
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:13386–13410
https://doi.org/10.1007/s11227-024-05956-7

1 3

Accelerating the detection of DNA differentially methylated
regions using multiple GPUs

Carlos Reaño1 · Ricardo Olanda1 · Elvira Baydal2 · Mariano Pérez1 ·
Juan M. Orduña1

Accepted: 3 February 2024 / Published online: 6 March 2024
© The Author(s) 2024

Abstract
DNA methylation analysis has become an important topic in the study of human
health. In previous work, we developed a suite of tools to perform this analysis. It
includes HPG-Dhunter, a web-based tool for automatic detection of differentially
methylated regions (DMRs) between different samples. The back-end of that tool
receives an undefined number of simultaneous requests to detect DMRs on different
datasets. Currently, simultaneous requests are queued and processed one at a time.
This paper proposes a parallel architecture where multiple daemons serve requests
simultaneously. Daemons can also share the same physical GPUs. A scheduler man-
ages requests and forwards them to daemons. The number of daemons per GPU is
configurable, thus adapting the architecture to the available hardware. Results show
that the proposed parallel architecture hugely reduces the execution time. Further-
more, the speedup increases proportionally to the number of available GPUs (up to
7.47x in our experimental setup).

Keywords DNA methylation analysis · Software as a service · GPU computing

 * Carlos Reaño
 carlos.reano@uv.es

 Ricardo Olanda
 ricardo.olanda@uv.es

 Elvira Baydal
 mebaydal@disca.upv.es

 Mariano Pérez
 mariano.perez@uv.es

 Juan M. Orduña
 juan.orduna@uv.es

1 Departament d’Informàtica, Escola Tècnica Superior d’Enginyeria (ETSE), Universitat de
València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain

2 Departament d’Informàtica de Sistemes i Computadors (DISCA), Universitat Politècnica de
València, Camí de Vera s/n, 46022 València, València, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05956-7&domain=pdf

13387

1 3

Accelerating the detection of DNA differentially methylated…

1 Introduction

DNA methylation analysis has become an important topic in the study of human
health and other biotechnology fields like phytology [1] or organic chemistry [2].
The reason for this trend is that DNA methylation plays key roles in local control
of gene expression [3], the establishment and maintenance of cellular identity [4],
the regulation of mammalian embryonic development [5], and other biological
processes [6]. For example, the methylation process might stop a tumor-causing
gene from “turning on,” preventing cancer, and it also seems to play a decisive
role in other complex diseases like Obesity, Hypertension, and Diabetes Mellitus
Type 2 (DM2) development [7].

The human reference genome is composed of 3 × 109 nucleotides. In order
to analyze the DNA methylation of a person, his/her DNA samples are added
bisulfite, and then, DNA sequencers produce millions of short DNA segments
(called reads), whose size typically does not exceed hundreds of nucleotides, in a
fastq file (text file). Each read in the fastq file must be compared to all locations
(nucleotides) in the reference genome to find not only the correct location of the
read along the reference genome (this is known as the alignment operation), but
also the methylation status of the cytosines in the read (the bisulfite is added with
this purpose). Each fastq file coming from a next generation sequencer can easily
contain tens or hundreds of millions reads. Also, typical study cases require the
analysis and comparison of different biological samples coming from different
tissues or different individuals, in order to detect different methylation levels in
different regions of the DNA, which are called differentially methylated regions
(DMRs). Typically, studies about the effects of methylation on cancer [8] use
samples coming from a number of normal persons (control) and another samples
coming from the same number of persons suffering from cancer (cases), and they
try to find DMRs among control and cases samples. Thus, the huge size of the
data involved in DNA methylation analysis requires the use of high-performance
architectures to process the samples in a timely manner.

In previous works, we developed a complete suite of tools (available at GitHub
[9]) which allow to carry out the complete process of DNA alignment and meth-
ylation analysis, creation of methylation maps of the whole genome, and the
detection and visualization of DMRs between different samples: HPG-Methyl
[10, 11], a tool for providing single-base information of the alignment and the
methylation status of each input sequence (or read), HPG-HMapper [12], a tool
which uses the methylation information of each base after its alignment to build
a DNA methylation map which gives information about the methylation level
for each base of the reference genome, and a graphic tool called HPG-DHunter
[13, 14] for an efficient detection and visualization of DMRs with a high level of
usability. HPG-DHunter can identify and display DMRs of different samples at
different levels. Nevertheless, HPG-DHunter was developed as a stand-alone tool
to be installed on a high-performance platform server with new generation GPU
devices. Therefore, this tool requires knowledge about GPU installation, setting
up and maintenance. This requirement limits its use by biomedical researchers

13388 C. Reaño et al.

1 3

with little or no knowledge about this hardware and related software packages.
Thus, we developed a web-based version of this tool [15], which allows biomedi-
cal researchers the use of a powerful tool for methylation analysis, even for those
without GPU knowledge. Note that the management of GPUs and their related
software is done by system administrators.

