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A B S T R A C T

The growing development of the Internet of Things (IoT) is accelerating the emergence and growth of new IoT
services and applications, which will result in massive amounts of data being generated, transmitted and pro-
cessed in wireless communication networks. Mobile Edge Computing (MEC) is a desired paradigm to timely
process the data from IoT for value maximization. In MEC, a number of computing-capable devices are deployed
at the network edge near data sources to support edge computing, such that the long network transmission delay
in cloud computing paradigm could be avoided. Since an edge device might not always have sufficient resources
to process the massive amount of data, computation offloading is significantly important considering the coop-
eration among edge devices. However, the dynamic traffic characteristics and heterogeneous computing capa-
bilities of edge devices challenge the offloading. In addition, different scheduling schemes might provide different
computation delays to the offloaded tasks. Thus, offloading in mobile nodes and scheduling in the MEC server are
coupled to determine service delay. This paper seeks to guarantee low delay for computation intensive applica-
tions by jointly optimizing the offloading and scheduling in such an MEC system. We propose a Delay-Greedy
Computation Offloading (DGCO) algorithm to make offloading decisions for new tasks in distributed
computing-enabled mobile devices. A Reinforcement Learning-based Parallel Scheduling (RLPS) algorithm is
further designed to schedule offloaded tasks in the multi-core MEC server. With an offloading delay broadcast
mechanism, the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization. Finally, the
simulation results show that our proposal can bound the end-to-end delay of various tasks. Even under slightly
heavy task load, the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%, while that given by
benchmarked algorithms is reduced to intolerable value. The simulation results are demonstrated the effective-
ness of DGCO-RLPS for delay guarantee in MEC.
1. Introduction

With the growing development of Internet of Things (IoT), a lot of
new services and applications are conceived for the fifth generation (5G)
and beyond wireless communication networks [1,2]. In 5G and beyond,
the data velocity and volume are growing exponentially from industry,
agriculture, etc. It is estimated that there will be 80 billion connected
devices, and the global data will reach 163 zettabytes by 2025 [3]. Most
of data is from delay-sensitive and computation intensive applications,
such as autonomous vehicles, real-time manufacturing, which require
high performance computing with ultra-low latency [4–6]. Although
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cloud computing supports high performance computing, it is unable to
satisfy the ultra-low latency requirement, since the network transmission
delay from data sources to the remote cloud is inevitable and becomes
the bottleneck for ultra-low latency [7,8].

Mobile Edge Computing (MEC), which enables high performance
computing at the proximity area of data sources, is regarded as a prom-
ising paradigm for Quality of Service (QoS) provisioning, particularly
delay guarantee for mobile applications requiring ultra-low latency [9,
10]. In MEC, the computing-enabled mobile nodes (e.g., smartphones,
IoT devices with Raspberry Pi) [3,11] and the edge server (such as edge
routers, base stations, wireless Access Point (AP), etc.) [12,13] can
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provide computing services for the close end users. An edge server is a
highly-virtualized computing system that supports running multiple
computation intensive tasks in parallel by equipping with on-board
large-volume data storage and computing facility [12]. Differently, a
mobile node generally runs one computation intensive task at a time,
since its computing capability is far smaller than that of an edge server
due to its battery and volume constraints.

To reduce transmission delay, it is desired to process all data within
an MEC network [14,15]. However, computing-enable edge devices,
including edge servers and mobile nodes, might not always have suffi-
cient computation resources to handle the massive amount of data [16,
17]. Therefore, the cooperation among nodes and servers at the vicinity
of end users is indispensable for the utilization maximization of the edge
computing paradigm. In a cooperative MEC system, complicated
computing algorithms, such as deep learning [18,19] and federated
learning [14,20], could be operated within a radio access network.
Accordingly, ultra-low latency might be provided for computation
intensive applications.
1.1. Motivation

The end-to-end delay of a computation intensive task mainly consists
of computation delay and offloading transmission delay. Computation
delay is determined by the computation resource and scheduling priority
allocated to the task in a computing device, while offloading transmission
delay would be affected by the network position of the computing device.
Accordingly, the quality of service provision for delay-sensitive appli-
cations in an MEC system has to address the following issues. Firstly,
computation resources and tasks are both heterogeneous. The MEC
server has multi-core CPU to carry out parallel scheduling, while each
mobile node often has only a single-core CPU to execute a task at a time.
The tasks also have distinct latency requirements for the MEC system.
Thus, the stochastic task arrival, distinct delay requirements, heteroge-
neous computation capabilities in mobile nodes and the server, off-
loading delay, etc., would make the offloading and scheduling problem
complicated. Secondly, the offloading and scheduling are coupled in
determining the delay of a task. Distinct resource allocation and sched-
uling algorithms provide quite different computation delays for distinct
types of tasks [21]. Thus, the parallel scheduling algorithm in the edge
server could affect the offloading decisions at mobile nodes by providing
distinct computation delays for tasks from distinct nodes. In addtition,
the offloading decisions at mobile nodes could also affect the resource
allocation and scheduling of an edge server by adjusting the task off-
loading rate.

Although a number of computation offloading algorithms are pro-
posed to reduce service delay in recent years, most of them addressed
partial problems aforementioned by optimizing either the offloading
decision [22,23], wireless uplink transmission resource [24,25], or
computation resources [21]. Some proposals focuse on the joint task
offloading, radio and computation resource allocation [26,27], offline or
partially offline algorithms are designed so as to iteratively search for the
optimal solutions.
1.2. Objective

Unlike the proposals mentioned above, the objective of this paper is
to design an online solution for joint computation offloading and intra-
server parallel scheduling in an MEC system so as to maximize the
tasks’ delay-guarantee-ratio, that is, the ratio of the number of tasks that
meet their delay requirements to the total number of tasks requested.
Specifically, we consider a cooperative MEC system in which a number of
computing-enable mobile nodes and a multi-core MEC server are con-
nected via a wireless network. The computation tasks, generated from
mobile nodes, can be executed locally or be offloaded to the MEC server.
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To find out optimal offloading and intra-server scheduling policies, we
first formulate a delay-based mobile-edge cooperative offloading and
scheduling problem with the goal of maximizing the delay-guarantee-
ratio. Since offloading and scheduling decisions are made in different
stages for a task, we decompose the problem into two concatenated
subproblems, including the Computation Offloading (CO) and Parallel
Scheduling (PS) subproblems. Then we design a scheme with two stages:
Delay-Greedy Computation Offloading (DGCO) for distributed mobile
nodes in the offloading stage and Reinforcement-Learning based Parallel
Scheduling (RLPS) for the MEC server in the scheduling stage for solving
the CO and PS subproblems respectively. Under an offloading delay
broadcast mechanism, the DGCO in mobile nodes and RLPS in the MEC
server cooperatively achieve a one-shot optimization of delay-guarantee-
ratio.
1.3. Contributions

The main contributions are summarized as follows.

� Formulation for a delay-based computation offloading and intra-
server parallel scheduling problem. We use the delay-guarantee-
ratio as the optimization objective to construct the joint offloading
and scheduling problem in an MEC system consisting of heteroge-
neous computing devices, including a multi-core MEC server and
multiple mobile nodes.

