
Complex & Intelligent Systems (2024) 10:8287–8317
https://doi.org/10.1007/s40747-024-01599-6

ORIG INAL ART ICLE

A general supply-inspect cost framework to regulate the
reliability-usability trade-offs for few-shot inference

Fernando Martínez-Plumed1 · Gonzalo Jaimovitch-López1 · Cèsar Ferri1 ·María José Ramírez-Quintana1 ·
José Hernández-Orallo1

Received: 31 July 2022 / Accepted: 27 July 2024 / Published online: 19 August 2024
© The Author(s) 2024

Abstract
Language models and other recent machine learning paradigms blur the distinction between generative and discriminative
tasks, in a continuum that is regulated by the degree of pre- and post-supervision that is required from users, as well as the
tolerated level of error. In few-shot inference, we need to find a trade-off between the number and cost of the solved examples
that have to be supplied, those that have to be inspected (some of them accurate but others needing correction) and those
that are wrong but pass undetected. In this paper, we define a new Supply-Inspect Cost Framework, associated graphical
representations and comprehensive metrics that consider all these elements. To optimise few-shot inference under specific
operating conditions, we introduce novel algorithms that go beyond the concept of rejection rules in both static and dynamic
contexts. We illustrate the effectiveness of all these elements for a transformative domain, data wrangling, for which language
models can have a huge impact if we are able to properly regulate the reliability-usability trade-off, as we do in this paper.

Keywords Few-shot inference · Language models · Evaluation · Reliability · Usability

Introduction

In many machine learning (ML) applications, the degree of
automation is partial by definition and dominated by trade-
offs. Users need to supervise the process at different stages,
mostly through the labelling of training or contextualising
examples, and the inspection of some of the results from the
ML system, to check that the outcomemeets the desired qual-
ity. In many tasks, especially those of generative character or
when predictions are structured, the creation or labelling of
examples is more costly than their inspection. For instance,
Fig. 1 shows a transformation where visually inspecting the

B Fernando Martínez-Plumed
fmartinez@dsic.upv.es

Gonzalo Jaimovitch-López
gonjailo@upv.es

Cèsar Ferri
cferri@dsic.upv.es

María José Ramírez-Quintana
mramirez@dsic.upv.es

José Hernández-Orallo
jorallo@upv.es

1 VRAIN, Universitat Politècnica de València, Valencia, Spain

result is much faster than writing it directly. Many tedious
manipulation tasks are of this kind, such as wrangling with
spreadsheets and other sources of text and data.

In recent times, few-shot learning [1] has been proposed
as a new machine learning paradigm able to learn from only
a few supervised examples, thus alleviating the problem of
having large labelled training sets. Few-shot approaches have
been successfully applied in areas such as fault diagnosis [2]
and image semantic segmentation [3, 4].

Some recent languagemodels (LMs) such as theGPT fam-
ily [5, 6], PanGu-α [7], PaLM [8], BLOOM [9] or Llama [10]
have excelled at few-shot inference, where a task is solved
by supplying a small set of correct examples formatted as a
prompt [11]. The quality of the completion usually depends
on the number of supplied examples ns . For instance, 5-shot
inference is usually better than 2-shot inference, but requires
more effort from the user. Both the cost of supplying and the
cost of inspecting each example are elements of the operat-
ing condition. On top of this, some tasks or users may have
different error tolerances, which is another component of the
operating condition. The latter can be adjusted by the use
of reject options based on a confidence threshold t [12–14].
Some completed examples have sufficient confidence to go
through, but others are rejected to another system. However,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-024-01599-6&domain=pdf
http://orcid.org/0000-0003-2902-6477

8288 Complex & Intelligent Systems (2024) 10:8287–8317

Fig. 1 Example of a name transformation problem. In a few-shot infer-
ence session with a language model (prompt not shown), ns examples
were completely supplied by a human (in blue) and the rest (no) were
completed by the system. From these, ni were inspected, of which nv

were correct and validated (in turquoise) and nc were wrong (in orange)
and corrected (in purple). Finally, the remaining examples nu were not

inspected, of which na were accurate and nw were wrong (in red). The
horizontal solid lines represent the thresholds for the two main choices
to be made: how many examples are supplied (ns), and inspected (ni).
Note that the only truly rejected instances are the ones in orange, crossed
out by the user

if the user inspects some of these examples, and decides to
correct them, they immediately become good examples that
could be used to retrain or tune the model. In the case of
few-shot learning with LMs, they could be used to enlarge
and rerun the prompt with better accuracy and confidence
estimation for new examples. This shows that the traditional
reject option approach is insufficient: to account for this sit-
uation, we need a new framework and algorithms that can
deal interactively in this situation.

We look at the balance between reliability and usability
to determine the optimal number of few-shot examples. This
approach aims to minimise the total cost of providing and
exploring examples, and of accounting for undetected errors.
Unlike active learning [15], our exploration does not rely on
the training algorithm to select examples. Instead, an exter-
nal process takes responsibility for selecting the example size
and identifying the best cardinality ns and threshold t based
on the prevailing operating conditions. This departure from
active learning is crucial because the examples that add the
most value to active learning are the same ones that could
potentially increase the frequency of costly nc cases. Com-
pared to active learning (where more examples are used for
training the model) and threshold choice for reject options
(where this is decided after the model has been learned), here
we need to playwith the prompt (and the number of instances
used in the few-shot process, interactively) to reach an opti-
mal trade-off.

To show the effectiveness of our approach, we choose
an application where both reliability and usability are criti-
cal: data wrangling transformations [16]. Also, the degree of
automation is partial by definition and dominated by trade-
offs [17]. The user has to give at least one instance of the

transformation so that most of the rest are completed by the
system, but could give more instances if that compensates
for fewer examples the user has to inspect and possibly cor-
rect, and of course fewer errors. We apply our algorithms to
123 tasks from 7 different domains, for which we also esti-
mate reasonable operating conditions from a human study.
This represents the first benchmark with annotated human
reliability-usability conditions for the evaluation of LMs.

The main contributions of this paper are:

1. We formalise a novel methodology for few-shot inference
based on the trade-off between reliability and usability
through a new cost framework integrating all the relevant
elements in few-shot learning, including the number of
examples provided, examples inspected, and errors not
detected.

2. We analyse how the number of examples provided to the
model affects not only the accuracy of the outputs but also
the model confidence, represented as logprobs.

3. We devise an original graphical representation called
‘supply-inspect cost surfaces’, as themethod for selecting
the optimal thresholds (number of supplied examples and
the degree for inspection) given the operating condition.
We show that the volume under this surface, when the
axes conform with the expected operating distribution, is
equal to the expected cost.

4. We establish several innovative static and dynamic algo-
rithms to reduce the expected cost given the operating
condition. Their performance is presented both experi-
mentally and theoretically, showing that these algorithms
approximate the optimal trade-off between reliability and
usability.

123

Complex & Intelligent Systems (2024) 10:8287–8317 8289

5. We release a benchmark containing a substantial number
of 123 tasks across 7 domains. This benchmark is anno-
tated with information on the plausible range of operating
conditions derived from real questionnaires completed by
human users.

The paper is structured as follows. Section Supply-in-
spect cost framework introduces the framework to formalise
diverse costs for few-shot learners. In Sect. Threshold choice
method, we propose different threshold methods that can
be employed for the addressed problem. Section Supply-in-
spect surfaces and expected cost includes some theoretical
results about supply-inspect surfaces and the expected cost.
The experimental setting is described in Sect. Experimental
design, while the results of the experiments are discussed
in Sect. Results. Lastly, we include a section for related
work and a final section with the closing remarks, includ-
ing a discussion about the wide applicability of this work, its
limitations and questions for future work.

Supply-inspect cost Framework

Consider a problem space D for which a human user wants
to solve a finite set D ⊂ D of n = |D| instances x ∈ D as
accurately and efficiently as possible. The problem may be
discriminative or generative.With the help of an AImodelM
that can do few-shot ‘learning’, the user may choose a small
set of examples Ds ⊂ D,withns = |Ds |, add a correct output
for each of them, and supply the labelled dataset to themodel.
M is now contextualised with Ds (e.g., via a prompt) and
outputs the answers for Do = D\Ds . If the user is concerned
by the errors of the model, a possible solution could be to
increase ns , since the results for Do are expected to be better
as we provide more information to M .

However, reaching high reliability with this schema for
some few-shot inference systems such as LMs may be infea-
sible, even with large Ds . If the error tolerance is low, the
user may introduce a reject option [14, 18, 19]. In the most
common incarnation of this schema, if the model outputs a
confidence value p̂(x), e.g., the probability of being correct
for each instance x , we can define a reject rule: if p̂(x) ≤ tr ,
with tr being the reject threshold, then the user will not use
the output of the model. But the rejected examples can be
manually inspected by the user and solve them herself. This
is what Fig. 2 shows for a dates processing problem. Looking
at the left plot (1-shot), for different reject thresholds (shown
on the x-axis) and n = 32 examples, the proportion of accu-
rate, wrong and rejected examples evolves from about 85%
accurate vs 12% wrong for tr = 0 (no rejection) and 97%
rejected for tr = 1 (being the supplied examples the remain-
ing 3%). The hot spot is found somewhere between tr = 0.4
and tr = 0.6, with very few errors but the system automat-

ing more than 80% of the examples. Of course, this may be
considered an insufficient automation with an unacceptable
number of errors, and the alternative is to supply the model
with further labelled examples. This is what we see in Fig. 2,
where ns is in (1..4). In this particular example, we see that
the improvement saturates for ns = 3 and a very good spot
is found in that plot for tr = 0.7, giving about 90% accurate
results with the rest being rejected.

This traditional view of rejection neglects an important
aspect: many of the initially rejected examples were actually
correct! Rather than rejecting the output of the model, the
user has the option of inspecting these unreliable examples.
There are two possible outcomes to the inspection: some-
times the user has to correct the example, but in many other
cases the user only needs to validate it. The latter scenario
generally requires much less effort than the former. In Fig. 1,
we can observe this distinction through the examples marked
in orange, which represent incorrect instances that required
correction, and those marked in turquoise, which were ver-
ified as correct and could then be confidently used by the
model.

This set of inspected examples we now denote by Di ⊂
Do. The big insight and refinement from the concept of rejec-
tion is that we can split Di into two different sets, Dv , the
examples correctly labelled by M and hence validated by the
user, and Dc, the examples incorrectly labelled by M , which
must also be corrected (these are the truly rejected ones).
Finally, the examples that go uninspected (Du) can also be
divided into accurate Da andwrong Dw. Following the previ-
ous notation, we have that n• = |D•| for • ∈ {a, c, u, v, w},
where n = ns + ni + nu , ni = nv + nc and nu = na + nw,
which is what we see in Fig. 1. We usually want ns very low
and ni low for usability, with nw very low for reliability.

Now let us consider several cost functions f• for each of
the previous sets D• as a function of the number of elements
n•. The global cost to minimise is:

Q
def= fs(ns) + fv(nv) + fc(nc) + fa(na) + fw(nw)

It is customary to define utility functions that depend linearly
on the number of examples. Under this assumption, we have:

Proposition 1 Assuming all functions f• are linear in n• of
the form f•(n•) = c• · n•, we have that:

Q = cs · (ns + nc) + ci · ni + cw · nw (1)

where cs is the unitary cost for the user to solve an example,
ci is the unitary cost for the user to inspect an example and
cw is the unitary cost of an unspotted wrong example.

The proofs for this and all the other theoretical results in the
paper can be found in the appendix.

123

8290 Complex & Intelligent Systems (2024) 10:8287–8317

1−shot 2−shot 3−shot 4−shot

0.5 1 0 0.5 1 0 0.5 1 0 0.5 10

0.25

0.5

0.75

1

threshold

Pe
rc

en
ta

ge

r
w
a
s

0

Fig. 2 Reject option behaviour averaged for 10 dates formatting prob-
lems with n = 32 instances each. The curves show average proportion
of examples (supplied ns

n in blue, accurate na
n in green, wrong nw

n in

red and rejected nr
n in grey) as we increase the reject threshold tr in the

x-axis. The four plots show the evolution for different values of ns in
(1..4)

Proposition 1 establishes that, in principle, we only need
to know three cost constants: cs , ci and cw, which entail only
two degrees of freedom, as a multiplicative factor over all
costs does not change a selection. This means that we can
use ratios instead, and we define the operating condition as:

c def=
〈
cs
cw

,
ci
cw

〉
(2)

Similarly, any solution to this problemonly needs two thresh-
olds. We can first determine ns , i.e., how many examples the
user supplies, as the quality of the inferences will depend on
it (and hence all the other n•). For this, we will seek for a
good threshold ts statically and dynamically in the following
sections. In a few-shot scenario, the ns that derives from ts
is expected to be a small number. Once Ds is given to the
model, we get the confidence for all the other examples Do.
From here, a static method should determine the inspection
threshold ti (a confidence below which we decide to inspect,
replacing the threshold tr in the traditional reject option sce-
nario). This will determine the numbers na , nc, nv and nw.
We can integrate both thresholds (the two horizontal lines in
Fig. 1) into a vector t:

t def= 〈ts, ti 〉 (3)

The supply threshold ts ∈ [0, 1] determines

ns
def= να,n(ts)

def= n
αts − 1

α − 1
(4)

with α > 1 being a large constant so that the scale focuses
on small sets Ds . The inspection threshold ti ∈ [0, 1] sets

ni
def= ni (t)

def= |{x ∈ Do : p̂(x) ≤ ti }| (5)

where p̂(x) is the model’s confidence for each instance x .

We can now rewrite Eq. 1 as a function of vectors t and c.
Since the operating condition c in Eq. 2 only has two degrees
of freedom, the cost just differs by a multiplicative factor cw:

Proposition 2 Q can be expressed on the thresholds t and
only the two components of c:

Q(t; c) = cs · (να,n(ts) + nc(t)) + ci · ni (t) + nw(t)

From now on, we will simply consider cw = 1 being the cost
unit, so that cs and ci are the two components in c, which we
will call supply cost (ratio) and inspect cost (ratio).

