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Abstract

Volume visualization enables extracting meaningful information from volumetric data, using
computer graphics and imaging techniques. This text explores a rendering pipeline that allows the
representation and exploration of such datasets.

The idea is to create an application that can read in this type of data, load it onto the graphics
card, and visualize it interactively. This generally involves the use of transfer functions tomapRGBa
color tuples to the discrete values of the dataset, as well as the simulation of a virtual environment.

Such software programs are especially useful in the biomedical field. However, they offer appli-
cations in numerous other fields, such as geology, archeology, material science (for quality control)
and computational science and engineering.

Keywords: scientific visualization, medical imaging, computer graphics, parallel programming,
shaders.

Resumen

La visualización de volúmenes permite extraer información significativa de datos volumétricos,
utilizando técnicas de gráficos por ordenador y procesamiento de imágenes. En este texto se ex-
plorará un pipeline de renderizado que posibilita la representación y exploración de tales conjuntos
de datos.

La idea es realizar una aplicación que permita leer este tipo de datos, cargarlos en la tarjeta
gráfica y, haciendo uso de técnicas propias de informática gráfica, visualizarlos de forma interac-
tiva. Esto supone la utilización de funciones de transferencia para mapear tuplas de color RGBa a
los valores discretos del conjunto, así como la simulación de un entorno virtual.

Este tipo de programas informáticos son especialmente útiles en el campo biomédico, siendo
comunes entre radiólogos y otros especialistas. No obstante, ofrecen soluciones extrapolables a
numerosos campos, como la geología, la arqueología, la ciencia de materiales (para el control de
calidad) y la ciencia e ingeniería computacional.

Palabras clave: visualización científica, imagen médica, informática gráfica, programación
paralela, shaders.



Resum

La visualització de volums permet extraure informació significativa de dades volumètriques,
utilitzant tècniques de gràfics per ordinador i processament d’imatge. En aquest text s’explorarà
un pipeline de renderització que possibilita la representació i exploració d’aquests conjunts de
dades.

L’objectiu és realitzar una aplicació que permeta llegir aquest tipus de dades, carregar-les en la
targeta gràfica i, fent ús de tècniques pròpies de la informàtica gràfica, visualitzar-les de manera
interactiva. Això suposa la utilització de funcions de transferència per mapar tuples de color RGBa
als valors discrets del conjunt, així com la simulació d’un entorn virtual.

Aquest tipus de programes informàtics són especialment útils en el camp biomèdic, sent co-
muns entre radiòlegs i altres especialistes. No obstant això, ofereixen solucions extrapolables a
nombrosos camps, com la geologia, l’arqueologia, la ciència de materials (per al control de quali-
tat) i la ciència i enginyeria computacional.

Paraules clau: visualització científica, imatge mèdica, informàtica gràfica, programació parallela,
shaders.
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Chapter 1

Introduction

In the last couple decades, significant advancements in computing technology have revolution-
ized the field of volume visualization, once confined to specialized medical institutions and uni-
versities, due to its intensive computational requirements. With the proliferation and availability
of multi-core microprocessor architectures and, more importantly, the development of dedicated
Graphics Processing Units, several methods have been devised to take advantage of massive par-
allel code execution. As a result, interactive and high-quality volume rendering has become com-
monplace across various scientific disciplines. This transformation has been fueled, in part, by
the widespread adoption of medical imaging technologies like Computed Tomography (CT), which
now facilitate easier and more cost-effective acquisition of volumetric data.

Consequently, there has been a surge in demand for sophisticated visualization software ca-
pable of leveraging hardware-accelerated rendering and enhanced user interaction. This has led
to both full-scale commercial and open-source solutions, such as Inviwo, MeVisLab, OsiriX DICOM
Viewer, The Visualization Toolkit (VTK) or InVesalius.

These solutions are especially useful in the medical field, being common among radiologists
and other specialists. However, they also offer applications to other areas, such as material and
environmental sciences and fluid dynamics. As an example, oil explorations tend to rely on volume
visualizations of geoseismic data to pinpoint the right spot for perforation.

1.1 Motivation

The idea of turning complex information into visible form has always been of human interest and
employed for millennia, dating back to the Upper Paleolithic era, as illustrated in Fig. 1.1.

Leonardo Da Vinci’s sketches (see Fig. 1.1) showcase his exploration of the human body and
the world, and while the basis strategy may differ greatly compared to the ones described in this
text, the underlying goal remains the same: to convey/portray information clearly and effectively
through graphical means.

1



2 Introduction

(a) At least 40,800 years old. (b) Circa 1489.

Figure 1.1: (a): Stag depiction in Cave of the Castle, in Cantabria, Spain. (b): ”View of a skull”, by
Leonardo Da Vinci.

However, this process does not entirely align with the modern concept of visualization. As it
stands, it is no longer only about documenting existing knowledge, but also a way to gain new one.
Visualizations are key for the comprehension and interpretation of scientific datasets. They are
used as a means to gain insight and better understanding over the data in question.

Even though data typically has inherent structures, there are often specific ways in which it
is most naturally explored. To achieve this, several approaches have been proposed: classifica-
tion according to a subset of features, different rendering primitives (points, triangles, lines and
voxels), projection methods (backwards and forwards), rendering styles (photorealistic and non-
photorealistic) and even new user interaction metaphors for improved Focus+Context [1].

1.2 Proposal and objectives

This work aims to address these challenges by developing a desktop software application capa-
ble of interactive, high-quality volume rendering at real-time frame rates, with a special emphasis
on medical imaging data. Our research topics will include the exploration of GPU-based volume
rendering strategies, appropriate data classification and several optimization techniques.

Breaking down the main objective into smaller, more manageable tasks can help shape a clear
working direction:

• Study and analyze state of the art in real-time volume rendering.

• Understand common medical imaging formats.

• Learn modern software development practices and standard industry tools.

• Get acquainted with the programmable graphics pipeline.

• Learn a graphics API.
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• Familiarization with graphics debuggers.

• Validation and usability testing.

1.3 Document outline

• Chapter 2: State of the art
Volume rendering is a broad and well-researched field. This chapter gives a brief overview of
the notions behind it, and references some seminal academic publications.

• Chapter 3: Problem statement and requirements
This chapter outlines the specific problem/s addressed by this work, listing out a number of
relevant use cases.

• Chapter 4: Design
Here, we explore the methodology, design choices and rationale behind the application; de-
vising both UI/UX and software development strategies.

• Chapter 5: Implementation
This chapter delves into the ins and outs of the development process: technologies used,
in-depth algorithm descriptions, relevant code snippets and challenges faced.

• Chapter 6: Results and evaluation
This chapter presents and analyzes the outcome, comparing images side by side and cover-
ing usability concerns.

• Chapter 6: Conclusions
Finally, we summarize our findings, discuss their implications, note any limitations and sug-
gest future lines of improvement and research.
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Chapter 2

State of the art

Initially, volume datasets were explored by viewing consecutive data slices. Soon after, attempts
weremade to extract three-dimensional structures [2]. While early research focused on iso-surface
extraction [3], the introduction of Direct Volume Rendering by Drebin et al. [4] and Levoy [5] first
demonstrated the advantages of rendering from the volumetric representation itself, i.e., their inner
structure.