Nevertheless, the back-end of the web-based tool should support an undefined
number of simultaneous requests to detect DMRs on different datasets. The DMR
detection algorithm is based on procedures carried out in the GPU, and therefore,
simultaneous requests may have to spend long waiting times in a FIFO queue of
incoming requests, until the GPU becomes idle, greatly reducing the back-end
throughput. In this paper, we propose a parallel architecture for the back-end server
of the web-based tool. The performance evaluation results show that, regardless the
number of physical GPUs available in the computing platform acting as a back-end
server, a parallel architecture with several daemons (one serving each simultane-
ous request) sharing each GPU can fully exploit the parallelism of GPUs. The pro-
posed architecture significantly reduces the execution times in regard to the previous
architecture, where only a single daemon sequentially processed the simultaneous
requests. As it could be expected, if this architecture is used on platforms with sev-
eral physical GPUs, the speedup increases proportionally to the number of concur-
rent daemons until a point where the GPU memory is exhausted. It should be noted
that the architecture proposed is implemented in the back-end of the web-based tool.
Thus, its use is transparent to final users (i.e., biomedical researchers).

The rest of the paper is organized as follows: Sect. 2 shows some background
on proposals using GPUs in the field of DNA analysis. Section 3 describes the
proposed architecture for the back-end of the HPG-DHunter service. Next, Sect. 4
shows the performance evaluation of the proposed architecture. Section 5 presents
related work on schedulers and their architecture. Finally, Sect. 6 shows conclusion
remarks and future work to be done.

2 Background

HPG-DHunter [13] is a graphical tool designed for efficient detection and visualiza-
tion of DMRs at different levels of resolution. Initially, it was designed as a stand-
alone tool that needs to be installed on a high-performance computer with one GPU
device. Since typical biomedical researchers may not have the expert knowledge
required for installing and managing this tool and the software required for GPU
computing, we have created a web-based version of the tool [15] that can be used
without the need for specialized knowledge on GPU and CUDA.

The infrastructure of this web-based application is based on a client–server archi-
tecture. It has been designed to separate the front-end (user interface and control
logic) from the back-end (server-side infrastructure hosting services for processing
front-end requests), as can be seen in Fig. 1. The front-end is implemented with
angular framework. It runs on the user’s browser using HTML5 and CSS to for-
mat the content in the browser interface, and JavaScript for capturing events and
communication with the back-end. In order to minimize latency when transferring

13389

1 3

Accelerating the detection of DNA differentially methylated…

large amounts of data, the Web-Socket protocol over a permanent TCP connection is
used, with JSON as the data exchange format. The back-end is implemented with Qt
framework, being the HPG-DHunter software the core of the system, with a separate
module for user access control and file management.

The web-based application has been designed to provide a high degree of secu-
rity, since the methylation samples provided by users are sensitive data. Individual
access is controlled with a username and password, and data uploaded by a given
user are stored in independent and isolated folders that are hidden to other users.
Furthermore, connections are encrypted using Web-Sockets over TLS (Transport
Layer Security).

The front-end interface is intended to provide a level of usability equal or greater
than the stand-alone version (HPG-DHunter). The DMR identification is carried out
after the user sets the analysis parameters, such as the transformation level, the min-
imum coverage, a validation threshold, and the minimum percentage of positions
with minimum coverage. The system can display any DMR found at any methyla-
tion level of every sample uploaded by the user.

The back-end, as shown in Fig. 1, includes the authentication service, the file
manager, and the main service of wavelet transformation and identification of
DMRs. At the server side, the database module is responsible for file management,
and it provides the application logic module with the required data according to the
user requests.

The web-based application can handle multiple tasks requested by different users
simultaneously. The back-end system manages the availability of RAM memory for
loading data from files, and the state of the GPU for computation tasks. A flow diagram
illustrating the management of the concurrent requests coming from different custom-
ers is shown in Fig. 2. This figure shows three different types of requests, having each

Fig. 1 Previous architecture of the web-based application

13390 C. Reaño et al.

1 3

one their own FIFO list of tasks. Tasks are launched independently from these lists. The
process for loading files does not require GPU availability, but it does require RAM
memory, so the availability of RAM memory must be checked before starting this pro-
cess. GPU tasks needed for visualization require the use of the GPU, so the GPU state
must be checked before loading the data array and computing the DWT of the methyla-
tion signal. Finally, another process that can be requested by the user is a batch process,
which is a long and non-interactive procedure. In this case, the system sends an email
to the user when the process has been completed, and the procedure is divided into
smaller tasks. All of these strategies are aimed to improve the use of GPU and RAM
memory when there are concurrent accesses to the server. In the particular case of GPU
tasks, and given that a single GPU is assumed to be available, requests are queued and
managed using a first-in, first-out (FIFO) policy. This is a simple and effective way of
ensuring that requests are handled in a timely and fair manner, and it guarantees that no
request is given priority over any other.

Fig. 2 Flow diagram for the management of concurrent requests in the previous architecture of the web-
based tool

13391

1 3

Accelerating the detection of DNA differentially methylated…

3 A new architecture designed for using multiple GPUs

In this section, we first describe the current architecture for the back-end system
when managing user requests requiring the use of the GPU (i.e., a GPU task or
a batch process, as shown in Fig. 1. For the remainder of the document, we will
refer to these user requests as GPU requests). Then, we describe the proposed
architecture, designed for using multiple GPUs if they are available in the server
computing platform.

Figure 3 shows the current architecture of the system server for serving the
user GPU requests. Regardless of the number of GPUs in the underlying comput-
ing platform acting as the back-end server, this architecture is only capable of
using a single GPU card, which is managed by a single daemon. Therefore, all the
GPU requests are queued in a FIFO queue, and they are sequentially processed by
a single daemon.