Given t and c, in order to calculate Q from a test set, we
proceed as follows. On the test set of n examples, we denote
by p(x) (with p(x) ∈ {0, 1} for all x) whether the model is
right (1) or wrong (0) with an example x . We have

nc =
∑
x∈Di

(1 − p(x))

and

nw =
∑
x∈Du

(1 − p(x))

This completes all the n• for calculating Q.
Algorithm 1 implements the definition of Q as per Propo-

sitions 1 and 2. Note that, this algorithm performs a sample

in line 1 (the notation
ns∼ means a sample of size ns), so the

exact actual cost when given fixed threshold and cost vectors
t and cwould be obtained by considering all possible combi-
natorial samples of ns elements from n without replacement(n
ns

)
. But as the order of examples for LMs matters [20], the

exact Q would be given by considering all permutations. In
practice, making the samplemultiple times and averaging the
results can give a good approximation for Q, which is what
the parameter m means (number of samples).

123

Complex & Intelligent Systems (2024) 10:8287–8317 8291

Algorithm 1 Q(M; t; c;α; D; p;m)

n ← |D| ; ns = να,n(ts)
q̇ ← 0
repeat

q̇ ← q̇ + cs · ns 	 Supplied

Ds
ns∼ D without replacement

Do ← D\Ds 	 Prompt M with Ds for Do

no ← |Do|
p̂(x) from M ∀x ∈ Do 	 Model’s confidence

Order all x ∈ Do by increasing p̂(x)
Di ← {x ∈ Do : p̂(x) ≤ ti }

ni ← |Di |
	 Using p(x) ∈ {0, 1} (M wrong or right)

q̇ ← q̇ + cs · ∑
x∈Do[1:ni](1 − p(x)) 	 Corrected

q̇ ← q̇ + ci · ni 	 Inspected

q̇ ← q̇ + ∑
x∈Do[(ni+1):no](1 − p(x)) 	 Wrong

until m times

q ← q̇
m

return q

Threshold choice methods

A threshold choice method T takes a cost vector c and pos-
sibly other parameters and returns t for a given model M .

Optimal method To

If we have access to the true p, we can easily define the
optimal threshold choice method:

T o(c) def= t∗ def= argmin
t

Q(t; c) (6)

When we use this method to derive the threshold, we have
Q(t∗; c), represented more shortly as Qo(c). The optimal
threshold can be calculated with Algorithm 2 which is an
exhaustive grid search1 looking for the optimal threshold t∗,
as defined in the T o threshold method. It is implemented
by iterating on the number of supplied examples s ∈ [1..n]
(first loop starting at line 3) and threshold θ ∈ [0..1] using a
sufficient resolution ε (inner loop starting at line 5). ε must
be small enough to find any threshold θ that could appear
between two consecutive p̂(x).

Fixedmethod T�

In practice,we do not have access to the true p, so anymethod
will usually give suboptimal resultswhen exploring the trade-
offs. For instance, the higher ts the higher the part of the cost
that comes from ns . However, this will usually entail better
predictions and confidence, reducing the number of examples
ni that have to be inspected and the final number of wrong

1 It could also be used any other optimization algorithm for finding the
minimum of a function, such as gradient descent.

Algorithm 2 T o(M, c;α; D; p,m)

qbest ← ∞ ; n ← |D|
for s ∈ 1 to n do

ts ← ν−1
α,n(s)

for θ ∈ 0 to 1 with step ε do
t ← 〈ts , θ〉
q ← Q(M; t; c; α; D; p;m)

if q < qbest then
qbest ← q ; ns ← s ; ti ← θ

end
end

end
ts ← ν−1

α,n(ns)
return ts , ti

examples nw. So it seems the first choice must be ts . We
can assume a constant ns and derive ts accordingly, undoing
ν in Eq. 4. We could do this for both ts and ti , choosing
them in a fixed way that is independent of c, such as T φ

making ts = ν−1
α,n(5) and ti = 0.5. This cost, denoted by Qφ ,

would be obtained if the user always supplies 5 examples and
inspects the remaining exampleswhose estimated confidence
is lower than 0.5. The fixedmethod completely disregards the
costs.

Static method T�

We call the first family of methods using the costs static, as
they derive ts just once and then ti from it. When the algo-
rithm decides ts it still does not have access to the estimated
probabilities. This family of methods makes the assumption
that for ns = 0 there is a baseline proportion of exam-
ples that will be right and this proportion usually increases
as ns grows. We assume the proportion of corrected over
inspected is nc

ni
= 1
bc

(1 − ns
n) and wrong over uninspected is

nw

nu
= 1
bw

(1 − ns
n). With this, from Proposition 1 we have:

g(ns, ni)
def= cs ·

(
ns + ni

n − ns
bcn

)
+ ci · ni

+(n − ni − ns)
n − ns
bwn

We are given cs , ci and n, so basically we have to find the
pair 〈ns, ni 〉 such that the above expression is minimised,
with ns + ni ≤ n, ns > 0, ni ≥ 0. This can be done with
linear programming or any other solver, discard ni and then
keep ns for the next step (and ts comes from ν−1 in Eq. 4).

Once ns has been decided, we choose ns examples ran-
domly from D that are labelled (by a human H) and supplied
(Ds) to the model M , getting the results and probabilities for
all other examples Do. We calculate ni using Eq. 5. If we
take p̂(x) as good estimates or at least perfectly calibrated
then

123

8292 Complex & Intelligent Systems (2024) 10:8287–8317

nc ≈
∑
x∈Di

(1 − p̂(x))

and

nw ≈
∑
x∈Du

(1 − p̂(x))

Using all this in Proposition 2, we just need to minimise:

cs ·
∑
x∈Di

(1 − p̂(x)) + ci · |{x ∈ Do : p̂(x) ≤ ti }|

+
∑
x∈Du

(1 − p̂(x))

This is what Algorithm 3 calculates. It first determines the
values ns and ni that minimise function g but only ns is kept
(line 2) to be used for selecting the sample Ds (line 4) to be
labeled by the user (line 5). This supplied cost is calculated
in line 6. The model M is prompted with Ds (line 7). Then,
the model’s confidence for Do (the remaining examples in
D) is obtained (line 9) and used for ordering the examples
in Do in increasing order of predicted confidence (line 10).
Finally, the for loop (lines 12–20) performs an exhaustive
search of the best inspection threshold ti (line 18) for which
the overall cost (lines 13 to 15) is minimum. Note that, in
Algorithm 3 we cannot really consider that the method looks
for all subsets Ds of size ns in D, as trying each of them
in practice will incur a cost from the human. Consequently,
the static Algorithm 3 only has one run. In order to evaluate
this and other methods (e.g., the dynamic one), we did rep-
etitions outside the algorithm. Additionally, in Algorithm 3
the calculations using p̂ consider the sums over decreasing
index ranges, i.e., x ∈ Dp[1 : 0] and Do[(no + 1 : no)] to be
empty, and assume no ties (e.g., by adding a small random
number to all p̂(x)).

Dynamic method Tı

The static algorithm assumes that the examples to be sup-
plied to the model must be sampled at the beginning, and
then use the model for the rest of the examples. Instead, we
could take an incremental approach, where we supply very
few examples Ds as start (let us say |Ds | = s0), and infer
the outputs for all the rest (Do). While this may be very con-
servative in terms of cs and may give poor results at this
point, we can already use the model to rank the examples
in Do and choose just very few Di for inspection (let us
say |Di | = i⊕). The insightful observation comes when we
realise that some of themwill be correct (and hence validated,
Dv) and some of themwill be incorrect (and hence corrected,
Dc), but all of them can be reused for another iteration with
the model with Ds ∪ Dv ∪ Dc examples. Interestingly, while

Algorithm 3 T σ (H , M, c;α; D)

n = |D|
〈ns , ·〉 ← min〈ns ,ni 〉 g(ns , ni)
ts ← ν−1

α,n(ns)

Ds
ns∼ D without replacement

p(x) from H ∀x ∈ Ds 	 Human labels Ds

qs ← cs · ns 	 Supplied

Do ← D\Ds 	 Prompt M with Ds for Do

no ← |Do|
p̂(x) from M ∀x ∈ Do 	 Model’s confidence

Order all x ∈ Do by increasing p̂(x)
qbest = ∞
for j ∈ 0 to no do

q ← qs + cs
∑

x∈Do[1: j](1 − p̂(x)) 	 Exp. C’cted

q ← q + ci · j 	 Exp. Inspected

q ← q + ∑
x∈Do[(j+1):no](1 − p̂(x)) 	 Exp. Wrong

if q < qbest then
qbest ← q
ti ← (p̂(Do[j]) + p̂(Do[j + 1]))/2

end
end
return ts , ti

the new ns includes all these examples, the elements in Dc

have been inspected and supplied (with cost ci + cs) but the
elements in Dv have only been validated (with cost ci). This
may represent an important saving, as the human can supply
ns examples to the model with lower cost than the original
cs · ns .

This observation leads to Algorithm 4. The algorithm
takes the usual parameters but also s0, i⊕, s� (maximum
number of iterations) and rand (true if the examples to be
inspected are selected randomly, and false if it is done fol-
lowing p̂), and it returns the thresholds ts and ti but it also
returns two extra values: nv and ni . The value nv represents
the examples that were validated by the human and hence
did not incur the cs cost. The value ni are the examples that
were inspected before they were moved to Ds . These have to
be used when calculating the cost of the dynamic algorithm:
we have to add the cost of ni and remove the cost of nv when
plugging Algorithms 4 and 1 together:

〈ts, ti , nv, ni 〉
= T δ(H ; M; c;α; D; s0; i⊕; s�; rand)

Qδ(M;α; D; p) = Q(M; 〈ts, ti 〉; c;α; D; p;m)

−cs · nv + ci · ni
Regarding the parameters s0 and i⊕, the smaller the better,
ideally s0 = i⊕ = 1.

If there is no tolerance for errors, any algorithm should
inspect all examples. In this case, we can prove the following:

Proposition 3 When no wrong results are permitted, the
dynamic algorithm T δ with s0 = i⊕ = 1 and s� = |D|
is optimal up to ci · (ns − 1) cost units provided the algo-

123

Complex & Intelligent Systems (2024) 10:8287–8317 8293

rithm always orders examples by decreasing probability of
being correct (more likely correct first).

Note that Proposition 3 dictates that in this extreme case
where wrong examples are not allowed it could be more ben-
eficial to choose the next i⊕ by decreasing p̂(x) rather than
increasing p̂(x) as Algorithm 4 does when rand is false.
However, this would always increase the few-shot examples
for the model with easy examples first, which would be less
informative than using other more difficult (and corrected)
examples. As using an increasing or decreasing order for this
are extreme, we will finally use a random choice.

Algorithm 4 T δ(H , M, c;α; D; s0; i⊕; s∗; rand)

default: s∗⊥; randtrue
ns ← s0; qs ← cs · ns 	 Supplied

Ds
ns∼ D without replacement

p(x) from H ∀x ∈ Ds 	 Human labels Ds
qold ← qbest ← ∞ ; nv ← ni ← 0; out ← false
repeat

Do ← D \ Ds 	 Prompt M with Ds for Do
p̂(x) from M ∀x ∈ Do 	 Model’s confidence
Order all x ∈ Do by increasing p̂(x)

if s� �= ⊥ then
out ← (s� ≤ |Ds |)

else
out ← ((qbest �= ∞) ∧ (qbest ≥ qold))

end
if ¬out then

	 H inspects i⊕ examples
if rand then

Di
i⊕∼ Do without replacement

else
Di ← Do[1..i⊕]

end
Do ← Do \ Di ; no ← |Do|
ni ← ni + |Di | ; qi ← ci · ni 	 Inspected
p(x) from H ∀x ∈ Di 	 H inspects Di
Dv ← {x ∈ Di : p(x) = 1}
nv ← nv + |Dv | 	 Validated
Dc ← {x ∈ Di : p(x) = 0}
qs ← qs + cs · |Dc | 	 Corrected
Ds ← Ds ∪ Dv ∪ Dc

end
	 Best estimate of the remaining cost:
qold ← qbest ; qbest ← ∞
for j ∈ 0 to no do

q ← cs
∑

x∈Do[1: j](1 − p̂(x)) 	 E. Corrected

q ← q + ci · j 	 Exp. Inspected
q ← q + ∑

x∈Do[(j+1):no](1 − p̂(x)) 	 E. Wr

if q < qbest then
qbest ← q
ti ← (p̂(Do[j]) + p̂(Do[j + 1]))/2

end
end
qbest ← qbest + qs + qi

until out

ns ← |Ds | ; ts ← ν−1
α,n (ns)

return ts , ti , nv , ni 	 nv discounts and ni adds

Supply-inspect surfaces and expected cost

For any threshold choicemethodμ, its supply-inspect surface
is simply Qμ(c) on the z-axis, where the other two axes
are just the two components of the operating condition c.
Originally, the two components of c are ratios (as defined in
Eq. 2), and they go from0 to∞, butmany valueswill be close
to 0, as it is usual that cs � cw and ci � cw. To make the
space finite and better accounting for the interesting regions
of the space,we introduce twonormalisation functions hs and
hi , such that the x-axis is given by hs(cs) (the supply cost
coordinate) and the y-axis is given by hi (ci) (the inspect cost

coordinate). In what follows, we consider hs(a)
def= hi (a)

def=
1−β−a , with β > 1.With this we also have that the two axes
are in [0, 1[and the volume and the surface will be finite.2

Coordinates can be mapped to costs simply by h−1
s (x) =

− logβ(1 − x) = cs and h−1
i (y) = − logβ(1 − y) = ci .

