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A multi-objective energy management
optimization for a hybrid electric bus
covering an urban route

Bernardo Tormos, Benjamin Pla, Pau Bares and Douglas Pinto

Abstract

The development of electrified vehicles is a promising step toward energy savings, emissions reduction, environmental
protection, and more sustainable economic growth. In the case of hybrid electric vehicles (HEVs), the energy
management strategy (EMS) is essential for their efficiency and energy consumption. Typically, EMS employs rule-
based strategies calibrated to general driving conditions. So, this paper proposes to calibrate the EMS of an urban
hybrid electric bus that covers a particular route by taking advantage of past driving information. The EMS computes
the percentage of the vehicle power demand that must be supplied by each of the sources (fuel and battery) and also
controls the heating, ventilating and air conditioning (HVAC) system to achieve cabin thermal comfort. The proposed
approach is based on employing an optimal solution by dynamic programming in a previous loop covered by the bus in
the considered route. Then, the cost-to-go matrix is stored and used in the following trips by applying the one-step look-
ahead rollout, taking profit from the similarities of the loops in the route. To compare and evaluate the performance of the
proposed algorithm, a benchmark was carried out by employing the widespread equivalent consumption minimization
strategy (ECMS) approach, combined with rule-based strategies in the HVAC control system. Finally, the pareto front
presents the trade-off between cabin temperature control performance and total fuel consumption, allowing to compare

and evaluate the different EMS calibrations.
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+1 Introduction

» Despite policy efforts to encourage the development of
s more efficient technologies in the transport sector and
s renewable energies, this sector has the most significant
s dependence on fossil fuels and was responsible for 37% of
¢+ CO2 emissions from end-use sectors in 2021 '. To overcome
7 these issues, the employment of electrified powertrains,
s such as battery electric vehicles (BEV), hybrid electric
o vehicles (HEV), has shown to be an essential step to reduce
10 energy consumption and emissions’. HEV increases the
i possibility of reducing fuel consumption and emissions
12 compared to traditional ICE-based vehicles due to the
13 combined use of two energy sources, internal combustion
1+ engine (ICE) and battery’. So, this integration of multiple
1s power sources requires an efficient energy management
16 strategy to match the efficient operation of the system.

17 The improvements of HEV can be explored by modeling
15 @ powertrain topology that best fits the vehicle application
wor sizing the components®. However, choosing an
2 appropriate control strategy for HEV applications also
a plays a key role in the optimal and efficient operation
» of these multiple energy sources®. Furthermore, when
23 assessing factors that affects the overall energy consumption
2« of a vehicle, it is essential to consider not only the
s energy required for propulsion but also the auxiliary
x loads. Among these loads, the Heating, Ventilation, and
z Air Conditioning HVAC system emerges as one of the
23 most significant contributors to battery usage in electrified
» vehicles, accounting for up to 30% of the total energy

» consumption under specific conditions’. So it is essential to
s consider the HVAC power consumption related to the cabin
» temperature control to guarantee the passengers comfort
33 and energy efficiency.

s To fully explore the potential of an HEV, the EMS is
s essential to control the energy flow within the vehicle.
3 It aims to minimize fuel consumption while fulfilling
v the driving power demands and constraints, such as the
;s maximum power limitations and battery state of charge
» that should be maintained in a certain range>. This topic
w» has been extensively discussed in the literature, and a
s comprehensive review can be found in®. Moreover, it
22 should be noted that the performance and optimal energy
s management strategy (EMS) are influenced by various
« factors, including driver behavior, road slope, and traffic
ss conditions”.

s Authors usually categorize the EMS in different
« arrangements, but two of them can be highlighted:
ss ruled-based and optimization-based. '?. First, ruled-based
w strategies are usually based on heuristic approaches,
so employing high calibration efforts to consider the different
si set of operating conditions that the vehicle can face'!.
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s2 The optimization-based methods can be applied to offline
s3 approaches, e.g., design or benchmarking with developed
s+ strategies, and also for online control purposes, depending
ss on the information available '.

ss  Regarding optimization-based methods, optimal control
s7 can be applied to the energy management problem of an
ss HEV, where a model is employed to evaluate a predefined
so cost function that can estimate the impact of the control
« decisions®. The offline optimization often requires that the
o1 driving cycle and disturbances related to the problem are
2 well known in advance, which just happens in homologation
63 cycles or specific applications. The most spread techniques
« employed in these optimization problems are Dynamic
o Programing (DP) '? and Pontryagin’s Minimum Principle '°.
s DP is a powerful optimization technique widely applied
¢to HEV energy management. It is used for offline
s Optimization, where the solution is usually used as a
o benchmark with other approaches, or for developing EMS
0 or advanced HEV control strategies '°. First, the state and
7 control variables grid is constructed based on the system
72 input parameters. Subsequently, the DP algorithm assesses
73 the cost and state transitions associated with each control
74 policy, considering all states in a backward over time. As a
75 result, the optimal cost-to-go function is stored depending
76 on states and control actions, allowing for a comprehensive
77 evaluation of the entire problem. The optimal solution is
7s then determined by selecting the path with the lowest cost-
» to-go 4.

o In order to overcome the driving cycle dependence
st of these optimal control tools, several researchers have
2 been developing online optimization-based methods. Some
s3of them are based on the Equivalent consumption
s minimization strategy (ECMS)'>, where the selected
ss control action is the one that minimizes a cost function
ss related to the energy consumption of the fuel tank and
w the batteries. Moreover, there are several adaptations of
ss this method in the literature, called adaptive ECMS'%!7,
s These methods rely on using various information sources
o to dynamically adapt the equivalent factor in response
o1 to driving conditions. A further approach for addressing
o the driving cycle dependency is model predictive control
% (MPC)'®. This method can estimate future driving
o+ conditions based on some information available (e.g., traffic
os lights, preceding vehicles, and road slope) while fulfilling
s the system constraints.