Although this architecture provides parallel processing within the GPU, the pro-
cessing of different requests is carried out sequentially, and therefore, it can yield
very long response times to some user requests if several users are simultaneously
accessing the server. Thus, in order to provide a scalable tool with the number of
user requests, a new architecture that can take advantage of multiple GPU cards in
the back-end server is needed.

Figures 4, 5 and 6 show the proposed architecture of the system server for serving
the user GPU requests, along with possible scenarios it enables. This new architec-
ture includes the following elements:

• A request queue storing the requests received from users.

Fig. 3 Current architecture

Fig. 4 Proposed architecture for a scenario with one daemon per GPU

13392 C. Reaño et al.

1 3

• A scheduler, responsible for the management of the queue and the forwarding of
the requests to the daemons.

• Daemons for serving the user requests. These daemons should use all the GPUs
available in the system.

Regarding the possible scenarios that the proposed architecture enables, we can find
the following ones:

• Figure 4: the system has multiple GPUs, and there is one and only one daemon
per GPU. Each daemon uses a different GPU to serve a given request.

• Figure 5: the system only has one GPU, and there are multiple daemons sharing
that GPU.

Fig. 5 Proposed architecture for a scenario where multiple daemons share one GPU

Fig. 6 Proposed architecture for a scenario where multiple daemons share multiple GPUs

13393

1 3

Accelerating the detection of DNA differentially methylated…

• Figure 6: the system has multiple GPUs, and there are multiple daemons sharing
those GPUs.

As it can be observed, the main difference between the current architecture (Fig. 3)
and the proposed architecture (Figs. 4, 5 and 6) is the scheduler, which enables the
utilization of all the GPUs available in the computer platform. The scheduler allows
the configuration of the following parameters:

• Scheduler mode. It can be set to static or dynamic. If the mode is set to
static, daemons must be manually started by the system administrator. If the
mode is set to dynamic, daemons are managed by the scheduler. More details
about this mode can be found in Sect. 3.1.

• Scheduling policy. Currently, it can be set only to round_robin. More details
about this policy can be found in Sect. 3.2. If required, other policies can be
included in the future.

• IP address and port where the scheduler is listening for user requests. More
details about communication and synchronization of the scheduler with the users
can be found in Sect. 3.3.

• IP addresses and ports where daemons are listening for requests forwarded by
scheduler. More details about communication and synchronization of the dae-
mons with the scheduler can be found in Sect. 3.3.

Currently, these parameters are configured via command line. In the future, we plan
to allow also the use of a configuration file. Listing 1 shows how to configure the
scheduler parameters via the command line. Listing 2 shows an illustrating example
configuring two daemons. As we can see, in this example the scheduler mode is set
to dynamic and the scheduling policy is set to round robin. The scheduler and the
two daemons are running in the same server (loopback IP), and different ports are
used for each of them.

. / hpg schedu le r \
<scheduler mode> <s ch edu l i n g po l i c y> \
<s chedu l e r i p> <s chedu l e r po r t> \
<daemon1 ip> <daemon1 port> \

[<daemon2 ip> <daemon2 port> . . .]

Listing 1 Configuring the scheduler parameters via the command line.

. / hpg schedu le r dynamic round robin \
1 2 7 . 0 . 0 . 1 1234 \
1 2 7 . 0 . 0 . 1 1235 \
1 2 7 . 0 . 0 . 1 1236

Listing 2 Configuring the scheduler parameters via the command line.

13394 C. Reaño et al.

1 3

3.1 Dynamic scheduler mode

As commented above, the scheduler currently allows two modes, namely static
and dynamic. If the mode is set to static, daemons must be manually started by
the system administrator. If the mode is set to dynamic, daemons are automatically
started, stopped, and restarted again (when necessary) by the scheduler, depend-
ing on the number of user requests. The threshold values for starting, stopping, and
restarting again daemons are configurable, as they depend on the computing power
of the underlying hardware platform. There are three configurable threshold values
or system load levels:

• daemons_low: number of daemons started by the scheduler at initialization by
default. It is the minimum number of daemons that are running if the number of
user requests is low.

• daemons_mid: number of additional daemons started (or restarted) by the
scheduler when more daemons than in the low level are required to meet the cur-
rent load. It is also the number of daemons stopped by the scheduler if the num-
ber of daemons in the low level is enough to meet the needs. (Note that this last
scenario assumes that the scheduler has previously started additional daemons
due to an increase in user requests.)

• daemons_high: number of additional daemons started (or restarted) by the
scheduler when more daemons than in the middle level are required to meet the
current load. It is also the number of daemons stopped by the scheduler if the
number of daemons in the middle level is enough to meet the needs. (Again, note
that this last scenario assumes that the scheduler has previously started additional
daemons due to an increase in user requests.)

Algorithm 1 shows the algorithm run by the scheduler to start, stop, and restart again
daemons, depending on the system load. As it can be observed in the algorithm, at
start-up the scheduler starts the minimum number of daemons. If at any moment
more daemons are required, they are started gradually. First, the number of addi-
tional daemons configured for a middle-level system load is started. If even more
daemons are required, the number of daemons configured for a high-level system
load are started (i.e., the maximum). In a similar way, daemons are stopped gradu-
ally. If at any moment too many daemons are idle, then some daemons are stopped,
until reaching the number of daemons configured for a middle level. If there are still
too many daemons idle, some more daemons are stopped, until reaching the number
of daemons configured for a low-level system load (i.e., the minimum).