� Joint offloading and parallel scheduling with mobile-edge coopera-
tion. The online DGCO-RLPS scheme is designed to find out optimal
offloading decisions and parallel scheduling policies in the MEC
system for delay-guarantee-ratio maximization. In the proposal, the
problem is decomposed into two concatenated subproblems and
solved via DGCO and RLPS respectively. The one-shot optimization of
delay-guarantee-ratio is achieved by joining DGCO and RLPS via the
mobile-edge cooperative delay broadcast mechanism.

� Extensive simulations are conducted to illustrate that DGCO-RLPS can
bound the end-to-end delay of tasks, even under slightly heavy task
load, the delay-guarantee-ratio can still approximate 95%.

The remaining part of this paper is organized as follows. Section 2
introduces the related work. Section 3 describes the network and delay
models. Section 4 formulates the problem and then decomposes it into
two subproblems. Section 5 describes the details of DGCO-RLPS. Simu-
lation studies are conducted to demonstrate the efficiency of DGCO-RLPS
in Section 6. Section 7 concludes this paper.

2. Related work

Edge computing [28,29] has emerged as an attractive computing
model to provide QoSs for the ever-increasing delay-sensitive and
computation intensive applications. Recently, a number of computation
offloading and resource allocation algorithms have been proposed to
deploy cloud-like computation resources at the network edge, achieving
different objectives. Basically, these algorithms can be classified into two
catalogues depending on whether they join computation offloading and
intra-server scheduling.
2.1. Offloading without intra-server scheduling

The computation offloading among edge clouds and the remote cloud
are studied in Ref. [22], where an interior point method is used to solve
the offloading problem for maximizing the probability that tasks can
meet the delay requirements. The joint scheduling and cloud offloading
problem is formulated linearly and then addressed with Linear Pro-
gramming (LP) in Ref. [23] for reducing the execution time of mobile
applications. Mukherjee et al. in Ref. [30] have studied the



M. Guo et al. Digital Communications and Networks 10 (2024) 693–705
latency-driven task data offloading in fog computing network for in-
dustrial applications. The parallel task offloading is implemented by
splitting tasks into tne local fog and neighbor fog nodes as well as the
remote cloud. Le et al. have designed a deep reinforcement learning
based offloading scheme in ad-hoc mobile cloud for maximizing the
user's utility [31]. The knowledge-driven service offloading decision for
vehicular edge computing is studied based on deep reinforcement
learning in Ref. [32]. However, the existing reinforcement learning based
approaches are designed either for an MEC environment consisting of
one end device [31], or for an MEC with multiple end devices using the
same trained model [32,33], they can not be applied to an MEC system
with multiple types of end devices, making independent offloading de-
cisions and performing one-shot optimization.

Although the computation resource in a cloud is abundant, it is
limited in an edge server. Thus, some offloading algorithms assum that
each edge server is capable of serving one task at a time. Liu et al. have
studied the tradeoff between latency and reliability in task offloading for
MEC in Ref. [34]. They partitioned a task into sub-tasks and then off-
loaded them to multiple nearby edge nodes in sequence. A
multi-dimensional searching and adjusting method is also proposed to
join computing partitioning and resource allocation in mobile edge
clouds to reduce the average delay of latency sensitive applications [35].
A delay-based workload allocation for IoT-edge-cloud computing systems
is studied in Ref. [36] to improve energy efficiency. In Ref. [25], a joint
subcarrier and CPU time allocation for MEC is studied. In the proposal,
the offloaded tasks are scheduled one-by-one in the ascending order of
users’ queue lengths.

In contrast to the above proposals, which assumes that the remote
task execution time is known or ignored in computation offloading de-
cision, several recent works are focused on offloading algorithms based
on the predictive remote task execution time. For example, Khairy et al.
proposed an adaptive and context-aware offloading algorithm that uses
supervised learning to predict the remote execution time and energy
consumption, with the aim of optimizing both the execution time and
energy consumption for smartphones [37]. Later, Hu et al. proposed the
Maximum Efficiency First Ordered (MEFO) task offloading algorithm
based on learning driven task execution time prediction in an asym-
metrically informed edge computing environment, with the aim of
achieving high success rate of task offloading and small processing delay
[38].
Fig. 1. Model of an MEC system. (a) Distributed mobile nodes make offloading
decisions depending on either local computing or offloading to the MEC server
for new computation tasks; (b) If a task is determined to offloaded, it will be
transmitted from the mobile node to the MEC server via the base station; (c) The
MEC server determines how many tasks can be served in parallel and which
tasks to be executed.
2.2. Joint offloading and intra-server scheduling

A power-constrained delay minimization computation offloading
problem is studied for MEC systems in Ref. [39]. However, the proposal
only considered the task scheduling from one mobile device. In addition,
tasks are queued in the local mobile device. The decision to computing
offloading is made only after the previous task is completed. In Ref. [26],
a joint task offloading and parallel resource allocation for multi-server
MEC networks is formulated as a Mixed Integer Non-Linear Program
(MINLP). They address the resource allocation subproblem by using
convex and quasi-convex optimization techniques with fixed task off-
loading decision, and using a heuristic algorithm to solve the task off-
loading subproblem. The task assignment in a multi-cloudlet network
connected via a wireless SDN network is studied in Ref. [40] to reduce
the task latency. In the proposal, the arrival of offloaded tasks is assumed
to be a Poisson process, and the cloudlet is modeled as an M/G/1 queue.
They allocated the computation resource of a cloudlet to various flows
according to traffic arrival rates. In Ref. [27], the computation offloading,
resource allocation, and flying trajectory scheduling problem (named
JSORT) in the UAV-assisted mobile edge computing environment are
studied. In order to minimize the average weighted energy consumption,
a Lyapunov-based approach is applied to analyze the task queue. Then,
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the problem to minimize the energy consumption is decomposed into
three manageable subproblems. In order to find the optimal CPU-cycle
frequency of the UAV, the classical interior method is used.

The joint computation offloading and intra-server scheduling in MEC
are studied. In contrast to the previous proposals, an MEC with various
types of computation tasks is considered. Different types of tasks have
distinct resource requirements and tolerate different delay deadlines.
Moreover, task arrival process could be non-independent and identical
(non-i.i.d) distribution. In addition, in contrast to the aforementioned
proposals that concerned on average performance, our study focuses on
satisfying individuals’ delay requirements. We design online algorithms
to solve the joint computation offloading and intra-server scheduling
problem in such MEC.

3. Network and delay model

As illustrated in Fig. 1, an MEC system with computing-enabled mo-
bile nodes and a multi-core MEC server is considered. Each mobile node
generates computation tasks stochastically, where the data is from the
nearest low-tier IoT devices. Generally, the computing capability of a
mobile node is lower than that of an MEC server. Accordingly, it is
assumed that a mobile node executes a single task at a time with its full
computing capability, while the MEC server supports the execution of
multiple tasks in parallel via virtualization technologies [41]. In partic-
ular, the computation resource of the MEC server is allocated to multiple
Virtual Machine (VM) instances such that distinct tasks can be executed
on distinct VM instances in parallel.

In the MEC system, the following two-stage decision for a task is
considered. The first is the computation offloading decision in each of
computing-enabled mobile nodes. When a new task is generated, the
mobile node makes offloading decision (i.e., either local computing or
offloading to the MEC server) for the task. If the task is offloaded, it will
be transmitted from the mobile node to the MEC server via the wireless
communication network. The second is the parallel scheduling



Table 1
Summary of notations.