Fig. 3 shows a ‘supply-inspect’ surface using three tech-
niques: the optimal, static and dynamic methods. The x-axis,
ranging from 0 to 1, represents the relative cost of supplying
an example compared to an incorrect result, with 0 repre-
senting a very low supplying cost. Similarly, the y-axis, also
ranging from 0 to 1, reflects the relative inspection costs, with
lower values indicating low inspection costs.

This visualisation helps us to understand the cost dynam-
ics at play under different operating conditions, highlighting
trade-offs and guiding the optimisation of models for prac-
tical applications. Basically, we can better understand the
expectation on varying c beyond just a single point. If we
assume a distribution ω on operating conditions and c ∼ ω,
we have the expected costEc∼ω[Q(c)]. The following holds:
Proposition 4 Consider H the bivariate distribution that
results on applying hs and hi to the two dimensions of ω. If
H is a bivariate uniform distribution, then the volume under
the supply-inspect surface is the expected cost.

Corollary 1 The volume in the supply-inspect space under
hs(a) = hi (a) = 1−e−a is equivalent to a weighted integral
over the original space assuming an exponential distribution
with λ = 1.

The above corollary suggests that our normalisation of
the space is actually assuming an exponential distribution
on the costs with parameter λ = 1. Other parameters could
be explored or even other distributions in the exponential
family, such as the gamma distribution, but ours serves well
as a standard to represent the surfaces in a bounded space
[0, 1[.

As usual in other Pareto comparisons (e.g., ROC analysis
[21, 22], or objective optimisation problems [23]), when two

2 In what follows, the integrals will go from 0 to 1, but we have to
consider the volumes are open on 1.

123

8294 Complex & Intelligent Systems (2024) 10:8287–8317

Fig. 3 Illustrative Supply-Inspect Surface (different views) using the T o (red), T σ (blue) and T δ (green) for the task addPunctuation from the
dates domain. See Tables 2 and 3 in the appendix for further details

surfaces cross, both have regions for which one is better than
the other. One surface can only be safely discarded below the
convex hull of some other surfaces. The volume (or expected
loss) only seems an indication of how good a method is in
expectation.

So far,we have considered that humans are perfect, but this
is usually irrealistic, even if we take them as ground truth.
In practice, we need to estimate es and ei to account for
the proportion of supplied examples and inspected examples
respectively a human makes wrong. While this may suggest
that we need to redo all our framework because of this, the
following proposition and corollary show that we do not,
provided we readjust the cost estimations.

Proposition 5 Consider the sameconditions asProposition1
but we now have a proportion of human error es and ei for
the supplied examples and inspected examples, respectively.
The new cost equation becomes:

Q = (cs + cw · es) · (ns + nc) + (ci + cw · ei) · ni + cw · nw

Corollary 2 We can express the cost when human errors exist
as a readjustment of the normalisation of costs:

Q = c′
s · (ns + nc) + c′

i · ni + nw

where c′
s = cs

cw
+ es and c′

i = ci
cw

+ ei .

This is a very elegant adjustment, as we only need to esti-
mate the error rates and include them in the calculation of
the operating condition. Everything else remains the same.

Experimental design

As discussed in the introduction, many routine tasks involve
transforming inputs into outputs, such as converting some
pieces of information into some standardised form. These
tasks become interesting for (semi-)automation only if
humans have to supply very few examples, and the errors
in the uninspected results are unlikely. Consequently, these
tasks are perfectly suited for few-shot learning under the
supply-inspect cost framework introduced in this paper.
Accordingly, we will use a repository of tasks built over the
most comprehensive benchmark for data-wrangling trans-
formation problems to date, the Data Wrangling Dataset
Repository3 [24, 25], which we have extended considerably4

(see [26] for further information).Overall, the repository con-
tains 123 different tasks divided into 7 different domains
(dates, emails, freetext, names, phones, times and units). For
every task we have 32 annotated examples where an input
string is converted into a corrected or transformed version.

3 http://dmip.webs.upv.es/datawrangling/
4 https://github.com/google/BIG-bench/tree/main/bigbench/
benchmark_tasks/mult_data_wrangling

123

http://dmip.webs.upv.es/datawrangling/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/mult_data_wrangling
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/mult_data_wrangling

Complex & Intelligent Systems (2024) 10:8287–8317 8295

The appendix contains full details about the tasks (Table 2)
and some illustrative examples (Table 3).

The experimental goals are:

1. Explore whether these problems are solvable with LMs
in a few-shot fashion and determine whether there is a
saturation point in the number of supplied examples.

2. Study whether the number of examples provided to the
model affects not only the accuracy of the outputs but
also their confidence (p̂), so there is a trade-off between
ns vs nc and nw.

3. Determine how close the static and dynamic algorithms
can get to the optimal cost, in comparison with the fixed
method.

4. Derive and use reasonable cost distributions from the
human study, and analyse how results differ from the uni-
form case.

For the experiments, we used four GPT-3 versions: Ada,
Babbage, Curie and DaVinci with approximately 350M,
1.3B, 6.7B, and 175B parameters, respectively. Following
the recommendations in the OpenAI API5 we used prompts
following an input–output style, where the string “Input:"
is used to indicate the start of the input, and the string
“Output:" is used to indicate the start of the output. The
line break \n separates the input from the output of an exam-
ple, as well as the examples in the prompt. The instances
have one (one-shot) or more (few-shot) given input–output
pairs of the same problem and domain, and one single input
ending the prompt. The model has have to provide the output
by continuing the prompt. These are two one-shot examples
(from different domains: dates and times):
Input: ‘290386’\nOutput: ‘29-03-86’\n\nInput: ‘250374’\nOutput:

Input: ‘980 ms’\nOutput: ‘0.98 s’\n\nInput: ‘1080 ms’\nOutput:

We obtain the confidence p̂ that the model gives for the
output as follows. If themodel outputs the sequence of tokens
a1, a2, ..., we trim the part that corresponds to the solution
template. For these tokens we simply calculate the sum of
the logprobs (or logarithm of probabilities that the model
assigns to its generated outputs, which offers a measure of
the model’s confidence in its predictions) of all items and
then convert this sum into the probability p̂.

As we cannot really do repetitions without incurring real
extra cost to the user, we calculate Q by performing only
one sample of the ns examples from D (ns determined by
each thresholdmethod), and a lightweight implementation of
T o (see Algorithm 5 in the appendix). This ensures that our
evaluation reflects practical constraints while still generating
meaningful, actionable insights.

With the intention of obtaining optimal results, we carried
out experiments with othermethods using specific configura-

5 https://openai.com/blog/openai-api/

Table 1 Median values obtained from the questionnaires

Domain τs τi χ/τ χw ĉs ĉi

Dates 6.637 1.892 14 4 0.006 0.002

Emails 5.381 2.635 15 2 0.015 0.004

Freetext 3.520 3.102 15 3 0.006 0.005

Names 6.270 2.431 12 1 0.012 0.006

Phones 9.850 5.463 15 3 0.013 0.007

Times 9.254 3.892 15 5 0.006 0.003

Units 2.640 2.120 15 5 0.002 0.001

The two last columns show the operating conditions per domain. Mean
and SD in Table 4 in the appendix

tions. For the T φ method we used ts = ν−1
α,n(5) and ti = 0.5,

while for T σ we used bc = 2 and bw = 3. For T δ the method
was run with s0 = i⊕ = 1 and a fixed number of interac-
tions (s� = 10). While we experimented with several other
parameter settings and variants for T φ , T σ and T δ , the results
obtained were either similar or inferior to those configura-
tions. We therefore concluded that the chosen configuration
gave the best performance. Also, given the combinatorial
nature that would be required to evaluate all possible subsets
Ds , our T o approach serves as an upper bound estimate— an
estimate that closely reflects an ideal baseline. The sensitivity
of these parameters plays a crucial role in the outcome.

In order to estimate reasonable operating conditions, we
conducted a questionnaire on 31 human subjects where we
asked four questions for each of the seven domains. The
first two questions measured the actual time for solving an
instance (this time τs being a proxy for cs) and the actual
time for verifying an instance (this time τi being a proxy for
ci), averaged over five instances per question.

This was followed by a third subjective question asking
the cost unit per time unit of a person (χ/τ), so that times
could be converted into costs, and a fourth subjective question
that asked about the cost of each error χw directly. We just
derived χs = τs

χ
τ
and χi = τi

χ
τ
. Finally, we divided both by

χw to have the normalised costs in c. That is, the estimate of
the operating condition ĉ is given by ĉs = χs

χw
and ĉi = χi

χw
.

The results are shown in Table 1.
Finally, we also considered that humans may have errors,

as we discussed around Proposition 5. In our questionnaires,
humans were just given one example to infer the solution for
all the other examples, so the error percentages we obtained
are an overestimation of what trained humans would do for
these domains. Nevertheless, the adjusted costs as per corol-
lary 2 can be found in the appendix, and the recalculation
of the expected costs for all methods. Even in these extreme
conditions of human errors, the dynamic method is robust.

123

8296 Complex & Intelligent Systems (2024) 10:8287–8317

Fig. 4 Mean accuracy per
domain for increasing values of
ns . Detailed results in Table 6 in
the appendix regarding the
accuracy per task for increasing
values of ns

namesnamesn
timesm

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
ns

A
cc

ur
ac

y
Results

We follow the experimental goals sequentially.6 In address-
ing goal (1), our main objectives were to investigate the
feasibility of using LMs, to solve the problems illustrated
by the Data Wrangling dataset. We also wanted to determine
the exact saturation point for few-shot learning. Our analy-
sis revealed interesting dynamics, as shown in Fig. 4. This
plot illustrates the fluctuation of the accuracy achieved by the
models, with the number of shots ranging from zero to ten
across all the established domains. We can see an immedi-
ate, sharp increase in accuracy from zero shots to a one-shot
scenario. This period of rapid growth then slows down into
a more moderate and gradual increase until we reach around
the 8 or 9-shot mark. After this point, the growth stabilises,
suggesting the onset of a saturation point. From this data,
we can confidently conduct our experiments with ten-shot at
most for GPT-3, regardless of whether ns is higher.

For goal (2), we focus on the model’s confidence, denoted
by p̂, and its evolution as the number of examples is adjusted.
Similar to our findings from goal (1), we observe a stabilisa-
tion around the ninth example, as shown in Fig. 5. In Fig. 6,
we illustrate the trade-off between the number of exam-
ples we provide (ns), the correctly predicted examples (na),
and the incorrectly predicted examples (nw). What we are
essentially visualising here is how the ratio of correctly and
incorrectly predicted examples increases and decreases as
we steadily increase the number of examples provided (ns).
These fluctuations occur over different thresholds, which are
set according to themodel’s confidence. It is important to note
that within this particular example setting, the proportion of
rejected examples, or nr , would be the difference between
1 and the combined sum of the hit (accurate examples) and
miss (inaccurate examples) ratios.

In pursuing goal (3), we use a supply-inspect framework
in which the operational conditions of each domain follow

6 In compliance with the recommendations of the Science paper about
reporting of evaluation results in AI [27], all the code, human ques-
tionnaire data, and results at the instance level can be found in https://
github.com/nandomp/Trade-OffsFew-Shot.git.

a uniform distribution, denoted here as H as per Proposi-
tion 4. The volumes are calculated using a trapezoidalmethod
over a grid layout. Figure 7 positions and compares the aver-
age expected cost for each domain. The cost distributions
have been determined using data from human-led responses
(opaque bars) and with uniform H (transparent bars). This
comparison sets the benchmark at an optimal level (T o) and
measures the performance of static (T σ), dynamic (T δ) and
fixed (T φ) methods against this ideal standard. The transpar-
ent bars in this figure show how close both the static (T σ)

and dynamic (T δ) algorithms are to the optimal cost for each
domain. From our data, we see that T φ outperforms T σ in
five of the total domains expressed, but T δ remains superior
to both.

To create a more realistic distribution of operating condi-
tions, we include the results of cs and ci from the human-
driven questionnaires, in line with our goal (4). Rather than
simply averaging these operating conditions,we analyse each
human response as a unique operating condition, expressed
as 〈cs, ci 〉. Each corresponding result of Q is calculated indi-
vidually before being averaged together. Figure 7 (opaque
bars) shows these results. We see a decrease in the over-
all magnitudes as the values become skewed towards lower
ratios. A visual representation of this skew can be seen in
Table 1. In six of the seven domains, T φ lags behind, with the
dynamic T δ algorithm outperforming in all seven domains.
In particular, T δ comes very close to the optimal result in
many cases. It should be emphasised that these data do not
suggest that T δ consistently outperforms the rest in all oper-
ating conditions. In fact, when compared to T φ , which is
optimal for a single operating condition, it is impossible to
achieve complete dominance with T δ . In general, surfaces
cross as we saw in Fig. 3.

For a more detailed breakdown of our findings and results
by domain, problem and methodology, we refer readers to
Table 7 in our technical appendix.

123

https://github.com/nandomp/Trade-OffsFew-Shot.git
https://github.com/nandomp/Trade-OffsFew-Shot.git

Complex & Intelligent Systems (2024) 10:8287–8317 8297

Fig. 5 Evolution of the
distribution of model’s
confidence (p̂) when varying the
number of examples provided
(y-axis)

0
1

2
3

4
5

6
7

8
9

10

0.0 0.4 0.8 1.2

0
1
2

1
2
3

2
3
4

3
4
5

4
5
6

5
6
7

6
7
8

7
8
9

8
9

10

9
10
11

10
11
12

Confidence

dates
emails
freetext
names
phones
times
units

Fig. 6 Proportion of na and nw

examples for increasing ns with
different thresholds (in colour)
for the dates domain (see Fig. 11
in the appendix for all domains)

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
ns

Pe
rc

en
ta

ge

category
na
nw

0.00
0.25
0.50
0.75
1.00

threshold

Fig. 7 Average expected costs
per domain using the cost
distributions from humans
(opaque bars) and with uniform
H (transparent bars) for the
optimal (T o), static (T σ),
dynamic (T δ) and fixed (T φ)
methods. Detailed information
per domain, problem and
method in Table 7 in the
technical appendix

5.
34

 ±
 3

.1

2.
34

 ±
 1

.9

5.
3

±
4.

