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A multi-objective energy management
optimization for a hybrid electric bus
covering an urban route

Bernardo Tormos, Benjamı́n Pla, Pau Bares and Douglas Pinto

Abstract
The development of electrified vehicles is a promising step toward energy savings, emissions reduction, environmental
protection, and more sustainable economic growth. In the case of hybrid electric vehicles (HEVs), the energy
management strategy (EMS) is essential for their efficiency and energy consumption. Typically, EMS employs rule-
based strategies calibrated to general driving conditions. So, this paper proposes to calibrate the EMS of an urban
hybrid electric bus that covers a particular route by taking advantage of past driving information. The EMS computes
the percentage of the vehicle power demand that must be supplied by each of the sources (fuel and battery) and also
controls the heating, ventilating and air conditioning (HVAC) system to achieve cabin thermal comfort. The proposed
approach is based on employing an optimal solution by dynamic programming in a previous loop covered by the bus in
the considered route. Then, the cost-to-go matrix is stored and used in the following trips by applying the one-step look-
ahead rollout, taking profit from the similarities of the loops in the route. To compare and evaluate the performance of the
proposed algorithm, a benchmark was carried out by employing the widespread equivalent consumption minimization
strategy (ECMS) approach, combined with rule-based strategies in the HVAC control system. Finally, the pareto front
presents the trade-off between cabin temperature control performance and total fuel consumption, allowing to compare
and evaluate the different EMS calibrations.
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1 Introduction1

Despite policy efforts to encourage the development of2

more efficient technologies in the transport sector and3

renewable energies, this sector has the most significant4

dependence on fossil fuels and was responsible for 37% of5

CO2 emissions from end-use sectors in 20211. To overcome6

these issues, the employment of electrified powertrains,7

such as battery electric vehicles (BEV), hybrid electric8

vehicles (HEV), has shown to be an essential step to reduce9

energy consumption and emissions2. HEV increases the10

possibility of reducing fuel consumption and emissions11

compared to traditional ICE-based vehicles due to the12

combined use of two energy sources, internal combustion13

engine (ICE) and battery3. So, this integration of multiple14

power sources requires an efficient energy management15

strategy to match the efficient operation of the system.16

The improvements of HEV can be explored by modeling17

a powertrain topology that best fits the vehicle application18

or sizing the components4,5. However, choosing an19

appropriate control strategy for HEV applications also20

plays a key role in the optimal and efficient operation21

of these multiple energy sources6. Furthermore, when22

assessing factors that affects the overall energy consumption23

of a vehicle, it is essential to consider not only the24

energy required for propulsion but also the auxiliary25

loads. Among these loads, the Heating, Ventilation, and26

Air Conditioning HVAC system emerges as one of the27

most significant contributors to battery usage in electrified28

vehicles, accounting for up to 30% of the total energy29

consumption under specific conditions7. So it is essential to30

consider the HVAC power consumption related to the cabin31

temperature control to guarantee the passengers comfort32

and energy efficiency.33

To fully explore the potential of an HEV, the EMS is34

essential to control the energy flow within the vehicle.35

It aims to minimize fuel consumption while fulfilling36

the driving power demands and constraints, such as the37

maximum power limitations and battery state of charge38

that should be maintained in a certain range3. This topic39

has been extensively discussed in the literature, and a40

comprehensive review can be found in8. Moreover, it41

should be noted that the performance and optimal energy42

management strategy (EMS) are influenced by various43

factors, including driver behavior, road slope, and traffic44

conditions9.45

Authors usually categorize the EMS in different46

arrangements, but two of them can be highlighted:47

ruled-based and optimization-based.10. First, ruled-based48

strategies are usually based on heuristic approaches,49

employing high calibration efforts to consider the different50

set of operating conditions that the vehicle can face11.51
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The optimization-based methods can be applied to offline52