Symbols Definition

V The number of task types
Mv The number of type-v mobile nodes
fMv;m The computation capability (CPU cycles per second) of the mth type-v

mobile node
fF The computation capability (CPU cycles per second) of the MEC server
Av,m(t) The task arrival indicator for the mth type-v mobile node in slot t
Iv,m(t) The binary offloading decision indicator for the mth type-v task in slot t
Xv(t) The total number of type-v tasks in slot t
YM

v ðtÞ The number of type-v tasks that are locally computed

YF
v ðtÞ The number of type-v tasks that are offloaded

Sv The data size (bits) of a type-v task
Lv The total CPU cycles required to execute a type-v task
Qv,m(t) The queue length of the mth type-v node at the beginning of slot t
QF

v ðtÞ The queue length of type-v tasks in the MEC server at the beginning of
slot t

Tv,m(t) The end-to-end delay of the mth type-v task generated in slot t
TTh
v

The delay deadline of type-v task

TM
v;mðtÞ The local computation delay of the task from themth type-vmobile node

TF
v;mðtÞ The offloading delay of the task from the mth type-v node

TF
v;m;TxðtÞ The uploading delay of the task from the mth type-v node

TF
v;m;CPUðtÞ The MEC server computation delay of the task from the mth type-v

mobile node
Rv,m(t) The uploading data rate of the mth type-v node in slot t
RðtÞ The parallel scheduling decision vector (number of tasks) with respect to

task types scheduled in the MEC server in slot t
I The offloading decision vector with respect to task types and task

number in all time slots
R The parallel scheduling decision (number of tasks) with respect to task

types scheduled in the MEC server in all time slots
P(t) The delay-guarantee-ratio of the MEC system in slot t
P The long-term delay-guarantee-ratio of the MEC system
PF The delay-guarantee-ratio in the MEC server
M The mobile node vector with respect to mobile node types
V The set of task types
XvðtÞ The set of type-v tasks generated in slot t
YM

v ðtÞ The set of type-v tasks for local computing

YF
v ðtÞ The set of type-v tasks for offloading
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decision in the MEC server. At each decision epoch, the MEC server
determines how many tasks can be served in parallel and which tasks to
be executed. Since these two types of decisions are made on distinct
stages for a task, they can be performed in parallel for different tasks, as
shown in Fig. 1.

In practice, the computation-intensive IoT applications can be clas-
sified into a limited number of types according to their expected latency
[42]. It is assumed that the computation tasks are classified into V
number of types based on the size of task data and tolerable latency. A
mobile node is assumed to generate the same type of tasks during all time
slots, thus a node that generates type-v tasks is called type-vmobile node
herein. LetM ¼ ðM1;M2;…;Mv;…;MV Þ be the mobile node vector in the
MEC system, where Mv is the number of type-v nodes. Let fMv;m be the
computation capability [CPU cycles per second] of the mth type-v node.
Similarly, the computation capability of the MEC server is denoted by fF

[CPU cycles per second]. The details of some notations are listed in
Table 1.

3.1. Task model

A dynamic task arrival model is considered, e.g., each mobile node
generates computation tasks stochastically and independently. Let Av,m(t)
be the binary indicator for the mth type-v mobile node in slot t,1 where
Av,m(t) ¼ 1 indicates that a task is generated in slot t, otherwise Av,m(t) ¼
0. Each type-v task has a delay deadline denoted as TTh

v . Note that if a task
1 The slot t refers to the time interval [t, t þ 1).
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fails to meet its delay deadline, the task is said to be delay-deadline
unguaranteed. The number of type-v tasks generated from Mv number
of type-v nodes in slot t is expressed by

XvðtÞ ¼
XMv

m¼1
Av;mðtÞ (1)

Let Iv,m(t) be a binary offloading decision indicator for the mth type-v
task in slot t. It is assumed that when Iv,m(t) ¼ 1, the mth type-v task is
offloaded, and when Iv,m(t) ¼ 0, the task is locally computed. Then, we
have

XvðtÞ ¼ YM
v ðtÞ þ YF

v ðtÞ; v 2 V (2)

where YM
v ðtÞ ¼

PMv
m¼1Av;mðtÞ ð1�Iv;mðtÞÞ and YF

vðtÞ ¼PMv
m¼1Av;mðtÞ Iv;mðtÞ.
3.2. Local computation delay

When a type-v node determines to locally execute the task generated
in time slot t, the task will only experience local computation delay,
which is calculated by

TM
v;mðtÞ ¼ TM

v;m;queðtÞ þ TM
v;m;exeðtÞ; v 2 V;m 2 YM

v ðtÞ (3)

where TM
v;m;queðtÞ ¼ Lv Qv;mðtÞ=fMv is the queuing delay;

TM
v;m;exeðtÞ ¼ Av;mðtÞ ð1�Iv;mðtÞÞ Lv=fv is the execution delay of the task.

The queue length is evolved by

Qv;mðt þ 1Þ ¼ max
�
Qv;mðtÞ þ Av;mðtÞ

�
1� Iv;mðtÞ

�
�
�
f Mv
Lv

�
; 0
�

(4)

where ⌊X⌋ is the maximum integer number that does not exceed X.
3.3. Offloading delay

When a type-v node determines to offload a task to the MEC server,
the task will experience both uploading and computation delays. Let
TF
v;mðtÞ be the delay of the type-v task that is generated in node m in slot t

and is offloaded to the MEC server. Then, we have

TF
v;mðtÞ ¼ TF

v;m;TxðtÞ þ TF
v;m;CPUðtÞ (5)

Note that due to small size of the downloading result, similar to literature
[22], the uploading transmission delay is mainly considered. Neverthe-
less, the downloading time is added when the size of the result data
becomes larger in specific applications.

3.3.1. Uploading delay
For the uplink transmission from amobile node to theMEC server, the

Orthogonal Frequency Division Multiple Access (OFDMA) system is
considered. LetNt

v;m be the number of subbands available to themth type-
vmobile node in slot t. Denote Gn

v;mðtÞ as the uplink channel-gain-to-noise
ratio. Then, the data rate for the mobile node is derived by

Rv;mðtÞ¼B
XNt

v;m

n¼1
wn

v;mðtÞlog2
�
1þ Pn

v;mðtÞGn
v;mðtÞ

	
(6)

where B is the bandwidth of a subband, wn
v;mðtÞ is a binary channel se-

lection variable. wn
v;mðtÞ ¼ 1 indicates that the mobile node decides to

offload the task over subband n, otherwise wn
v;mðtÞ ¼ 0. Pn

v;mðtÞ is the
transmission power over subband n. The transmission power is con-

strained by
PNt

v;m
n¼1w

n
v;mðtÞPn

v;mðtÞ � Pv;m, where Pv;m is the maximum
transmission power of the mth type-v mobile node.