13395

1 3

Accelerating the detection of DNA differentially methylated…

Algorithm 1 Algorithm run by the scheduler in the dynamic mode to start,
stop, and restart again daemons depending on the system load

3.2 Round‑Robin scheduling policy

The scheduler currently allows a single scheduling policy, namely round_robin.
If required, other policies can be included in the future. The behavior of the round_
robin is as follows: When more than one daemon are available to serve a user
request, the scheduler assigns and forwards the first user request in the queue to the
first idle daemon, until all the daemons are busy, following a round-robin approach.
The scheduler also takes into account the current load of each GPU (i.e., number of
daemons free for that specific GPU). The aim of this policy is to distribute the load
equally across all the GPUs.

Algorithm 2 shows the algorithm run by the scheduler to select the daemon to
serve a user request. As it can be observed in the algorithm, if there are no free

13396 C. Reaño et al.

1 3

daemons, the scheduler waits. A mutex and a condition variable is used for this pur-
pose. Once there are free daemons, the scheduler selects the daemon to serve the
request based on the GPU used by the daemon. In first place, the GPU selected is the
GPU next to the last GPU used. For instance, if the last GPU used was the GPU 0,
the next GPU to use by default is GPU 1. Once the maximum number of GPUs is
reached, GPU 0 is selected again. In second place, once the next GPU is selected by
default, the scheduler compares the load of the selected GPU with the load of the
other GPUs. If there is a GPU with less load (i.e., higher number of daemons free),
that GPU will be selected. Following this algorithm, the user requests are evenly
distributed across all the GPUs.

Algorithm 2 Algorithm run by the scheduler in the round_robin scheduling pol-
icy to select the daemon to serve a user request

3.3 Communication and synchronization of the scheduler with users
and daemons

The scheduler serves user requests in the IP address and port provided in the config-
uration parameters. Similarly, daemons will serve requests forwarded by scheduler
in the IP addresses and ports provided in the configuration. TCP/IP sockets are used
for communication and synchronization of the scheduler with users and daemons. In
Fig. 7, we can see a sequence diagram showing the communication and synchroni-
zation of the scheduler with users and daemons when serving user requests.

Figure 7 shows that after initialization the scheduler main thread starts daemons
for serving requests. In this case, we have assumed that the scheduler mode has been
set to dynamic. The scheduler then waits for user requests. When a user sends a
request, the scheduler main thread creates a new worker thread to handle it. The
main thread then uses the previously explained Algorithm 1 to determine if the

13397

1 3

Accelerating the detection of DNA differentially methylated…

current number of daemons is appropriate for the current system load. At this point,
daemons are automatically started or stopped if necessary by the scheduler, depend-
ing on the number of user requests in the system. After that, the scheduler main
thread waits again for more user requests. A timer ensures that the scheduler peri-
odically checks both the number of daemons and the system load, to stop daemons if
necessary when no user requests are received.

Being executed in parallel to the scheduler main thread, the scheduler worker
thread handles the user requests. In this case, we assume that the scheduling policy
has been set to round_robin. In first place, the scheduler worker thread waits
until there is an idle daemon. Once there are one or more free daemons, it selects
one of them using Algorithm 2. Then, the user request is forwarded to the selected
daemon, which serves the request. Finally, the results are sent back to the user. This
process is repeated for each user request. When the user has no more requests and
ends the session, the associated scheduler worker thread terminates.

4 Results

In this section, we evaluate the performance of the proposed architecture. First, we
detail the experimental setup. Then, we compare the performance of the previous
architecture with the proposed one when running a single request on a computer
platform with a single GPU available. Next, we analyze the performance when

Fig. 7 Sequence diagram showing communication and synchronization of the scheduler with users and
daemons when serving user requests. Note that in a real scenario there will be multiple users, scheduler
worker threads and daemons

13398 C. Reaño et al.

1 3

receiving multiple, simultaneous requests on the same platform. Finally, we evaluate
the performance when using multiple GPUs. Each value shown in the tables and fig-
ures included in this section have been computed as the average value of 10 execu-
tions of the corresponding test.

4.1 Experimental setup

The system used in the experiments is a rack-mounted 2-socket server BullSequana
X450-E5, featuring two 20-core Intel(R) Xeon(R) Gold 6230 CPU at 2.10 GHz,
191 GB RAM, a RAID 1 with two 10.9 TB HDD, and four GPUs Tesla V100 PCIe
with 32GB of RAM each. The operating system installed on this platform is Rocky
Linux 8.7 (Green Obsidian), including NVIDIA CUDA 12 with NVIDIA driver ver-
sion 525.60.13.

The test used for the experiments is a very short one that requires very short com-
putation time in the GPU. The reason for selecting such test is that in this paper we
focus on the scheduler not on the computation on the GPU, which has already been
addressed in previous works [13]. As commented in previous sections, the main
difference between the previous architecture and the architecture proposed in this
paper is the scheduler. Therefore, a short test is the worst case to test our approach,
because the overhead introduce by the scheduler will not be hidden behind a long
computation time in the GPU.

4.2 Performance evaluation for a single request

Table 1 presents a comparison of the previous architecture with the proposed archi-
tecture described in the previous section. Different values are compared, namely
execution time, CPU utilization, CPU memory, GPU utilization, and GPU memory.
The maximum relative standard deviation (RSD) observed in these experiments was
0.290 for the execution time of the previous version.