approaches, e.g., design or benchmarking with developed53

strategies, and also for online control purposes, depending54

on the information available10.55

Regarding optimization-based methods, optimal control56

can be applied to the energy management problem of an57

HEV, where a model is employed to evaluate a predefined58

cost function that can estimate the impact of the control59

decisions8. The offline optimization often requires that the60

driving cycle and disturbances related to the problem are61

well known in advance, which just happens in homologation62

cycles or specific applications. The most spread techniques63

employed in these optimization problems are Dynamic64

Programing (DP)12 and Pontryagin’s Minimum Principle13.65

DP is a powerful optimization technique widely applied66

to HEV energy management. It is used for offline67

optimization, where the solution is usually used as a68

benchmark with other approaches, or for developing EMS69

or advanced HEV control strategies10. First, the state and70

control variables grid is constructed based on the system71

input parameters. Subsequently, the DP algorithm assesses72

the cost and state transitions associated with each control73

policy, considering all states in a backward over time. As a74

result, the optimal cost-to-go function is stored depending75

on states and control actions, allowing for a comprehensive76

evaluation of the entire problem. The optimal solution is77

then determined by selecting the path with the lowest cost-78

to-go14.79

In order to overcome the driving cycle dependence80

of these optimal control tools, several researchers have81

been developing online optimization-based methods. Some82

of them are based on the Equivalent consumption83

minimization strategy (ECMS)15, where the selected84

control action is the one that minimizes a cost function85

related to the energy consumption of the fuel tank and86

the batteries. Moreover, there are several adaptations of87

this method in the literature, called adaptive ECMS16,17.88

These methods rely on using various information sources89

to dynamically adapt the equivalent factor in response90

to driving conditions. A further approach for addressing91

the driving cycle dependency is model predictive control92

(MPC)18. This method can estimate future driving93

conditions based on some information available (e.g., traffic94

lights, preceding vehicles, and road slope) while fulfilling95

the system constraints.96

However, implementing MPC in real-time applications97

for HEVs poses several challenges, including hardware98

limitations, constrained processing power, and commu-99

nication delays. The increased computational costs of100

such approaches stem from solving optimization problems101

repeatedly over a finite prediction horizon19. The selection102

of this horizon is critical, as a longer prediction horizon103

improves performance by considering future states and104

constraints that affect control performance and computa-105

tional complexity. Additionally, control-based approaches106

like MPC and ECMS require some form of prediction107

of future conditions. For instance, MPC requires future108

predictions to provide the optimal control policy directly. At109

the same time, ECMS relies on predicting future conditions110

to calibrate the weighting parameter between the battery and111

Internal ICE costs, respectively.112

The optimization of energy management strategies113

in HEV can be extended to incorporate the energy114

consumption of HVAC system, which can account for more115

than 30% of the maximum battery power20. Additionally,116

the HVAC control optimization can reduce the total energy117

consumption of electrified vehicles by approximately118

14%, as observed under simulation conditions by21. For119

instance,22 presented a sequential optimization for eco-120

driving speed trajectory planning, air conditioning thermal121

load planning, and powertrain control in a hybrid electric122

vehicle in a connected and automated vehicle environment.123

Results show that the complete optimization strategy could124

improve energy consumption by up to 18.8%.125

Authors in23 developed a two-layer MPC that employs126

the vehicle speed and traffic predictions to compute the127

optimal trajectories for the cabin and battery cooling128

in HEV. Later, using these trajectories in the energy129

management controller to compute the proper power split.130

A neural network model predictive control is proposed by24
131

to control the HVAC system of a battery electric bus. The132

results show that the proposed method could reduce close to133

2.8% in total energy consumption compared with standard134

strategies compound by PID controllers. Furthermore,135

the characteristics of the predicted horizon in HEV136

integrated power and thermal management approaches were137

investigated in25. The authors discuss the computational138

burden, accuracy, and resolution of look-ahead information139

employed in a multi-horizon MPC-based strategy.140

As observed in the literature, the problem of integrated141

energy management strategies in electrified vehicles usually142

relies on estimating future driving conditions, thermal loads143

on batteries and cabins, or information available from144

connected and automated vehicle environments. This paper145

proposes an online applicable strategy for controlling the146

air conditioning system and power split of a hybrid electric147

urban bus. The EMS takes advantage of the particular148

application, i.e., an urban bus, where the route is repeated149

so the future driving conditions can be reasonably well150

predicted with past driving cycles. So, the cost-to-go151

matrix obtained by offline DP optimization is generated by152

evaluating a simplified bus model and overcoming increased153

computational efforts related to predictive approaches154

widely applied to online control purposes. Later, this matrix155

is employed in the EMS of the bus on the consecutive156

loops to be covered. The goal is to reduce the total energy157

consumption of the integrated HVAC system while keeping158

the vehicle operating in charge-sustaining mode. However,159

the proposed strategy is not limited to the optimization of160

HEV, it also can be extended to other applications that161

exploits daily commute trips or similar driving conditions.162

2 Case Study163

This case study considered a hybrid electric urban bus that164

covers the same route daily. The driving cycle information165

was acquired from the Valencia public transport service166

(EMT-Valencia). The evaluated data contains information of167

two consecutive working days of the route (“Universitats-168

Hosp.Dr.Peset”), containing a total of 287 km covered.169

Each vehicle journey is approximately 15.1 km long and170

is completed 9 and 10 times in the two days analyzed,171
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accounting for 284 km traveled. The average journey time172

is 5100 seconds with a standard deviation of 320 seconds.173

The vehicle position was provided by the GPS, while the174

vehicle speed profile by the bus OBD port. The GPS signal175

determines the ending point and the starting point of next176

loop, then, once the bus reach the ending point, the vehicle177

speed is integrated providing the distance covered in the178

loop.179

Figure 1. Measured vehicle speed of the bus on the specific
route, representing the 19 loops covered in two consecutive
days.

Fig. 1 shows the vehicle speeds as a function of180

the vehicle position along the route for the 19 loops.181

In a previous work, a discussion about the bus driving182

cycles of the selected route was carried out26. The study183

concluded that the bus speed traces exhibit similar patterns184

across different positions along the route. Notably, it can185

be inferred that the disturbances experienced in each186

loop are similar, given that the routes encounter the187

same traffic lights, stops for embarking and disembarking188

passengers, and speed limits. However, some variations in189

the total distance covered by the bus in the loops can be190

observed. These discrepancies may arise from differences191

in driving trajectories and maneuvers to avoid obstacles or192

measurement uncertainties.193

The total passenger number can affect the cabin194

temperature, significantly impacting the total heat load20.195

The bus line covers a route that connects a university196

situated at one end of the city to another end, passing197

through the central region and including 36 bus stops. The198

estimated distribution in the number of passengers is shown199

in Fig. 2.200

3 Plant description201

To evaluate the control strategies, a complete vehicle model202

plant was built in GT-Power. This system contains the203

complete vehicle dynamics, air conditioning system and204

cabin model. The selected architecture of the HEV bus205

follows the P2 construction shown in Fig. 3. The main206

HEV bus model characteristics are outlined in Table 1. In207

the considered hybrid configuration, the electric motor and208

the internal combustion engine are connected through an209

axle, which is directly connected to the transmission, then210

connects through a differential to the vehicle wheels.211

Note that the complete HVAC model is connected to212

the high-voltage battery of the hybrid powertrain, so the213

Figure 2. Average, maximum, and minimum estimated
number of passengers in the bus for the 19 analyzed cycles,
distributed in 36 bus stops.