o7 However, implementing MPC in real-time applications
o for HEVs poses several challenges, including hardware
9 limitations, constrained processing power, and commu-
wo nication delays. The increased computational costs of
o such approaches stem from solving optimization problems
12 repeatedly over a finite prediction horizon '”. The selection
03 of this horizon is critical, as a longer prediction horizon
4 improves performance by considering future states and
10s constraints that affect control performance and computa-
106 tional complexity. Additionally, control-based approaches
w07 like MPC and ECMS require some form of prediction
s of future conditions. For instance, MPC requires future
1o predictions to provide the optimal control policy directly. At
1o the same time, ECMS relies on predicting future conditions
i to calibrate the weighting parameter between the battery and
12 Internal ICE costs, respectively.

s The optimization of energy management strategies
msin HEV can be extended to incorporate the energy
s consumption of HVAC system, which can account for more
ne than 30% of the maximum battery power>’. Additionally,
17 the HVAC control optimization can reduce the total energy
us consumption of electrified vehicles by approximately
19 14%, as observed under simulation conditions by2'. For
1o instance,”” presented a sequential optimization for eco-
121 driving speed trajectory planning, air conditioning thermal
122 load planning, and powertrain control in a hybrid electric
123 vehicle in a connected and automated vehicle environment.
124+ Results show that the complete optimization strategy could
125 improve energy consumption by up to 18.8%.

s Authors in?® developed a two-layer MPC that employs
17 the vehicle speed and traffic predictions to compute the
s optimal trajectories for the cabin and battery cooling
o in HEV. Later, using these trajectories in the energy
15 management controller to compute the proper power split.
131 A neural network model predictive control is proposed by **
12 to control the HVAC system of a battery electric bus. The
133 results show that the proposed method could reduce close to
114 2.8% 1n total energy consumption compared with standard
135 strategies compound by PID controllers. Furthermore,
136 the characteristics of the predicted horizon in HEV
137 integrated power and thermal management approaches were
i3 investigated in”>. The authors discuss the computational
130 burden, accuracy, and resolution of look-ahead information
140 employed in a multi-horizon MPC-based strategy.

w1 As observed in the literature, the problem of integrated
142 energy management strategies in electrified vehicles usually
143 relies on estimating future driving conditions, thermal loads
44 on batteries and cabins, or information available from
s connected and automated vehicle environments. This paper
s proposes an online applicable strategy for controlling the
147 air conditioning system and power split of a hybrid electric
us urban bus. The EMS takes advantage of the particular
o application, i.e., an urban bus, where the route is repeated
150 so the future driving conditions can be reasonably well
st predicted with past driving cycles. So, the cost-to-go
152 matrix obtained by offline DP optimization is generated by
153 evaluating a simplified bus model and overcoming increased
15« computational efforts related to predictive approaches
155 widely applied to online control purposes. Later, this matrix
156 is employed in the EMS of the bus on the consecutive
157 loops to be covered. The goal is to reduce the total energy
1ss consumption of the integrated HVAC system while keeping
150 the vehicle operating in charge-sustaining mode. However,
150 the proposed strategy is not limited to the optimization of
st HEV, it also can be extended to other applications that
162 exploits daily commute trips or similar driving conditions.

w2 Case Study

16+ This case study considered a hybrid electric urban bus that
16s covers the same route daily. The driving cycle information
166 was acquired from the Valencia public transport service
17 (EMT-Valencia). The evaluated data contains information of
16s two consecutive working days of the route (“Universitats-
1o Hosp.Dr.Peset”), containing a total of 287 km covered.
im Bach vehicle journey is approximately 15.1 km long and
im is completed 9 and 10 times in the two days analyzed,



112 accounting for 284 km traveled. The average journey time
i3 1s 5100 seconds with a standard deviation of 320 seconds.
14 The vehicle position was provided by the GPS, while the
175 vehicle speed profile by the bus OBD port. The GPS signal
11s determines the ending point and the starting point of next
177 loop, then, once the bus reach the ending point, the vehicle
s speed is integrated providing the distance covered in the
179 loop.

Bus speed [m/s]
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Figure 1. Measured vehicle speed of the bus on the specific
route, representing the 19 loops covered in two consecutive
days.

o Fig. 1 shows the vehicle speeds as a function of
is1 the vehicle position along the route for the 19 loops.
2 In a previous work, a discussion about the bus driving
s cycles of the selected route was carried out?. The study
15« concluded that the bus speed traces exhibit similar patterns
155 across different positions along the route. Notably, it can
iss be inferred that the disturbances experienced in each
157 loop are similar, given that the routes encounter the
1ss same traffic lights, stops for embarking and disembarking
150 passengers, and speed limits. However, some variations in
wo the total distance covered by the bus in the loops can be
w1 observed. These discrepancies may arise from differences
102 in driving trajectories and maneuvers to avoid obstacles or
193 Measurement uncertainties.

ws  The total passenger number can affect the cabin
19s temperature, significantly impacting the total heat load?’.
1w The bus line covers a route that connects a university
w7 situated at one end of the city to another end, passing
1ws through the central region and including 36 bus stops. The
100 estimated distribution in the number of passengers is shown
200 0 Fig. 2.

3 Plant description

202 To evaluate the control strategies, a complete vehicle model
203 plant was built in GT-Power. This system contains the
204 complete vehicle dynamics, air conditioning system and
2s cabin model. The selected architecture of the HEV bus
206 follows the P2 construction shown in Fig. 3. The main
27 HEV bus model characteristics are outlined in Table 1. In
208 the considered hybrid configuration, the electric motor and
200 the internal combustion engine are connected through an
210 axle, which is directly connected to the transmission, then
i connects through a differential to the vehicle wheels.

a2 Note that the complete HVAC model is connected to
213 the high-voltage battery of the hybrid powertrain, so the
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Figure 2. Average, maximum, and minimum estimated
number of passengers in the bus for the 19 analyzed cycles,
distributed in 36 bus stops.
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Figure 3. Parallel HEV architecture employed on the problem
and power sign criteria through the system components

24 energy consumed in the HVAC system is provided by
215 the high-voltage battery. The battery can recover energy
216 through regenerative braking or from the combustion engine
217 operating in hybrid mode. On the other hand, energy is
25 consumed when the electric motor assists the combustion
219 engine in propelling the vehicle and providing the power
220 for the HVAC system.