Table 1 shows that the proposed architecture slightly increases the execution time
(30 ms) on average. The rest of the metrics show negligible differences (not seen
with only two decimal digits). In order to better explain the reason of this increase
in the execution time, Figs. 8 and 9 present more detailed charts, where Fig. 8 shows
the performance values for the previous version and Fig. 9 shows the ones for the
proposed version. These figures show that the increase in the execution time of the
proposed version is the time required by the scheduler to forward the request from

Table 1 Performance
comparison between the
previous and the proposed
architecture for a single request
and a single GPU

Average values Previous version Proposed version

Execution time (s) 9.49 9.52
CPU utilization (%) 1.46 1.46
CPU memory (%) 1.01 1.01
GPU utilization (%) 1.25 1.25
GPU memory (%) 1.02 1.02

13399

1 3

Accelerating the detection of DNA differentially methylated…

the request queue to the daemon that serves the request. As it can be observed, once
that has happened, the new version just mimics the original version with a delay of
30 ms. Several points have been labeled in the figure to make the comparison easier.

It should be noted that in this experiment, only one request was submitted to the
system and only one daemon was serving requests. For such reason, the scheduler
required very little time to forward the request to the available daemon. In the next
section, we evaluate how this time is increased when running multiple requests.

4.3 Performance evaluation for multiple simultaneous requests

In this section, we evaluate the performance when two or more requests are concur-
rently submitted to the system, and a single GPU is available in the back-end com-
puter platform. For the results of the new version, one daemon is using the single

Fig. 8 Detailed execution of the previous architecture (original version) for a single request and a single
GPU

Fig. 9 Detailed execution of the proposed architecture (new version) for a single request and a single
GPU

13400 C. Reaño et al.

1 3

GPU, i.e., scenario shown in Fig. 4 with only one GPU. Figure 10 shows the results
for a number of concurrent requests ranging from 2 to 10.

As it could be expected, in this case the overhead introduced by the scheduler is
higher (1.85% on average) than in the case of a single request. It can also be observed
that this overhead tends to decrease slightly as the number of requests increases.
The maximum RSD observed in these experiments was 2.050, corresponding to the
execution time of 3 concurrent requests with the new version. Regarding the execu-
tion times, there are not significant differences between the previous architecture and
the proposed one. These results show that the proposed architecture does no add a
significant overhead for a typical stand-alone computer with a single GPU.

4.4 Performance evaluation using multiple GPUs

In this section, we evaluate the performance when more than one request is con-
currently submitted to the system and multiple GPUs are used. That is, we want to
measure the benefits of the new proposed architecture when more than one GPU are
present in the computer platform acting as a back-end server. For these experiments,
we assume that there is one daemon per GPU, as previously shown in Fig. 4. The
evaluation results are shown in Figs. 11, 12, 13 and 14.

Figure 11 shows the results for a number of concurrent requests ranging from 2
to 10 when using 2 GPUs. The maximum RSD observed in these experiments was
1.775, for the execution time of 3 concurrent requests with the new version. This
figure shows that, as it could be expected, the new version of the architecture clearly
takes advantage from the underlying hardware in the computing platform, achieving
a speedup of up to 1.96x, quite close to the theoretical maximum.

Figure 12 shows the analog results when using 3 GPUs. The maximum RSD
observed in these experiments was 2.358, for the execution time of 7 concurrent
requests with the new version. In this case, the speedup achieved with the proposed
architecture is 2.84×.

Fig. 10 Evaluation results for multiple simultaneous requests and a single GPU

13401

1 3

Accelerating the detection of DNA differentially methylated…

Figure 13 shows the results for the case where 4 GPUs are available in our sys-
tem. The maximum RSD observed in these experiments was 2.313, for the execu-
tion time of 2 concurrent requests with the new version. In this case, the speedup
achieved by the proposed architecture compared to the previous one is 3.64×.

Finally, Fig. 14 shows the average speedup of these experiments for a different
number of GPUs available in the computing platform acting as a back-end server.
As we can observe, the proposed architecture scales proportionally to the number of
available GPUs.

Fig. 11 Evaluation results when multiple requests are concurrently submitted to the system using 2
GPUs and 1 daemon per GPU

Fig. 12 Evaluation results when multiple requests are concurrently submitted to the system using 3
GPUs and 1 daemon per GPU

13402 C. Reaño et al.

1 3

4.5 Performance evaluation with a single GPU shared by multiple daemons

In this section, we evaluate the performance of the proposed architecture for the case
illustrated in Fig. 5. Similarly to the experiments in the previous section, there are
simultaneous requests, which are processed by several daemons. However, in this
case, all the daemons share a single GPU. The reason for performing this experi-
ment is that Figs. 8 and 9 in Sect. 4.2 show that the GPU utilization and the GPU
memory used by a single request are low (1.25 and 1.02% on average, respectively).
Thus, for this specific case, it is possible to run multiple daemons (i.e., GPU appli-
cations) sharing the same GPU. The performance evaluation results are shown in
Figs. 15, 16, 17 and 18.