Figure 3. Parallel HEV architecture employed on the problem
and power sign criteria through the system components

energy consumed in the HVAC system is provided by214

the high-voltage battery. The battery can recover energy215

through regenerative braking or from the combustion engine216

operating in hybrid mode. On the other hand, energy is217

consumed when the electric motor assists the combustion218

engine in propelling the vehicle and providing the power219

for the HVAC system.220

Table 1. Description of the HEV bus model main
characteristics.

Parameter Value

Weight 15000 kg
Frontal area 7.24 m2

Drag coefficient 0.78
Motor rated power 150 kW
Engine rated power 200 kW
Battery capacity 11.8 kWh

The HEV bus considered in this case study is exposed221

to summer conditions due to the critical working conditions222

in the region, which means that the HVAC system operates223

in cooling mode, then rejects heat from the cabin to the224

ambient. The model used to represent the thermal balance,225
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and the cabin temperature was the lumped cabin model226

(0D). However, a 1D model was employed to model the air227

conditioner coolant circuit. Fig. 4 shows the parameters and

Figure 4. Simplified representation of the cabin plant model
and the standard control of the HVAC system.

228

surrounding conditions that affect the cabin temperature.229

The air entering the cabin exchanges heat with internal230

components and is then recirculated through the cold side231

of the AC system. All features, such as windows, seats,232

and surface materials, are related through heat exchange233

properties and affect the cabin temperature. As well as the234

heat generated by the number of passengers Qpas and the235

heat added by the doors opening at the bus stations Qdoor236

represent most of the heat added to the cabin. The general237

passenger heat load is estimated as27 and is characterized238

by Eq. (1).239

Qpas = Npashpas (1)

Where Npas represents the number of passengers inside240

the bus, and the hpas (W) is the heat generation per241

passenger, this value is related to the human body metabolic242

rate and the average skin area, but in this work, this value243

was considered constant for all passengers and equal to244

170 W28. Also, Eq. (2) estimates the impact of the door245

opening at bus stops and is modeled according to29. This246

additional heat added to the system is applied for 30 s, time247

considered necessary each time the bus changes the number248

of passengers at a bus stop.249

Qdoor = ρairCp(Tamb − Tcab)Vinf (2)

where ρair (kg/m3) and Cp (kJ/kg K) are the air density and250

specific heat, Tamb (ºC) and Tcab (ºC) the air ambient and251

cabin temperature and Vinf (m3/s) is the air infiltration flow252

rate:253

Vinf = CAAdoor

√
Rp (3)

being CA air flow coefficient (m3/s)/(m2Pa0.5), Adoor the254

total area of the door when opened (m2) and Rp the pressure255

factor (Pa).256

The original system comprises rule-based control257

strategies and PIs to control the HVAC system aiming258

to maintain the cabin temperature at the desired setpoint.259

These control actions were applied in the standard method.260

As shown in Fig. 4, the PI of the AC compressor controls261

the compressor speed Ncomp to keep the air temperature262

of the supplied air at 5 ºC. Also, a PI controller is263

employed to control the air flow rate of the cold side of264

the system to maintain the cabin temperature close to the265

setpoint. On the other hand, the standard PI that controls266

the compressor speed was replaced by the direct input267

computed by the proposed strategy, and this method will be268

explained in previous section. In addition, other components269

and parameters relevant to the air conditioning system270

circuit were unchanged for both approaches.271

4 Control-oriented model272

The model used to represent the vehicle powertrain is273

based on longitudinal vehicle dynamics. So, according to274

the hybrid architecture in Fig. 3, the power demand to275

move the vehicle in the driving cycle is equal to the power276

provided by the power split. So as the motor and the ICE277

are connected in the same shaft, they share the same speed,278

thus, the relation between the torque provided by the motor279

Tm and the ICE TICE must be equal to the torque in the280

powertrain transmission Tg:281

Tg = Tm + TICE (4)

For each time step, the torque demand to drive the vehicle282

is computed by:283

Tw = (mv̇ −mgµcosθ −mgsinθ − 1

2
ρAcdv

2)Rw (5)

where m is the equivalent vehicle mass, v, v̇, g is the vehicle284

speed, acceleration and acceleration of gravity, respectively.285

Also, ρ is the air density, Acd the product of the bus frontal286

area and aerodynamic coefficient and Rw the wheel radius.287

Finally, the µ is the rolling coefficient, θ is the angle due288

to the road slope, which is neglected in the considered289

problem. While the motor and ICE speeds are proportional290

to the wheel speed via the specified gear ratio, their joint291

torque Tg in Eq. (4) is proportional to the wheel torque via292

the inverse of the gear ratio. So, if the demanded vehicle293

speed is known, the vehicle acceleration and Tg may be294

determined using Eq. (5) and the gear ratio. Consequently,295

Eq. (4) may be rewritten by specifying the control action as296

u = Tm:297

TICE = Tg − Tm (6)

then, the ICE torque is computed given the vehicle-speed298

demand and decision u known. With respect to the ICE299

model, it is based on the quasi-static technique developed300

in30, which employs experimental data to map the fuel301

consumption mf as a function of engine speed ωg and302

torque TICE :303

mf = g(ωg, TICE) (7)

