins in refrigerated pizza dough and
risk assessment of exposure for the Spanish population. Food Chem. Toxicol. 2016, 94, 19–24. [CrossRef] [PubMed]

https://doi.org/10.1016/j.fct.2020.111455
https://doi.org/10.1016/j.foodcont.2021.107991
https://doi.org/10.3390/nu13124450
https://doi.org/10.1016/j.foodcont.2018.03.012
https://doi.org/10.1016/j.foodcont.2017.04.021
https://doi.org/10.1016/j.jfca.2021.104122
https://doi.org/10.1016/j.toxrep.2019.09.009
https://www.ncbi.nlm.nih.gov/pubmed/31673499
https://doi.org/10.1016/j.fct.2018.09.054
https://www.ncbi.nlm.nih.gov/pubmed/30266314
https://doi.org/10.1016/j.foodcont.2020.107108
https://doi.org/10.3390/toxins13090635
https://doi.org/10.1016/j.etap.2022.103847
https://doi.org/10.1016/j.foodchem.2019.01.101
https://doi.org/10.1016/j.jfca.2020.103734
https://doi.org/10.1016/j.jfca.2021.104192
https://doi.org/10.1016/j.fct.2020.111815
https://www.ncbi.nlm.nih.gov/pubmed/33157167
https://doi.org/10.1016/j.fct.2018.01.036
https://doi.org/10.1016/j.fct.2018.08.025
https://www.ncbi.nlm.nih.gov/pubmed/30118820
https://doi.org/10.1155/2018/1308748
https://www.ncbi.nlm.nih.gov/pubmed/30046306
https://doi.org/10.1016/j.fct.2018.02.039
https://www.ncbi.nlm.nih.gov/pubmed/29458161
https://doi.org/10.1016/j.foodres.2022.112012
https://www.ncbi.nlm.nih.gov/pubmed/36461237
https://doi.org/10.1016/j.ijfoodmicro.2017.03.020
https://doi.org/10.4315/JFP-19-597
https://doi.org/10.1016/j.foodres.2020.109899
https://www.ncbi.nlm.nih.gov/pubmed/33648201
https://doi.org/10.1016/j.foodcont.2018.04.021
https://doi.org/10.1016/j.jfca.2022.104705
https://doi.org/10.1016/j.fct.2016.05.011
https://www.ncbi.nlm.nih.gov/pubmed/27222027


Foods 2024, 13, 714 40 of 43

306. Mitchell, N.J.; Chen, C.; Palumbo, J.D.; Bianchini, A.; Cappozzo, J.; Stratton, J.; Ryu, D.; Wu, F. A risk assessment of dietary
Ochratoxin a in the United States. Food Chem. Toxicol. 2017, 100, 265–273. [CrossRef]

307. Zhang, W.; Liu, Y.; Liang, B.; Zhang, Y.; Zhong, X.; Luo, X.; Huang, J.; Wang, Y.; Cheng, W.; Chen, K. Probabilistic risk assessment
of dietary exposure to aflatoxin B1 in Guangzhou, China. Sci. Rep. 2020, 10, 7973. [CrossRef]

308. Basaran, B.; Anlar, P.; Oral, Z.F.Y.; Polat, Z.; Kaban, G. Risk assessment of acrylamide and 5-hydroxymethyl-2-furfural (5-HMF)
exposure from bread consumption: Turkey. J. Food Compos. Anal. 2022, 107, 104409. [CrossRef]

309. Eslamizad, S.; Kobarfard, F.; Tsitsimpikou, C.; Tsatsakis, A.; Tabib, K.; Yazdanpanah, H. Health risk assessment of acrylamide in
bread in Iran using LC-MS/MS. Food Chem. Toxicol. 2019, 126, 162–168. [CrossRef]

310. Yazdanpanah, H.; Kobarfard, F.; Tsitsimpikou, C.; Eslamizad, S.; Alehashem, M.; Tsatsakis, A. Health risk assessment of
process-related contaminants in bread. Food Chem. Toxicol. 2022, 170, 113482. [CrossRef]

311. El-Zakhem Naous, G.; Merhi, A.; Abboud, M.I.; Mroueh, M.; Taleb, R.I. Carcinogenic and neurotoxic risks of acrylamide
consumed through caffeinated beverages among the lebanese population (Open Access). Chemosphere 2018, 208, 352–357.
[CrossRef] [PubMed]

312. Ofosu, I.W.; Ankar-Brewoo, G.M.; Lutterodt, H.E.; Benefo, E.O.; Menyah, C.A. Estimated daily intake and risk of prevailing
acrylamide content of alkalized roasted cocoa beans. Sci. Afr. 2019, 6, e00176. [CrossRef]

313. Nguyen, K.H.; Nielsen, R.H.; Mohammadifar, M.A.; Granby, K. Formation and mitigation of acrylamide in oven baked vegetable
fries. Food Chem. 2022, 386, 132764. [CrossRef]

314. Zhu, B.; Xu, X.; Ye, X.; Zhou, F.; Qian, C.; Chen, J.; Zhang, T.; Ding, Z. Determination and risk assessment of acrylamide in
thermally processed Atractylodis Macrocephalae Rhizoma. Food Chem. 2021, 3521, 129438. [CrossRef] [PubMed]

315. Seilani, F.; Shariatifar, N.; Nazmara, S.; Khaniki, G.J.; Sadighara, P.; Arabameri, M. The analysis and probabilistic health risk
assessment of acrylamide level in commercial nuggets samples marketed in Iran: Effect of two different cooking methods.
J. Environ. Health Sci. Eng. 2021, 19, 465–473. [CrossRef] [PubMed]

316. Cortés, W.R.B.; Mejía, S.M.V.; Mahecha, H.S. Consumption study and margin of exposure of acrylamide in food consumed by the
Bogotá population in Colombia. J. Food Compos. Anal. 2021, 100, 103934. [CrossRef]

317. Chiu, S.Y.; Lin, H.T.; Ho, W.C.; Lin, M.H.; Chen, P.C.; Huang, H.Y. Application of food description to the food classification system:
Evidence of risk assessment from Taiwan as Acrylamide of grain products. J. Food Drug Anal. 2018, 26, 1312–1319. [CrossRef]
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