Figure 15 shows the results varying the number of concurrent request from 2 up
to 10 when 2 daemons share the same GPU. The maximum RSD observed in these
experiments was 1.618 for the execution time of 4 concurrent requests with the new

Fig. 13 Evaluation results when multiple requests are concurrently submitted to the system using 4
GPUs and 1 daemon per GPU

Fig. 14 Average speedup of the new version using multiple GPUs and one daemon per GPU

13403

1 3

Accelerating the detection of DNA differentially methylated…

version. This figure shows that the proposed architecture achieves an speedup of up
to 1.96x in regard to the previous version of the architecture.

Figure 16 shows the results for the same scenario, but this time with 3 dae-
mons sharing each GPU. The maximum RSD observed in these experiments was
2.307, for the execution time of 7 concurrent requests with the new version. In
this case, the proposed architecture achieves a speedup of 2.84×. Notice that, in
this case and the following ones, when the number of daemons is greater than the
number of requests, the remaining daemons are idle.

Figure 17 shows the results for the analog scenario when 4 daemons share the
same GPU. The maximum RSD observed in these experiments was 1.559, for
the execution time of 3 concurrent requests with the new version. In this case,

Fig. 15 Evaluation results when multiple requests are concurrently submitted to the system using a single
GPU, and 2 daemons sharing a single GPU

Fig. 16 Evaluation results when multiple requests are concurrently submitted to the system using a single
GPU, and 3 daemons sharing a single GPU

13404 C. Reaño et al.

1 3

the speedup achieved by the proposed architecture in regard to the previous one
reaches 3.70×.

Finally, Fig. 18 shows the average speedup of these experiments, varying the
number of daemons that share the same GPU. As we can observe, the proposed
architecture scales proportionally to the number of daemons sharing each GPU.
These results show that the proposed architecture is also capable of fully exploit-
ing the computing capabilities of the existing GPUs.

If we compare these results with the ones shown in Sect. 4.4, we can observe that
the performance is very similar. This is due to the low GPU utilization and the GPU
memory required by each daemon for these experiments, which allows to run multiple
daemons on the same GPU with no performance loss. Therefore, we can conclude that
using multiple daemons per GPU can potentially increase the performance obtained by
the proposed architecture. The number of daemons per GPU will depend on the charac-
teristics of the specific test, mainly GPU utilization and GPU memory.

Fig. 17 Evaluation results when multiple requests are concurrently submitted to the system using a single
GPU, and 4 daemons sharing a single GPU

Fig. 18 Average speedup of the new version when multiple daemons share a single GPU

13405

1 3

Accelerating the detection of DNA differentially methylated…

4.6 Performance evaluation with multiple GPUs and multiple daemons per GPU

In this section, we go one step further and we evaluate the performance when mul-
tiple requests are concurrently submitted to the system and multiple daemons share
each of the GPUs. The scenario is shown in Fig. 6. In our experimental setup, there
are four GPUs available in the computing platform acting as a back-end server (i.e.,
M is 3). In our experiments, the number of daemons per GPU (i.e., N) ranges from
0 to 15. Results are shown in Figs. 19, 20 and 21. The maximum RSD observed in
these experiments was 2.483 for the execution time of 8 concurrent requests, using 4
GPUs and 8 daemons per GPU.

Figure 19 shows the execution time achieved for a different number of simul-
taneous requests (ranging from 2 to 64), and for a different number of concurrent
daemons using each physical GPU. This figure shows three differentiated regions.
For up to 8 simultaneous requests, the execution times for the plot corresponding to
2 daemons per GPU obtain the best performance. From over 8 and up to 16 requests,
results with 4 concurrent daemons yield the shortest execution time. For the rest

Fig. 19 Execution time of the proposed architecture for the case of multiple GPUs and multiple daemons
for each GPU

Fig. 20 Speedup of the proposed architecture for the case of multiple GPUs and multiple daemons for
each GPU

13406 C. Reaño et al.

1 3

of higher numbers of simultaneous requests, the plot corresponding to 8 concurrent
daemons provides the best results.

Figure 20 shows the speedup achieved for different numbers of simultaneous
requests and concurrent daemons in each physical GPU. It should be noted that
when the number of daemons is greater than the number of requests, the remain-
ing daemons are idle. Again, for 8 or less simultaneous requests the best perfor-
mance, on average, is achieved when there are 2 daemons per GPU. From over 8
and up to 16 requests, the highest speedup is achieved when there are 4 concur-
rent daemons for each GPU. For higher numbers of simultaneous requests, the
highest speedup is achieved with 8 concurrent daemons. Thus, we can conclude
that, for our experimental setup, the best number of concurrent daemons is 2 if
the number of simultaneous requests is up to 8, 4 daemons per GPU from over 8
to up to 16, and 8 daemons if there are more than 16 requests.

Finally, Fig. 21 shows the average speedup achieved for a different number of
daemons sharing each GPU. This figure shows that the average speedup increases
proportionally to the number of daemons up to 32 concurrent daemons (7.47×).
For more concurrent daemons, it decreases. To find out the reason for this behav-
ior, in Fig. 22 we show the CPU and GPU utilization when running 64 concurrent
requests with 4 GPUs and 8 daemons per GPU. As we can observe, in our experi-
mental setup, the CPU required by the daemons is the limiting factor. The CPU
required by the scheduler is very low, showing peaks of 2% when the amount of
requests to schedule is high. The GPU utilization is also low, showing peaks of
up to 25% at some points. In terms of memory, CPU memory required by the dae-
mons has peaks of up to 49.90%, CPU memory required by the scheduler is very
low (0.01%), and GPU memory is below 2.2%.