3

8.
21

 ±
 7

.5

5.
82

 ±
 7

.5 9.
65

 ±
 5

.9

9.
25

 ±
 6

.5

17
.9

 ±
 1

.7

16
.3

5
±

2.
3

18
.3

 ±
 1

.7

19
.6

1
±

2.
9

18
.5

9
±

2.
8

21
.4

4
±

7.
6

25
.1

9
±

9.
5

12
.3

9
±

6.
2

6.
44

 ±
 3

.6 10
.3

5
±

5.
8

14
.2

 ±
 8

.1

10
.7

9
±

9

17
.8

2
±

8.
1

18
.2

6
±

10
.1

12
.5

9
±

7.
3

7.
7

±
4.

5

14
.1

9
±

13

17
.0

9
±

19
.2

14
.6

2
±

18
.4

24
.5

4
±

21
.8

31
.6

9
±

28
.2

0.
86

 ±
 2

.4

0.
1

±
0.

5

0.
56

 ±
 1

.8

1.
17

 ±
 3

.3

0.
72

 ±
 2

.8

0.
81

 ±
 2

.7

0.
32

 ±
 0

.9

2.
78

 ±
 7

.6

1.
23

 ±
 4

1.
88

 ±
 5

.3

2.
2

±
6

1.
99

 ±
 6

.2

1.
63

 ±
 5

.5

0.
63

 ±
 1

.3

1.
39

 ±
 3

.5

0.
37

 ±
 0

.8

1.
26

 ±
 3

1.
7

±
3.

8

1.
27

 ±
 3

.8

1.
13

 ±
 3

.6

0.
57

 ±
 1

.54.
82

 ±
 5

.5

1.
62

 ±
 2

.2

1.
93

 ±
 4

.3

3.
09

 ±
 6

2.
26

 ±
 6

.4

3.
86

 ±
 4

.4

1.
9

±
2

0

10

20

30

dates emails freetext names phones times units

M
ea

n
Ex

pe
ct

ed
 C

os
t

aa
aa

aa
aa

Optimal
Static
Dynamic
Fixed

Related work

The tension between reliability and usability goes beyond
AI, since usability is related to the type and degree of super-
vision required from humans while providing a good quality
of service [28–30]. However, many new tasks in AI, such
as those provided by generative models [31–33], challenge

this assumption. For instance, if a model generates images,
inspecting and validating them is much cheaper for the user
than creating or correcting them. An illustrative situation is
few-shot learning [1, 34]. This is an important and increas-
ingly more common way of using LMs, where template
prompts accommodate an arbitrary number of examples [5,
11, 35–39].

123

8298 Complex & Intelligent Systems (2024) 10:8287–8317

The extension of this paradigm to other modalities is
expected to happen soon [40].However, to our knowledge, no
previous work on LMs or few-shot inference has considered
any realistic costmodel to account for the reliability-usability
trade-offs of these applications.

One general way to reduce the impact of classification
errors is the use of a reject option [14] which determines the
examples for which the classifier abstains. Reject options
have been extensively studied for binary classification by
optimising a certain objective cost function [41–46] or based
on ROC analysis [47, 48].

On the other hand, a trade-off between performance and
number of examples provided is also related to the area of
active learning, where a learner iteratively chooses the train-
ing data by asking an oracle (usually the user) to label a few
unlabelled examples [15, 49, 50]. A common query strategy
is uncertainty sampling where the examples with the low-
est confidence are selected first. Additionally, many active
learning methods try to minimise annotation costs by reduc-
ing the number of examples to be labelled at each iteration.
Although the most common scenario assumes the annota-
tion cost is the same for all examples, some approaches also
consider the cases in that the annotation cost vary between
instances [51–55]. Active learning has also been studied for
learning classifiers with reject option in an active way [56,
57] as an alternative to other (passive) methods that assume
that a large labelled dataset is available. Nevertheless, to our
knowledge, no active learning method reuses the classifier
outputs to reduce the number of examples to be labelled by
the user as our framework does. Finally, in other fields similar
problems have been addressed by optimisation [2] or iterative
learning [58].

Our static method, based on a cost-based threshold-
ing function, is related to reject option methods and other
threshold-choicemethods that consider probability estimates
[59]. However, in contrast to reject option approaches, the
estimated threshold does not select the examples to be
rejected but to be inspected, for which the labels estimated
by the model are kept and used. Our framework is also
general, going beyond any particular supervised task, and
being especially applicable to those ML problems of genera-
tive character, where inspection costs are much smaller than
supervision costs.

The dynamic algorithm might be considered as an active
learning method with query strategies based on confidence,
but not precisely selecting informative examples first. Again,
the key difference of a supply-inspect cost framework is that
the user inspects, rather than labels, the examples, and she
only corrects those that are wrong, reducing the human cost
since inspection is cheaper than correction. Consequently,
there is a trade-off between preventing corrections and get-
ting information from the user. In active learning, querying

examples for which the model is correct is not informative
and hence not pursued.

Even if active learning does not look for a trade-off
between inspecting vs supplying costs, and hence the com-
parison is not really meaningful, we refer the reader to the
appendix E for a comparative study of our methods against
active learning. We show that even with a perfect example
choice strategy having no errors at all (Qw = 0), active learn-
ing is worse than all the supply-inspect methods introduced
in this paper.

Conclusions and future work

The classical reject-option model is inappropriate for many
old and new applications in AI, where humans play a more
fluid role of pre-supervisors (supplying solved examples)
and post-supervisors (inspecting examples provided by the
system, and eventually correcting them). The new general
supply-inspect framework introduced in this paper captures
the need for adjusting the pre- and post-supervision efforts
through the supply and inspect thresholds respectively. The
dynamic algorithm shows that in scenarios where it is pos-
sible (and meaningful, as they are corrected by the user)
to increase the number of examples incrementally as they
are validated or corrected, we can obtain better results than
fixed or static threshold choices. We have shown theoreti-
cal results about the framework (contributions 1 & 2), the
supply-inspect space (contribution 3) and the algorithms
(contribution 4). In practice, the space should be used to anal-
yse how the surfaces fromdifferent threshold choicemethods
cross, helping decisions about their use depending on the
operating conditions.

We have evaluated the feasibility of the results presented
in this study from both an implementation and computational
perspective. From an implementation perspective, we used a
repository of tasks from the Data Wrangling Dataset Repos-
itory (contribution 5), containing 123 different tasks divided
into 7 different domains, providing a broad scope for learn-
ing and testing the models. Additionally, the experimental
procedures, which include exploring the solvability of tasks,
studying the effects of the number of examples onmodel per-
formance, comparing different algorithms, and deriving cost
distributions fromhuman studies, showed the implementabil-
ity of the framework. From a computational perspective, we
have used four well-known public versions of the GPT-3
model with varying numbers of parameters, from 350M to
175B. This range of model complexity allowed us the study
of trade-offs between computational resources and model
performance.

The setting fits few-shot inference with LMs perfectly,
but it has broad applicability to a range of problems in ML
where the degrees of supply and inspect effort are vari-

123

Complex & Intelligent Systems (2024) 10:8287–8317 8299

able, depending on the domain or the user. We have also
illustrated that while the space of operating conditions is
uncertain, an exponential distribution of cs and ci is appro-
priate as an aggregatedmetric. Nevertheless, we have had the
rare determination of estimating realistic ranges of operating
conditions from humans. While human questionnaires have
many biases and limitations, we leave these estimated costs
as meta-data for other researchers to conduct more realistic
usability-reliability studies using some new methods.

Indeed, the static anddynamic algorithmsmaybe improved
in many ways, depending on the level of sophistication and
some other information available during deployment. As pre-
sented in this paper, they are foundational for two major
families of threshold-choice methods for this new supply-
inspect paradigm, but more methods will surely come.

For instance, in the particular use of LMs, we also see
potential for more sophisticated ways of choosing examples
or prompts, inspired by recent research showing that not only
the distribution of examples matters but also their order, or
other ways to increase performance like calibration. In more
general terms, we think this paper contributes to the recent
trend of analysing the deployment ofML systemsmore holis-
tically and taking human factors into account.

Appendix A

Here we include the proofs of all the theoretical results pre-
sented in the paper.

Proposition 1 (in main paper) Assuming all functions f• are
linear in n• of the form f•(n•) = c• · n•, we have that:

Q = cs · (ns + nc) + ci · ni + cw · nw

where cs is the unitary cost for the user to solve an example,
ci is the unitary cost for the user to inspect an example and
cw is the unitary cost of an unspotted wrong example.

Proof From the original definition of cost we have:

Q = fs(ns) + fv(nv) + fc(nc) + fa(na) + fw(nw)

We can first consider that uninspected but accurate instances
have no cost, i.e., fa = 0. This means:

Q = fs(ns) + fv(nv) + fc(nc) + fw(nw)

As both Dv and Dc are inspected but only Dc is corrected, we
can separate the cost of inspection fi from fv and fc. Hence,
fv is decomposed into the cost of inspection fi and the cost
of accurate instances fa (we are assuming it is 0), and fc
is decomposed into the cost of inspection fi and the cost of

correcting f f . Thus, we can rewrite the above equation as
follows:

Q = fs(ns) + fi (nv) + fi (nc) + f f (nc) + fw(nw)

As fi is linear, it is additive; so we have:

Q = fs(ns) + fi (nv + nc) + f f (nc) + fw(nw)

The cost of a user producing the output for an instance that
is supplied initially or after detecting an error is equal, as the
user has to solve the instance in both cases. So we have that
fs = f f , and ni = nv + nc and we finally simplify:

Q = fs(ns + nc) + fi (ni) + fw(nw)

This can now be expressed in terms of cost constants:

Q = cs · (ns + nc) + ci · ni + cw · nw

��
Proposition 2 (in main paper) Q can be expressed on the
thresholds t and only the two components of c:

Q(t; c) = cs · (να,n(ts) + nc(t)) + ci · ni (t) + nw(t)

Proof We can rewrite the expression in Proposition 1 as a
function of the thresholds.

cs · (να,n(ts) + nc(t)) + ci · (ni (t)) + cw · nw(t)

We now simply extract cw as a common factor.

cw ·
[
cs
cw

· (να,n(ts) + nc(t)) + ci
cw

· ni (t) + nw(t)
]

Because cw is a constant multiplicative factor for anymethod
or model, we get the result by assuming cw = 1. ��
Proposition 3 (in main paper) When no wrong results are
permitted, the dynamic algorithm with s0 = i⊕ = 1 and
s� = |D| is optimal up to ci · (ns − 1) cost units provided the
algorithm always orders examples by decreasing probability
of being correct (more likely correct first).

Proof After calling T δ , the cost is calculated as:

Q(M; 〈ts, ti 〉; c;α; D; p;m) − cs · nv + ci · ni

In the extreme case where no wrong results are permitted
and the given parameters, all inspections and corrections are
inside the algorithm, no further inspections or corrections

123

8300 Complex & Intelligent Systems (2024) 10:8287–8317

have to do in Q, and no wrong results happen, so plugging
Proposition 1 we have:

cs · (ns + 0) + ci · 0 + cw · 0 − cs · nv + ci · ni
Since s� = |D| = n, all examples will be supplied (except
those that are validated) and all inspected but one (the first
one, since i⊕ = 1). This leads to:

cs · (n − nv) + ci · (n − 1) (A1)

Clearly, the only way of minimising this expression is by
maximising nv , which is achieved if the algorithm picks the
elements that are inspected as those of highest probability of
being correct first.

In order to say that this approach is almost optimal, we
still need to show that Eq. A1 is not far from the optimal
method. We start from Proposition 1 again, for the optimal
method and full inspection we have:

cs · (ns + nc) + ci · ni + cw · 0

Sincewe inspect all except the supplied,we have ni = n−ns ;
plugging this and reorganising we have:

cs · (ns + nc) + ci · n − ci · ns
cs · (ns + nc) − ci · (ns − 1) + ci · (n − 1)

Since nc = n − ns − nv , we get

cs · (n − nv) − ci · (ns − 1) + ci · (n − 1)

Comparing this expression with Eq. A1 we get the term ci ·
(ns − 1), which is usually small. ��
Proposition 4 (in main paper) ConsiderH the bivariate dis-
tribution that results on applying hs and hi to the two
dimensions ofω. IfH is a bivariate uniform distribution, then
the volume under the supply-inspect surface is the expected
cost.

Proof The volume under the supply-inspect surface is given
by:

∫ 1

0

[∫ 1

0
Q(〈h−1

s (x), h−1
i (y), 〉)dx

]
dy

As H is a bivariate uniform distribution, this is an expected
value:

E〈x,y〉∼H[Q(〈h−1
s (x), h−1

i (y)〉)]

SinceH is the result of applying hs and hi to ω, we just get:
Ec∼ω[Q(c)]. ��

Corollary 1 (in main paper) The supply-inspect space under
hs(a) = hi (a) = 1−e−a is equivalent to a weighted integral
over the original space assuming an exponential distribution
with λ = 1.

Proof In the original space, we can define aweighted integral
as follows:

∫ ∞

0

[∫ ∞

0
Q(〈a, b〉)ω(a)da

]
ω(b)db

where ω(a) = λe−λa is the density function of the exponen-
tial distribution.