Therefore, the uploading transmission delay for the type-v task from
the mth node to the MEC server is expressed as



Fig. 2. Online mobile-edge cooperative DGCO-RLPS scheme for the JCOPS problem. (1) The DGCO algorithm is designed for distributed mobile nodes to solve the
computation offloading subproblem; (2) The RLPS algorithm is used in the MEC server to solve the parallel scheduling subproblem; (3) Concatenating the two
subproblems to obtain optimal solutions for the JCOPS problem via mobile-edge cooperative delay broadcast.
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TF
v;m;TxðtÞ ¼

Sv
Rv;mðtÞ (7)
3.3.2. MEC server computation delay
When a type-v task from mobile node m arrives at the MEC server in

slot t, its computation delay can be derived by

TF
v;m;CPUðtÞ ¼ TF

v;m;CPU;queðtÞ þ TF
v;m;CPU;exeðtÞ (8)

where TF
v;m;CPU;queðtÞ ¼ LvðQF

vðtÞþYF
0

v ðtÞÞ=f FvðtÞ is the queuing delay of

type-v task in the MEC server; TF
v;m;CPU;exeðtÞ ¼ Av;mðtÞIv;mðtÞLv=f FvðtÞ is the

execution delay; f FvðtÞ is the CPU rate of the MEC server allocated to the

vth type tasks; 0 � YF
0

v ðtÞ is the number of the vth type tasks offloaded
from distributed mobile nodes before this task during slot t. The queue
length QF

vðtÞ is evolved as the following

QF
v ðtþ 1Þ ¼ max



QF

v ðtÞ þ YF
v ðtÞ � rvðtÞ; 0

�
(9)

where rvðtÞ ¼
�
f Fv ðtÞ =Lv



is the number of the vth type tasks executed in

slot t in the MEC server. Then the number of tasks from type-1 to type-V
scheduled in slot t can be expressed as RðtÞ ¼ ðr1ðtÞ;…; rvðtÞ;…; rV ðtÞÞ.

4. Problem formulation

This paper mainly focuses on the delay performance in term of delay-
guarantee-ratio, and it is expressed in the slot t as

PðtÞ ¼ 1
V

XV

v¼1

PXvðtÞ
m¼11

�
Tv;mðtÞ � TTh

v

�
XvðtÞ (10)

where 1ðKÞ ¼ f0;1g, if K is true then, 1ðKÞ ¼ 1; and 1ðKÞ ¼ 0, otherwise.
Moreover, the end-to-end delay for the mth type-v task in slot t is
expressed as

Tv;mðtÞ ¼ ð1� Iv;mðtÞÞ TM
v;mðtÞ þ Iv;mðtÞ TF

v;mðtÞ (11)

As a result, the long-term delay-guarantee-ratio is defined as

P ¼ E½PðtÞ� ¼ lim
T→∞

1
T

XT

t¼1
PðtÞ (12)
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4.1. Joint computation offloading and parallel scheduling problem

The objective of this paper is to find a sequential optimal offloading
decisions I* ¼ ðI*v;mðtÞ : 8v2 V;8m2 XvðtÞ; t¼ 1;2;…;∞Þ for mobile

nodes, and parallel scheduling policies R* ¼ ðR*ðtÞ : t¼ 1;2;…;∞Þ for
the MEC server, to maximize the long term delay-guarantee-ratio. We call
the above problem as the Joint Computation Offloading and Parallel
Scheduling (JCOPS) problem, and formulate it as

max
I* ; R*

P (13a)

s:t: ð2Þ; ð3Þ; ð5Þ; ð7Þ; ð8Þ; ð11Þ; ð12Þ (13b)

E½Av;mðtÞð1� Iv;mðtÞÞ� � fMv ;8v 2 V; m 2 XvðtÞ (13c)

X
v2V

E½YF
v ðtÞ� � f F (13d)

where (13c) and (13d) are queue stability constraints at the mobile nodes
and the MEC server, respectively.

4.2. Problem decomposition

Since the JCOPS problem described in (13a)-(13d) involves the off-
loading decisions in multiple mobile nodes and task scheduling in the
MEC server, our approach in this paper is to decompose it into two
concatenated subproblems, referred to as the CO subproblem in the
involved mobile nodes and the PS subproblem in the MEC server. The
offloading decision I* of the CO subproblem is based on the up-to-date
result of the PS subproblem. The solution of the PS subproblem will be
affected by the offloading decision of the CO subproblem. The detail of
the decomposition process is described as the following.

Firstly, given the most updated R*ðtÞ of the PS subproblem, the
current value of MEC server computation delay is also determined. The
mobile nodes can also obtain the most updated MEC server computation
delay with the offloading delay. Thus, as to mobile nodes, the JCOPS
problem is reduced to the CO subproblem as follows:

ðCOÞ : max
I*

P (14a)

s:t: ð13bÞ; ð13cÞ; ð13dÞ (14b)
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RðtÞ ¼ R*ðtÞ (14c)

where (14a) follows (13a)-(13d) given R*ðtÞ; (14c) is the most updated
parallel scheduling policy of the PS subproblem.

Secondly, the objective of the PS subproblem is further to optimize
the delay-guarantee-ratio within the MEC server with respect to the so-
lution of the CO subproblem. That is, the PS subproblem is formulated as

ðPSÞ : max
R*

PF ¼ E½PFðtÞ� (15a)

s:t: YF*
v ðtÞ � XvðtÞ ; v 2 V (15b)

YF*
v ðtÞ ¼

XMv

m¼1
Av;mðtÞI*v;mðtÞ ; v 2 V (15c)

ð13dÞ (15d)

XV

v¼1
rvðtÞ Lv � f F (15e)

rvðtÞ � QF
v ðtÞ ; v 2 V (15f)

where (15b) and (15c) are the task constraints that follow (2) and the
solution of the CO subproblem, respectively; (15d) is the queue stability
constraint of the MEC server; (15e) is the CPU resource constraint in the
MEC server; (15f) follows (9); PF(t) in (15a) is the delay-guarantee-ratio
of the MEC server in slot t, which is defined as

PFðtÞ ¼ 1
V

XV

v¼1
PF
v ðtÞ

¼ 1
V

XV

v¼1

PYF*
v ðtÞ

m¼1 1
�
TF
v;m;CPUðtÞ � TF_Th

v;m ðtÞ
	

YF
v ðtÞ

(16)

where TF_Th
v;m ðtÞ is the maximum tolerable delay of the task in the MEC

server, which is calculated by TF_Th
v;m ðtÞ ¼ TTh

v � TF
v;m;TxðtÞ.

In the next section, online algorithms to solve both the CO and PS
subproblems are designed. The one-shot solution to the original JCOPS
problem will be obtained by combining computation offloading and
parallel scheduling together via mobile-edge cooperative offloading-
delay broadcast mechanism.

5. Proposed online DGCO-RLPS scheme for JCOPS

An online DGCO-RLPS scheme is designed to solve the JCOPS prob-
lem. As shown in Fig. 2, the DGCO-RLPS scheme consists of 1) the DGCO
algorithm in mobile nodes for solving the CO subproblem, 2) the RLPS
algorithm in the MEC for solving the PS subproblem, and 3) the delay
broadcast mechanism to combine DGCO and RLPS for the solution of the
JCOPS problem.

Specifically, as to the CO subproblem, when there is a task generated
in a mobile node, the node initiates the DGCO algorithm to determine
where to execute the task, by comparing the estimated delays of local
computing and MEC server computing respectively, where the estimated
MEC server computation delay is extracted from the broadcasting packets
by the MEC server. The uploading delay is determined by the Water-
filling based Transmission Rate Maximization (WTRM) algorithm. As to
the PS subproblem, an intelligent algorithm, i.e., RLPS, is used in the
MEC server to determine how many and which tasks to be executed in
parallel, with the aim of optimizing the delay performance of the off-
loaded tasks.