The dynamic equation that governs the energy stored in304

the battery (Eb) is given by:305

Ėb = −Pb (8)

where Pb is the battery power, positive when the battery is306

drained, and negative when being charged as represented307

by the signs in Fig. 3. Note that Pb depends on the HVAC308

power consumption PHVAC and the motor power Pm309

according to the following equation:310

Pb = PHVAC + Pm (9)
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The Pm uses a quasi-static map to obtain the efficiency311

depending on the ωg and Tm. Equally, a simple map312

based on the compressor speed is employed to estimate the313

PHVAC . Finally, the battery is modelled with an electrically314

equivalent circuit based on resistance in series with a315

voltage source:316

V = Voc − IbRb (10)

where Ib is the battery current, and R represents its internal317

resistance that depends on the battery state of energy SoE,318

i.e., a measure of the battery energy level concerning the319

total energy content of the fully charged battery Eb,0:320

Eb,0 = Voc,0Qb,0 (11)

with Voc,0 and Qb,0 being the open circuit voltage and321

charge of the fully charged battery. The actual energy stored322

in the battery is represented by:323

Eb = VocQb (12)

So, normalizing the battery energy, the state of energy of324

the battery can be defined as:325

SoE =
Eb

Eb,0
=

VocQb

Voc,0Qb,0
= SoC

Voc

Voc,0
(13)

where SoC is the battery state of charge, used in many326

works instead of the SoE.327

A simplified model of the HVAC system implemented328

in the GT-Power bus plant comprising the lumped cabin329

model (0D) and the coolant circuit (1D) is necessary for330

two reasons. First, the complexity of the resulting system331

modelled increases the computational effort to evaluate the332

different control actions in the control-oriented model used333

in real-time optimization. Second, as the proposed strategy334

employs a DP approach, increasing the states of the optimal335

control problem increases the system complexity, requiring336

high computational demands. So, to obtain a simple model337

of this complex system, a linear model was developed by338

investigating a set of variables and parameters that exhibit339

correlations with the original system.340

The Eq. (14) represents the simplified discrete time341

model of the cabin temperature. For a given time step,342

the estimated Tcab is affected by the disturbances; Qpas,343

Qdoor,Tamb, the state Tcab and the control action Ncomp.344

The sub-index k expresses the current time-step and αn the345

model parameters to be calibrated with the responses from346

the plant. The data evaluated to calibrate the αn parameters347

were two consecutive loops, where the control strategy348

employed in the HVAC system was based on PIs controllers.349

Tcabk+1
= α1Tcabk − α2Ncompk

+ α3(Ncompk
)2+

α4(Qpask +Qdoork) + α5(Tambk − Tcabk) (14)

The positive signals attributed to the terms in Eq. (14)350

represent the parameters that contribute to the heat load351

on the cabin. In contrast, the negative terms can reject352

heat from the cabin to the ambient,i.e., the compressor353

speed only. Note that the term representing the temperature354

difference between the environment and the cabin, to355

some extent, compasses the heat exchanges between the356

walls, floor, windows, and other bus components. It was357

also observed that in conditions with a high number of358

passengers on the bus, the model responds differently359

because the principal source of heat added to the cabin is360

provided by the passengers. So, to overcome this issue, a361

threshold was defined, and the parameters were adjusted in a362

dual-zone model. Similarly, a model to represent the HVAC363

power consumption was developed. The model is necessary364

to estimate Pb, which depends on the PHVAC :365

PHVACk+1
= γ1Ncompk

− γ2(Ncompk
)2 + γ3 (15)

Figure 5. Model validation: Comparison between actual cabin
temperature and battery SoE of the plant model and the
estimated with the simplified model for one bus trip.

Fig. 5 shows the validation of the control-oriented model,366

where a comparison is presented between the estimated367

problem states (SoE and Tcab) and the actual provided368

by the HEV plant under the influence of identical inputs369

(PHVAC and Pm) in one bus trip. It can be observed that the370

SoE and Tcab estimations accurately reproduce the results371

with minimal deviation from the actual state. Note that372

the estimated results are obtained without feedback on the373

actual system condition. However, in the proposed control374

strategy, there will be feedback on the SoE and Tcab, and375

then these small discrepancies will be even reduced once the376

error is not integrated over time. This way, the parameters377

of the linearized model are presented in Table 2. After378

evaluating multiple models of varying orders, the selected379

model provided a good compromise between accuracy and380

complexity.381

Note that the present work does not consider any382

couple between the HVAC system to the battery thermal383

behaviour, their cooling systems are modelled separately.384

Given the significance of summer conditions in Valencia,385

the study focuses on the HVAC operating in cooling mode.386

Consequently, battery temperature is not critical in this case387

and was not considered in the EMS optimization. Future388

work will consider a more complex control-oriented model389

that considers the thermal management of the connection390

between the battery pack, ICE, and HVAC system, probably391

with a more significant number of states.392

5 Optimization problem393

The primary objective of EMS optimization is to minimize394

energy consumption while satisfying the driver power395
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Table 2. Simplified cabin model coefficients

Coefficients Value [Npas≤50] [Npas>50]

α1 0.9722 0.9773
α2 0.000342 0.000201
α3 5.308e-08 2.723e-08
α4 0.000306 0.000263
α5 0.0368 0.0239
γ1 3.0013 3.0013
γ2 2.552e-04 2.552e-04
γ3 1.329e+03 1.329e+03

request and maintaining cabin thermal comfort. To achieve396

this goal, the following cost function is introduced:397

J = Φ(x(tf )) +

∫ tf

t0

L(x(t), u(t), w(t))dt (16)

where t0 and tf are the initial and final time of the cycle,398

x is a vector containing the system states, u represents the399

control actions, and w represents disturbances that impact400

the system evolution, such as ambient temperature Tamb,401

Qpas, Qdoor, and v. This equation includes a terminal cost402

Φ related to tf , penalizing deviations from the desired403

final state, in this case, the energy stored in the battery.404

Additionally, the term L represents the instantaneous cost405

function, relating fuel consumption Pf and the squared406

deviation of cabin temperature Tcab from the setpoint Tset407

over the covered loop, as expressed by:408

L = βPf + (1− β)(Tcab − Tset)
2 (17)