Doing integration by substitution with du = ω(y)dy we
get that u = ∫

ω(b)db = �(b) = −e−λb and �−1(u) =
−1
λ
log(−u). This leads to:

∫ 0

−1

[∫ ∞

0
Q(〈a,�−1(u)〉)ω(a)da

]
du

Doing similarly with substitution with dv = ω(a)da we
get that v = ∫

ω(a)da = �(a) = −e−λa and �−1(v) =
−1
λ
log(−v). Now we have:

∫ 0

−1

[∫ 0

−1
Q(〈�−1(v),�−1(u)〉)dv

]
du

Just making the variable changes x = v + 1 and y = u + 1
we get:

∫ 1

0

[∫ 1

0
Q(〈�−1(x − 1),�−1(y − 1)〉)dx

]
dy

Wehave that�−1(x−1) = − 1
λ
log(1−x). Plugging it above

we have:

∫ 1

0

[∫ 1

0
Q(〈−1

λ
log(1 − x),

−1

λ
log(1 − y)〉)dx

]
dy

(A2)

If we just make hs(a) = 1 − e−a we have that h−1
s (x) =

− log(1 − x), and if we just make hi (a) = 1 − e−a we
have that h−1

i (y) = − log(1 − y). By plugging these two
expressions into Proposition 4, and setting λ = 1 we have an
expression equal to Eq. A2. ��
Proposition 5 (in main paper) Consider the same conditions
as Proposition 1 but we now have a proportion of human
error of es and ei for the supplied examples and inspected
examples respectively. The new cost equation becomes:

Q = (cs + cw · es) · (ns + nc) + (ci + cw · ei) · ni
+cw · nw

123

Complex & Intelligent Systems (2024) 10:8287–8317 8301

Proof We extend Proposition 1 with the new errors

Q = cs · (ns + nc) + ci · ni
+cw · (nw + es(ns + nc) + ei · ni)

since the supplying error rate affects ns + nc examples and
the inspecting error rate affects ni . By rearranging we get:

Q = (cs + cw · es) · (ns + nc) + (ci + cw · ei) · ni
+cw · nw

��
Corollary 2 (in main paper) We can express the cost when
human errors exist as a readjustment of the normalisation of
costs, as follows:

Q = c′
s · (ns + nc) + c′

i · ni + nw

where

c′
s = cs

cw

+ es c′
i = ci

cw

+ ei

Proof From Proposition 5 and dividing by cw as in Proposi-
tion 2, we get the expression. ��

Appendix B

In this appendix, we introduce a Lightweight Variant of T o.
Note that the Algorithm 2 we implemented in our exper-

iments, calls Q, which has m repetitions. Alternatively, we
can do a version that is more similar to the other algorithms,
and iterates on j from 0 to no to find the optimal cut point.
This would allow for higher efficiency escaping long loops
for small ε values. Algorithm 5 is then a lightweight version
of Algorithm 2. However, the lightweight version also has
a sample from D at the beginning, so a better estimation of
T o would require repetitions too, between the outer and the
inner loop. Since our results for few-shot learning on GPT-3
were fixed, we always chose the same sample, and this is
why we do not need the repetitions for our experiments.

Algorithm 5 Lightweight T o(M, c;α; D; p)
qbest = ∞; n ← |D|
for s ∈ 1 to n do

Ds
s∼ D without replacement

qs ← cs · s 	 Supplied

Do ← D\Ds 	 Prompt M with Ds for Do

no ← |Do|
p̂(x) from M ∀x ∈ Do 	 Model’s confidence

Order all x ∈ Do by increasing p̂(x)

for j ∈ 0 to no do
	 Use p(x) ∈ {0, 1} (M wrong or right)

q ← qs + cs
∑

x∈Do[1: j](1 − p(x)) 	 C’cted

q ← q + ci · j 	 Inspected

q ← q + ∑
x∈Do[(j+1):no](1 − p(x)) 	 Wrong

if q < qbest then
qbest ← q
ns ← s
ti ← (p̂(Do[j]) + p̂(Do[j + 1]))/2

end
end

end
ts ← ν−1

α,n(ns) return ts , ti

Appendix C

This section includes more information about the datasets
used in the experiments. Table 2 presents the name and a
short description of some of the tasks included in our reposi-
tory of data wrangling tasks. Some examples of the tasks are
shown in 3. In this table we also include information of the
number of tasks per domain. Complete details of the tasks
and the examples of them can be found in the BigBench [26]
benchmark repository.7 All the code and results and visuali-
sations can be found in https://github.com/nandomp/Trade-
OffsFew-Shot.git.

7 https://github.com/google/BIG-bench/tree/main/bigbench/
benchmark_tasks/mult_data_wrangling

123

https://github.com/nandomp/Trade-OffsFew-Shot.git
https://github.com/nandomp/Trade-OffsFew-Shot.git
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/mult_data_wrangling
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/mult_data_wrangling

8302 Complex & Intelligent Systems (2024) 10:8287–8317

Table 2 Categorisation of data
manipulation tasks within the
wrangling repository, organised
by specific domains and
detailing the transformation
from input to expected output
format

Task description Expected output

Domain dates

Add punctuation The date in numeric format split by a punctuation sign

Change format The date in one particular format

Change punctuation The date in one particular format

Get day The day in numeric format

Get day ordinal The day in numeric ordinal format

Get month name The name of the month

Get week day The name of the weekday

Reduce month name The name of the month reduced to three letters

Set format The date split in DMY format

Domain email

Generate Email An email account created with the name and the domain

Get After At Everything after the at symbol

Get domain The domain before the dot

Before At Everything before the at symbol

Domain freetext

After symbol Everything after a symbol

Between symbols Everything between a pair of symbols

Delete punctuation Remove punctuation

Delete spaces Remove blanks

Digit to end Everything after the first digit if exists

First character Get first character

Get after comma Everything after a comma

Get caps Capitalise each word in a text

To upper Convert text to upper case

Domain names

Add title The name with a title

Get title The title attached to the name, if exists

Generate login A login generated using the name

Reduce name The name reduced before the surname(s)

Domain phones

Add prefix by country Phone numbers with the prefix of the countries

Delete parentheses The list of phone numbers without parentheses

Get number A phone number presented in the string, if exists

Set prefix The list of phone numbers with the prefix

Set punctuation A phone number split by a punctuation sign

Domain times

Add time The time increasing the hour by the integer

Append o’clock time The time appending an o’clock time

Append time The time appending the integer as new component

Convert time The time formatted to 24h format

Convert time The time formatted to a given format

Convert time The time formatted to 12h format

Convert time The time changed from the first time zone to the second

Delete time The time deleting the last component

Get hour The hour component

Get minutes The minutes component

123

Complex & Intelligent Systems (2024) 10:8287–8317 8303

Table 2 continued Task description Expected output

Get time A time presented in the string

Domain units

Convert units The value transformed to a different magnitude

Get system The system represented by the magnitude

Get units The units of the system

Get value The numeric value without any magnitude

Appendix D

Here, we present the calculations with human errors.
As we said, humans were not always correct in the ques-

tionnaires when supplying or inspecting examples, and this
varies per domain. We estimated es and ei to account for
the proportion of supplied examples and inspected examples
respectively a human makes wrong.8 The results are sum-
marised in Table 4 and included in the estimations of costs.
Namely, this estimate of the operating condition ĉ including
error is given by

ĉ′
s = χs

χw

+ es ĉ′
i = χi

χw

+ ei

Table 5 shows the operating conditions (medians) for the
seven domains including the errors. In our questionnaires,
humans were only given one solved example (they were not
given any general rule about how to do the transformation),
so it is important that we compare these errors es and ei ,
especially the first one, with the results for GPT-3 for one-
shot, as shown in Fig. 4. There we see that the domain with
highest error is times, followed by units, and the domain
with lowest error is emails. We see similar proportions in
the human results in Table 5, not in magnitude (one-shot

8 Note that es simply accounts for the percentage of examples solved
incorrectly, but ei only accounts for the percentage of examples that are
incorrect and not detected by the human (false negatives), but we do not
consider here those examples that are correct and flagged as incorrect
by the human (false positives), as they are covered by es . We do this, as
this is the interpretation in Proposition 5.

human errors are much lower than one-shot GPT-3) but in
the domains that are more or less difficult. For humans, teh
worst results are given for times, followed by phones. The
best domain is freetext and emails.

Finally, Fig. 8 shows the overall expected costs, calculated
in the same way as in Fig. 7, but now including the human
errors. We see that in this extreme situation, the dynamic
method obtains the best performance (not considering the
optimal method since it is not realistic) in all the domains
except from times and units. This is caused by c′

i being higher
than c′

s in Table 5. If we analyse the difference between c
′
s and

c′
i and the performance of the dynamic method with respect
to the static and fixed, we observe that the worst results of the
dynamic with respect the other two is found in the domains
where c′

i > c′
s : emails, times and units. The dynamic method

was designed considering the expected situation that the cost
of inspect examples is lower than the cost of supply examples
for the same task. For the domains where this situation is not
found, the static method seems to be a better option. Finally,
the fixed method is not a good selection since it (almost)
always obtains the worst results.

123

8304 Complex & Intelligent Systems (2024) 10:8287–8317

Table 3 Examples of data
wrangling tasks of different
domains included in the
repository used for the
experimentation

Domain Tasks Example (input → output)

Dates 21 74-03-31 → 31

Email 10 Jan.Kotas@litwareinc.com → litwareinc.com

Freetext 25 Association of Computational Linguistics → ACL

Names 15 Prof. Kathleen S. Fisher → Fisher, K.

Phones 18 John DOE 3 . . . [TS]865-000-0000 . . . → 865-000-0000

Times 24 3:40 PM → 15:40

Units 10 12.20 dg → 1220.0 mg

Table 4 Aggregate results from the questionnaires detailing the domain-specific operating conditions in the two last columns (mean and standard
deviation) per domain

Domain τs τi χ/τ χw es ei ĉs ĉi

Dates 6.72 ± 5.28 3.97 ± 6.44 68.29 ± 212.4 3554.63 ± 17989.17 0.1 ± 0.01 0.1 ± 0.05 0.161 ± 0.464 0.021 ± 0.048

Emails 7.72 ± 10.75 3.12 ± 2.77 61.94 ± 194.85 35.69 ± 179.02 0.01 ± 0 0.1 ± 0.09 0.073 ± 0.159 0.041 ± 0.107

Freetext 4.15 ± 2.59 3.47 ± 3.49 63.39 ± 194.61 3270.46 ± 17953.16 0.04 ± 0.02 0.02 ± 0 0.086 ± 0.21 0.104 ± 0.339

Names 6.14 ± 4.21 3.38 ± 2.76 54.26 ± 183.07 11.98 ± 45.11 0.09 ± 0.02 0.03 ± 0.02 0.116 ± 0.298 0.058 ± 0.146

Phones 11.74 ± 7.33 6.93 ± 6.34 67.87 ± 212.49 39.8 ± 179.09 0.16 ± 0.28 0.13 ± 0.17 0.093 ± 0.217 0.112 ± 0.397

Times 9.11 ± 4.87 5.81 ± 5.49 71.77 ± 222.78 3283.92 ± 17950.82 0.1 ± 0.02 0.22 ± 0.17 0.076 ± 0.244 0.035 ± 0.11

Units 7.06 ± 9.31 2.94 ± 3.97 48.84 ± 176.87 6466.64 ± 24969.11 0.04 ± 0 0.14 ± 0.04 0.03 ± 0.08 0.015 ± 0.035

Table 5 Median values obtained
from the questionnaires. The
two last columns show the
operating conditions per domain
including the one-shot error
levels for humans (es , and ei)

Domain τs τi χ/τ χw es ei ĉ′
s ĉ′

i

Dates 6.637 1.892 14 4.000 0.103 0.099 0.109 0.100

Emails 5.381 2.635 15 2.000 0.006 0.099 0.020 0.103

Freetext 3.520 3.102 15 3.000 0.045 0.024 0.051 0.028

Names 6.270 2.431 12 1.000 0.088 0.027 0.100 0.033

Phones 9.850 5.463 15 3.000 0.161 0.126 0.174 0.132

Times 9.254 3.892 15 5.000 0.101 0.225 0.107 0.227

Units 2.640 2.120 15 5.000 0.043 0.140 0.045 0.142

Fig. 8 Average expected costs
per domain using the cost
distributions from humans for
the optimal (T o), static (T σ),
dynamic (T δ) and fixed (T φ)
methods, using the costs derived
including the human errors from
Table 5

1.
77

 ±
 2

.6

0.
22

 ±
 0

.6

0.
95

 ±
 1

.9

2.
14

 ±
 3

.6

2.
17

 ±
 3

.8 2.
98

 ±
 3

.1

1.
37

 ±
 1

.1

4.
62

 ±
 7

.6

1.
49

 ±
 4

.5

3.
29

 ±
 7

.1

3.
83

 ±
 6

.1

5.
01

 ±
 7

.5

4.
65

 ±
 5

.4

2.
59

 ±
 1

.3

3.
96

±3
.5

1.
46

 ±
 0

.8

1.
83

±
2.

9 2.
97

 ±
3.

9

3.
61

 ±
 4

.6

5.
29

±
3.

6

3.
15

±
1.

8

5.
66

 ±
 5

.7

1.
73

 ±
 2

.3

2.
39

 ±
 4

.4

4.
03

 ±
 6

.4

4.
17

 ±
 7

.4

5.
96

 ±
 5

.2

3.
74

 ±
 2

.4

0

2

4

6

dates emails freetext names phones times units

M
ea

n
Ex

pe
ct

ed
 C

os
t

Optimal
Static
Dynamic
Fixed

123

Complex & Intelligent Systems (2024) 10:8287–8317 8305

Appendix E

In this section, we include tables and figures with the com-
plete results that are shown summarised in the paper.

Table 6 shows the accuracy per task for increasing values
of ns . These values are aggregated to produce Fig. 4.

Table 7 includes the aggregated expected costs per
domain, problem and method optimal (T o), (static T σ),
dynamic (T δ) and fixed (T φ). In this case, these results are
used to generate Fig. 7.

Figure 9 shows the results for active learning [15] follow-
ing a straightforward random query strategy. We use a batch
size of 1 (equal to the dynamic algorithm s0 = i⊕ = 1), and
a fixed number of interactions (10, also equal to the dynamic
algorithm, s� = 10).