Table 1. Description of the HEV bus model main
characteristics.

Parameter Value
Weight 15000 kg
Frontal area 7.24 m?
Drag coefficient 0.78
Motor rated power 150 kW
Engine rated power 200 kW
Battery capacity 11.8 kWh

1 The HEV bus considered in this case study is exposed
2» to summer conditions due to the critical working conditions
23 in the region, which means that the HVAC system operates
24 in cooling mode, then rejects heat from the cabin to the
»s ambient. The model used to represent the thermal balance,



26 and the cabin temperature was the lumped cabin model
27 (0D). However, a 1D model was employed to model the air
conditioner coolant circuit. Fig. 4 shows the parameters and

Ambient Q"“t/ /!
Hot %
Cabin N
Qamy . HVAC system (- 2P
1

Q Qpas%z % }ald
door \

Figure 4. Simplified representation of the cabin plant model
and the standard control of the HVAC system.

228
29 surrounding conditions that affect the cabin temperature.
20 The air entering the cabin exchanges heat with internal
1 components and is then recirculated through the cold side
22 of the AC system. All features, such as windows, seats,
23 and surface materials, are related through heat exchange
24 properties and affect the cabin temperature. As well as the
s heat generated by the number of passengers (pqs and the
236 heat added by the doors opening at the bus stations @ oor
27 represent most of the heat added to the cabin. The general
»s passenger heat load is estimated as®’ and is characterized
239 by Eq. (l)

Qpas = Npashpas (1)

20 Where N, represents the number of passengers inside
i the bus, and the h,.s (W) is the heat generation per
22 passenger, this value is related to the human body metabolic
23 rate and the average skin area, but in this work, this value
24 was considered constant for all passengers and equal to
x5 170 W2, Also, Eq. (2) estimates the impact of the door
6 opening at bus stops and is modeled according to?’. This
217 additional heat added to the system is applied for 30 s, time
2s considered necessary each time the bus changes the number
29 Of passengers at a bus stop.

Qdoo’r‘ = paiT'Cp(Ta'rnb - Tcab)‘/inf (2)

20 where pa;r- (kg/m?) and C,, (kJ/kg K) are the air density and
251 specific heat, T, (°C) and T,p (°C) the air ambient and
252 cabin temperature and Vj,, (m?3/s) is the air infiltration flow
253 rate:

‘/;nf = CVA14door \V Rp (3)

24 being C4 air flow coefficient (m3/s)/(m?Pa®%), Ay, the
25 total area of the door when opened (m?) and R,, the pressure
2s6 factor (Pa).

»7 The original system comprises rule-based control
2 strategies and PIs to control the HVAC system aiming
259 to maintain the cabin temperature at the desired setpoint.
20 These control actions were applied in the standard method.
21 As shown in Fig. 4, the PI of the AC compressor controls
22 the compressor speed Ncopmp to keep the air temperature
s of the supplied air at 5 °C. Also, a PI controller is

x4 employed to control the air flow rate of the cold side of
25 the system to maintain the cabin temperature close to the
26 setpoint. On the other hand, the standard PI that controls
7 the compressor speed was replaced by the direct input
s computed by the proposed strategy, and this method will be
29 explained in previous section. In addition, other components
a0 and parameters relevant to the air conditioning system
1 circuit were unchanged for both approaches.

24 Control-oriented model

o3 The model used to represent the vehicle powertrain is
2 based on longitudinal vehicle dynamics. So, according to
275 the hybrid architecture in Fig. 3, the power demand to
26 move the vehicle in the driving cycle is equal to the power
217 provided by the power split. So as the motor and the ICE
273 are connected in the same shaft, they share the same speed,
29 thus, the relation between the torque provided by the motor
20 T, and the ICE T7cr must be equal to the torque in the
231 powertrain transmission 7

Tg =Ty +TrcE (4)

»  For each time step, the torque demand to drive the vehicle
253 1S computed by:

1
T = (md — mgucosd — mgsind — ipAchQ)Rw 5)

s« where m is the equivalent vehicle mass, v, v, g is the vehicle
25 speed, acceleration and acceleration of gravity, respectively.
26 Also, p is the air density, Acy the product of the bus frontal
27 area and aerodynamic coefficient and R,, the wheel radius.
s Finally, the p is the rolling coefficient, 6 is the angle due
0 to the road slope, which is neglected in the considered
290 problem. While the motor and ICE speeds are proportional
201 to the wheel speed via the specified gear ratio, their joint
2 torque T}, in Eq. (4) is proportional to the wheel torque via
23 the inverse of the gear ratio. So, if the demanded vehicle
»4 speed is known, the vehicle acceleration and Tj; may be
25 determined using Eq. (5) and the gear ratio. Consequently,
206 Bq. (4) may be rewritten by specifying the control action as
207 U = Tmi

Tice = Tg T (6)

25 then, the ICE torque is computed given the vehicle-speed
29 demand and decision v known. With respect to the ICE
30 model, it is based on the quasi-static technique developed
w1 in’’, which employs experimental data to map the fuel
32 consumption my as a function of engine speed w, and
s torque Trop:

(N

s« The dynamic equation that governs the energy stored in
»0s the battery (Ep) is given by:

my = g(wgvTICE)

Ey, =P, ®)

3 where P, is the battery power, positive when the battery is
s drained, and negative when being charged as represented
s0s by the signs in Fig. 3. Note that P, depends on the HVAC
30 power consumption Py ac and the motor power P,
s10 according to the following equation:

P, = Pyvac + Pn &)



su The P, uses a quasi-static map to obtain the efficiency
s depending on the wy and T;,. Equally, a simple map
s13 based on the compressor speed is employed to estimate the
s Py ac. Finally, the battery is modelled with an electrically
s1s equivalent circuit based on resistance in series with a
s16 Voltage source:

V=V, — 1Ry (10)

s where I, is the battery current, and R represents its internal
w3 resistance that depends on the battery state of energy SoFE,
s i.e., a measure of the battery energy level concerning the
s total energy content of the fully charged battery Ej o:

Epo = Voc,0@b0 an

sa with Vpe o and Qo being the open circuit voltage and
» charge of the fully charged battery. The actual energy stored
3 in the battery is represented by:

Ey = VocQyp 12)

2« So, normalizing the battery energy, the state of energy of
»s the battery can be defined as:

Voch
Voc,OQb,O

»s where SoC' is the battery state of charge, used in many
27 works instead of the SoF.

»s A simplified model of the HVAC system implemented
»0 in the GT-Power bus plant comprising the lumped cabin
30 model (0D) and the coolant circuit (1D) is necessary for
31 two reasons. First, the complexity of the resulting system
;» modelled increases the computational effort to evaluate the
s different control actions in the control-oriented model used
% in real-time optimization. Second, as the proposed strategy
»s employs a DP approach, increasing the states of the optimal
336 control problem increases the system complexity, requiring
37 high computational demands. So, to obtain a simple model
1s of this complex system, a linear model was developed by
s investigating a set of variables and parameters that exhibit
o correlations with the original system.

s The Eq. (14) represents the simplified discrete time
s model of the cabin temperature. For a given time step,
s the estimated T, is affected by the disturbances; Qpas,
34 QdoorsLamp. the state T,qp and the control action Neopp.
us The sub-index k expresses the current time-step and «,, the
116 model parameters to be calibrated with the responses from
s the plant. The data evaluated to calibrate the «,, parameters
us were two consecutive loops, where the control strategy
u employed in the HVAC system was based on PIs controllers.

Ey
SoE = =
Eyo

VO C

= SoC Vo

13)

2
Tcabk+1 = O41710(1?% - O(QNcompk + a3(Ncompk) +

O‘4(¢2pas;c + Qdoo’r‘k) + as (T‘amb;c - Tcabk.) (]4‘)

10 The positive signals attributed to the terms in Eq. (14)
51 represent the parameters that contribute to the heat load
;2 on the cabin. In contrast, the negative terms can reject
353 heat from the cabin to the ambient,i.e., the compressor
s+ speed only. Note that the term representing the temperature
355 difference between the environment and the cabin, to
16 some extent, compasses the heat exchanges between the

7 walls, floor, windows, and other bus components. It was
s also observed that in conditions with a high number of
30 passengers on the bus, the model responds differently
0 because the principal source of heat added to the cabin is
s provided by the passengers. So, to overcome this issue, a
s2 threshold was defined, and the parameters were adjusted in a
33 dual-zone model. Similarly, a model to represent the HVAC
364 power consumption was developed. The model is necessary
365 to estimate Py, which depends on the Py a¢:

_ 2
PHVAC]C+1 = 71Ncompk — 72 (Ncompk) + 73 (15)
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Figure 5. Model validation: Comparison between actual cabin
temperature and battery SoE of the plant model and the
estimated with the simplified model for one bus trip.

36 Fig. 5 shows the validation of the control-oriented model,
s» where a comparison is presented between the estimated
s problem states (SoE and T,.,;) and the actual provided
10 by the HEV plant under the influence of identical inputs
w0 (Pry ac and P,,) in one bus trip. It can be observed that the
wm SoFE and T, estimations accurately reproduce the results
s2 with minimal deviation from the actual state. Note that
s73 the estimated results are obtained without feedback on the
w4 actual system condition. However, in the proposed control
s strategy, there will be feedback on the SoF and T¢4, and
6 then these small discrepancies will be even reduced once the
s error is not integrated over time. This way, the parameters
ss of the linearized model are presented in Table 2. After
w evaluating multiple models of varying orders, the selected
0 model provided a good compromise between accuracy and
31 complexity.

2 Note that the present work does not consider any
s3 couple between the HVAC system to the battery thermal
s« behaviour, their cooling systems are modelled separately.
s Given the significance of summer conditions in Valencia,
16 the study focuses on the HVAC operating in cooling mode.
;7 Consequently, battery temperature is not critical in this case
ss and was not considered in the EMS optimization. Future
39 work will consider a more complex control-oriented model
o that considers the thermal management of the connection
01 between the battery pack, ICE, and HVAC system, probably
32 with a more significant number of states.

x5 Optimization problem

1+ The primary objective of EMS optimization is to minimize
ws energy consumption while satisfying the driver power



Table 2. Simplified cabin model coefficients

Coefficients Value  [Npas<50] [Npas>50]
o1 0.9722 0.9773

Qs 0.000342 0.000201
s 5.308e-08  2.723e-08
oy 0.000306 0.000263
as 0.0368 0.0239

Y1 3.0013 3.0013

Y2 2.552e-04  2.552e-04
¥3 1.329e+03  1.329e+03

s request and maintaining cabin thermal comfort. To achieve
s7 this goal, the following cost function is introduced:

J=®(x(ty)) + /tf L(z(t),u(t), w(t))dt (16)

to

»s where £y and t; are the initial and final time of the cycle,
w9 T 1S a vector containing the system states, u represents the
a0 control actions, and w represents disturbances that impact
a1 the system evolution, such as ambient temperature Ty,
42 Qpas, Qdoor> and v. This equation includes a terminal cost
as © related to ty, penalizing deviations from the desired
w04 final state, in this case, the energy stored in the battery.
w5 Additionally, the term L represents the instantaneous cost
a6 function, relating fuel consumption P; and the squared
407 deviation of cabin temperature T¢,;, from the setpoint T,
a8 over the covered loop, as expressed by:

L= ﬂPj + (1 - B)(Tcab - Tset)2 a7
a0 So the multi-objective optimization proposed by this paper
a0 is addressed by the term (3, which assigns importance
anto each parameter in the optimization process. This
a2 parameter remains constant and is varied to study its
a3 impacts on cabin temperature control performance and
a4 total energy consumption, further discussed in the Results
a5 and discussion section. The corresponding optimal control
a16 problem is mathematically described by:

ty
u* = argmin, J(x,u)dt (18a)
to
subject to:
z = f(x,u) (18b)
Epo-03<Ey<Epp-0.7 (18¢)
Tcab,min < Tcab < Tcab,max (18d)
P = 0cost(S0E;, — SoEy,)? (18e)

a7 The system dynamics (18b) corresponds to the battery and
a1s cabin temperature dynamics with state vector:

X = [SoF Teap)” (19)

a9 To achieve energy consumption minimization, the EMS
20 must compute the optimal settings for the decision
a2 variables:

u= [Tm Ncomp]T (20)

a2 Three constraints were incorporated to address the problem
a3 discussed in this paper. Eq. (18c) sets the maximum and

24 minimum range limits for the SoE, ensuring it remains
»s within the bounds defined in Eq. (13). Specifically, the
«6 battery state of charge cannot fall below 0.3 or exceed
47 0.7 to prevent battery damage and overcharge. Equation
w8 18d establishes limits for the cabin temperature throughout
a0 the cycle, ensuring it remains between 19 and 26 °C to
430 maintain passenger comfort. Eq. (18e) introduces a terminal
s cost reflecting the difference between the initial and final
2 conditions of the battery state of charge SoEy, and SoE},.

« 5.1 Standard solution

14 The standard solution employed to solve the optimization
435 problem presented in Eq. (16) is the equivalent consumption
136 minimization strategy (ECMS). This strategy is based on
4y setting a cost to the electrical energy stored in the battery by
13 employing an equivalence factor A in the battery power, so
43 this energy is equivalent to using a certain quantity of fuel in
a0 the ICE. Therefore the integral problem can be replaced by
s the instantaneous minimization of the following expression:

C=Pr+ AP 21
s the \ weights the cost of the two possible energy sources,
w3 one can note that high values assign a high cost to the battery
ws usage, promoting the ICE usage and battery charging.
w5 On the other hand, low values impose a low penalty on
us battery usage, then providing fuel savings and depleting
w7 the battery energy. However, this method has a drawback,
ws where for a given driving cycle, there is an optimal value
w of A that minimizes fuel consumption and maintains the
ss0 charge-sustaining operation, which need to be calibrated
ss1in conditions where the driving cycle is perfectly known
a2 in advance. So, to overcome this limitation, as the driving
ss3 cycle is unknown, the A can be calibrated in a reference
ss4 cycle and then adapt the value depending on the operating
sss conditions, as shown by>3!. In the present work, the )
as6 is calibrated in a previous loop of the bus route and next
ss7 applied in the following loops to be covered. Further, with
sss feedback from the SoF, a correction is used when the SoE
ss0 falls out of the desired range (0.3 and 0.7). Regarding the
10 HVAC control, the original rule-based controller composed
a1 of the PIs was kept. Providing just the estimation of the
a2 Py ac to the ECMS controller to account for P,

« 5.2 Proposed solution

s+ While perfect knowledge of the driving cycle is not
ss available in real-time control applications, it has been
a6 observed that the various bus loops share similarities in
a7 the case at hand. Hence, the approach utilizes one of these
163 loops to generate a DP optimization as an initial reference
a0 for energy management optimization. The rollout algorithm
0 will be employed for this purpose .

an According to Bellman’s principle of optimality: “An
a2 optimal policy has the property that whatever the initial
43 state and initial decisions are, the remaining decisions
44 Must constitute an optimal policy with regard to the state
s resulting from the first decisions”??, from which it can be
w6 inferred that any partial path within the optimal one is also
477 optimal between its initial and final states, then providing
473 the Hamilton-Jacobi-Bellman (HJB) equation:



t+ot
T (x(t),t) = mmu{/t L(z(7),u(r),7)dr

+ T*(z(t + 0t),t + 5t)} (22)

s where the optimal cost-to-go J* from any given state
s () at time ¢ (to <t <ty) can be expressed as a sum
s of two intervals. The first one represents the cost of a
s differential problem with length d¢ and the second is the
43 optimal cost-to-go from the resulting state at t -+ dt to
sss the end. The dynamic programming algorithm explores
ss5 the Bellman principle of optimality and the HIB equation
a6 to numerically solve an optimal control problem. As this
ss7 method is based on the discretization of the problem time in
ass M time-steps, hence starting from any state value in a given
s time-step (k), Bellman’s principle of optimality implies
a90 that:

T (z, k) = ming {L(z,u) + T*(z,k+1)}  (23)
s To solve this problem, x and wu spaces are dis-
s cretized, then starting from the last time-step £k = n — 1 (so
w3 J*(x,n) = ®(z(n))) and proceeding backward accumu-
104 lating the cost-to-go for the entire length of = and obtaining
105 a resulted space of cost-to-go values for the optimal solution
w6 at the initial time-step as a function of the initial state
w1 J*(x,1). So the potential of DP as a mathematical tool in
a0s the optimization of dynamic systems is that once the value
w9 of J*(x, k) has been stored, it allows the evaluation of not
soo only the optimal solution from the initial state but also from
soi any particular point in (z, k) space. However, this potential
s suffers from the so-called curse of dimensionality. In the
s03 case of a high discretization applied to the states and actu-
so+ ators, it increases the number of combinations to evaluate
sos during the problem solution. Consequently, generating high
sos computational efforts to compute the problem solution.
s7  To solve the optimization problem (Eq. 16), perfect
sos knowledge of disturbances such as the bus speed
so0 profile, ambient temperature, and passenger information is
sio necessary. However, since future driving conditions cannot
st be known beforehand, DP cannot be used for online control
siz applications. In this context, one of the contributions of
si3 the paper is that instead of predicting the future driving
siu cycle, past driving cycle information is used, exploring
sis the benefits of repeated bus routes. This way, avoiding
sic the online time-consuming optimization due to the long
si7 horizon of predictive approaches. So, this paper proposes
sis pre-computing a DP solution offline for an arbitrary loop
sio previously covered by the bus as a base policy for the
s0 EMS. Naturally, not all loops are perfectly identical, and
s deviations can lead to different vehicle behaviours, such
s» as battery energy depletion or overcharging and poor
s performance in cabin temperature control. To address
s this limitation, the base policy provided by DP should
s»s accommodate various working conditions.
s Being ref the solution of a random bus loop in the
sz considered route solved by DP, as presented in previous
ss paragraphs, this solution provides the optimal cost-to-go
s20 from any state x; at time-step k expressed by J* (25, k)ref