As a summary of all these results, we can state that the best performance
depends on the number of simultaneous requests in the server. In the case of our
experimental setup, the specific values are:

Fig. 21 Average speedup of the proposed architecture for the case of multiple GPUs and multiple dae-
mons for each GPU

13407

1 3

Accelerating the detection of DNA differentially methylated…

• Up to 8 requests: the best results are achieved with 4 GPUs and 2 daemons per
GPU.

• Up to 16 requests: the best results are achieved with 4 GPUs and 4 daemons
per GPU.

• More than 16 requests: the best results are achieved with 4 GPUs and 8 daemons
per GPU.

Therefore, in our case we will configure the scheduler with those thresholds when
using the dynamic scheduler mode previously detailed in Sect. 3.1 Thus, dae-
mons_low will be set to 2 daemons per GPU, daemons_mid to 4 daemons per
GPU, and daemons_high to 8 daemons per GPU. With this configuration, we
will maximize the benefits of the proposed architecture.

5 Related work

In this section, we present related work on schedulers and their architecture. We
compare our scheduler with popular ones in the literature. We also discuss the nov-
elty of our architecture.

Slurm [16, 17] and PBS [18, 19] are probably one of the most used job schedulers
in computing clusters. Both of them present similar features, mainly:

• Resource allocation. They allocate resources (i.e., compute servers or nodes) to
users to run their jobs.

• Resource management. They provide a framework for running and monitoring
jobs on allocated resources.

• Workload management. They manage the workload of clusters by using queues
of jobs for the cluster resources.

Fig. 22 CPU and GPU utilization when running 64 concurrent requests with 4 GPUs and 8 daemons per
GPU. Note that Y-axis is in logarithmic scale

13408 C. Reaño et al.

1 3

In general, their architecture is also similar. Thus, each compute node has a dae-
mon for running and monitoring jobs allocated on that resource. These daemons col-
laborate with a centralized daemon, which is responsible for resource allocation and
workload management.

The parallel architecture proposed in this paper is inspired by these popular
approaches. Thus, in our architecture a scheduler manages requests and forwards
them to daemons, which serve those requests. In this way, our scheduler would be
comparable to the centralized manager, and our daemons to the daemons on com-
pute nodes.

However, note that our proposal presents some novel differences. First, job sched-
ulers operate at inter-node level (i.e., the complete cluster), whereas our approach
operates at intra-node level (i.e., one node of the cluster). Second, in our approach
multiple daemons can share the same physical GPUs. On the contrary, job schedul-
ers usually assign GPU resources in an exclusive way. Finally, our scheduler can be
configured to automatically start, stop, and restart daemons depending on the num-
ber of user requests.

6 Conclusions

In this paper, we have proposed a new parallel architecture for improving the per-
formance of a back-end server which processes user requests sent to a web-based
tool for automatic DMR detection. In this architecture, there are multiple daemons
simultaneously serving requests. In addition, daemons can share the same physi-
cal GPUs. A scheduler is responsible of managing requests and forwarding them to
daemons for being served. The number of daemons per GPU is configurable, thus
adapting to the specific computing capabilities of different back-end servers. Moreo-
ver, the new architecture dynamically adapts to the system load by starting or stop-
ping daemons depending on the current number of requests. Results show that the
parallel architecture is capable of fully exploiting the parallelism of the back-end
server. The proposed architecture significantly reduces execution times compared
to the previous architecture, where only a single daemon sequentially processed all
the requests. Finally, in our experimental setup using four GPUs and 8 daemons per
GPU, we have seen that the speedup increases up to 7.47×.

Acknowledgements This work is funded by Conselleria d’Educació, Universitats i Ocupació, Generalitat
Valenciana (Spain) under grant CIGE/2021/132. The authors would also like to thank Enrique Bonet
Esteban and Manolo Pérez Aixendri for their invaluable support in setting up and configuring the com-
puting cluster used in the experiments. Last but not least, we would like to express our most sincere and
best wishes to Elvira on her retirement.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work is funded by Conselleria d’Educació, Universitats i Ocupació, Generalitat Valenciana (Spain)
under grant CIGE/2021/132.

Availability of data and materials The complete suite of tools used in this paper is available at GitHub
[9].

13409

1 3

Accelerating the detection of DNA differentially methylated…

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Gallego-Bartolomé J (2020) DNA methylation in plants: mechanisms and tools for targeted manipu-
lation. New Phytol 227(1):38–44. https:// doi. org/ 10. 1111/ nph. 16529

 2. Chen Y (2019) Recent advances in methylation: a guide for selecting methylation reagents. Chem
Eur J 25(14):3405–3439. https:// doi. org/ 10. 1002/ chem. 20180 3642

 3. Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326.
https:// doi. org/ 10. 1038/ natur e14192

 4. Li S, Chen M, Li Y, Tollefsbol TO (2019) Prenatal epigenetics diets play protective roles against
environmental pollution. Clin Epigenetics 11:82. https:// doi. org/ 10. 1186/ s13148- 019- 0659-4

 5. Fulka H, Mrazek M, Tepla O, Fulka J (2004) DNA methylation pattern in human zygotes and devel-
oping embryos. Reproduction 128(6):703–708. https:// doi. org/ 10. 1530/ rep.1. 00217