Since then, a vast amount of research has been devoted to this area. In 1993, Cullip and Neu-
mann pioneered the first hardware-accelerated object-order direct volume rendering algorithm [6],
which involves rendering slices of the volume using proxy geometry. Shear-warp factorization, by
Lacroute and Levoy [7], presented a fast CPU method that also traversed the volume in a slice-by-
slice fashion, but transformed it into a sheared space prior to applying axonometric projection onto
a base plane and warping it for image generation. Krüger et al. [8] built upon these advancements,
further improving the efficiency and quality of GPU-based volume rendering, by implementing ray-
casting in the programmable graphics pipeline, while also integrating acceleration techniques.

Volume raycasting, sometimes referred to as volume raymarching, has remained a staple in
real-time volume rendering since its inception, with a lot of the academic effort going towards op-
timized spatial data structures to store and index voxels, automatic transfer functions and hybrid
rendering strategies. In recent years, new paradigms have emerged, namely radiance fields and
3D Gaussian Splatting [9], prompted by the Novel View Synthesis and 3D Reconstruction commu-
nities. NeRF [10] presented a differentiable volume rendering formula to train a coordinate-based
multilayer perceptron in order to directly predict color and opacity values. Plenoxels [11] introduced
a voxel-based pipeline that reconstructs said fieldswithout neural networks by using implicit neural
functions to conduct volume rendering.

2.1 Light and Participating Media

From a physical standpoint, light is a form of electromagnetic radiation characterized by a contin-
uous range of wavelengths (λ) and frequencies (ν), with the relationship given by:

c = λν, (2.1)

5



6 State of the art

where c is the speed of light in a vacuum. More importantly, it corresponds to the wavelength range
that is visible to the human eye (400 nm to 700 nm) in the band of the electromagnetic spectrum
(see Fig. 2.1).
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Figure 2.1: Pure spectral colors (Courtesy of Wikipedia).

2.1.1 Interactions between Light and Matter

Visible light interactswithmatter in variousways. When a light wavewith a single frequency strikes
an object, a number of things could happen:

• Absorption: energy is absorbed by the medium, converting it to heat.

Matter is made up of atoms and/or molecules, depending on the substance in question. Ul-
timately though, both contain electrons which have a natural frequency. When a light wave
with the same frequency impinges upon an atom, these electrons get excited and set into vi-
brational motion (resonance), by effectively absorbing the wave’s energy. The Beer-Lambert
law describes the decrease in light intensity I as it travels through an absorbingmedium over
distance z:

I(z) = I0e
−κz. (2.2)

• Scattering: energy interacts with the medium changing the direction of light propagation.

If the wavelength is not changed, i.e., the photon does not undergo a change in energy, the
process is called elastic scattering. Conversely, if it does it is called inelastic scattering. Note
that for the remainder of this text we assume the latter.

Scattering can be classified into:

– In-scattering: light scattered towards the observer.

– Out-scattering: light scattered away from the observer.

• Transmission: energy passes through the medium without being absorbed or scattered.

When the aforementioned frequencies do notmatch up, the electrons instead vibrate for brief
periods of time with small amplitudes, reemitting the absorbed energy as a light wave. If the
object is transparent the vibrations of the electrons get passed on to those of neighbouring
atoms through the bulk of the material.

• Reflection: energy bounces off the medium without being absorbed.

If the object is opaque, the vibrations do not get passed on from atom to atom. Rather the
electrons of atoms on thematerial’s surface vibrate and reemit the energy as a reflected light
wave.
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Participating media are materials that interact with light through emission, absorption and/or
scattering (see Fig. 2.2). Examples include fog, clouds, fire, smoke and even clean air to some
extent.

Figure 2.2: Interactions between light and participating media that affect radiance.

2.1.2 Radiative Transfer and Optical Models

Light energy can be described by the measure of radiance I , that is, the amount of radiant flux. It
is defined as radiative energy Q per projected unit area A, per solid angle Ω, and per unit of time t:

I =
dQ

dAdΩ cos θ dt , (2.3)

where Q is the radiant flux, A is the area, Ω is the solid angle, and θ is the angle between the light
direction of interest and the surface normal vector.

Radiance is the fundamental quantity for light transport in computer graphics, as it does not
change along a light ray in a vacuum. Absorption, emission and scattering all affect radiative en-
ergy, so the presence of a participating medium changes radiance levels. The distribution of radi-
ance in volumes is defined by the radiative transfer equation (RTE), defined by Chandrasekhar in
1950. It describes the equilibrium radiance field parametrized by position and direction.

By 1984, Kajiya [12] had already demonstrated the feasibility of simulating light transport in
participatingmedia using ray tracing. This seminalwork laid the groundwork for understanding and
rendering the complex interactions between light and volumetric materials, introducing methods
to calculate the attenuation of light within the volume due to absorption and scattering.

Prior to rendering a translucent volume, it is necessary to understand how it interacts with
light [13]. For this purpose, optical models are used to describe the behaviour of light within the
volume. They are crucial to achieve accurate and realistic visualizations, providing amathematical
framework to simulate light transport.

2.1.3 Volume-Rendering Integral

During the rendering process, the optical model assigns specific optical properties, such as color
andopacity, to each voxel. Themostwidely usedmodel for Direct VolumeRendering is the emission-
absorption optical model, which leads to the volume-rendering integral:
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I(D) = I0e
−

∫D
S0

k(t) dt
+

∫ D

S0

q(s)e−
∫D
s k(t) dt ds (2.4)

Here, k represents the absorption coefficient, which determines howmuch light is absorbed by
the medium, and q describes the emission coefficient, which accounts for the light emitted by the
medium. The integrals compute the cumulative absorption and emission along the entry point S0

into the volume to the exit point D towards the camera.

• The term I0e
−

∫D
S0

k(t) dt represents the initial light intensity I0 attenuated by absorption as it
travels through the medium.

• The integral term
∫ D
S0

q(s)e−
∫D
s k(t) dt ds represents the contribution of light emitted within the

medium, where each point s along the path emits light q(s) that is also attenuated as it travels
to the exit point D.

In more complex models, additional are considered to account for light scattering effects such
as shadows. These factors further refine the model, enhancing the realism of the rendered image
[14].

2.1.4 Compositing schemes

The optical properties are accumulated along each viewing ray to form a 2D projection of the 3D
volume data. The accumulated color and opacity are computed according to the discrete volume
rendering equation:

C =
n∑

i=1

Ci

i−1∏
j=1

(1−Aj) (2.5)

A = 1−
n∏

j=1

(1−Aj) (2.6)

In these equations,Ci andAi represent the color and opacity of the voxel at sample i. The opac-
ity Ai evaluates the absorption, while the color Ci approximates the emission, which is weighted
by the opacity Ai. Because this equation is a numerical approximation of the continuous optical
model, as described by the volume-rendering integral, the sampling rate and the length of the ray
segment between sample i and sample i + 1 greatly influence the accuracy of the approximation
and the quality of the rendering.

Compositing is the process by which samples with the optical properties assigned during data
classification and shading are integrated along viewing rays. The theoretical form of the volume-
rendering integral [15] is given by:

Iλ(x, r) =

∫ L

0
Cλ(s)µ(s)e

−
∫ s
0 µ(t) dt ds, (2.7)

where Iλ(x, r) is the amount of light of wavelength λ coming from ray direction r that is received at
location x on the image plane. Here,L is the length of the ray r,Cλ(s) is the light of wavelength λ re-
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flected and/or emitted at location s in the direction of r, µ(s) is the density at s, and the exponential
is an attenuation function.