So the multi-objective optimization proposed by this paper409

is addressed by the term β, which assigns importance410

to each parameter in the optimization process. This411

parameter remains constant and is varied to study its412

impacts on cabin temperature control performance and413

total energy consumption, further discussed in the Results414

and discussion section. The corresponding optimal control415

problem is mathematically described by:416

u∗ = argminu

∫ tf

t0

J(x,u)dt (18a)

subject to:

ẋ = f(x,u) (18b)
Eb,0 · 0.3 < Eb < Eb,0 · 0.7 (18c)
Tcab,min < Tcab < Tcab,max (18d)

Φ = σcost(SoEtf − SoEt0)
2 (18e)

The system dynamics (18b) corresponds to the battery and417

cabin temperature dynamics with state vector:418

x = [SoE Tcab]
T (19)

To achieve energy consumption minimization, the EMS419

must compute the optimal settings for the decision420

variables:421

u = [Tm Ncomp]
T (20)

Three constraints were incorporated to address the problem422

discussed in this paper. Eq. (18c) sets the maximum and423

minimum range limits for the SoE, ensuring it remains424

within the bounds defined in Eq. (13). Specifically, the425

battery state of charge cannot fall below 0.3 or exceed426

0.7 to prevent battery damage and overcharge. Equation427

18d establishes limits for the cabin temperature throughout428

the cycle, ensuring it remains between 19 and 26 °C to429

maintain passenger comfort. Eq. (18e) introduces a terminal430

cost reflecting the difference between the initial and final431

conditions of the battery state of charge SoEt0 and SoEtf .432

5.1 Standard solution433

The standard solution employed to solve the optimization434

problem presented in Eq. (16) is the equivalent consumption435

minimization strategy (ECMS). This strategy is based on436

setting a cost to the electrical energy stored in the battery by437

employing an equivalence factor λ in the battery power, so438

this energy is equivalent to using a certain quantity of fuel in439

the ICE. Therefore the integral problem can be replaced by440

the instantaneous minimization of the following expression:441

C = Pf + λPb (21)

the λ weights the cost of the two possible energy sources,442

one can note that high values assign a high cost to the battery443

usage, promoting the ICE usage and battery charging.444

On the other hand, low values impose a low penalty on445

battery usage, then providing fuel savings and depleting446

the battery energy. However, this method has a drawback,447

where for a given driving cycle, there is an optimal value448

of λ that minimizes fuel consumption and maintains the449

charge-sustaining operation, which need to be calibrated450

in conditions where the driving cycle is perfectly known451

in advance. So, to overcome this limitation, as the driving452

cycle is unknown, the λ can be calibrated in a reference453

cycle and then adapt the value depending on the operating454

conditions, as shown by3,31. In the present work, the λ455

is calibrated in a previous loop of the bus route and next456

applied in the following loops to be covered. Further, with457

feedback from the SoE, a correction is used when the SoE458

falls out of the desired range (0.3 and 0.7). Regarding the459

HVAC control, the original rule-based controller composed460

of the PIs was kept. Providing just the estimation of the461

PHVAC to the ECMS controller to account for Pb.462

5.2 Proposed solution463

While perfect knowledge of the driving cycle is not464

available in real-time control applications, it has been465

observed that the various bus loops share similarities in466

the case at hand. Hence, the approach utilizes one of these467

loops to generate a DP optimization as an initial reference468

for energy management optimization. The rollout algorithm469

will be employed for this purpose32.470

According to Bellman’s principle of optimality: “An471

optimal policy has the property that whatever the initial472

state and initial decisions are, the remaining decisions473

must constitute an optimal policy with regard to the state474

resulting from the first decisions”33, from which it can be475

inferred that any partial path within the optimal one is also476

optimal between its initial and final states, then providing477

the Hamilton-Jacobi-Bellman (HJB) equation:478
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J ∗(x(t), t) = minu

{∫ t+δt

t

L(x(τ), u(τ), τ)dτ

+ J ∗(x(t+ δt), t+ δt)

}
(22)

where the optimal cost-to-go J ∗ from any given state479

x(t) at time t (t0 ≤ t ≤ tf ) can be expressed as a sum480

of two intervals. The first one represents the cost of a481

differential problem with length δt and the second is the482

optimal cost-to-go from the resulting state at t+ δt to483

the end. The dynamic programming algorithm explores484

the Bellman principle of optimality and the HJB equation485

to numerically solve an optimal control problem. As this486

method is based on the discretization of the problem time in487

n time-steps, hence starting from any state value in a given488

time-step (k), Bellman’s principle of optimality implies489

that:490

J ∗(x, k) = minu {L(x, u) + J ∗(x, k + 1)} (23)