Aswe can see, for this problem, active learning incurs very
high costs for all the domains compared to the optimal (T o),
static (T σ), dynamic (T δ) and fixed (T φ) methods, shown in
Fig. 7. It could be argued that these high costs are due to the
query strategy used. However, if we disaggregate the results
by the type of cost incurred (cs , ci and cw) as we show in
Fig. 10), we see that an important part of the total cost Q is
dominated by cs and ci . In particular, for the uniform costs,
assuming active learning were perfect in finally reaching a
model with Qw = 0, we would get that Qs + Qi around
24, which is always above the results of Fig. 7 (except for
units with T σ and T φ). Similarly, for human costs, only T σ

could be worse for dates and names, even assume the active
learning strategy is perfect and gets a perfect model with Qw.

Note that the most important difference of active learning
with our methods is that active learning does not balance the
cost of supplying new examples against the cost of inspecting
them by the user and, thus, in many operating conditions in
the supply-inspect space, active learning cannot optimise for
these different costs. Actually, active learning is dominated
by cs · n, where cs is almost never spared, as active learning
looks for the most informative examples (usually requiring
correction) where n is the number of iterations.

Finally, Fig. 11 illustrates the reject option behaviour for
all domain problems and different values of ns . The curves
show the proportion of examples of each category (supplied
ns
n in blue, accurate na

n in green, wrong nw

n in red and rejected
nr
n in grey) as we increase the reject threshold tr in the x-axis.
The eleven columns show the evolution for different values of
ns in (0..10). As expected, for low values of the threshold few
examples are rejected and when we increase the threshold,
the number of rejected examples is increased. Usually, the
wrong instances are the first to be rejected. This figure is also
useful to study the performance of the LM depending on ns .
For 0-shot (ns = 0), the performance is very low for all the
domains. This performance increases significantly when we
provide more examples to the LM. A summary of these plots
is included in Fig. 4.

123

8306 Complex & Intelligent Systems (2024) 10:8287–8317

Table 6 Performance summary of accuracy scores across tasks for incremental supplied example sizes ns

Domain Task ns
0 1 2 3 4 5 6 7 8 9 10

Dates addPunctuation-1 0 0.74 0.83 0.86 0.93 0.93 0.92 0.92 0.88 0.91 0.91

addPunctuation-2 0 0.71 0.3 0.66 0.71 0.7 0.81 0.88 0.96 0.96 0.95

changeFormat-1 0 0.16 0.3 0.83 0.86 0.81 0.73 0.84 0.83 0.87 0.77

changeFormat-2 0.19 0.16 0.13 0.83 0.82 0.96 0.96 0.96 0.96 0.96 0.91

changeFormat-3 0 0.32 0.33 0.41 0.57 0.63 0.65 0.88 0.83 0.78 0.91

changeFormat-4 0.31 0.16 0.23 0.66 0.61 0.7 0.81 0.64 0.67 0.83 0.86

changePunctuation-1 0.16 0.97 0.97 0.86 0.96 0.96 0.96 0.96 0.96 0.96 0.95

changePunctuation-2 0.16 1 1 1 1 1 1 1 1 1 1

getDay-1 0 0.35 0.4 0.48 0.46 0.59 0.77 1 1 1 1

getDay-2 0 0.19 0.13 0.31 1 1 1 1 1 1 1

getDay-3 0 0.94 0.97 1 1 1 1 1 1 1 1

getDayOrdinal-1 0 0.16 0.17 0.24 0.32 0.48 0.69 0.88 1 1 1

getDayOrdinal-2 0 0.16 0.13 0.48 0.79 0.81 1 1 1 1 1

getMonthName-1 0 1 0.97 1 1 1 1 1 1 1 1

getMonthName-2 0 0.84 1 1 1 1 1 1 1 1 1

getWeekDay-1 0 0.84 1 0.83 0.93 0.96 1 1 1 1 1

getWeekDay-2 0 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95

reduceMonthName-1 0 0 0.87 0.9 1 0.89 0.88 0.92 0.96 1 0.95

reduceMonthName-2 0 0.61 0.57 0.45 0.54 0.3 0.5 0.4 0.42 0.65 0.64

setFormat-1 0 0.29 0.23 0.31 0.46 0.74 0.81 1 0.96 0.87 0.95

setFormat-2 0 0.13 0.13 0.31 0.46 0.63 0.81 1 1 1 1

Freetext afterSymbol-1 0 0.87 1 0.97 1 1 1 1 1 1 1

afterSymbol-2 0 0.84 0.97 1 1 1 1 1 0.96 0.96 0.95

betweenSymbols-1 0 1 1 1 1 1 1 1 1 1 1

betweenSymbols-2 0 0.97 1 1 1 1 1 1 1 1 1

brackets-1 0.03 0.58 0.8 0.69 1 1 1 1 1 1 1

brackets-2 0.19 0.87 0.63 0.59 1 1 1 1 1 1 1

deletePunctuation-1 0 0.68 0.63 0.83 0.89 0.89 1 1 1 1 1

deletePunctuation-2 0 0.29 0.47 0.48 0.36 0.63 0.96 0.84 0.88 0.83 0.91

deletePunctuation-3 0 0.35 0.43 0.52 0.5 0.52 0.46 0.52 0.46 0.35 0.59

deletePunctuation-4 0 0.1 0.3 0.38 0.39 0.37 0.46 0.52 0.58 0.48 0.59

deleteSpaces-1 0 0.52 0.83 0.79 0.79 0.81 0.85 0.88 0.83 0.91 0.95

deleteSpaces-2 0 0.26 0.43 0.45 0.46 0.44 0.54 0.68 0.67 0.7 0.73

digitToEnd-1 0 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95

digitToEnd-2 0 1 1 1 1 1 1 1 1 1 1

firstCharacter-1 0 0.45 0.93 1 1 1 1 1 1 1 1

firstCharacter-2 0 0.81 0.77 0.97 0.93 0.93 0.96 0.96 0.96 0.96 0.95

getAfterComma-1 0 0.97 0.97 0.97 0.96 1 1 0.96 1 1 1

getAfterComma-2 0 1 1 1 1 1 1 1 1 1 1

getBetweenCommas-1 0 0.9 1 0.83 1 1 1 1 1 1 1

getBetweenCommas-2 0 0.16 0.33 0.31 0.54 0.81 0.96 0.8 0.92 0.96 0.95

getCaps-1 0 0.42 0.87 0.9 0.93 0.93 0.96 0.92 0.96 1 0.95

getCaps-2 0 0.74 0.9 0.93 0.93 0.93 0.92 0.92 0.92 0.91 1

getCaps-3 0 0.71 0.93 0.93 0.89 0.93 0.88 0.92 0.92 0.87 0.86

toUpper-1 0 0.42 0.63 0.69 0.64 0.67 0.69 0.68 0.67 0.74 0.77

toUpper-2 0 0.39 0.7 0.69 0.71 0.78 0.81 0.68 0.75 0.78 0.82

123

Complex & Intelligent Systems (2024) 10:8287–8317 8307

Table 6 continued

Domain Task ns
0 1 2 3 4 5 6 7 8 9 10

Names addTitle-1 0 0.52 0.47 0.48 0.5 0.67 0.65 0.8 0.71 0.7 0.73

addTitle-2 0 0.1 0.13 0.28 0.32 0.3 0.42 0.4 0.38 0.57 0.68

getTitle-1 0 0.35 0.27 0.69 0.79 0.96 0.73 0.8 0.83 0.87 0.95

getTitle-2 0 0.58 0.3 0.97 0.96 1 1 1 1 1 1

login-1 0 0 0 0.03 0.04 0.04 0.04 0.04 0 0.04 0

login-2 0 0 0 0.07 0.11 0.07 0.12 0.12 0.25 0.22 0.14

reduceName-1 0 0.9 1 0.97 0.89 0.96 0.96 1 1 1 1

reduceName-2 0 0.74 0.87 0.93 0.96 0.96 0.88 0.96 1 1 1

reduceName-3 0 0.35 0.87 1 1 1 1 1 1 1 1

reduceName-4 0 0.65 0.9 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.91

reduceName-5 0 0.48 0.93 0.97 0.96 0.93 0.96 0.96 0.96 0.96 0.95

reduceName-6 0 0.29 0.8 0.83 0.86 1 1 1 1 1 1

reduceName-7 0 0.23 0.7 0.9 0.96 1 1 1 1 1 1

reduceName-8 0 0.16 0.43 0.76 0.89 1 1 1 1 1 1

reduceName-9 0 0.29 0.67 0.83 0.89 0.96 1 1 1 1 1

Emails generate-1 0 1 1 1 1 1 1 1 1 1 1

generate-2 0.19 0.94 1 1 1 1 1 1 1 1 1

generate-3 0.44 0.74 0.83 0.83 0.82 0.81 1 1 1 1 1

getAfterAt-1 0 1 1 1 1 1 1 1 1 1 1

getAfterAt-2 0 0.9 0.83 0.83 0.82 0.81 1 1 1 1 1

getAfterAt-3 0 1 1 1 1 1 1 1 1 1 1

getAfterAt-4 0 1 1 1 1 1 1 1 1 1 1

getDomain-1 0 0.97 1 1 1 1 1 1 1 1 1

getDomain-2 0 1 1 1 1 1 1 1 1 1 1

someBeforeAt-NA 0 0.13 0.7 0.79 0.86 0.81 0.96 0.96 0.96 1 1

Phones countryPrefix-1 0 0.84 0.9 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95

countryPrefix-2 0 0.9 0.9 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95

countryPrefix-3 0 0 0 0.03 0 0 0 0 0 0.04 0.05

countryPrefix-7 0 0.03 0 0 0 0.04 0.04 0 0 0.04 0.05

countryPrefix-8 0 0.87 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95

countryPrefix-9 0 0.87 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95

deleteParentheses-1 0 1 0.83 1 1 1 1 1 1 1 1

deleteParentheses-2 0 1 1 1 1 1 1 1 1 1 1

getNumber-1 0 0.94 0.83 0.83 1 1 1 1 1 1 1

getNumber-2 0 0.35 0.5 0.31 0.46 0.93 1 1 1 1 1

setPrefix-1 0 0.35 0.33 0.31 0.46 0.63 0.81 0.96 0.96 0.96 0.95

setPrefix-2 0 0.84 0.97 1 1 1 1 1 1 1 1

setPrefix-3 0 1 1 1 1 1 1 1 1 1 1

setPrefix-4 0 0.94 0.6 1 1 1 1 1 1 1 1

setPrefix-5 0 0.35 0.33 0.31 0.46 0.48 0.73 1 1 1 1

setPrefix-6 0 0.45 0.67 1 1 1 1 1 1 1 1

setPunctuation-1 0 0.81 0.7 1 1 1 1 1 1 1 1

setPunctuation-2 0 0.84 0.83 1 1 1 1 1 1 1 1

123

8308 Complex & Intelligent Systems (2024) 10:8287–8317

Table 6 continued

Domain Task ns
0 1 2 3 4 5 6 7 8 9 10

Times addTime-1 0 0.19 0.37 0.59 0.68 0.89 0.96 0.92 0.88 0.91 0.91

addTime-2 0 0.48 0.63 0.69 0.93 0.96 0.96 1 1 0.87 0.73

appendTime-1 0 0.52 0.5 0.48 0.82 0.81 0.81 0.96 1 1 1

appendTime-2 0 0.81 0.8 0.9 0.82 0.96 0.92 0.88 0.92 0.96 1

appendTime-3 0 0.84 0.83 0.83 0.82 0.81 0.81 0.92 0.83 1 0.95

appendTime-4 0 0.81 0.8 0.9 0.82 0.85 0.81 0.84 0.83 0.87 0.95

convert-1 0.5 0.1 0.27 0.62 0.79 0.74 0.92 0.88 0.92 0.87 0.91

convert-10 0 0.03 0.1 0.24 0.14 0.22 0.31 0.2 0.33 0.43 0.41

convert-2 0.62 0.06 0.07 0.59 0.68 0.78 0.77 0.72 0.71 0.74 0.86

convert-3 0 0.1 0.2 0.55 0.46 0.56 0.73 0.68 0.79 0.74 0.77

convert-4 0 0.06 0.07 0.17 0.29 0.33 0.5 0.6 0.58 0.7 0.68

convert-5 0 0.26 0.13 0.66 0.68 0.67 0.65 0.72 0.83 0.83 0.95

convert-6 0 0.06 0.23 0.34 0.32 0.56 0.5 0.52 0.75 0.7 0.68

convert-7 0 0.1 0.07 0.59 0.64 0.63 0.62 0.56 0.54 0.57 0.59

convert-8 0 0.03 0.1 0.17 0.21 0.22 0.31 0.24 0.33 0.39 0.36

convert-9 0 0.06 0.07 0.21 0.54 0.59 0.62 0.6 0.5 0.61 0.59

deleteTime-1 0 0.32 0.3 0.59 0.75 0.96 0.88 1 1 1 1

deleteTime-2 0 0.35 0.33 0.31 0.93 1 1 1 1 1 1

getHour-1 0 0.58 0.87 0.86 1 1 1 1 1 1 1

getHour-2 0 0.03 0.07 0.07 0.54 0.63 0.62 0.6 0.58 0.57 0.55

getMinutes-1 0 0.68 0.87 0.66 0.75 1 1 1 1 1 1

getMinutes-2 0 0.61 0.3 0.93 0.79 0.85 1 1 1 1 0.95

getTime-1 0.5 0.94 1 0.83 1 1 1 1 1 1 1

getTime-2 0.59 0.9 0.93 0.9 0.75 0.93 0.92 0.88 0.83 0.87 0.91

Units convert-1 0 0.16 0.13 0.45 0.39 0.48 0.62 0.88 0.92 0.83 0.86

convert-2 0 0.19 0.2 0.41 0.25 0.44 0.58 0.68 0.83 0.87 0.82

convert-3 0 0.13 0.13 0.24 0.36 0.44 0.58 0.76 0.88 0.78 0.73

convert-4 0 0.03 0.17 0.48 0.21 0.33 0.62 0.6 0.71 0.78 0.77

getSystem-1 0 0.1 0.33 0.66 0.61 0.67 0.58 0.96 0.83 0.87 1

getSystem-2 0 0.16 0.43 0.72 0.71 0.85 0.77 0.84 0.88 1 1

getUnits-1 0 0.97 0.9 0.9 0.89 0.89 0.88 0.88 0.88 0.87 0.86

getUnits-2 0 0.87 0.7 0.28 0.79 0.96 0.96 0.96 0.96 0.96 0.95

getValue-1 0 0.71 0.93 0.93 0.96 0.93 0.92 0.92 0.92 0.91 0.91

getValue-2 0 0.61 0.97 0.93 0.96 0.96 0.92 0.96 0.96 0.96 0.95

Average: 0.03 0.54 0.62 0.71 0.77 0.81 0.84 0.87 0.87 0.88 0.89

123

Complex & Intelligent Systems (2024) 10:8287–8317 8309

Table 7 Aggregated expected
costs per domain, problem and
method (T o, T σ , T δ and T φ)