Since the volume rendering integral cannot generally be computed analytically, it is often ap-
proximated by a Riemann sum of the emitted and absorbed light in intervals i of width ∆s:

Iλ(x, r) ≈
L/∆s∑
i=0

Cλ(si)α(si)

i−1∏
j=0

(1− α(sj)) (2.8)

In this approximation, the density µ is substituted by the opacity α, and the exponential function
is approximated by a Taylor series. The opacity must be normalized if ∆s ̸= 1.

From this approximation, we derive the familiar compositing equations. In front-to-back order,
these equations are:

C ′
i = C ′

i−1 + (1−A′
i−1)Ci (2.9)

A′
i = A′

i−1 + (1−A′
i−1)Ai (2.10)

This approach allows for an optimization called early ray termination, which cuts off a ray once
the accumulated opacity (or remaining transparency) reaches a threshold where further contribu-
tions are negligible, i.e., 0.99 (or 0.01).

In back-to-front order, it is not necessary to keep track of accumulated opacity:

C ′
i = Ci + (1−Ai)C

′
i+1 (2.11)

This method simplifies the algorithm but does not allow for early ray termination.
Besides compositing, other combining functions can be used. One popular alternative is max-

imum intensity projection (MIP), which retains the sample with the highest intensity value.

2.2 Data acquisition and representation

The first stage of any visualization pipeline refers to the gathering of data, namely data acquisition.
There are multiple methods and devices to generate volumetric data, but they all fall within one of
two categories: measured or procedural. The former refers to the result of somehow sampling real
objects or natural phenomena. The latter comes from scientifc computer simulations that model
a participating medium by a computer simulation or geometric model.

Volume datasets are three-dimensional structures that represent spatially distributed informa-
tion. More specifically, it can be understood as a continuous scalar field, which can be written as
a mapping

φ : R3 → R, (2.12)

i.e., a function from euclidean 3D space into a single-component real value. This is an ideal con-
ceptual model for mathematical analysis, providing an exact value at any point in the volume that
offers infinite precision and resolution.
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In a practical context, due to computational limits such as processing power and storage, these
continuous fields are approximated by discrete representations, typically defined on a regular grid
(see Fig. 2.3). Here, the 3D space is divided into small, finite-sized cells. An individual cell is usually
refered to as a voxel [16] [17], and a single value represents the data within each voxel. Note that
this discretization introduces a small tolerance, described by the machine epsilon (ϵ).

Figure 2.3: Volume dataset representation, given on a discrete uniform grid (Hadwiger et al., 2006).

2.2.1 Measured Data

Most volumedatasets contain information from real-world objects or phenomena, captured through
some sort of scanning device. This includes data of vastly differently form, size and content, from
the physiology of a patient’s anatomy to the structure of amechanical piece (industrial-CT) or some
physical property in the micro world.

2.2.1.1 Medical Imaging

One of the earliest scientific fields to adopt volume visualization was medical imaging, which is to
this day, one of the primary use cases for volume rendering.

Medical image data is usually represented as a stack of individual images, where each image
represents a thin, cross section slice of the scanned body part (volume), composed of individual
pixels. These are arranged on a cartesian or uniform 2D grid, where the distance between any two
pixels is typically constant regardless of direction. That is, the vertical and horizontal directions
have identical distances, the so-called pixel distance. This simplifies the calculation of the actual
position by multiplying the respective distance value with the respective pixel index direction. If
we assume i indexes the horizontal x position and j indexes the vertical y position, the position of
pixel Pi,j is easily determined. Fig. 2.4 describes this particular 2D image-space / 3D object-space
grid arrangement conversion. Notice how there is no need to index the depth z position, since it is
projected onto the 2D grid (flattened image plane).
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Figure 2.4: Left:2D grid, image pixels on the grid points. Right: 3D grid, individual voxels on the grid
points (Courtesy of Dirk Bartz, University of Leipzig).

There exist several specific acquisition methods and devices, known as modalities. In this
chapter we shall focus on tomographic imaging modalities, more specifically on CT and MRI data.

Computed Tomography (CT), including its variants like Positron Emission Tomography (PET)
and Single Photon Emission Computed Tomography (SPECT), utilizes X-rays from multiple angles
to create detailed 3D images. CT is effective in identifying boundaries between different materials,
such as bone and muscle, but struggles with distinguishing similar tissues.

Magnetic Resonance Imaging (MRI) uses strong magnetic fields to align proton magnetic mo-
ments in the body. When the field is removed, the protons emit energy as photons, which are
detected by the scanner. This method excels at differentiating similar-density tissues, like brain
tissue and cerebrospinal fluid, depending on the scanning parameters.

Hybrid PET/CT and PET/MRI scanners highlight the advantages of combining different imaging
technologies to address various diagnostic needs. By integrating the strengths of each modality,
including advancements like High-field MRI, these scanners provide comprehensive diagnostic in-
formation and improved accuracy, enabling clinicians to answer a wide range of clinical questions
effectively.

2.2.1.2 Hounsfield scale

The Hounsfield scale, named after Sir Godfrey Hounsfield, is a quantitative measure used in CT
scans to describe the radiodensity of materials. It is defined such that the radiodensity of distilled
water at standard conditions for pressure and temperature is set to 0 Hounsfield units (HU), while
the radiodensity of air under the same conditions is set to -1000 HU. It facilitates the comparison
of different tissues’ densities by converting the linear attenuation coefficients measured by CT
scanners into standardized units (see Fig. 2.5). For instance, bone typically appears with high
positiveHU values, while fat has negative values, and soft tissues like organs have values near zero.
This standardized approach is critical in medical imaging, particularly for precise applications like
radiotherapy treatment planning, ensuring consistency and accuracy across different scans and
equipment.
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(a) Visual depiction of CT-number mappings. (b) Human body tissues.

Figure 2.5: Hounsfield scale.

2.2.2 Procedurally Simulated Data

Alternatively, datasetsmay also be procedurally synthesized through computer algorithms, accord-
ing to somemathematical function. These can be used for testing purposes, when real-world data
is not available, or for physical simulations such as computational fluid dynamics or geological
subsurface layers.

It is even possible to model fuzzy, undefined boundary objects. This is especially useful for
depicting pockets of gas like gaseous atmospheric phenomena. In fact, several state-of-the-art
videogames feature volumetric clouds, fog or lighting. While someof these effects can be achieved/-
faked by traditional polygonal geometry, their volume rendered counterpart usually ends up being
more realistic (Schpok et al., 2003) [18].

2.3 Sampling and Filtering

As it has already been stated, in practical applications volume data takes a discretized form, such
as a uniform or tetrahedral grid. Therefore, volume rendering is performed using numerical approx-
imation, i.e., approximating integrals with Riemann sums.

The integral of a function along a ray can be approximated by summing up the function’s values
at discrete sample points, weighted by the interval between samples (the step size).

I ≈
N∑
i=1

f(xi)∆x (2.13)

Here, I is the integral, f(xi) is the value of the volume data at the i-th sample point, and ∆x is the
distance between sample points.

2.3.1 Nyquist-Shannon Theorem

The Nyquist-Shannon sampling theorem, which is a fundamental principle in the field of digital
signal processing, can be stated mathematically as follows:
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fs ≥ 2B (2.14)

Here, fs is the sampling frequency (the number of samples per second), andB is the bandwidth
of the signal (the highest frequency contained in the signal).