To solve this problem, x and u spaces are dis-491

cretized, then starting from the last time-step k = n− 1 (so492

J ∗(x, n) = Φ(x(n))) and proceeding backward accumu-493

lating the cost-to-go for the entire length of x and obtaining494

a resulted space of cost-to-go values for the optimal solution495

at the initial time-step as a function of the initial state496

J ∗(x, 1). So the potential of DP as a mathematical tool in497

the optimization of dynamic systems is that once the value498

of J ∗(x, k) has been stored, it allows the evaluation of not499

only the optimal solution from the initial state but also from500

any particular point in (x, k) space. However, this potential501

suffers from the so-called curse of dimensionality. In the502

case of a high discretization applied to the states and actu-503

ators, it increases the number of combinations to evaluate504

during the problem solution. Consequently, generating high505

computational efforts to compute the problem solution.506

To solve the optimization problem (Eq. 16), perfect507

knowledge of disturbances such as the bus speed508

profile, ambient temperature, and passenger information is509

necessary. However, since future driving conditions cannot510

be known beforehand, DP cannot be used for online control511

applications. In this context, one of the contributions of512

the paper is that instead of predicting the future driving513

cycle, past driving cycle information is used, exploring514

the benefits of repeated bus routes. This way, avoiding515

the online time-consuming optimization due to the long516

horizon of predictive approaches. So, this paper proposes517

pre-computing a DP solution offline for an arbitrary loop518

previously covered by the bus as a base policy for the519

EMS. Naturally, not all loops are perfectly identical, and520

deviations can lead to different vehicle behaviours, such521

as battery energy depletion or overcharging and poor522

performance in cabin temperature control. To address523

this limitation, the base policy provided by DP should524

accommodate various working conditions.525

Being ref the solution of a random bus loop in the526

considered route solved by DP, as presented in previous527

paragraphs, this solution provides the optimal cost-to-go528

from any state xj at time-step k expressed by J ∗(xj , k)ref529

for this specific loop. Since the loops preserves the same530

covered distance, a space-based optimal cost-to-go is built.531

In this sense, a matrix J ∗(xj , si)ref is generated by532

mapping the optimal cost-to-go in the reference cycle at533

a given vehicle position in the loop (si), depending on534

its states (SoE, Tcab). Therefore, considering that the535

driving cycles presents similarities of the same bus route,536

J ∗(xj , si)ref provides an approximation of the optimal537

cost-to-go from any state xj in the bus position si to any538

loop in the route. Next, rewriting the HJB Eq. (22) in the539

space base:540

uk = argminu {L(xk, wk, u) + J ∗(fk(xk, u), sk+1)ref}
(24)

where fk is the discrete version of the state function f in Eq.541

(18b) and J ∗(fk(xk, u), sk+1)ref is an estimation of the542

optimal cost-to-go from the state in the next time step, that is543

obtained from the DP solution of the reference cycle. Once544

J ∗(xj , si)ref is an estimation of J ∗(xj , k), it is computed545

using a previous loop. So, the proposed algorithm generates546

a suboptimal solution, and the difference tends to decrease547

as the reference cycle approaches the real one to be covered.548

These differences between each bus trip can be attributed549

to varying traffic scenarios influenced by factors such as550

time of day, driver behavior, or uncertainties encountered by551

the bus along the route. This expression also suggests that552

a predicted driving cycle obtained through other predictive553

techniques can be utilized within the proposed approach.554

The methodology proposed is demonstrated for the HEV555

model outlined in Section 3, which focuses on the energy556

management of a hybrid electric urban bus covering a557

specific route. However, this strategy can be extended to558

different powertrain architectures. To do so, two essential559

elements are necessary. Firstly, a high-fidelity model to560

represent the vehicle must accurately capture the impact of561

control actions evaluated across the grid generated in the562

optimization problem. Additionally, reliable driving cycle563

prediction is essential. In the present case, a previously564

covered cycle was used, but this approach can be extended565

to any estimated cycle.566

Through the observation of Eq. (24), two statements can567

be highlighted:568

• The proposed strategy can improve the base one since569

it employs information from the actual cycle in the570

next time-step (wk) to determine uk.571

• Once this equation is evaluated each time step, the572

algorithm can employ the feedback of the current573

system states to adapt the control policy. For instance,574

avoiding battery SoE excursions out of the desired575

range and cabin temperatures away from setpoint.576

Fig. 6 shows the diagram of the proposed strategy577

detailed for the case study. First, taking into account that578

the complete driving cycle consists of a sequence of similar579

loops, one loop previously covered by the bus is solved by580

offline DP optimization and used as a reference loop, and581

the cost-to-go obtained by this solution is stored in a map582

in the Reference cycle block. This map allows to estimate,583

through interpolation, the minimum cost to complete the584

trip at any position in the route considering the actual states585

and position of the bus J ∗( ¯SoE, T̄cab, s̄)ref . Second, the586
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Figure 6. Block diagram of the proposed strategy.