Domain Task T o T σ T δ T φ

addPunctuation-1 5.48 18.34 11.77 7.33

addPunctuation-2 6.77 18.23 13.77 22.33

changeFormat-1 7.58 20.49 11.26 13.59

changeFormat-2 5.88 16.19 10.71 6.33

changeFormat-3 9.46 19.41 19.43 16.45

changeFormat-4 9.95 14.73 14.43 19.86

changePunctuation-1 2.04 15.11 7.11 6.33

changePunctuation-2 1.07 14.62 5 5.33

getDay-1 6.82 18.45 19.2 19.65

getDay-2 4.27 18.39 7.97 7.46

getDay-3 2.33 17.25 7.12 5.33

getDayOrdinal-1 7.85 18.86 25.62 24.85

getDayOrdinal-2 6.11 18.45 12.53 10.33

getMonthName-1 1.07 17.14 5.73 5.33

getMonthName-2 2.07 17.38 5.9 5.33

getWeekDay-1 2.07 17.42 7.61 7.4

getWeekDay-2 2.04 17.62 5.17 6.33

reduceMonthName-1 3.86 19.17 11.63 9.39

reduceMonthName-2 11.62 21.15 24.69 25.44

setFormat-1 6.87 18.85 18.79 19.06

Dates setFormat-2 7 18.71 14.66 20.99

afterSymbol-1 2.04 17.34 6.05 5.33

afterSymbol-2 2.67 17.77 5.56 9.6

betweenSymbols-1 1.07 17.12 5.04 5.33

betweenSymbols-2 1.7 17.17 3.99 5.33

brackets-1 4.02 17.28 6.92 5.33

brackets-2 3.27 14.34 7.34 5.33

deletePunctuation-1 5.31 17.65 10.33 18.13

deletePunctuation-2 6.87 18.99 19.76 16.45

deletePunctuation-3 14.75 21.85 20.45 40.45

deletePunctuation-4 16.14 22.26 22.23 47.99

deleteSpaces-1 6.17 18.58 14.17 16

deleteSpaces-2 13.36 21.19 20.53 44.79

digitToEnd-1 2.05 17.61 4.31 6.33

digitToEnd-2 1.07 17.12 3.9 5.33

firstCharacter-1 2.99 17.98 6.33 5.33

firstCharacter-2 3.87 17.85 9.46 7.33

getAfterComma-1 1.92 17.19 6.3 5.33

getAfterComma-2 1.07 17.15 5.05 5.33

getBetweenCommas-1 2.02 17.29 7.72 5.33

getBetweenCommas-2 7.05 18.92 14.63 16.99

getCaps-1 4.98 18.38 9.8 9.53

getCaps-2 4.36 17.78 9.79 9.6

getCaps-3 3.97 18.76 8.54 7.33

toUpper-1 10.46 20.1 16.1 27.66

123

8310 Complex & Intelligent Systems (2024) 10:8287–8317

Table 7 continued
Domain Task T o T σ T δ T φ

Freetext toUpper-2 9.26 19.82 14.54 23.39

addTitle-1 10.66 20.41 18.6 18.65

addTitle-2 15.61 21.84 25.36 38.85

getTitle-1 6.01 18.87 12.15 16

getTitle-2 3.89 17.77 7.02 5.33

login-1 26.13 26.51 31.2 58.45

login-2 23.27 25.6 29.79 59.65

reduceName-1 2.02 17.35 8.7 6.33

reduceName-2 4.39 17.7 10.69 6.33

reduceName-3 3.11 18.1 7.94 5.33

reduceName-4 4.38 18.45 10.3 6.33

reduceName-5 3.75 18.37 8.41 7.33

reduceName-6 4.72 18.24 9.72 5.33

reduceName-7 4.66 18.3 10.59 5.33

reduceName-8 5.13 18.48 11.55 7.46

Names reduceName-9 5.49 18.2 11.02 9.6

generate-1 1.07 17.11 4.6 5.33

generate-2 1.93 14.24 6.14 5.33

generate-3 4.86 10.52 10.79 10.33

getAfterAt-1 1.07 17.16 4.37 5.33

getAfterAt-2 3.29 17.3 9.13 10.33

getAfterAt-3 1.07 17.13 3.29 5.33

getAfterAt-4 1.07 17.13 3.27 5.33

getDomain-1 1.7 17.19 5.38 5.33

getDomain-2 1.07 17.12 3.79 5.33

Emails someBeforeAt-NA 6.3 18.56 13.67 19.06

countryPrefix-1 3.75 17.77 7.75 6.33

countryPrefix-2 3.28 17.7 5.91 7.4

countryPrefix-3 25.88 26.2 30.78 62.91

countryPrefix-7 25.61 26.11 31.56 61.85

countryPrefix-8 3 17.75 5.55 6.33

countryPrefix-9 2.99 17.74 5.71 6.33

deleteParentheses-1 1.07 17.12 4.33 5.33

deleteParentheses-2 1.07 17.11 3.66 5.33

getNumber-1 2.5 17.23 10.2 5.33

getNumber-2 5.89 18.12 15.58 9.6

setPrefix-1 7.77 18.82 17.83 25.25

setPrefix-2 2.67 17.37 6.92 5.33

setPrefix-3 1.07 17.11 3.58 5.33

setPrefix-4 2.33 17.22 5.41 5.33

setPrefix-5 6.82 18.52 21.78 24.98

setPrefix-6 3.2 17.95 6.16 5.33

setPunctuation-1 2.97 17.41 5.45 9.6

Phones setPunctuation-2 2.89 17.37 6.08 5.33

addTime-1 6.97 19.07 14.38 14.79

123

Complex & Intelligent Systems (2024) 10:8287–8317 8311

Table 7 continued
Domain Task T o T σ T δ T φ

addTime-2 5.46 20.08 10.62 12.8

appendTime-1 6.78 18.18 13.59 10.33

appendTime-2 4.77 17.58 11.23 6.33

appendTime-3 4.71 17.98 12.18 10.33

appendTime-4 5.25 18.05 11.91 9.33

convert-1 11.83 30.11 22.18 54.25

convert-10 19.64 23.72 25.81 46.58

convert-2 16.29 29.11 25.87 50.85

convert-3 15.85 40.45 27.54 64.84

convert-4 20.43 41.51 39.18 80.57

convert-5 9.16 19.19 16.14 14.32

convert-6 13.07 21.48 22.2 39.39

convert-7 13.12 21.81 16.94 24.12

convert-8 20.63 24.02 27.19 47.72

convert-9 14.5 21.81 25.99 21.79

deleteTime-1 5.84 18.33 14.89 7.46

deleteTime-2 5.02 18.14 12.24 5.33

getHour-1 3.86 17.79 9.61 5.33

getHour-2 14.07 22.46 27.17 22.12

getMinutes-1 4.3 17.68 11.09 5.33

getMinutes-2 4.52 18.25 11.04 22.39

getTime-1 1.93 9.22 8.21 5.33

Times getTime-2 3.64 8.65 10.46 7.33

convert-1 11.83 30.11 22.18 54.25

convert-2 16.29 29.11 25.87 50.85

convert-3 15.85 40.45 27.54 64.84

convert-4 20.43 41.51 39.18 80.57

getSystem-1 7.58 19.12 15.14 23.12

getSystem-2 7.45 18.88 12.83 14.93

getUnits-1 2.04 18.34 8.91 8.33

getUnits-2 4.11 17.75 11.47 6.33

getValue-1 3.85 18.4 9.06 7.33

Units getValue-2 3.11 18.21 10.38 6.33

Average: 6.67 19.45 13.02 17.25

123

8312 Complex & Intelligent Systems (2024) 10:8287–8317

Fig. 9 Average expected costs
per domain using the cost
distributions from humans
(using the costs derived
including the human errors from
Table 5) and with uniform H
using an active learning
approach

25
.2

8
±

23

23
.9

9
±

22
.9

25
.7

5
±

23

27
.8

6
±

23
.9

26
.6

1
±

23
.8

28
.6

2
±

23
.4

28
.1

9
±

23
.3

5.
12

 ±
 5

2.
19

 ±
 1

.9

4.
34

 ±
 5

.1

6.
77

 ±
 8

.1

7.
52

 ±
 8

.6

9.
28

 ±
 5

.6

8.
38

 ±
 5

.3

0

10

20

30

dates emails freetext names phones times units
M

ea
n

Ex
pe

ct
ed

 C
os

t

Fig. 10 Average expected costs
per domain for the active
learning. Top: uniform costs H.
Bottom: cost distributions from
humans (using the costs derived
including the human errors from
Table 5). This is a
disaggregation of Fig. 9.
Compare with Fig. 7

12 ± 16.2 12 ± 16.2
12 ± 16.2

12 ± 16.2 12 ± 16.2
12 ± 16.2 12 ± 16.2

12 ± 16.2 12 ± 16.2
12 ± 16.2

12 ± 16.2 12 ± 16.2
12 ± 16.2 12 ± 16.2

1.29 ± 2 0 ± 0 1.76 ± 2.7
3.87 ± 6.9 2.61 ± 6.5

4.62 ± 4.8 4.2 ± 4.2

2.64 ± 4.6
0.79 ± 1.6

1.31 ± 2.1
2.04 ± 2.9 2.53 ± 2.1

1.62 ± 2.3 1.03 ± 1.5

1.2 ± 0.5 1.4 ± 1.1 1.28 ± 3.3 0.85 ± 1.4 2.37 ± 3.9
2.45 ± 1.1 1.85 ± 0.8

1.29 ± 2 0 ± 0
1.76 ± 2.7

3.87 ± 6.9 2.61 ± 6.5
5.21 ± 4.8 5.5 ± 4.4

U
niform

H
um

ans

dates emails freetext names phones times units

0

10

20

30

0

10

20

30

M
ea

n
Ex

pe
ct

ed
 C

os
t

a a aQs Qi Qw

123

Complex & Intelligent Systems (2024) 10:8287–8317 8313

0−shot 1−shot 2−shot 3−shot 4−shot 5−shot 6−shot 7−shot 8−shot 9−shot 10−shot
dates

em
ails

freetext
nam

es
phones

tim
es

units

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

threshold

Pe
rc

en
ta

ge

r w a s
Fig. 11 Reject option behaviour for all domain problems. The curves
show the proportion of examples of each category (supplied ns

n in blue,
accurate na

n in green, wrong nw

n in red and rejected nr
n in grey) as we

increase the reject threshold tr in the x-axis. The eleven plots show the
evolution for different values of ns in (0..10)

123

8314 Complex & Intelligent Systems (2024) 10:8287–8317

Appendix F

Here we include details about the questionnaires, the way
they were distributed and how the estimates for cs and ci
were obtained, as well as the aggregated distributions.

The questionnaires employed in this work are based on
the Data Wrangling Dataset Repository,9 a benchmark inte-
grating many data wrangling tasks in the literature as well
as new manually gathered tasks dealing with daily transfor-
mations [24]. Overall, the repository contains 123 different
tasks divided into 7 different domains (dates, emails, freetext,
names, phones, times and units). For every task we have 32
annotated examples where an input string is converted into a
corrected or transformed version.

For each domain we selected randomly one task for ‘sup-
ply’ examples, and a different task for ‘inspect’ responses.
For each task, we also selected randomly five instances to be
completed by the humanswhowere performing the question-
naire. These first two questionnairesmeasured the actual time
for solving an instance (its supply time τs being a proxy for
cs) and the actual time for verifying an instance (its inspect
time τi being a proxy for ci), averaged over five instances per
question. An example of the questionnaire for the domain
names and can be seen in Fig. 12a (supply) and in Fig. 12b
(inspect).

9 http://dmip.webs.upv.es/datawrangling/

This was followed by a third subjective question asking
the cost unit per time unit of a person (χ/τ), so that times
could be converted into costs, and a fourth subjective question
that asked about the cost of each error χw directly. We just
derived χs = τs

χ
τ
and χi = τi

χ
τ
. Finally, we divided both

by χw to have the normalised costs in c. That is, the estimate
of the operating condition ĉ is given by ĉs = χs

χw
and ĉi =

χi
χw

. Before these questions, we used an introductory text to
give some context. In Fig. 12c, we show the questionnaire
employed in the domain names.

In order to improve the estimation of costs and reduce
the effect of respondent fatigue [60] (i.e., poor performance
and efficiency for the later items of a questionnaire when
respondents get bored, tired, or uninterested with the task),
we produced a second version of the questionnaires in which
we used the same tasks but swapping problems. The task used
for the the supply problem in the first questionnaire was used
for the inspect problem in the second version. Likewise, the
task used for the inspect problem in the first questionnaire
was used in the supply problem in the second version. Addi-
tionally, we reversed the order of the domains in the second
questionnaire. Thefirst version of the questionnairewasfilled
by 17 respondents, while the second version was filled by 14,
31 in total.