 6. Robertson K (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610. https:// doi.
org/ 10. 1038/ nrg16 55

 7. Raciti A, Nigro C, Longo M, Parrillo L, Miele C, Formisano P, Béguino F (2014) Personalized
medicine and type 2 diabetes: lesson from epigenetics. Epigenomics 6(2):229–238. https:// doi. org/
10. 2217/ epi. 14. 10

 8. Shenoy N et al (2019) Ascorbic acid-induced TET activation mitigates adverse hydroxymethylcy-
tosine loss in renal cell carcinoma. J Clin Investig 129(4):1612–1625. https:// doi. org/ 10. 1172/ JCI98
747

 9. Networks and Virtual Environments Group (GREV), Universitat de València: HPG-Msuite, the
methylation analysis ultimate tools suite (2020). https:// grev- uv. github. io/

 10. Tárraga J, Pérez M, Orduña JM, Duato J, Medina I, Dopazo J (2015) A parallel and sensitive soft-
ware tool for methylation analysis on multicore platforms. Bioinformatics 31(19):3130. https:// doi.
org/ 10. 1093/ bioin forma tics/ btv357

 11. Olanda R, Pérez M, Orduña JM, Tárraga J, Dopazo J (2017) A new parallel pipeline for DNA
methylation analysis of long reads datasets. BMC Bioinform 18(1):161. https:// doi. org/ 10. 1186/
s12859- 017- 1574-3

 12. González C, Pérez M, Orduña JM (2019) HPG-HMapper: a DNA hydroxymethylation analysis tool.
Int J High Perform Comput Appl. https:// doi. org/ 10. 1177/ 10943 42019 840792

 13. Fernández L, Pérez M, Olanda R, Orduña JM, Marquez-Molins J (2020) HPG-DHunter: an ultra-
fast, friendly tool for DMR detection and visualization. BMC Bioinform 21(1):287. https:// doi. org/
10. 1186/ s12859- 020- 03634-y

 14. Networks and Virtual Environments Group (GREV), Universitat de València (2020) HPG-DHunter,
a tool for detecting differentially methylated regions (DMRs) (2020). https:// github. com/ grev- uv/
hpg- dhunt er- batch

 15. Fernández L, Olanda R, Pérez M, Orduña JM (2021) A web-based tool for automatic detection and
visualization of DNA differentially methylated regions. Electronics. https:// doi. org/ 10. 3390/ elect
ronic s1009 1083

 16. Yoo AB, Jette MA, Grondona M (2003) SLURM: simple linux utility for resource management. In:
Job Scheduling Strategies for Parallel Processing, 9th International Workshop, JSSPP 2003, Seattle,
WA, USA, June 24, 2003, Revised Papers. Lecture Notes in Computer Science, vol 2862. Springer,
Berlin, pp 44–60. https:// doi. org/ 10. 1007/ 10968 987_3

 17. SchedMD LLC (2024) The Surm workload manager. https:// slurm. sched md. com/

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/nph.16529
https://doi.org/10.1002/chem.201803642
https://doi.org/10.1038/nature14192
https://doi.org/10.1186/s13148-019-0659-4
https://doi.org/10.1530/rep.1.00217
https://doi.org/10.1038/nrg1655
https://doi.org/10.1038/nrg1655
https://doi.org/10.2217/epi.14.10
https://doi.org/10.2217/epi.14.10
https://doi.org/10.1172/JCI98747
https://doi.org/10.1172/JCI98747
https://grev-uv.github.io/
https://doi.org/10.1093/bioinformatics/btv357
https://doi.org/10.1093/bioinformatics/btv357
https://doi.org/10.1186/s12859-017-1574-3
https://doi.org/10.1186/s12859-017-1574-3
https://doi.org/10.1177/1094342019840792
https://doi.org/10.1186/s12859-020-03634-y
https://doi.org/10.1186/s12859-020-03634-y
https://github.com/grev-uv/hpg-dhunter-batch
https://github.com/grev-uv/hpg-dhunter-batch
https://doi.org/10.3390/electronics10091083
https://doi.org/10.3390/electronics10091083
https://doi.org/10.1007/10968987_3
https://slurm.schedmd.com/

13410 C. Reaño et al.

1 3

 18. Nitzberg B, Schopf JM, Jones JP (2004). In: Nabrzyski J, Schopf JM, Weglarz J (eds) PBS Pro: grid
computing and scheduling attributes. Springer, Boston, pp 183–190. https:// doi. org/ 10. 1007/ 978-1-
4615- 0509-9_ 13

 19. Altair Engineering Inc. (2024) PBS: portable batch system. https:// www. openp bs. org/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1007/978-1-4615-0509-9_13
https://doi.org/10.1007/978-1-4615-0509-9_13
https://www.openpbs.org/

	Accelerating the detection of DNA differentially methylated regions using multiple GPUs
	Abstract
	1 Introduction
	2 Background
	3 A new architecture designed for using multiple GPUs
	3.1 Dynamic scheduler mode
	3.2 Round-Robin scheduling policy
	3.3 Communication and synchronization of the scheduler with users and daemons

	4 Results
	4.1 Experimental setup
	4.2 Performance evaluation for a single request
	4.3 Performance evaluation for multiple simultaneous requests
	4.4 Performance evaluation using multiple GPUs
	4.5 Performance evaluation with a single GPU shared by multiple daemons
	4.6 Performance evaluation with multiple GPUs and multiple daemons per GPU

	5 Related work
	6 Conclusions
	Acknowledgements
	References