The mobile nodes and the MEC server cooperate to provide delay
guarantee for computation intensive applications by the joint DGCO-
RLPS algorithm. Through the computation delay broadcasted by the
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MEC server, DGCO and RLPS affect each other iteratively to obtain
optimal solutions for the JCOPS problem. The details of the scheme are as
the following.

5.1. DGCO for computation offloading

Given the per-slot task arrival events Xv(t) for v 2 V, and (10), we
obtain

max PðtÞ � max
XV

v¼1

XXvðtÞ
m¼1

1
�
Tv;mðtÞ � TTh

v

�
(17)

Accordingly, the CO subproblem as in (14a) can be equivalently
written as

ðCO0 Þ : max
I*

lim
t→∞

1
T

XT

t¼1

XV

v¼1

XXvðtÞ
m¼1

1
�
Tv;mðtÞ � TTh

v

�
(18a)

s:t: ð14bÞ; ð14cÞ (18b)

Let Tmin
v;m ðtÞ ¼ min

�
TM

v;mðtÞ;TF
v;mðtÞ

	
, then 1

�
Tv;mðtÞ � TTh

v

� �
1
�
Tmin

v;m ðtÞ � TTh
v

	
holds. Thus, given the evaluated local computation

delay and offloading delay, we obtain max 1
�
Tv;mðtÞ � TTh

v

� ¼
1
�
Tmin

v;m ðtÞ � TTh
v

	
, 8v ¼ V and 8m ¼ XvðtÞ.

Based on the above discussion, a distributed online DGCO algorithm
for the computation offloading subproblem is designed. Specifically,
DGCO is executed at each mobile node. When a task is generated, the
node evaluates the delays for local computing and offloading based on
the task size, the delay deadline and the present states, including its
queue length, channel states, etc. Mobile nodes then make their off-
loading decisions independently according to the evaluating values. The
details of DGCO is summarized in Algorithm 1.
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The uploading rate is an important factor that affects the computation
offloading decision, as shown in Algorithm 1. Therefore, the WTRM al-
gorithm (Algorithm 2) is used to find the optimal uploading rate as well
as the power allocated to the multiple channels constrained to the
maximum transmission power of the mobile node as in Refs. [43,44].
5.2. RLPS for parallel scheduling

Given the high complexity of the parallel scheduling subproblem due
to the NP-hard nature of the parallel scheduling decision [21], our
approach in this paper is to, firstly, reduce the algorithm complexity by
formulating the multi-dimensional PS subproblem into a
single-dimensional Markov decision process; and then, construct a
single-dimensional Markov decision model based on reinforcement
learning; finally, discover optimal solution based on discrete-time
least-squares policy iteration (DLSPI). The detail is presented as the
following.

5.2.1. Problem transformation
With multi-core CPU resources and virtual technologies, the MEC

server supports the execution of multiple tasks in parallel. We define a
feasible parallel scheduling policy for the MEC server as the following.
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Definition 1. (A feasible parallel scheduling policy). A V-elemental
vector R ¼ ðr1; r2;…; rV Þ is defined as a feasible parallel scheduling
policy for the MEC server if the server can simultaneously execute r1
number of type-1 tasks,⋯, and rV number of type-V tasks, which satisfies
the following CPU-cycle resource constraint.

XV

v¼1
rv Lv � f F (22)

A parallel scheduling arrayRAt�V ¼ ðRat ;vÞAt�V , which represents a set
of supportable parallel scheduling strategies with respect to the queuing
lengths of various types of tasks and the capacity of the MEC server is
further defined as.

Definition 2. (Parallel scheduling array). RAt�V is said to be a parallel
scheduling array at slot t for t ¼ 1, 2, …, ∞ if and only if the atth row
vectorRat ¼ ðrat ;vÞ1�V for at ¼ 1, 2,…, At is a feasible parallel scheduling
policy at slot t. The parallel scheduling policy Rat satisfies the following
constraints.

(XV

v¼1
rat ;v Lv � f F

rat ;v � QF
v ðtÞ; 8v 2 V

(23)

where rat ;v represents the number of type-v tasks scheduled in slot t under
policy at; At is a numerical variable representing the number of feasible
parallel scheduling policies at slot t.

With the definition of the parallel scheduling array, the parallel
scheduling subproblem in (15a) becomes a single-dimensional decision-
making for at 2 {1, 2,…, At}, t¼ 1, 2,…,∞, such that the long-term PF is
maximized.

Let PFðfRat gÞ denote a function of a sequentialRat for t¼ 1, 2,…,∞,
representing the average delay-guarantee-ratio of all tasks processed in
the MEC server in the long run. Then, the PS subproblem in (15a) is
transformed into

ðPS0 Þ : max
Rat

PFðfRatgÞ (24a)

s:t: ð15bÞ; ð15cÞ (24b)

Rat⊆RAt�V (24c)

Therefore, the optimal problem of parallel scheduling in the MEC
server is equivalent to determining a sequential a*t to maximize the long-
term PF(▪). If a state is defined as an MEC environmental vector con-
taining all useful information from its history affecting the present par-
allel scheduling decision a*t , then the sequential decisions a*t and
corresponding Ra*t

are indeed a Markovian Decision Process (MDP).
Accordingly, reinforcement learning can be used to solve the problem
described in (24a).

5.2.2. RL-based construction of task parallel scheduling
According to the reinforcement learning theory, if a reward signal is

given to the MEC server, then it can discover which parallel scheduling
decision yields the most rewards by training. Thus, it is possible to find
out the optimal decisions that are adaptive to the dynamic of MEC en-
vironments by carefully designing a reward signal. Moreover, since the
decisions based on reinforcement learning affect not only the immediate
reward but also all subsequent rewards, it is possible to achieve a good
long-term delay performance PF(▪) via optimal sequential decisions. In
addition, decisions based on reinforcement learning can influence the
subsequential environments. It is possible for an optimal parallel
scheduling policy to avoid the event in which some type of task violates
its delay bound due to the continual arrival of another type of tasks.
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Therefore, we construct the optimization problem in (24a) based on
reinforcement learning [45,46] as follow.

Features of a state. It is observed that, the values of QF
v ðtÞ and

PFv ðt�1Þ for v 2 V affect the selection behavior of action at. Therefore,
these parameters are used as features to represent a state, i.e., st ¼�
QFðtÞ;PFðt�1Þ�, where QFðtÞ ¼ fQvðtÞ : v2 Vg and PFðt � 1Þ ¼
fPFv ðt � 1Þ : v2 Vg.

Decision epochs and action space. A decision epoch is defined as
the beginning of a time slot. In each decision epoch, a parallel scheduling
decision is made to decide which types of tasks and how many of them
should be scheduled. Since the feasible scheduling policies are abstracted
by the parallel scheduling array RAt�V , the decision is about which row
vector to select from the parallel scheduling array. Equivalently, the ac-
tion is to schedule the tasks in the row vector Rat ¼ ðrat ;vÞ1�V for
computation at slot t.