sw for this specific loop. Since the loops preserves the same
su covered distance, a space-based optimal cost-to-go is built.
s2In this sense, a matrix J*(z;,5;)ref is generated by
s;3 mapping the optimal cost-to-go in the reference cycle at
s a given vehicle position in the loop (s;), depending on
s its states (SoF, T.qp). Therefore, considering that the
si6 driving cycles presents similarities of the same bus route,
s7 J*(2;, Si)ref provides an approximation of the optimal
s3 COst-to-go from any state x; in the bus position s; to any
s» loop in the route. Next, rewriting the HIB Eq. (22) in the
s space base:

up = argming, {L(zg, wg, w) + T (fu(Tk, w), Skt1)ref
(24)

su where fj, is the discrete version of the state function f in Eq.
si2 (18b) and J*(fi(zk,w), Sk41)ref is an estimation of the
s13 optimal cost-to-go from the state in the next time step, that is
s14 obtained from the DP solution of the reference cycle. Once
sis J*(xj, 8i)rey 18 an estimation of J*(z;, k), it is computed
sa6 using a previous loop. So, the proposed algorithm generates
si7 @ suboptimal solution, and the difference tends to decrease
sas as the reference cycle approaches the real one to be covered.
s These differences between each bus trip can be attributed
sso to varying traffic scenarios influenced by factors such as
ss1 time of day, driver behavior, or uncertainties encountered by
s2 the bus along the route. This expression also suggests that
ss3 a predicted driving cycle obtained through other predictive
ss techniques can be utilized within the proposed approach.
sss - The methodology proposed is demonstrated for the HEV
sss model outlined in Section 3, which focuses on the energy
ss7 management of a hybrid electric urban bus covering a
sss specific route. However, this strategy can be extended to
sso different powertrain architectures. To do so, two essential
soo elements are necessary. Firstly, a high-fidelity model to
ss1 represent the vehicle must accurately capture the impact of
s2 control actions evaluated across the grid generated in the
s3 optimization problem. Additionally, reliable driving cycle
s+ prediction is essential. In the present case, a previously
ses covered cycle was used, but this approach can be extended
ses to any estimated cycle.
s Through the observation of Eq. (24), two statements can
s be highlighted:

569 * The proposed strategy can improve the base one since
570 it employs information from the actual cycle in the
571 next time-step (wyg) to determine uy.

572 * Once this equation is evaluated each time step, the
573 algorithm can employ the feedback of the current
574 system states to adapt the control policy. For instance,
575 avoiding battery SoE excursions out of the desired
576 range and cabin temperatures away from setpoint.

sm Fig. 6 shows the diagram of the proposed strategy
ss detailed for the case study. First, taking into account that
s the complete driving cycle consists of a sequence of similar
sso loops, one loop previously covered by the bus is solved by
ss1 offline DP optimization and used as a reference loop, and
s»2 the cost-to-go obtained by this solution is stored in a map
s3 in the Reference cycle block. This map allows to estimate,
ss« through interpolation, the minimum cost to complete the
sss trip at any position in the route considering the actual states
so and position of the bus J*(SoE, Teap, §)re . Second, the
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Figure 6. Block diagram of the proposed strategy.

ss7 real-time algorithm that runs while the bus covers the actual
sss loop at every time step consists of the Vehicle model block
sso and the Optimization block. In the Vehicle model block, the
s control-oriented model described in the previous section is
so employed to estimate the system states evolution depending
s2 on the set of possible combinations of controls action (7},
s03 and Nco’mp)'

s Simultaneously, this set of control candidates is evaluated
ss in  the generic cost function that balances the fuel
sss consumption and cabin comfort according to the value
s»7 assigned to 3, providing the cost L. So the states estimated
sos are used to interpolate in the cost-to-go map the minimum
so0 fuel consumption that the vehicle will consume from the
o0 Next time-step to the end of the loop depending on the set
o1 of control candidates J* (T, Neomp)res- Finally, in the
«2 Optimization block, the controls to be applied in the vehicle
3 plant are the combination of both that minimizes the sum of
4 the current cost (L), and the cost from the next time-step to
s the end (J*). Next, these control actions are applied to the
«s HEV plant, updating the system states and then repeating
o7 this process until the end of the loop.