This theorem can also be expressed in terms of the signal reconstruction:

x(t) =

∞∑
n=−∞

x(nT ) sinc
(
t− nT

T

)
(2.15)

In this equation:

• x(t) is the original continuous signal.

• x(nT ) are the sampled values of the signal at intervals of T = 1
fs
.

• sinc(x) is known as the sampling function, defined as sinc(x) = sin(πx)
πx .

2.3.2 Signal Reconstruction

Discretization leads to the issue of reconstructing the function φ of (2.12) on all points in the 3D
domain. Data values are generally available as samples on a grid. When data is needed at non-grid
points, their values must somehow be estimated from the surrounding grid points. To accurately
do so, interpolation is necessary.

Uniform grids facilitate tensor-product reconstructions, which are particularly useful for imple-
menting efficient and effective interpolation methods. One common approach is the 3D tensor-
product reconstruction filter, especially for linear interpolation. This method interpolates data by
considering the contribution of adjacent grid points along each dimension. Specifically, trilinear
interpolation (see Fig. 2.6), a form of tensor-product interpolation, performs linear interpolation
along each axis sequentially.

Figure 2.6: Trilinear interpolation depiction in 3D.

Other interpolation methods like cubic splines and gaussian variants offer improved accuracy,
but they do so at the cost of higher computational complexity and the lack of specialized hard-
ware support. This is why modern GPU implementations of Direct Volume Rendering typically use
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hardware-supported trilinear interpolation. It strikes a good balance between quality and complex-
ity. Additionally, using weights such as the bilateral kernel can further enhance results by account-
ing for both spatial and radiometric distances; thus improving the reconstruction’s adaptability to
varying data features.

2.4 Volume Visualization Pipeline

So far, we have discussed data acquisition and data filtering and mentioned seminal methods that
project the 3D scalar data onto a flat, 2D image plane (see Fig. 2.7).

Figure 2.7: Volume Visualization Pipeline.

A very simple and naive way to inspect the data is per axial slices, mapping scalars to intensity
values to form a grayscale image. However, in most cases we want to perform this so-called
projection, as it shows inherent spatial structures that enhance understanding.

2.4.1 Indirect and direct volume visualization

There are two main approaches to rendering a volume:

• Indirect: the volume is reduced to an intermediate surface representation, i.e., a standard
polygonal mesh, which can then be drawn onto the screen by means of rasterization (see
Fig. 2.8).

Figure 2.8: Indirect volume visualization.

• Direct: the volume gets evaluated for an optical model. It is considered as an absorptive,
light-emitting medium. The visual impression is then simulated according to the laws of
physics for each pixel. This is known as direct volume rendering (DVR), and while there are
different computational solvers the most common is volume ray casting / ray marching (see
Fig. 2.9).
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Figure 2.9: Direct volume visualization.

2.4.2 Object-order, image-order and domain-based techniques

Volume rendering techniques can be classified in the following categories:

• Object-order: forward mapping scheme, where each voxel unit is mapped onto the image
plane. Example: splatting.

• Image-order: backward mapping scheme, where rays are cast from each pixel unit in the
image plane through the volume data to determine the final color value.

• Domain-based: the spatial volume data is transformed into some other domain (frequency,
wavelet, etc.) from which the projection is generated.

As a side note, hybrid rendering methods, employing several of the above, are also possible.
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Chapter 3

Problem statement and requirements

In this text we shall explore the development of a small desktop application capable of loading
in volumetric datasets that get passed on to the graphics processing unit to offload rendering
them efficiently in a virtual environment. This entails performing volumetric ray-casting and using
transfer functions to map RGBa tuples to radiodensity values within the volume. These will then
get composited to synthesize the final image. It is often desirable to be able to interact with the
displayed volume, so basic light and camera simulation is also needed.

This type of software is especially useful in the biomedical field, being common among radiol-
ogist and other clinicians. Thus, the emphasis will be on visualization of CT and MRI scans.

In order to have a good user experience some considerations need to be made (beyond UI
design). Low input latency and high frame rates are crucial for attaining a snappy, responsive
application.

3.1 Use cases

Finally, after consulting with some nurses and a doctor, the following use cases have been de-
fined (see Fig. 3.1 to 3.6) as essential functionalities to enhance either visualization, diagnosis or
planning procedures:

Figure 3.1: First use case.

17
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Figure 3.2: Second use case .

Figure 3.3: Third use case.

Figure 3.4: Fourth use case.
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Figure 3.5: Fifth use case.

Figure 3.6: Sixth use case.
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Chapter 4

Design

4.1 UX/UI Prototyping

In this section, we present the prototyping process for the user experience (UX) and user interface
(UI) of the desktop application. First of all, a list of parameters was extracted from the predefined
use cases:

• Rendering mode: selectable for the different types of visualization.

• Step size: ray marching increment distance; it defines how far we should march along the
viewing ray between iterations.

• Density factor: global scalar multiplier that gets applied to all voxels.

• Mid value: density value of interest. It only affects the transfer function mode.

• Range: interval around themid value to use for data classification. It only affects the transfer
function mode.

• Tint color: hue of the volume.

4.1.1 High-fidelity wireframe

The UI consists of a floating window dedicated to adjusting volume rendering parameters. It can
be clicked on and dragged around so as not to have it in the way of the volume. Note that the
application window acts as a canvas, meaning that the synthesized image output gets displayed
on it in real-time.

This design prioritizes simplicity and functionality, providing users with an immersive, non-
intrusive experience that focuses on the visualization. Below is a UI mockup created in Figma
(see Fig. 4.1), demonstrating the overall layout and functionality envisioned for the application:

21
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Figure 4.1: UI mockup.

4.2 Software Development

4.2.1 Methodology

Feature-Driven Development (FDD) was selected as the development framework. FDD is a model-
driven short-iterationmethodology that emphasizes building and delivering features incrementally,
in a structured and predictable manner.

As a solo developer, this approach proves particularly advantageous given the need to effi-
cientlymanage a backlog of featureswithout the need to rely on dailymeetings for communication,
as is usually the case for other agile frameworks like SCRUM.

4.2.2 Software architecture

4.2.2.1 Data and logic decoupling

Inmodern software developmentmodularity, scalability, andmaintainability are paramount. Achiev-
ing these requires a thoughtful design that emphasizes both logic and data decoupling. This allows
for different parts of an application to be developed, updated, and tested independently, reducing
complexity and improving adaptability.

While practices likemaintaining global state are typically discouraged in other types of software
development, they are more often than not used in graphics applications, such as games. For the
most part, some level of coupling is unavoidable, as you are bound to the design choices of the
platform’s SDK or third-party libraries that abstract this away.

Despite this, it is essential to balance these practices with principles that promote modularity
and separation of concerns, ensuring that the overall architecture remains robust and adaptable.
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We settled on a design that is structured around four layers:

• Core: windowing and input event system. It provides the foundation to interact with the
operating system’s SDK.

• Graphics: a set of OpenGL constructs for all computer graphics needs, abstracting and par-
tially automating the rendering process.

• UI: graphical user interface creation and logic.

• App: actions for the application’s logic. It communicates with the other layers.

4.2.2.2 Project structure

A well-structured project can act as a roadmap, guiding developers efficiently to locate files and
components. It is key for organization, clarity and consistency. Fig. 4.2 shows the tree directory
structure for the project.

Figure 4.2: Tree project structure.

• dat: volume datasets.

• res: miscellaneous files, from fonts and images to shader source code.

• src: main source code.