real-time algorithm that runs while the bus covers the actual587

loop at every time step consists of the Vehicle model block588

and the Optimization block. In the Vehicle model block, the589

control-oriented model described in the previous section is590

employed to estimate the system states evolution depending591

on the set of possible combinations of controls action (T̄m592

and N̄comp).593

Simultaneously, this set of control candidates is evaluated594

in the generic cost function that balances the fuel595

consumption and cabin comfort according to the value596

assigned to β, providing the cost L. So the states estimated597

are used to interpolate in the cost-to-go map the minimum598

fuel consumption that the vehicle will consume from the599

next time-step to the end of the loop depending on the set600

of control candidates J ∗(T̄m, N̄comp)ref . Finally, in the601

Optimization block, the controls to be applied in the vehicle602

plant are the combination of both that minimizes the sum of603

the current cost (L), and the cost from the next time-step to604

the end (J ∗). Next, these control actions are applied to the605

HEV plant, updating the system states and then repeating606

this process until the end of the loop.607

6 Results and discussion608

6.1 Complete route analysis609

In order to evaluate and compare the performance of the610

proposed strategy, a benchmark was performed. The EMS611

used to compare is the widespread ECMS. This approach612

relies on calibrating the λ factor to provide near-optimum613

results. To do that, a reference loop of the bus route614

(chosen at random) is employed to calibrate this factor and615

applied during the next loops. The same reference cycle was616

performed in the offline DP optimization to generate the617

cost to go matrix employed in the rollout algorithm. Since618

exists difference between this reference loop and the rest,619

the ECMS can fail in its aim of sustaining the charge. To620

avoid this problem, a feedback from the SoE was used,621

applying corrections close to the upper and lower limits622

of 0.3 and 0.7, respectively. Regarding the HVAC system623

control, the ECMS employs a rule-based control strategy, as624

typically embedded in automotive applications. This control625

strategy uses a PI to control the fan power that blows air to626

the cabin, passing the air through the evaporator to maintain627

the cabin temperature at 22 ºC. Another PI is used to control628

the compressor speed, aiming to keep the air temperature629

after the evaporator at 5ºC.630

The upper plot of Fig. 7 presents the evolution of the631

system states for both approaches, considering the complete632

covered route on two consecutive working days. The first633

cycle is employed as the reference loop to calibrate the λ634

parameter, assuming full knowledge of the complete driving635

cycle. Then, it is iteratively tested until finding the value that636

provides the final SoE is equal to the initial one. Equally,637

the off-line DP optimization is applied to this reference loop638

to provide the cost-to-go matrix employed in the proposed639

strategy in the following loops to be covered.640

An important aspect of the rollout algorithm is the641

influence of the β parameter on the problem states. This642

parameter can balance the cost function evaluated in the643

EMS, prioritizing the minimization of fuel consumption644

or cabin temperature deviation about the setpoint. The645

impact of this parameter is discussed in the next section.646

However, in this case, the value assumed for the parameter647

that balances the terms in Eq. (17) was β=0.85. It is648

noticed that the proposed strategy success in keeping the649

SoE in the allowed range along the complete route. On650

the other hand, the λ factor in the ECMS calibrated with651

the same information available from the reference cycle652

frequently hits the SoE limits, being able to keep its value653

close to the desired range due to the corrections applied654

to λ. Additionally, regarding cabin temperature control,655

it is possible to note that both strategies controlled the656

temperature between 24.5 and 19.5 ºC throughout the entire657

cycle.658

In the case at hand, the first cycle was used as a reference659

to calibrate the λ and to use it in the DP offline optimization.660

The lower left part of Fig. 7 shows the evolution of the states661

for this reference cycle, where the disturbances and the662

complete driving cycle are assumed to be the information663

obtained by de bus covering a previous loop. The similarity664
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Figure 7. Comparison between the complete route evaluated with the proposed and the standard approach presenting the SoE
and cabin temperature evolution (upper). Analysis of a single loop regarding the reference cycle used to calibrate both strategies
and a given loop in the middle of the route (bottom).

between the SoE evolution of this particular loop can be665

explained by the fact that both strategies employ optimal666

control techniques to solve the EMS problem. The ECMS667

is based on Pontryagin’s minimum principle, and the rollout668

exploits a DP solution of the cycle at hand.669

Regarding the cabin temperature control performance,670

the ECMS does not have a particular strategy, employing671

PIs to control the HVAC airflow and the compressor speed.672

Additionally, the rollout uses the same PI to control de673

HVAC air flow, but the compressor speed is modeled674

as a control action in the proposed approach. Analyzing675

the cabin temperature evolution for the ECMS case, the676

oscillation observed is related to the PIs implemented in the677

standard cabin temperature control. Moreover, the evolution678

noticed by the Rollout can maintain the cabin temperature679

closer to the setpoint. Both strategies experiment with a680

temperature increase close to the middle of the loop because681

this region is the condition where more passengers are682

inside the bus. Even though the HVAC works close to the683

maximum power, the temperature presented a significant684

deviation concerning the setpoint.685

The analysis of the route covered by the bus shows686

that in the first reference loop, both strategies are able to687

maintain the states close to the desired range since they688

explore the perfectly known driving conditions. However,689

as far as the bus travels the following loops, where the690

driving disturbances are unknown, the proposed method691

shows to be more robust than the ECMS. So comparing692

the performance of a loop in the middle of the route693

(cycle 10), the right bottom part of Fig. 7 shows the states694

evolution. This chosen cycle represents a situation where695

both strategies employ just the information available from696

the reference cycle in the EMS to provide the inputs to the697

vehicle plant in a different set of disturbances and driving698

cycle. The cabin temperature shows the same behavior as699

the reference cycle, so being able to control it near the700

setpoint. The SoE of the ECMS case demonstrates that only701

calibrating the λ for a given reference cycle is insufficient702

to keep the it within the allowed range.703

To explore the strategies under varied scenarios, the704

entire route was reassessed using a different bus loop as705

the reference cycle, generating the cost-to-go matrix for706

the rollout and calibrating the λ parameter of the ECMS.707

The evolution of Tcab and SoE across the entire route is708

depicted in Fig. 8. Both strategies demonstrated comparable709

performance in controlling cabin temperature. However,710

concerning the SoE evolution, the ECMS managed to711

maintain it within the desired range until approximately712

the sixth loop, after which it frequently exceeded the upper713

limit.714

Based on the comparative performance of both strategies,715

it is evident that the proposed approach has the potential to716

outperform the standard ECMS. While both methods share717

identical calibration requirements involving optimizing a718

reference cycle, the ECMS consolidates all information719

from the reference cycle into a single parameter, λ. In720

contrast, the rollout strategy leverages the entirety of the721

cost-to-go from the reference cycle. As a result, the control722
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Figure 8. Comparison between the complete route evaluated with the proposed employing a different reference cycle to calibrate
the strategies.