«: 6 Results and discussion
609 6.1

o0 In order to evaluate and compare the performance of the
su proposed strategy, a benchmark was performed. The EMS
o2 used to compare is the widespread ECMS. This approach
o3 relies on calibrating the A factor to provide near-optimum
o results. To do that, a reference loop of the bus route
o1 (chosen at random) is employed to calibrate this factor and
st applied during the next loops. The same reference cycle was
a7 performed in the offline DP optimization to generate the
e1s cost to go matrix employed in the rollout algorithm. Since
o0 exists difference between this reference loop and the rest,
&0 the ECMS can fail in its aim of sustaining the charge. To
s avoid this problem, a feedback from the SoF was used,
«2 applying corrections close to the upper and lower limits
e of 0.3 and 0.7, respectively. Regarding the HVAC system
&4 control, the ECMS employs a rule-based control strategy, as

Complete route analysis

s typically embedded in automotive applications. This control
6 strategy uses a PI to control the fan power that blows air to
e the cabin, passing the air through the evaporator to maintain
s the cabin temperature at 22 °C. Another PI is used to control
&9 the compressor speed, aiming to keep the air temperature
0 after the evaporator at 5°C.

e The upper plot of Fig. 7 presents the evolution of the
22 system states for both approaches, considering the complete
&3 covered route on two consecutive working days. The first
&4 cycle is employed as the reference loop to calibrate the A
s parameter, assuming full knowledge of the complete driving
a6 cycle. Then, it is iteratively tested until finding the value that
v provides the final SoE is equal to the initial one. Equally,
e the off-line DP optimization is applied to this reference loop
e to provide the cost-to-go matrix employed in the proposed
0 strategy in the following loops to be covered.

e An important aspect of the rollout algorithm is the
s influence of the § parameter on the problem states. This
«3 parameter can balance the cost function evaluated in the
o+ EMS, prioritizing the minimization of fuel consumption
@s or cabin temperature deviation about the setpoint. The
«s impact of this parameter is discussed in the next section.
«7 However, in this case, the value assumed for the parameter
«s that balances the terms in Eq. (17) was [=0.85. It is
e« noticed that the proposed strategy success in keeping the
s0 SoF in the allowed range along the complete route. On
es1 the other hand, the \ factor in the ECMS calibrated with
o2 the same information available from the reference cycle
sss frequently hits the SoF limits, being able to keep its value
s+ close to the desired range due to the corrections applied
ess to A. Additionally, regarding cabin temperature control,
es6 it 1S possible to note that both strategies controlled the
67 temperature between 24.5 and 19.5 °C throughout the entire
oss cycle.

&9 In the case at hand, the first cycle was used as a reference
a0 to calibrate the A and to use it in the DP offline optimization.
s1 The lower left part of Fig. 7 shows the evolution of the states
o2 for this reference cycle, where the disturbances and the
&3 complete driving cycle are assumed to be the information
&+ obtained by de bus covering a previous loop. The similarity
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Figure 7. Comparison between the complete route evaluated with the proposed and the standard approach presenting the SoE
and cabin temperature evolution (upper). Analysis of a single loop regarding the reference cycle used to calibrate both strategies

and a given loop in the middle of the route (bottom).

s between the SoE evolution of this particular loop can be
& explained by the fact that both strategies employ optimal
7 control techniques to solve the EMS problem. The ECMS
os 1s based on Pontryagin’s minimum principle, and the rollout
o0 exploits a DP solution of the cycle at hand.

0 Regarding the cabin temperature control performance,
«n the ECMS does not have a particular strategy, employing
2 PIs to control the HVAC airflow and the compressor speed.
o3 Additionally, the rollout uses the same PI to control de
o4« HVAC air flow, but the compressor speed is modeled
¢s as a control action in the proposed approach. Analyzing
&6 the cabin temperature evolution for the ECMS case, the
7 oscillation observed is related to the PIs implemented in the
s standard cabin temperature control. Moreover, the evolution
9 noticed by the Rollout can maintain the cabin temperature
0 closer to the setpoint. Both strategies experiment with a
1 temperature increase close to the middle of the loop because
e this region is the condition where more passengers are
o3 inside the bus. Even though the HVAC works close to the
64 Maximum power, the temperature presented a significant
ess deviation concerning the setpoint.

e The analysis of the route covered by the bus shows
e that in the first reference loop, both strategies are able to
s maintain the states close to the desired range since they
9 explore the perfectly known driving conditions. However,
oo as far as the bus travels the following loops, where the
o1 driving disturbances are unknown, the proposed method
2 shows to be more robust than the ECMS. So comparing
3 the performance of a loop in the middle of the route

4 (cycle 10), the right bottom part of Fig. 7 shows the states
s evolution. This chosen cycle represents a situation where
«s both strategies employ just the information available from
o7 the reference cycle in the EMS to provide the inputs to the
s vehicle plant in a different set of disturbances and driving
o9 cycle. The cabin temperature shows the same behavior as
w0 the reference cycle, so being able to control it near the
701 setpoint. The SoF of the ECMS case demonstrates that only
2 calibrating the A for a given reference cycle is insufficient
703 to keep the it within the allowed range.

4 To explore the strategies under varied scenarios, the
75 entire route was reassessed using a different bus loop as
w6 the reference cycle, generating the cost-to-go matrix for
77 the rollout and calibrating the A parameter of the ECMS.
708 The evolution of T,,;, and SoFE across the entire route is
w9 depicted in Fig. 8. Both strategies demonstrated comparable
no performance in controlling cabin temperature. However,
mi concerning the SoE evolution, the ECMS managed to
72 maintain it within the desired range until approximately
73 the sixth loop, after which it frequently exceeded the upper
714 limit.

ns  Based on the comparative performance of both strategies,
76 it is evident that the proposed approach has the potential to
n7 outperform the standard ECMS. While both methods share
7ns identical calibration requirements involving optimizing a
n9 reference cycle, the ECMS consolidates all information
20 from the reference cycle into a single parameter, A. In
1 contrast, the rollout strategy leverages the entirety of the
2 cost-to-go from the reference cycle. As a result, the control
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3 policy employed by the ECMS approach relies solely on
24 a single constant, with minimal dependency on the system
s state, except for the SoFE correction in values outside the
76 allowed range (0.3 and 0.7). Conversely, the rollout strategy
77 adopts a more comprehensive approach that considers the
s influence of system states (SoF and T'cab) and vehicle
729 position in the control policy. However, this enhanced EMS
730 comes at the cost of more significant storage requirements,
71 dependent on the size of the problem. For instance, in the
m current scenario, where J*(z;,s;)res has a size of 305
73 X 101 x 101, representing a discretization in SoE of 101
734 points between 0.3 and 0.7, 101 points between 19 and 26
735 °C in Tiqp, and a 50 m discretization of the 15.1 km loop
76 distance.