4.2.2.3 Class diagram

Next, we need to define the entities and their relationship between one another (see Fig. 4.3). It
is important to note that this does not strictly follow UML, as our code base somewhat blends
object-oriented and procedural styles, by using a combination of classes, runtime polymorphism
and free functions within namespaces.
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Figure 4.3: Class diagram.

All classes have been color coded according to the layer they belong to:

• Red: app layer.

– App: application instance.

• Green: UI layer.

– UI: creation and management of GUI.

• Blue: core layer.

– Window: window creation and management.

– InputManager: bind actions to input handlers, and input handlers to backend callbacks
(triggered by hardware events).

– InputHandler: polymorphic API to handle input events. It uses std::function (a C++
wrapper for callable objects) and lambdas, making it possible to swap input backends
even at runtime.
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– GLFWInput: bind GLFW callbacks and redirect them to the application input handler.

• Purple: graphics layer.

– VAO, VBO, VBLayout, IBO: vertex array object, vertex buffer object and its layout (stride
attributes), index buffer object. These are necessary for the creation of a fullscreen
quad, so that we have a pixel shader to perform image-order direct volume rendering.

– Shader: shader program to perform volume rendering. It attaches both the vertex shader
source and the fragment shader source.

– Texture3D: volumetric data gets encoded in a three-dimensional scalar field. This maps
nicely to a 3D texture which can be bound to the shader program and passed on to the
GPU.

– Scene: definition of all entities in the environment.

– Camera: orbit camera creation and manipulation (eye transformation).

– VolumeData: NIfTI file deserialization and processing.

– VolumeRenderer: renderer, it connects to the app instance via a user data pointer to
retrieve whatever data it needs to perform direct volume rendering.

4.2.2.4 Entry point

The program’s entry point interacts solely with the app layer, creating an instance of an app from
which to invoke the execution of a frame loop, i.e., the main loop (see Fig. 4.4). The loop itself
orchestrates the creation and management of the window and all other resources, running indefi-
nitely over many frames per second (FPS).

Figure 4.4: Entry point (main.cpp).
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Chapter 5

Implementation

5.1 Tools and technologies

Traditionally, most graphics applications are written in rather low-level programming languages
such as C and C++, since they offer fine-grained control over hardware resources. This is crucial
in graphics programming, where memory management, cache locality and the number of proces-
sor instructions can significantly impact rendering speed. Moreover, these languages support ad-
vanced features such as pointer arithmetic and manual memory management, which are valuable
in optimizing graphics code.

We have chosen C++ 17 as the primary language because it provides modern features which
allow for very flexible high-performance systems with some added code safety. OpenGL has been
picked as the graphics API for its cross-platform support and relative ease of use, compared to
other much more verbose APIs, such as Vulkan and DirectX 12. Therefore, GLSL is also used for
shader code.

Here is a list outlining the entire development environment:

• Version control system: GIT.

• Text editor: GNU Emacs.

• Language Server Protocol: clangd.

• Compiler: MSVC.

• Build system: CMake.

• Package manager: vcpkg.

• Code formatter: clang-format.

• Code linter (static code analysis): clang-tidy.

• Graphical debugger: RAD Debugger.

27
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• Graphics debugger: RenderDoc.

And, the dependencies:

• GLFW: multi-platform desktop windowing, graphics context and input event management.

• GLM: graphics math, especially useful for matrix algebra structures and operations. It is
based on GLSL.

• glbinding: C++ OpenGL function loader.

• nifticlib: C libraries to add NIFTI support, i.e., I/O for binary files storing medical image data.

• Dear ImGui: bloat-free immediate mode graphical user interface library.

• stb: header-only public domain libraries for C/C++. Particularly, stb_image.h, to load PNG
image files.

5.2 Core layer

5.2.1 Windowing

The window creation process involves a bit more than simply opening up a window. First of all, we
initialize GLFWand set an error callback to get errormessages if anythingwere to fail. Secondly, we
initialize a graphics context with OpenGL. By default GLFW may create a context with any version,
yet we may specify a minimum required version. If it is not supported by the current platform,
both context and window creation will fail. We also enable multisample anti-aliasing (MSAA) and
double buffering to avoid flickering. This way we always render to the back buffer and display
the front buffer on screen. At the end of our render call we swap the buffers, such that the back
buffer becomes the front buffer and viceversa. Lastly, we enable VSync (synchronizing the display’s
refresh rate with the graphics card’s frame rate to prevent screen tearing), set the window title and
the window icon with a custom logotype.

Additionally, we store the handle to the window in the user data pointer provided by GLFW, so
that we may access it from anywhere.

5.2.2 Input system

When it comes to the input system, we are faced with a choice: input polling or event-based input.
While both options have their pros and cons, we have gone with the latter as it proves to be a bit
more efficient; only processing input when events happen.

Employing modern C++ concepts such as lambdas and std::function (a wrapper for callable
objects) we achieve a clean and flexible API that relies on runtime polymorphism. This design
makes it trivial to swap backends. For example: replacing GLFWwith SDL for input. It also enables
the definition of actions separate from the callbacks of hardware triggers. Below you may find
some illustrative code extracts.



Implementation 29

1 // Frontend handlers
2 struct InputEventHandlers
3 {
4 std::function <void(KeyEvent e)> onKeyPressed;
5 std::function <void(MButtonPressEvent e)> onMButtonPressed;
6 std::function <void(MCursorMoveEvent e)> onCursorMoved;
7 std::function <void(MScrollEvent e)> onScrolled;
8 };
9

10 // Backend handlers
11 struct GLFWInputHandlers
12 {
13 // Keyboard events
14 std::function <void(const int32_t key, const int32_t scanCode, const

int32_t action,
15 const int32_t mods)>
16 onKeyPress;
17
18 // Mouse events
19 std::function <void(const int32_t button, const int32_t action, const

int32_t mods)>
20 onMouseButtonPress;
21 std::function <void(const double xPos, const double yPos)> onCursorMove;
22 std::function <void(const double xOffset, const double yOffset)> onScroll;
23 };
24
25 inline GLFWInputHandlers glfwInput;
26 inline InputEventHandlers input;

Listing 5.1: Event handlers

1 input.onCursorMoved = [hwnd](MCursorMoveEvent e)
2 {
3 // NOTE(abi): we don't want to modify the 3D view while using the GUI.
4 if (App* app = static_cast <App*>(glfwGetWindowUserPointer(hwnd));
5 app && !ImGui::GetIO().WantCaptureMouse)
6 {
7 app->getScene()->getCamera()->onCursorMove(e.xPos, e.yPos);
8 }
9 };

Listing 5.2: Binding an action to an input handler
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5.3 Graphics layer

5.3.1 Arcball camera

To be able to explore the volume we need a camera. Now, the graphics pipeline is not familiar with
the notion of a camera per se, but we can simulate one through the eye/view matrix. Effectively,
we move all objects in the scene in the reverse direction, giving the illusion of moving.

A simple and intuitive way to explore the volume is to orbit around it. Since it is the only object
in the scene this makes the most sense, such that the camera is always looking at the volume.
We could implement tumbling, which is what many 3D software suites do. However, most imple-
mentations use a virtual sphere whose rotation is not confined to a specific axis, making it nearly
impossible to get precise rotations around global coordinate axes. A nicer alternative is the so-
called arcball camera, presented by Ken Shoemake in 1992 [19].