policy employed by the ECMS approach relies solely on723

a single constant, with minimal dependency on the system724

state, except for the SoE correction in values outside the725

allowed range (0.3 and 0.7). Conversely, the rollout strategy726

adopts a more comprehensive approach that considers the727

influence of system states (SoE and Tcab) and vehicle728

position in the control policy. However, this enhanced EMS729

comes at the cost of more significant storage requirements,730

dependent on the size of the problem. For instance, in the731

current scenario, where J ∗(xj , si)ref has a size of 305732

x 101 x 101, representing a discretization in SoE of 101733

points between 0.3 and 0.7, 101 points between 19 and 26734

°C in Tcab, and a 50 m discretization of the 15.1 km loop735

distance.736

6.2 Calibration of β parameter737

For this part of the analysis, the influence of the parameter738

β is discussed, to do that, the complete route presented739

in the Fig. 8 is employed. This route was covered by the740

ECMS case taken as a reference for the comparison, and741

the parameter β was evaluated for the set of values as (0.95742

0.9 0.85 0.8 0.7).743

The states and the total fuel consumption of one744

single loop in the middle of the considered route are745

presented on Fig. 9. The cases β = 0.95 and β = 0.7746

represent two extremes of the proposed strategy, and the747

standard approach is the ECMS. So, comparing the cabin748

temperature, as expected, low β can maintain the cabin749

temperature close to setpoint, while high β allows the750

temperature to vary while keeping the temperature within751

limits defined in the cost function. Also, close to the middle752

of the loop is the condition where more passengers are753

inside the bus, and even under these conditions, it was754

observed that the lowest beta can keep the temperature755

closer to the setpoint. Of course, this improvement in756

cabin temperature control performance comes at the cost757

of an increase in fuel consumption. Consequently, the β758

states one optimization criteria that, as exposed in Eq. (17),759

balances the cost function employed in the EMS, attributing760

lower or higher penalties to the terms that evaluate the761

fuel consumption of the engine and the cabin temperature762

deviation from the setpoint.763

Figure 9. Representation of states and fuel consumption of a
single loop employing the ECMS and the proposed strategy
varying the β parameter.

On the other hand, regarding the SoE evolution, for764

both the values of β, it is clear that it can maintain the765

state of charge close to 0.5, achieving the charge sustaining766

operation. Also, they presented a similar profile because767

both employed the same EMS. Please note that the term768

Φ in Eq. (18e) penalizes deviations from the desired final769

state at the end of the loop. That is, increasing this penalty770

can also guarantee that the final state of charge will be very771

close to a desired setpoint in this case 0.5. Moreover, even772

though the ECMS had the λ calibrated with a loop of the773

bus in the same route, the standard strategy is not able to774

keep the SoE close to the desired level.775

As stated before, this study aims to control cabin776

temperature by addressing the optimization of passengers777

comfort and fuel consumption. By doing so, it is possible778

to reduce overall energy consumption by controlling the779

HVAC power consumption. So, Fig. 10 shows the HVAC780

performance of the set of β regarding the standard ECMS.781

In the upper plot, the discomfort ratio is defined as the782

sum of the difference between cabin temperature and783

the lower and upper limits (21 and 23 ºC) for the total784
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Figure 10. HVAC energy consumption and discomfort ratio
varying the Beta parameter regarding the standard ECMS
strategy.

trip covered. Equally, at the bottom plot is presented785

the total HVAC energy consumption. It can be noticed786

that for values of β from 0.7 to 0.9, the proposed787

strategy can improve cabin temperature control without788

penalizing energy consumption. The results show that the789

best scenario of β = 0.70 presented a 50% reduction in the790

discomfort ratio presenting approximately the same energy791

consumption as the baseline strategy. Also, a decrease of792

4% in the total HVAC energy consumption was noticed for793

β = 0.95, but increasing the discomfort ratio to 20%.794

Fig. 11 summarizes the results in a pareto front for the795

complete route evaluated by the standard EMCS and the796

set of β performed regarding the total fuel consumption797

and the discomfort ratio. Analysing this figure is noticeable798

that a trade-off exists between fuel consumption and cabin799

temperature comfort. In terms of fuel consumption, it can800

be highlighted that the iso fuel consumption reduces by801

almost 50% the cabin discomfort, and the iso discomfort802

can reduces fuel consumption by 1.5%.803

7 Conclusions804

This article addresses the problem of an urban electric805

urban bus covering two consecutive daily commutes. The806

proposed strategy employs the information available from807

previously covered loops in the same bus route to optimize808

the energy management strategy of the following loops. The809

novelty of this work is based on using information from a810

cycle previously recorded to provide an optimal solution of811

a reference cycle, then generating a cost to be employed812

in the online optimization. Whereas approaches in the813

literature typically use methods to estimate future driving814

conditions. The energy management strategy actuates in the815

power split between the ICE and the motor and in the HVAC816

system by controlling the cabin temperature considering817

the variation in the number of passengers on the bus. In818

the end, a benchmark has been carried out to compare the819

performance of the proposed energy management strategy820

with a standard ECMS widespread algorithm for HEV821

energy management, embedded with rule-based strategies822

to control the HVAC system. The main contributions of this823

work can be summarized as follows:824

(i) The proposed EMS does not rely on estimating future825

driving conditions or the number of passengers on826

the bus but rather on exploring information from827

previously covered loops.828

(ii) A strategy based on an optimization criterion829

was developed, balancing the compromise between830

fuel consumption and the performance of cabin831

temperature control.832

(iii) The pareto front allows to compare different EMS833

calibrations concerning the β chosen, presenting834

the trade-off between discomfort ratio and fuel835

consumption.836

(iv) The results compared to the standard strategy shows837

that it was possible to reduce the discomfort ratio838

by up to 45% with the same fuel consumption or839

decrease it by 20% and while provide fuel economy840

by 1%.841
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