Following references [46,47], we consider a binary plane to represent
the state and action features with respect to the task types for simplifying
the calculation of state-action values. For example, the state of queue
length and the delay-guarantee-ratio are all represented byN� V number
of planes, where the integer N > 0, while the feasible actions are rep-
resented by A number of planes, where A is the maximum number of
actions.

Notice that, by classifying the value of queue length and the delay-
guarantee-ratio into N grades and then mapping them into one of N
planes with respect to their task types, the state space is limited.

Reward function. To achieve the goal of maximizing the long term
delay-guarantee-ratio with fast algorithm convergence, we classify the
observed delay-guarantee-ratio under an action into six discrete levels
{[0, 0.5), [0.5,0.6), [0.6,0.7), [0.7,0.8),[0.8,0.9), [0.9,1]}. The corre-
sponding rewards are set to {-3, �2, �1, 1, 2, 3}, respectively.

Based on the Bellman expectation equation [45], the state-action
value is obtained by Vðs; aÞ ¼ E½Rtþ1 þγVðStþ1;Atþ1ÞjSt ¼ s;At ¼ a� and
Rtþ1 is the immediate reward of action a in state s in slot t, V(Stþ1, Atþ1) is
the state-action value in next slot, and γ is a step-size parameter.

ε-greedy action policy. The action is chosen based on the ε-greedy
policy. That is, action a in state s is chosen with probability(1 � ε/2), if a
satisfies a ¼ arg max V(s, a) for a ¼ {1, 2, …, At}.

5.2.3. Optimal solutions
According to the ε-greedy action policy, the state-action value V(s, a)

is required for action selection. However, storing and updating the state-
action values during a scheduling process are impractical for large state
and action spaces in a dynamic scheduling environment. A parameter
function approximator V̂ðs; a;wÞ is introduced, to represent the state-
action value function, where w is an adjustable parameter vector.
Therefore, only the parameter vector w is required to store. Compared to
storing V(s, a), the storage requirements are explicitly reduced. Specif-
ically, the state-action value is approximated by

V̂ðs; a;wÞ ¼ xðs; aÞTw ¼
Xn

j¼1
xjðs; aÞwj (25)

where x(s, a) is a binary state-action feature vector, w is an adjustable
parameter vector.

The desired parameter w is expected to minimize the mean-squared
error between the actual state-action value and the approximated state-
action value. This paper uses the DLSPI, which is a discrete-time
variant of LSPI, to learn w based on the following equation.

w ¼
PT

t¼1xðst; atÞRtþ1PT
t¼1xðst; atÞ½xðst ; atÞ � γxðstþ1; atþ1Þ�T

(26)

The detail of the DLSPI is shown in Algorithm 3.
Once w* is learned, the state-action value can be approximated by

(25), and the optimal action can be further determined with the ε-greedy
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action policy. The detail of the RLPS algorithm is shown in Algorithm 4.
5.3. Mobile-edge cooperative delay broadcast for one-shot optimization

As show in Section 4.2, the JCOPS problem is decomposed into the
CO and PS subproblems. The solution of the CO subproblem is based on
the solution of the PS subproblem, and vice versa. Our proposed algo-
rithms, e.g., DGCO for the CO subproblem and RLPS for the PS sub-
problem, also present the mutual matching of offloading decisions in
mobile nodes and parallel scheduling decision in the MEC server for one-
shot optimization. Specifically, as shown in lines 10–11 of Algorithm 4, at
every time slot, the MEC server calculates the time-averaged MEC server
computation delay of every type of tasks based on the RLPS-based par-
allel scheduling decision, and then broadcasts them to the nodes located
in MEC. Every mobile node makes offloading decision based on the
computation delay it receives from MEC server, as shown in lines 4–9 of
Algorithm 1.



Table 2
The basic parameter settings.

Parameters Type-
1

Type-
2

Type-
3

Mobile Number of mobile nodes 50 30 10
node CPU rate fMv;m (MHz) 600

Task Mean data size S (KB/task) 200 250 420
Mean CPU cycle requirement L (MHz/
task)

320 475 882

Delay deadline TTh (ms) 3 5 10
Wireless Number of subbands [1,16]

Subband bandwidth (MHz) 0.3125
network Transmission power Pv;m (W) 0.1

Fading channel Rayleigh
Channel noise density 1e-11

Server CPU rate fF (GHz) 10
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5.4. Algorithm complexity

As shown in Fig. 2, since the DGCO and RLPS algorithms operate in
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different edge devices (e.g., DGCO in mobile nodes and RLPS in the MEC
server) for different subproblems (e.g., DGCO for the CO subproblem,
and RLPS for the PS subproblem), they can work in parallel for the same
task. Accordingly, similar to Ref. [21], the time complexity of the pro-
posed DGCO-RLPS scheme is max½OðDGCOÞ;OðRLPSÞ�, where OðDGCOÞ
and OðRLPSÞ are the time complexity of the DGCO and RLSP algorithms,
respectively.

It is easy to see from Algorithm 1 that, the time complexity of the
DGCO algorithm is max½Oð1Þ;OðWTRMÞ;Oð1Þ�, where the formerOð1Þ is
the time complexity of obtaining the local computation delay, and the
latter Oð1Þ is the time complexity of evaluating the MEC server pro-
cessing delay. OðWTRMÞ is the time complexity of Algorithm 2, which is
equivalent to OðNmaxÞ [44], where Nmax ¼ max½max½Nt

v;m :

t¼ 1; 2;…;∞� : v2 V;m2 XvðtÞ� is the maximum number of subbands
available to the mobile node that has the maximum available subbands in
MEC. Accordingly, the time complexity of the DGCO algorithm is
OðNmaxÞ.

As shown in Algorithm 4, the time complexity of the RLPS algorithm
is mainly determined by the parallel scheduling decision making process.
The time complexity of the parallel scheduling decisionmaking process is
further determined by (23) and (27). Since (23) could operate offline by
storing the mapping between various available computing resource and
action space, the time complexity of the RLPS algorithm is OðAÞ ac-
cording to (27), where A is the number of feasible parallel scheduling
policies in the MEC.

Finally, the time complexity of the proposed DGCO-RLPS scheme is
max½OðNmaxÞ;OðAÞ�.

It is noted that, in most of existing proposals (e.g., Refs. [26,27,40]),
the queue number in the MEC server equals to the number of mobile
nodes, such that their parallel scheduling complexity would be at least
OðU � rmax

u Þ, where U is the number of mobile nodes in MEC,
rmax
u ¼ min½�f F =Lu
;QuðtÞ� is the maximum number of tasks from the uth
(0< u� U) queue that can be processed in parallel. The difference is that
the parallel scheduling complexityOðAÞ is a function of V, where V is the
number of task types, which is generally far smaller than the value of U,
since we divide the computation tasks as well as mobile nodes into a
number of types based on the task data size and tolerable latency.
Accordingly, our algorithm complexity is quite lower than existing
approaches.

6. Performance evaluation

This section evaluates the efficiency in delay guarantee of the DGCO-
RLPS scheme. Since the delay-sensitive applications can be classified into
a limited number of types according to the expected latency [42,48], we
consider the scenario with three types of mobile nodes according to the
types of tasks they generate. As listed in Table 2, type-1 task with delay
deadline of 3 ms represents autonomous vehicles/industrial Internet, 5
ms delay deadline for the type-2 task with respect to gaming/factory



Fig. 3. Delay-guarantee-ratio with respect to task request rate.