The arcball camera uses an invisible virtual sphere centered around a pivot or look-at point to
map 2D mouse movements to 3D rotations. The sphere is projected onto the screen as a unit
circle, but only the hemisphere facing the user is used for input, as it represents the part of the
sphere that can be rotated with a single mouse motion. Uponmouse movement, it creates vectors
on the hemisphere (see code snippet below) that are then used to calculate rotation around the
pivot point (see Fig. 5.1). This system has endured the test of time and proved intuitive by the HCI
community.

Figure 5.1: Screen to arcball space.

1 glm::vec3 Camera::screenToArcball(glm::ivec2 point) const
2 {
3 // Screen -> NDC
4 // NOTE(abi): in screen space the origin is at the top-left corner
5 // (Y+ down), so we need to flip it.
6 glm::vec2 pointNDC{
7 2.f * static_cast <float >(point.x) / static_cast <float>(_viewport[0])

- 1.f,
8 -2.f * static_cast <float >(point.y) / static_cast <float>(_viewport[1])

+ 1.f};
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9
10 // NDC -> Arcball
11 // Project onto the arcball's hemisphere
12 glm::vec3 pointArcball{pointNDC , 0.f};
13
14 // Within unit circle (euclidean distance)
15 if (float lengthSq = glm::dot(pointNDC , pointNDC); lengthSq <= 1.f)
16 {
17 pointArcball.z = sqrt(1.f - lengthSq);
18 return pointArcball;
19 }
20
21 // Outside (circle boundary -> sphere rim)
22 pointArcball = glm::normalize(pointArcball);
23 return pointArcball;
24 }

Listing 5.3: Screen space point to arcball space vector implementation.

To rotate we have several options: a rotation matrix, quaternions or even rotors (from Grass-
mann algebra). Likewise, to zoom in and out we could use different affine transformations, to
either change the field of view or translate the camera (eye) forward or backward.

1 void Camera::rotate(const double& x, const double& y)
2 {
3 glm::vec2 prev{_cursor.x, _cursor.y};
4 glm::vec2 curr{x, y};
5
6 if (prev != curr)
7 {
8 // Map points to hemisphere and computer vectors
9 glm::vec3 a = screenToArcball(prev);

10 glm::vec3 b = screenToArcball(curr);
11
12 // Angle and rotation axis
13 glm::vec3 axis = glm::cross(a, b);
14 float angle = glm::acos(glm::max(-1.f,
15 glm::min(1.f, glm::dot(a, b))));
16
17 // Transform back the axis and rotate
18 glm::vec4 transformedAxis = glm::inverse(_viewMat) *
19 glm::vec4(axis, 0.0);
20 _viewMat = glm::rotate(_viewMat, angle, glm::vec3(transformedAxis));
21 }
22 }

Listing 5.4: Camera rotation.
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1 // NOTE(abi): instead of translating the camera we modify the FoV
2 // (lens-like zoom).
3 void Camera::zoom(const float factor)
4 {
5 _fov = glm::clamp(_fov - (factor * ZOOM_SENSITIVITY), 1.f, 90.f);
6 _projectionMat =
7 glm::perspective(glm::radians(_fov), _viewport[0] / _viewport[1],

_near, _far);
8 }

Listing 5.5: Camera zoom.

5.3.2 Data deserialization

We focus on deserializing medical imaging data using the NIfTI-1 format, a widely used standard
in neuroimaging and fMRI in particular. Unlike raw data formats that lack inherent information,
NIfTI files store both binary image data (voxel values) and embeddedmetadata (dimensions, voxel
size, data type, etc.). It strikes the right balance between simplicity and standarization, making it a
preferred choice over formats like DICOM and PVM.

We employ nifticlib, a C library tailored for reading and writing NIfTI files. It facilitates access
to both the header metadata and the actual image data.

5.3.3 CPU and GPU interfacing

CPUs excel at sequential tasks and general-purpose computing, whereas GPUs shine in highly
parallel and data-intensive applications, such as rendering and machine learning. For this very
reason, we carry out volume rendering in the GPU, through the programmable graphics pipeline
(see Fig. 5.2) [20].

Figure 5.2: Programmable graphics pipeline (Courtesy of Wikipedia).

In order to forward data to the GPU we use flat uniforms. These are variables set by the ap-
plication that get sent to the GPU alongside the draw call. Their values are stored in the program
shader, such that they are accessible through different stages of the graphics pipeline.
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5.3.4 Volume ray marching

Having laid out all the groundwork, it is finally time to render a volume. To do so, we shall take
a closer look at image-based direct volume rendering, more specifically volume ray casting / ray
marching. A good starting point for this topic is the book ”Real-Time Volume Graphics”, by Klaus
Engel et al. [14]. Current implementations may differ greatly from the ones shown in it, due to
hardware development, but it demonstrates foundational techniques that have stood the test of
time and remain relevant.

Before discussing the overall algorithm, a few technical remarks are appropriate to provide
some context:

• Given that a volumetric dataset is encoded in a finite 3D scalar field, it maps nicely to a 3D tex-
ture that spans from coordinates (0, 0, 0) to (1, 1, 1). Querying this texture at any point within
its bounds will yield the radiodensity value of the scanned object at that relative location.

• A bounding primitive encasing the volume is defined, so that there are clear entry and exit
points for any intersecting ray. These delimit a ray segment, which is key because, unlike ray
tracing, ray casting does not compute intersection points.

Here is a high-level overview of a classical DVR pipeline:

1. Data traversal: march through the volume in fixed incremental steps.

2. Interpolation: at each sampling location, a value is reconstructed from the voxel grid by an
interpolation scheme (nearest neighbour, trilinear, b-spline filtering, ...).

3. Normal estimation: compute the gradient, i.e., the rate of change in data values. Common
kernels include intermediate difference, central difference and sobel operator. This is needed
for shading (if applicable 1).

4. Data classification: a transfer function T maps data values R to colors C ; T : R → C.
Typically, the color is an RGB triple of either floating-point, [0, 1], or unsigned char, [0, 255],
values. There are two types:

• Pre-classification: apply T to sample values, then interpolate colors.

• Post-classification: interpolate data first, then apply T .

5. Shading: apply illumination models, e.g., Phong reflection model (if applicable 1).

6. Compositing: combine samples (back-to-front or front-to-back).

7. Image display: blit the composited image to the screen [21].

In short, by precomputing entry and exit points we only render ray segments that fall within the
volume. For each pixel we cast a ray that starts at the entry point, traverses the volume in steps
and ends in the exit point. At each step, we sample the view direction and convert interpolated

1To simulate lighting we can approximate normal vectors and apply a shading model.
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voxel data values into color values. Lastly, we add up all color contributions with alpha blending to
get the output color and opacity of the pixel. Figure 5.3 illustrates this process.

Figure 5.3: Volume ray casting.

GPU volume ray casting can be performed with either two render passes or a single one. Two-
pass raycasting is easier to implement as you can set up a unit cube with face culling enabled and
rasterize front and back textures (which determine entry and exit points). By substracting these
we get the ray direction (see Fig. 5.4).

Figure 5.4: Back, front and direction vector textures (from left to right).

Alternatively, volume ray casting can be done in a single pass, shaving off a draw call. There
are different approaches, but we have decided to create a naive implicit bounding box within the
fragment shader itself, such that we do not need to rasterize the textures from Fig. 5.4.

Here is an in-depth description of our single-pass volume ray casting algorithm:

1. We draw a fullscreen quad (two triangles), by setting up a vertex array object with its corre-
sponding vertex and index buffers. We also set a 3D texture with the volume data and pass
it along as a uniform.