»» 6.2 Calibration of 3 parameter

738 For this part of the analysis, the influence of the parameter
19 3 is discussed, to do that, the complete route presented
0 in the Fig. 8 is employed. This route was covered by the
1 ECMS case taken as a reference for the comparison, and
2 the parameter [ was evaluated for the set of values as (0.95
3 0.9 0.85 0.8 0.7).

u4a  The states and the total fuel consumption of one
ns single loop in the middle of the considered route are
us presented on Fig. 9. The cases S =0.95 and 8= 0.7
7 represent two extremes of the proposed strategy, and the
s standard approach is the ECMS. So, comparing the cabin
9 temperature, as expected, low [ can maintain the cabin
750 temperature close to setpoint, while high 5 allows the
ss1 temperature to vary while keeping the temperature within
s52 limits defined in the cost function. Also, close to the middle
153 of the loop is the condition where more passengers are
75« inside the bus, and even under these conditions, it was
755 observed that the lowest beta can keep the temperature
16 closer to the setpoint. Of course, this improvement in
757 cabin temperature control performance comes at the cost
s of an increase in fuel consumption. Consequently, the
759 states one optimization criteria that, as exposed in Eq. (17),
70 balances the cost function employed in the EMS, attributing
71 lower or higher penalties to the terms that evaluate the
2 fuel consumption of the engine and the cabin temperature
763 deviation from the setpoint.

—f3=0.95
—_—p3=0.7
—ECMS

o
o

Battery SoE [—
i
[6)]

2
(OIS

IS
T
I

mf [kg]

: : :
1500 2000 2500
Time [h]

0 I
500

I I I L
1000 3000 3500 4000

Figure 9. Representation of states and fuel consumption of a
single loop employing the ECMS and the proposed strategy
varying the 3 parameter.

¢« On the other hand, regarding the SoFE evolution, for
76s both the values of 3, it is clear that it can maintain the
76 state of charge close to 0.5, achieving the charge sustaining
77 operation. Also, they presented a similar profile because
s both employed the same EMS. Please note that the term
0 @ in Eq. (18e) penalizes deviations from the desired final
7o state at the end of the loop. That is, increasing this penalty
»n can also guarantee that the final state of charge will be very
2 close to a desired setpoint in this case 0.5. Moreover, even
773 though the ECMS had the \ calibrated with a loop of the
774 bus in the same route, the standard strategy is not able to
775 keep the SoF close to the desired level.

76 As stated before, this study aims to control cabin
77 temperature by addressing the optimization of passengers
77 comfort and fuel consumption. By doing so, it is possible
79 to reduce overall energy consumption by controlling the
10 HVAC power consumption. So, Fig. 10 shows the HVAC
ss1 performance of the set of 3 regarding the standard ECMS.
72 In the upper plot, the discomfort ratio is defined as the
s sum of the difference between cabin temperature and
74 the lower and upper limits (21 and 23 °C) for the total
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s trip covered. Equally, at the bottom plot is presented
6 the total HVAC energy consumption. It can be noticed
7 that for values of S from 0.7 to 0.9, the proposed
7 strategy can improve cabin temperature control without
79 penalizing energy consumption. The results show that the
0 best scenario of S = 0.70 presented a 50% reduction in the
701 discomfort ratio presenting approximately the same energy
792 consumption as the baseline strategy. Also, a decrease of
793 4% in the total HVAC energy consumption was noticed for
794 3 =0.95, but increasing the discomfort ratio to 20%.

75 Fig. 11 summarizes the results in a pareto front for the
76 complete route evaluated by the standard EMCS and the
797 set of [ performed regarding the total fuel consumption
7 and the discomfort ratio. Analysing this figure is noticeable
9 that a trade-off exists between fuel consumption and cabin
so0 temperature comfort. In terms of fuel consumption, it can
so be highlighted that the iso fuel consumption reduces by
s02 almost 50% the cabin discomfort, and the iso discomfort
so3 can reduces fuel consumption by 1.5%.
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Figure 11. Pareto frontier of the proposed strategy in
comparison with the results obtaines with the standard ECMS
strategy for the complete route.

« 7 Conclusions

sos This article addresses the problem of an urban electric
sos urban bus covering two consecutive daily commutes. The
so7 proposed strategy employs the information available from
sos previously covered loops in the same bus route to optimize
so0 the energy management strategy of the following loops. The
sio novelty of this work is based on using information from a
s cycle previously recorded to provide an optimal solution of
sz a reference cycle, then generating a cost to be employed
si3in the online optimization. Whereas approaches in the
s14 literature typically use methods to estimate future driving
s1s conditions. The energy management strategy actuates in the
sic power split between the ICE and the motor and in the HVAC
si7 system by controlling the cabin temperature considering
s1s the variation in the number of passengers on the bus. In
siv the end, a benchmark has been carried out to compare the
s20 performance of the proposed energy management strategy
s with a standard ECMS widespread algorithm for HEV
s2 energy management, embedded with rule-based strategies
s23 to control the HVAC system. The main contributions of this
g2« work can be summarized as follows:

»s (1) The proposed EMS does not rely on estimating future
driving conditions or the number of passengers on
the bus but rather on exploring information from
previously covered loops.

A strategy based on an optimization criterion
was developed, balancing the compromise between
fuel consumption and the performance of cabin
temperature control.

The pareto front allows to compare different EMS
calibrations concerning the S chosen, presenting
the trade-off between discomfort ratio and fuel
consumption.

The results compared to the standard strategy shows
that it was possible to reduce the discomfort ratio
by up to 45% with the same fuel consumption or
decrease it by 20% and while provide fuel economy
by 1%.
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