Fig. 4. Computation offloading ratio (defined as the ratio of offloaded tasks to
all tasks) with respect to task request rate.
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automation, and type-3 task mainly represents smart grid with a delay
deadline of 10 ms.

The mobile nodes are randomly distributed over the network. For
simplification, it is assumed that the per-slot task request probabilities of
a mobile node follow the same i.i.d. Let ρ¼ (0.5, 0.5, 0.5) tasks/ms/node
be the basic per-slot task request rate vector for the three types of tasks.
Then, the request rate of type-v tasks can be derived by ρv ¼
1
Mv

PMv
m¼1lim t→∞

1
t

P
tAv;mðtÞ for v 2 V and Mv 2 M. In order to satisfy the

IoT applications’ ultra-low latency requirement, the transmission delay
should be less than 1 ms [49]. With the novel multiple-access techniques
in next generation wireless system [50], it is reasonable for us to set the
number of subbands available to any mobile node to a range of [1,16].
Hence the uploading delay of a large task (e.g., a type-3 task) could be
less than 1 ms, such that offloading decision makes sense. The detail of
parameter settings is listed in Table 2.

The performance of DGCO-RLPS is compared with four benchmarked
schemes, of those most relevant to our work: (1) No Offloading (NO)
[51]; (2) joint Total-Offloading (TO) [51] and Utility-Maximum Parallel
Scheduling (UMPS), called as TO-UMPS; (3) DGCO-UMPS; (4) Joint
optimization algorithm of Stochastic computation Offloading, Resource
allocation, and Trajectory scheduling (JSORT) [27], under various task
intensities and various MEC server computing capabilities with a discrete
event-based simulator that combines Matlab and Cþþ.

� NO: All tasks are executed in local mobile nodes in the FIFS discipline
[51].

� TO-UMPS: Under TO Ref. [51], all tasks are offloaded to the MEC
server for computing. That is, there is no cooperation among mobile
nodes and the MEC server. The MEC server schedules the offloaded
tasks with UMPS, which is a variant of min-min best fit in Ref. [21].
Specifically, under the UMPS algorithm, the parallel scheduling pol-
icy that satisfies at ¼ arg max at2AtRat L is chosen.

� DGCO-UMPS: The delay-greedy algorithm is adopted to make
computation offloading decisions in mobile nodes considering the
cooperation among mobile nodes and the MEC server, and the UMPS
policy is used as the parallel scheduling algorithm in the MEC server.

� JSORT: Based on Lyapunov drift [52], the variant of JSORT [27] is
adopted to make computation offloading decisions in mobile nodes
and parallel scheduling decisions in the MEC server. Specifically,
under JSORT, the offloading decision vector fI*v;mðtÞg for v 2 V and
m 2 XvðtÞ in slot t is chosen if it minimizes the drift of the task queue
length; similarly, a feasible parallel scheduling policy R*ðtÞ is chosen
if it minimizes the drift plus penalty.
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6.1. Impact of task request rate

We first evaluate the performance of DGCO-RPLS under various task
intensities. We set ρ ¼ ρ1 ¼ ρ2 ¼ ρ3, that is, the per-slot task request rates
of all mobile nodes are identical. It is noticed that, the request rates for
different types of tasks are different due to different number of mobile
nodes. Then, we vary ρ from 0.4 to 1, evaluating how it affects the delay
performance of the investigated schemes.

As shown in Fig. 3, the delay-guarantee-ratio given by our proposed
DGCO-RLPS outperforms the other schemes by providing the highest
delay-guarantee-ratio under various task request rates. Particularly,
when the workload is heavy (e.g., ρ¼ 1), the delay-guarantee-ratio given
by DGCO-RLPS can still approximate 98%, while the worst one given by
the TO-UMPS is less than 30%.

The delay-guarantee-ratio given by TO-UMPS decreases explicitly
with the increasing task request rate, as shown in Fig. 3. Because TO-
UMPS offloads all tasks to the MEC server, leading to a large trans-
mission delay and heavy computation loads in the MEC server. Accord-
ingly, the MEC queuing delay would increase quickly with the increasing
task request rate due to limited MEC computing resource.

Similarly, due to the limitation of computation resource, the queuing
delay under the NO scheme increases explicitly with the increasing task
request rate. As a result, the delay-guarantee-ratio given by NO decreases
with the increasing task request rate, as shown in Fig. 3. DGCO-UMPS
provides a worse delay-guarantee-ratio than both DGCO-RLPS and NO
under various task request rates. Because UMPS always chooses a parallel
scheduling policy that maximize the resource utility. This may starve
some types of delay-sensitive tasks, leading to more local computation in
mobile nodes, as shown in Fig. 4. Therefore, these tasks might experience
long local queuing delay.

The JSORT algorithm outperforms the NO, TO-UMPS and DGCO-
UMPS algorithms by providing higher delay-guarantee-ratio under
various task request rates. Because JSORT adapts to the varying of task
request rate by controlling the drift of queue length, thus avoiding
extremely long queuing delay. However, since it is difficult to accurately
tradeoff between queue length and delay-guarantee-ratio, the delay-
guarantee-ratio given by the JSORT algorithm may be suboptimal, thus
it is unsurprising to see that the delay-guarantee-ratio given by JSORT is
worse than that of our proposed DGCO-RLPS.

6.2. Impact of the number of mobile nodes

We next investigate the delay-guarantee-ratio under various number
of mobile nodes. We set ρ ¼ (1.0, 1.0, 1.0) tasks/ms/node. In the first



Fig. 5. Delay-guarantee-ratio with respect to type-1 mobile node number.

Fig. 6. Delay-guarantee-ratio with respect to type-3 mobile node number.

Fig. 7. Delay-guarantee-ratio with respect to computing capability of the
MEC server.

Fig. 8. Computation offloading ratio with respect to computing capability of the
MEC server.
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scenario, we set the number of type-2 and type-3 nodes to 30 and 10,
respectively, then we change the number of type-1 nodes to evaluate how
it affects the delay guarantee performance of the investigated schemes. In
the second scenario, we set the number of type-1 and type-2 mobile
nodes both to 10, then change the number of type-3 nodes to evaluate
how it affects the delay guarantee performance of the investigated
schemes. The other parameter settings are listed in Table 2.

As shown in Fig. 5, the delay-guarantee-ratio given by DGCO-RLPS,
JSORT, DGCO-UMPS and NO decrease slowly with the increasing num-
ber of type-1 nodes. Because the tasks of the CPU cycle required from
type-1 nodes are quite small compared to the CPU rate of local type-1
node. Thus, under the DGCO-RLPS, JSORT, DGCO-UMPS and NO
schemes, the resource competition in the MEC server increases slowly
with the increasing number of type-1 nodes as more type-1 tasks need to
perform local computing. However, since TO-UMPS is a scheme that all
tasks will be offloaded to the MEC server for computing, the resource
competition in the MEC server increases quickly with the increasing
number of type-1 nodes. Thus, TO-UMPS provides the worst performance
by giving the lowest delay-guarantee-ratio under various number of type-
1 nodes. For example, the delay-guarantee-ratio given by TO-UMPS de-
creases from 39.6% to 4.9% when the number of type-1 mobile nodes
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increases from 10 to 70. However, under our proposed DGCO-RLPS, the
corresponding delay-guarantee-ratio only decreases from 98.4% to
97.5%.