2. Vertices get processed in the vertex shader, where we simply pass on the positions to the
fragment shader. Note that vertex coordinates get interpolated across the surface of each
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triangle using barycentric coordinates. This way we may retrieve the position of any frag-
ment/pixel on the screen.

3. Within the fragment shader we set up the viewing ray (origin and direction) and step through
the volume incrementally. We define an implicit viewing volume in front of the camera and
multiply it by the inverse model view projection transform [22]. This serves as our bounding
box, shooting rays from the near plane and terminating themwhen they are past the far plane.

1 // Ray setup
2 vec4 near = inverseModelViewProjectionMatrix * vec4(fragPosition ,

-1.0, 1.0);
3 near /= near.w;
4
5 vec4 far = inverseModelViewProjectionMatrix * vec4(fragPosition , 1.0,

1.0);
6 far /= far.w;
7
8 vec3 rayOrigin = near.xyz;
9 vec3 rayDirection = normalize((far - near).xyz);

10
11 // Naive ray segment
12 vec3 enterPoint = rayOrigin;
13 vec3 exitPoint = rayOrigin + (rayDirection * 5);
14

Listing 5.6: Implicit bounding volume.

4. At each sample point, we query the Sampler3D holding the texture unit with the voxel data.

5. Depending on where the sampled value falls within a custom range we apply a certain color
and transparency value. This is a simple 1D transfer function. We set a threshold for very low
values to avoid picking up the air’s density.

6. At the end, we blend together the colors at every step along the viewing ray, to produce the
final color of the current fragment. If a pixel’s opacity gets saturated we terminate the ray
marching loop early. This is known as early ray-termination, a simple but effective optimiza-
tion. Note that for this to work, we must use front-to-back compositing.

1 vec4 dvr(vec3 rayOrigin , vec3 rayDirection , vec3 enterPoint , vec3
exitPoint)

2 {
3 float maxDistance = length(exitPoint - enterPoint);
4 vec3 currentPosition;
5 float totalDistanceTraveled = 0.0;
6
7 vec3 currentColor = vec3(0.0);
8 float currentAlpha = 0.0;
9

10 vec3 accumulatedColor = vec3(0.0);
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11 float accumulatedAlpha = 0.0;
12
13 // Ray marching loop
14 while (totalDistanceTraveled < maxDistance)
15 {
16 currentPosition = enterPoint + totalDistanceTraveled *

rayDirection;
17 float volumeTextureValue = texture(volumeTexture ,

currentPosition).r;
18
19 // Map radiodensity to RGBa tuple
20 vec4 currentSample = transferFunction(volumeTextureValue);
21 currentColor = currentSample.xyz;
22 currentAlpha = currentSample.w;
23
24 // Compositing
25 float colorAlpha = currentAlpha - (currentAlpha *

accumulatedAlpha);
26 colorAlpha *= densityMultiplier;
27 accumulatedAlpha += colorAlpha;
28 accumulatedColor += currentColor * colorAlpha;
29
30 // Early ray-termination
31 if (accumulatedAlpha > 0.99)
32 {
33 break;
34 }
35
36 // March along
37 totalDistanceTraveled += marchDistance;
38 }
39
40 return vec4(tfHue * accumulatedColor , accumulatedAlpha);
41 }
42

Listing 5.7: Direct volume rendering function.

This fragment shader gets executed in parallel for every pixel on the screen, therefore synthe-
sizing the whole picture.

5.3.4.1 Visualization modes

It is possible to get various other visualization effects, by applying different projection methods.
That is, instead of using a transfer function, we return some statistical value of interest: maximum,
median, mean, etc.

Here is a list of the rendering modes our application supports:
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• Transfer function: it applies a 1D transfer function as described in the previous section. It
offers the most customization; we can segment isovalues by filtering out a specific range of
densities.

• Maximum Intensity Projection (MIP): it returns the maximum density value along each view-
ing ray. This is of special interest for medical image analysis. It is used to enhance the visi-
bility of vascular structures in Magnetic Resonance Angiography (MRA), as well as detecting
pulmonary nodules in chest radiographs; a common indicative of pulmonary cancer.

• Average Intensity Projection (AIP): it returns the mean density value along the viewing ray.
This projection is known as ”pseudo X-Ray”, as it closely resembles one, making it useful to
inspect bone tissue.

5.4 Challenges

In this section we shall comment some of the hurdles encountered during the implementation
phase and their solutions:

• Stack overflow: step debugging in RAD Debugger to figure out the problem. The fix was to
use some heap allocations using smart pointers.

• Unitialized lambdas: again step debugging came in useful. All that was needed was to ini-
tialize them.

• Vertex window order: this took a while to figure out. RenderDoc came in useful to inspect
the draw call, particularly the vertex and index buffer arrays. The problem was an incorrect
layout setup for the vertex stride.

• Blank screen: the OpenGL state was being reset at the end of the render loop, clearing out
the color buffer of the default framebuffer.

• Unexpected fragment outputs: shader debugging is hard and tedious. This took a lot of back
and forth: reviewingmy notes, using RenderDoc, looking through Stack Overflow threads and
testing out solutions.

5.5 Repository

For further insights into the implementation, please refer to the project’s code repository on GitHub:
https://github.com/abidanBrito/visus.

https://github.com/abidanBrito/visus
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Chapter 6

Results and evaluation

6.1 Screenshots

In this section, we present various screenshots of the final application (see Fig. 6.1), showcasing
its features and functionalities. These images provide a visual overview of what is possible (choos-
ing between several visualization modes, custom 1D transfer function, color tinting and tweaking
global density and increment size for the ray marching loop).

Figure 6.1: Visus3D: a GPU-based direct volume renderer.

Fig. 6.2 displays the different rendering modes.
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Figure 6.2: Transfer function (top-left), high density (top-right) and pseudo X-Ray (bottom).

Notice how changing the step size affects the sampling rate of the volume (see Fig. 6.3).

Figure 6.3: Low (left) vs high (right) sampling rate.

By playing around with the available parameters, we can isolate tissues and get very different
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outputs, as is illustrated in Fig. 6.4.

Figure 6.4: Various renders with different transfer function parameters.

6.2 Usability test

To evaluate usability, an interview was conducted with a sample of 8 people (including two nurses
and a podiatrist). Prior to formulating the questions, we verbally explained the objective of the ap-
plication and how to work the camera controller using the mouse (rotating, zooming and panning).
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While we did mention that the floating GUI window could be clicked on and dragged around, we
did not explain individual visualization parameters. The reasoning behind this was to provide just
enough context to the users to be able to go on and explore on their own, so as to avoid influencing
the interviewees’ opinions and improve reliability in the results.

Below you can find the posed questions along with pie chart representations of the pool of
answers (see Fig. 6.5 to 6.8).

Figure 6.5: (Left): Camera. (Right): Transfer function rendering mode.

Figure 6.6: (Left): High density rendering mode. (Right): X-Ray rendering mode.
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Figure 6.7: (Left): User interface. (Right): User experience.

Figure 6.8: Foreseen potential.