123

http://dmip.webs.upv.es/datawrangling/

Complex & Intelligent Systems (2024) 10:8287–8317 8315

Fig. 12 Questionaries used for the domain “names”

Acknowledgements We thank the anonymous reviewers for their com-
ments.

Funding The funding has been received from ValgrAI - Valencian
Graduate School and Research Network for Artificial Intelligence;
the Norwegian Research Council with Grant no. 329745 (Machine
Teaching for Explainable AI); Generalitat Valenciana with Grant nos.
CIPROM/2022/6 (FASSLOW) and IDIFEDER/2021/05 (CLUSTE-
RIA); the European Commission under H2020-EU with Grant no.
952215 (TAILOR); US DARPA with Grant no. HR00112120007
(RECoG-AI); the Future of Life Institute with Grant no. RFP2-152;
the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/
501100011033)withGrant no. PID2021-122830OB-C42 (SFERA) and
“ERDFAway of making Europe”; and the SpanishMinistry of Univer-
sities with Grant no. PID2022-140110OA-I00 (FISCALTICS) funded
by MICIU/AEI/10.13039/501100011033 and by ERDF, EU.

Data availability All the code and results, questionnaires and responses
can be found in https://github.com/nandomp/Trade-OffsFew-Shot.git.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other

123

https://github.com/nandomp/Trade-OffsFew-Shot.git.

8316 Complex & Intelligent Systems (2024) 10:8287–8317

third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Wang Y, Yao Q, Kwok JT, Ni LM (2020) Generalizing from a
few examples: a survey on few-shot learning. ACM Comput Surv
(CSUR) 53(3):1–34

2. Tao H, Cheng L, Qiu J, Stojanovic V (2022) Few shot cross equip-
ment fault diagnosis method based on parameter optimization and
feature mertic. Measur Sci Technol 33(11):115005

3. Wang K, Liew JH, Zou Y, Zhou D, Feng J (2019) Panet: Few-shot
image semantic segmentation with prototype alignment. In: pro-
ceedings of the IEEE/CVF international conference on computer
vision. p. 9197–9206

4. Yang B, Liu C, Li B, Jiao J, Ye Q (2020) Prototype mixture models
for few-shot semantic segmentation. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part VIII 16. Springer. p. 763–778

5. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal
P, et al. (2020) Language Models are Few-Shot Learners. In:
Advances in Neural Information Processing Systems. p. 1877–
1901

6. OpenAI. GPT-4 technical report. ArXiv. 2023;abs/2303.08774
7. ZengW,RenX, SuT,WangH, LiaoY,WangZ, et al (2021) PanGu-

α: large-scale autoregressive pretrained chinese language models
with auto-parallel computation. arXiv preprint arXiv:2104.12369

8. Chowdhery A, et al (2022) PaLM: scaling language modeling with
pathways. arXiv:2204.02311 [cs]

9. BigScience, et al (2023) BLOOM: A 176B-parameter open-
access multilingual language model. https://doi.org/10.48550/
arXiv.2211.05100. arXiv:2211.05100 [cs]

10. Touvron H, Lavril T, Izacard G, Martinet X, LachauxMA, Lacroix
T, et al (2023) Llama:Open and efficient foundation languagemod-
els. arXiv preprint arXiv:2302.13971

11. Schellaert W, Martínez-Plumed F, Vold K, Burden J, Casares PA,
Loe BS et al (2023) Your prompt is my command: on assessing the
human-centred generality of multimodal models. J Artif Intell Res
77:377–394

12. Franc V, Prusa D, Voracek V (2023) Optimal strategies for reject
option classifiers. J Mach Learn Res 24(11):1–49

13. Pugnana A, Ruggieri S (2023) A model-agnostic heuristics for
selective classification. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 37. p. 9461–9469

14. Hendrickx K, Perini L, Van der Plas D, Meert W, Davis J (2023)
Machine learning with a reject option: a survey. arXiv preprint
arXiv:2107.11277

15. Kumar P, Gupta A (2020) Active learning query strategies for
classification, regression, and clustering: a survey. J Comput Sci
Technol 35:913–945

16. Rattenbury T, Hellerstein JM, Heer J, Kandel S, Carreras C (2017)
Principles of data wrangling: practical techniques for data prepa-
ration. O’Reilly Media, Inc

17. Jaimovitch-López G, Ferri C, Hernández-Orallo J, Martínez-
Plumed F, Ramírez-Quintana MJ (2023) Can language models
automate data wrangling? Mach Learn 112(6):2053–2082

18. Charoenphakdee N, Cui Z, Zhang Y, Sugiyama M (2021) Clas-
sification with rejection based on cost-sensitive classification. In:

International Conference on Machine Learning. PMLR. p. 1507–
1517

19. Zhou L, Martínez-Plumed F, Hernández-Orallo J, Ferri C, Schel-
laertW (2022) Reject before you run: small assessors anticipate big
language models. In: 1st AI Evaluation Beyond Metrics Workshop
(EBEM), CEUR Proceedings, volume 3169

20. Lu Y, Bartolo M, Moore A, Riedel S, Stenetorp P (2021) Fantasti-
cally ordered prompts andwhere tofind them: overcoming few-shot
prompt order sensitivity. arXiv preprint arXiv:2104.08786

21. Flach PA (2016) ROC analysis. In: Encyclopedia of Machine
Learning and Data Mining. Springer, p. 1–8

22. Nakas C, Bantis L, Gatsonis C (2023) ROC analysis for classifica-
tion and prediction in practice. CRC Press

23. Tian Y, Si L, Zhang X, Cheng R, He C, Tan KC et al (2021) Evo-
lutionary large-scale multi-objective optimization: a survey. ACM
Comput Surv (CSUR) 54(8):1–34

24. Contreras-Ochando L, Ferri C, Hernández-Orallo J, Martínez-
Plumed F, Ramírez-Quintana MJ, Katayama S (2019) Automated
data transformation with inductive programming and dynamic
background knowledge. In: Proceedings of the European Confer-
ence onMachineLearning andKnowledgeDiscovery inDatabases,
ECML PKDD 2019. Springer, p. 735–751

25. Contreras-Ochando L, Ferri C, Hernández-Orallo J, Martínez-
PlumedF,Ramírez-QuintanaMJ,KatayamaS (2019)BK-ADAPT:
dynamic background knowledge for automating data transforma-
tion. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer. p. 755–759

26. Srivastava A, Rastogi A, Rao A, Shoeb AAM, Abid A, Fisch
A, et al. (2022) Beyond the imitation game: In: Quantifying and
extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615

27. Burnell R, SchellaertW,Burden J,UllmanTD,Martinez-PlumedF,
Tenenbaum JB et al (2023) Rethink reporting of evaluation results
in AI. Science 380(6641):136–138

28. Virani N, Iyer N, Yang Z (2020) Justification-based reliability in
machine learning. In: Proc. of the AAAI Conf. on Artificial Intel-
ligence. vol. 34. p. 6078–6085

29. Cabitza F,CampagnerA,BalsanoC (2020)Bridging the “lastmile”
gap between AI implementation and operation:“data awareness”
that matters. Ann Transl Med 8(7). https://doi.org/10.21037/atm.
2020.03.63

30. DeA,KoleyP,GangulyN,Gomez-RodriguezM(2020)Regression
under human assistance. In: Proc. of the AAAI Conf. on Artificial
Intelligence. vol. 34. p. 2611–2620

31. Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y (2019) Recent
progress on generative adversarial networks (GANs): a survey.
IEEE Access 7:36322–36333

32. Harshvardhan G, Gourisaria MK, Pandey M, Rautaray SS (2020)
A comprehensive survey and analysis of generative models in
machine learning. Comput Sci Rev 38:100285

33. Saxena D, Cao J (2021) Generative adversarial networks (GANs)
challenges, solutions, and future directions. ACM Comput Surv
(CSUR) 54(3):1–42

34. Sung F,YangY, ZhangL,XiangT, Torr PH,Hospedales TM (2018)
Learning to compare: relation network for few-shot learning. In:
Proc. of the IEEEConf. on computer vision and pattern recognition.
p. 1199–1208

35. Xu S, Semnani S, Campagna G, Lam M (2020) AutoQA: from
databases to Q&A semantic parsers with only synthetic training
data. In: Proc. of the 2020 Conf. on Empirical Methods in Natural
Language Processing (EMNLP). p. 422–434

36. Izacard G, Grave E (2020) Leveraging passage retrieval with gen-
erativemodels for open domain question answering. arXiv preprint
arXiv:2007.01282

123

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://arxiv.org/2023;abs/2303.08774
http://arxiv.org/abs/2104.12369
http://arxiv.org/abs/2204.02311
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2107.11277
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2206.04615
https://doi.org/10.21037/atm.2020.03.63
https://doi.org/10.21037/atm.2020.03.63
http://arxiv.org/abs/2007.01282

Complex & Intelligent Systems (2024) 10:8287–8317 8317

37. Hendrycks D, Burns C, Basart S, Zou A, Mazeika M, Song D, et al
(2020) Measuring massive multitask language understanding. In:
International Conf. on Learning Representations

38. Reynolds L, McDonell K (2021) Prompt programming for large
language models: beyond the few-shot paradigm. arXiv preprint
arXiv:2102.07350

39. Scao TL, Rush AM (2021) How many data points is a prompt
worth? arXiv preprint arXiv:2103.08493

40. Bommasani R, Hudson DA, Adeli E, Altman R, Arora S, von Arx
S, et al. (2021)On the opportunities and risks of foundationmodels.
arXiv preprint arXiv:2108.07258

41. Chow C (1970) On optimum recognition error and reject tradeoff.
IEEE Trans Inform Theory 16(1):41–46

42. Herbei R, Wegkamp MH (2006) Classification with reject option.
In: Canadian Journal of Statistics/La Revue Canadienne de Statis-
tique. p. 709–721

43. Bartlett PL, Wegkamp MH (2008) Classification with a reject
option using a hinge loss. J Mach Learn Res 9(59):1823–1840

44. WegkampM,YuanM (2011) Support vectormachineswith a reject
option. Bernoulli 17(4):1368–1385

45. Denis C, Hebiri M, Zaoui A (2020) Regression with reject option
and application to kNN. arXiv preprint arXiv:2006.16597

46. Lee JK, Bu Y, Rajan D, Sattigeri P, Panda R, Das S, et al (2021)
Fair selective classification via sufficiency. In: International Conf.
on Machine Learning. PMLR. p. 6076–6086

47. Tortorella F (2000) An optimal reject rule for binary classifiers.
In: Joint IAPR International Workshops on Statistical Techniques
in Pattern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR). Springer. p. 611–620

48. PietraszekT (2007)On the use ofROCanalysis for the optimization
of abstaining classifiers. Mach Learn 68(2):137–169

49. Settles B (2011) From theories to queries: active learning in prac-
tice. In: Active Learning and Experimental Design workshop In
conjunctionwithAISTATS2010. JMLRWorkshop andConf. Proc.
p. 1–18

50. ChenX,PriceE (2019)Active regressionvia linear-sample sparsifi-
cation. In: Beygelzimer A, Hsu D, (eds) Proc. of the Thirty-Second
Conf. on Learning Theory. vol. 99 of Proc. of Machine Learning
Research. PMLR. p. 663–695

51. Margineantu DD (2005) Active cost-sensitive learning. In: Proc.
of the 19th International Joint Conf. on Artificial Intelligence. p.
1622–1623

52. Settles B, Craven M, Friedland L (2008) Active learning with
real annotation costs. In: Proc. of the NIPS workshop on cost-
sensitive learning. vol. 1. Available at https://api.semanticscholar.
org/CorpusID:16285026

53. Haertel RA, Seppi KD, Ringger EK, Carroll JL (2008) Return on
investment for active learning. In: Proc. of the NIPS Workshop on
cost-sensitive learning. vol. 72

54. Culotta A, McCallum A (2005) Reducing labeling effort for struc-
tured prediction tasks. In: Proc. of the AAAI Conf. on Artificial
Intelligence,. vol. 5. p. 746–751

55. Fu Y, Zhu X, Li B (2013) A survey on instance selection for active
learning. Knowl Inform Syst 35(2):249–283

56. El-Yaniv R, Wiener Y (2012) Active learning via perfect selective
classification. J Mach Learn Res 13(2):255–279

57. Shah K, Manwani N (2020) Online active learning of reject option
classifiers. In: Proc. of the AAAI Conf. on Artificial Intelligence.
vol. 34. p. 5652–5659

58. Zhou C, Tao H, Chen Y, Stojanovic V, Paszke W (2022) Robust
point-to-point iterative learning control for constrained systems:
A minimum energy approach. Int J Robust Nonlinear Control
32(18):10139–10161

59. Hernández-Orallo J, Flach P, Ferri C (2012) A unified view of
performance metrics: translating threshold choice into expected
classification loss. J Mach Learn Res 13(Oct):2813–2869

60. Jeong D, Aggarwal S, Robinson J, Kumar N, Spearot A, Park DS
(2023) Exhaustive or exhausting? Evidence on respondent fatigue
in long surveys. J Dev Econ 161:102992

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2102.07350
http://arxiv.org/abs/2103.08493
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2006.16597
https://api.semanticscholar.org/CorpusID:16285026
https://api.semanticscholar.org/CorpusID:16285026

	A general supply-inspect cost framework to regulate the reliability-usability trade-offs for few-shot inference
	Abstract
	Introduction
	Supply-inspect cost Framework
	Threshold choice methods
	Optimal method To
	Fixed method Tφ
	Static method Tσ
	Dynamic method Tδ

	Supply-inspect surfaces and expected cost
	Experimental design
	Results
	Related work
	Conclusions and future work
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Acknowledgements
	References