Since the CPU cycle requirement of a type-3 task is considerable large
compared to the CPU rate of a type-3 mobile node, under any investi-
gated scheme, the computation resource competition increases quickly
with the increasing number of type-3 nodes. Thus, the delay-guarantee-
ratios given by all the investigated schemes decrease explicitly, as
shown in Fig. 6. Particularly, under TO-UMPS, since all tasks are off-
loaded to the MEC server, the delay-guarantee-ratio decreases the fastest,
e.g., the delay-guarantee-ratio given by TO-UMPS decreases from 97.8%
to 67.1% when the number of type-3 nodes increases from 5 to 40.
However, under our proposed DGCO-RLPS, the delay-guarantee-ratio
could still approximate 95% when the number of type-3 nodes reaches
40, as illustrated in Fig. 6.

The simulation results in Figs. 5–6 demonstrate that, under a slightly
heavy number of mobile nodes generated a slightly massive of tasks, our
proposed DGCO-RLPS scheme could still provide a high delay-guarantee-
ratio (e.g., �95%) to computation tasks, which demonstrates the effec-
tiveness of DGCO-RLPS for delay guarantee adapting to mobile node
numbers.



Table 3
Overhead analysis.

Task request rate ρ (fF ¼ 7 GHz) Delay-guarantee-ratio (%) Overhead(bytes/slot)

Dedicated Piggyback Dedicated Piggyback

period ¼ 1 slot period ¼ 2 slots period ¼ 4 slots period ¼ 1 slot period ¼ 2 slots period ¼ 4 slots

0.4 98.82 98.81 95.21 97.34 13.3 7 3.5 49.89
0.5 99.29 96.94 91.18 83.5 13.3 7 3.5 60.2
0.6 98.75 94.7 89.52 77.35 13.3 7 3.5 65.79
0.7 97.21 93.15 86.4 74.95 13.3 7 3.5 70.88
0.8 96.76 91.97 83.62 74.07 13.3 7 3.5 82.32
0.9 96.29 91.18 82.74 71.81 13.3 7 3.5 96.87
1.0 95.52 89.49 79.89 73.8 13.3 7 3.5 102.08
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6.3. Impact of computing capability

In this scenario, the delay-guarantee-ratio under various computing
capabilities of the MEC server is investigated. We set ρ ¼ (1.0, 1.0, 1.0)
tasks/ms/node as the task request rate vector. Then we change the
computing capability of the MEC server to evaluate how it affects the
delay performance of the investigated schemes. Under NO, no task is
offloaded to the MEC server for computing, so the delay-guarantee-ratio
given by the NO scheme does not vary with the CPU rates of the MEC
server, as shown in Fig. 7.

The larger the computing capability, the shorter the delay a task
would experience in the MEC server. Hence the number of tasks off-
loaded to the MEC server would increase with the increasing MEC server
computing capability under the delay-aware mobile-edge cooperative
schemes, e.g., DGCO-UMPS, JSORT and DGCO-RLPS, as shown in Fig. 8,
resulting in the decrease of the queuing delays in both local and off-
loading computing. Therefore, the delay-guarantee-ratios given by
DGCO-UMPS, JSORT and DGCO-RLPS increase with the increasing MEC
server computing capability. It is noted that, under UMPS, some types of
delay-sensitive tasks might be starved, so the average delay-guarantee-
ratio given by both TO-UMPS and DGCO-UMPS may not increase with
the increasing MEC server computing capability when the CPU rate is
smaller than 11 GHz.

It is observed that our proposed scheme outperforms state-of-the-art
in terms of delay-guarantee-ratio under various MEC server computing
capabilities. The main reason is that the proposed DGCO-RLPS scheme
can dynamically switch between local and MEC server offloading based
on dependency between offloading decisions and scheduling priorities in
the MEC server. More interestingly, the proposed method can fully
guarantee the delay-guarantee-ratio when the CPU rate of theMEC server
goes beyond 13 GHz based on the current simulation parameter settings.
6.4. Message overhead

As shown in Fig. 2, the behavior of broadcasting the MEC server
computation delay from the MEC server to mobile nodes via the wireless
network consumes communication overhead. Generally, the accurate-
ness of MEC computation delay estimation increases with the increasing
broadcast frequency, and the preciseness of computation offloading de-
cision in mobile node increases with the increasing accuracy of MEC
computation delay estimation. However, the communication overhead
also increases with the broadcast frequency. Therefore, we compare the
overhead and delay-guarantee-ratio of the following two MEC server
computation delay broadcast approaches.

� Dedicated broadcast. There is a dedicated packet (called as delay up-
date packet) carrying the MEC server computation delay.

� Piggyback broadcast. The MEC server computation delay is fed back to
a mobile node along with the computation results of the task off-
loaded from that node.

In the dedicated broadcast approach, it is assumed that the delay
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update packet is broadcasted over the wireless network via User Data-
gram Protocol (UDP) [53], then it consumes 8 bytes of UDP header. It is
assumed that the overhead of each delay value is 2 bytes, then the delay
update packet consumes extra overhead of 2V, where V is the number of
task types. Accordingly, the overhead of a delay update packet is 8 þ 2V
per broadcast period. In the piggyback broadcast approach, the extra
overhead is 2 bytes per task per mobile node. As to dedicated broadcast,
we set the broadcasting interval to 1 slot, 2 slots and 4 slots, and observe
the performance under these intervals. In piggyback broadcast, once a
task is finished, the MEC server computation delay is fed back.

From the results summarized in Table 3, it is observed that the
dedicated broadcast approach with the period of 1 slot yields the highest
delay-guarantee-ratio under various task request rates. Moreover, the
delay-guarantee-ratio decreases with the increasing broadcast interval
under the same traffic condition. The piggyback broadcast approach
gives the lowest delay-guarantee-ratio and consumes the highest over-
head. Because under the piggyback broadcast mechanism, a mobile node
might not catch up with the up-to-date MEC server computation delay if
its task request rate is low. In addition, the overhead would increase
quickly with the increasing task request rate under piggyback broadcast.
Therefore, it is better to adopt dedicated broadcast in DGCO-RLPS.
However, the trade-off between QoS provisioning efficiency and over-
head consumption can be regulated by adjusting the broadcasting in-
terval of the delay update packet.

7. Conclusion

This paper studies a delay-based joint computation offloading and
parallel scheduling to maximize delay-guarantee-ratio for computation
intensive applications in a cooperative MEC system. We have decom-
posed the above problem into two concatenated subproblems, e.g.,
computation offloading and parallel scheduling. Afterward, we solve the
problem of joint computation offloading and parallel scheduling through
the exploitation of (a) the dependency between offloading decisions for
the computation offloading subproblem in mobile nodes and (b) the
scheduling priorities of offloaded tasks for the parallel scheduling sub-
problem in an MEC server. The proposed cooperative offloading and
parallel scheduling scheme, which is DGCO-RLPS, outperforms state-of-
the-arts by providing high delay-guarantee-ratio to computation tasks
even in slightly heavy task load situation while consuming acceptable
communication overhead. Our future work is to derive the lower bound
of delay-guarantee-ratio with a given task model and to extend the pro-
posal to an MEC system with multiple heterogeneous MEC servers with
different computational capabilities.
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