After evaluation, we have concluded that the transfer function mode was specially difficult to
grasp for non-specialist users. This is to be expected, given that the application is meant for ex-
perts of different scientifc domains. Also, one user suggested icons to switch between the differ-
ent rendering modes, and another icon or a shortcut to toggle the visibility of the UI on and off.
One of the nurses pointed out that he would like to have lighting and the ability to slice the vol-
ume, in order to better understand form and inspect cross-sections, respectively. The podiatrist
also had some remarks, as he wanted multiple viewports with synchronized Multiplanar Recon-
struction (MPR) support [23]. This is important to thoroughly inspect the volume in axis-aligned
2D slices in combination with the 3D render view.
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Chapter 7

Conclusions

7.1 Summary

The primary goal that we set out to do was to develop a desktop application capable of visualizing
volumetric datasets interactively, with a focus on medical imaging. In doing so, we defined a set
of requirements which have, for the most part, been accomplished:

• Scene navigation: we implemented an arcball camera to orbit around the volume.

• Data deserialization: we used NIfTI binary files and C libraries to parse them.

• Direct volume rendering: three different modes of visualization were implemented (maxi-
mum intensity projection, average intensity projection and transfer function based composit-
ing).

• Optimizations: we implemented early ray-termination, but could not perform empty space
skipping, as the bounding volume is defined in the fragment shader itself. However, we used
a single-pass raycasting algorithm, meaning we only have one draw call per frame.

Afterwards, we extensively tested the application, comparing render outputs with different set-
tings and inspecting them visually. Here are some interesting findings:

1. Sampling rate plays a massive role in visual quality. Unfortunately, small step sizes severely
hindrance performance, resulting in low frame rates.

2. A low sampling rate yields severe artifacts (wood-grain, also knownas banding). This is again
due to undersampling the volume. Sudden changes in depth happen between neighbouring
opaque fragments belonging to the same surface.

3. Sparsely sampled volumes get brighter and densely sampled ones get darker. It would be
worth looking into opacity correction when blending the fragments.

At the end, we conducted a usability test to find out the intuitiveness and usefulness of our
work.
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7.2 Future work

The original vision for the application has been realised, but it can be further improved by factoring
in reviews/suggestions from our usability test, as well as adding new features. In no particular
order, some of these are:

• Toggling the GUI on and off.

• Adding multiviewport support, to explore the volume from different angles and, possibly, us-
ing different rendering modes at once.

• Multiplanar reconstruction, to inspect voxel data per-slice [23].

• Stochastic jittering, to diminish wood-grain artifacts for not-so-low sampling rates. This tech-
nique adds small offsets (using a random factor) to the sampling locations of the viewing ray.

• The ability to change the background color, for enhanced contrast.

• Saving out renders to image files.

• As is often the case when working with images, an histogram representation can come in
handy to analyze its distribution of values.

• Volume slicing, either with an axis-aligned / free plane ormagic lenses (3Dmesh filters). This
can improve Focus+Context [1].

• Advanced transfer function strategies. The current one is not very flexible. We could add
an indefinite number of control points that map different color and opacity tuples to various
density values. 2D transfer functions are also a possibility.

• Proper bounding volume and spatial data structures such as octrees, so that wemay perform
empty space leaping.

• Advanced shading models with control over light placement, translucency, etc.

• Multi-volume support, to inspect different volumes side by side.

• Style transfer. We could apply predefined lookup tables for textures of known materials in
the transfer function. This is a cost-effective way to emulate the different tissue surfaces.

• Post-processing effects: exposure, white balance, gamma correction, edge detection, etc.

• Indirect volume rendering and hybrid methods.

7.3 Connection to the academic curriculum

Physical Foundations: physical laws and models, energy conservation, oscillations and waves. It
aided in understanding the wavelike behaviour of light and its optical properties, which are funda-
mental for realistic image synthesis.
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Matrix Algebra and Geometry: it provides the mathematical backbone that all of computer graph-
ics stands on.
Calculus. Differential Equations: differential and integral calculus, numerical integration, inter-
polation. Invaluable to grasp the Radiative Transfer Equation, the Volume Rendering Integral and
interpolation schemes.
Introduction toDigital Signal Processing, Digital Signal Processing: sampling andfiltering, Nyquist
rate applies not only to temporal frequencies, but also to spatial frequencies (images).
Digital ImageProcessing. Computer Vision: instrumental knowledge about how images are stored,
as well as image processing techniques. This was very helpful in understanding medical imaging
formats and manipulating pixels in the fragment shader.
Programming 1, Programming 2: basic programming concepts, object oriented design, algorith-
mic thinking and version control systems.
Implementation of an electronic project using CDIO methodology: structured approach to plan-
ning, conceiving and executing the development of the project.
English for Software Developers: technical language, jargon, related to computer graphics and
software development. Academic publications are predominantly written in English.
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Appendix A

User manual

This appendix serves as a cheatsheet of sorts, to assist you in effectively navigating and using
the application. It provides detailed and clear instructions for all possible interactions with the
software.

A.1 Launching the application

The application is delivered as an executable, along with DLL files and other necessary resources.
To launch the application you simply need to run the executable by double clicking on it. Both left
mouse button and right mouse button clicks work by default on Windows operating systems.

A.2 Camera manipulation

All camera patterns are mapped to the computer mouse input:

• To rotate the view, click and hold the left mouse button while you move the cursor around.

• To zoom the view, you can either scroll the mouse wheel up and down or click and hold down
the wheel while you move the cursor around.

• To pan the view, you can click and hold the right mouse button while you move the cursor
around.

A.3 Volume Rendering Settings

A.3.1 Rendering mode

There are three modes of visualization. By default, Transfer Function should be active. To change
it, click on the drop-down menu with that name and select a different mode. You may repeat these
steps to change modes back and forth.
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A.3.2 Parameters

To change parameter values you may click and hold with the left mouse button on the red bar of
the slider next to the parameter of your choosing and move it to the left or to the right, decreasing
and increasing the value respectively. Note that this is also possible for the R, G, B color values.
Additionally you may click over any of these with the right mouse button to change the color repre-
sentation: RGB, HSV or Hex. Perhaps a more intuitive way to change the Tint color is by clicking on
the colored squared next to its name with the left mouse button. A color selector should appear,
allowing you to manually pick a color of your liking.

NOTE: bare in mind that if the floating GUI window gets on the way of the volume it can be
moved around the application window space. To do so, click and hold with the left mouse button
within thewindow, but outside any actionable parameter widget and drag the cursor to your desired
location.



Appendix B

Sustainable Development Goals

Finally, we assess the project in the context of the Sustainable Development Goals (SDGs), high-
lighting its level of contribution, if any.

Adopted by all member states of the United Nations in 2015, the 2030 Agenda sets out a vision
for sustainable development grounded in international human rights standards. Central to this
framework are its accompanying SDGs, also known as the Global Goals, which provide a shared
blueprint for peace and prosperity for all, now and into the future. These urgently call for action to
tackle critical issues such as poverty, hunger and environmental protection.

ID SDG High Moderate Low N/A
1 No Poverty. X
2 Zero Hunger. X
3 Good Health and Well-being. X
4 Quality Education. X
5 Gender Equality. X
6 Clean Water and Sanitation. X
7 Affordable and Clean Energy. X
8 Decent Work and Economic Growth. X
9 Industry, Innovation and Infrastructure. X
10 Reduced Inequality. X
11 Sustainable Cities and Communities. X
12 Responsible Consumption and Production. X
13 Climate Action. X
14 Life Below Water. X
15 Life on Land. X
16 Peace and Justice Strong Institutions. X
17 Partnerships for the Goals. X

Table B.2: Assessment of the project’s contribution to the SDGs.
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