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ABSTRACT This article presents the design and evaluation of an 8 x 8 Ka-band low-sidelobe slot array
antenna using gap waveguide technology. The slot array is fed by a single-layer amplitude-tapering network
implemented in half-mode groove gap waveguide, resulting in a low-profile, low-sidelobe antenna. The
simplicity of the proposed feeding network, composed of a novel design of asymmetrical dividers, enables
precise fabrication using cost-effective additive techniques. Experimental results demonstrate a significant
reduction in sidelobe levels compared to traditional uniform arrays, with a radiation efficiency exceeding
84%. This design, featuring simple and robust asymmetrical splitters, is well-suited for applications requiring

high gain and low interference.

INDEX TERMS Antenna arrays, bed of nails, gap waveguide, half-mode waveguide, Ka-band, low side

lobe, Taylor distribution, SATCOM.

I. INTRODUCTION

In the last few years, the fifth-generation (5G) wireless
communications system has attracted a great deal of interest
and has developed rapidly. To meet the growing demand for
fast and reliable network access, the 5G system must have
high capacity and low latency. So, the demand for high-data-
rate communication systems has surged in the millimeter-
wave band [1], [2].

Conventionally, reflector antennas are used to provide the
directional communication link. However, reflector antennas
are expensive and difficult to manufacture due to their bulky
structures. On the other hand, flat antennas, showing low
profile and lightweight, become one the most attractive
candidates to replace reflectors, though there are still
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challenges. Among them is the need for high antenna gain and
efficiency. Conventional printed solutions, such as microstrip
planar arrays, are flexible in design and manufacture, but with
unacceptable ohmic loss in large millimeter-wave arrays [3],
[4], [5]. On the other hand, flat-panel arrays fed by low-loss
metallic waveguides become more suitable for their use in
millimeter-wave applications [6], [7].

As it is well known, the first sidelobe level (SLL) of uni-
formly fed arrays is approximately -13.2 dB, which is not low
enough for some applications. In this context, low-sidelobe
antenna arrays have gained importance in high-performance
wireless communication systems, such as satellite communi-
cations, to mitigate interference. An approach to achieving
low SLL performance is to use uniformly excited tilted
slots in a square array [8], [9]. However, an additional thick
layer capable of rotating the orientation of the radiating
slots relative to the main array planes must be added [10].
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A continuous transverse stub system described in [11]
achieves high gain and wide bandwidth, but only the H-plane
SLL is suppressed. Note that most of the targeted applications
require low SLL levels along all azimuthal angles.

Amplitude-tapering techniques are often employed to
create low SLL antenna arrays by adjusting the power applied
to each element through an appropriate feed network [12],
[13], [14], being Taylor’s distribution a well-established
and versatile method. Due to the high gain requirement,
a certain amount of radiating elements, excited by a
large feeding network, is needed, often leading to bulky
waveguide structures. Hence, achieving compact waveguide
feed networks with suitable power weighting is challenging,
and in many cases, they are difficult to manufacture [15], [16],
[17], [18]. In [15], a double-layer corporate-fed slot array
antenna is proposed. The feeding network layer synthesizes
a Taylor distribution, being the unit cell a cavity-backed 2 x
2 slots subarray. Within a given unit cell, the four slots are fed
with the same amplitude and phase, leading to a quasi-Taylor
array distribution. This fact entails a perceptible SLL increase
at around 30°-50° elevation angle.

In the context of metal-based waveguides, over the past
decade, there has been significant progress in the study of Gap
Waveguide (GW) structures [19], with Groove Gap Waveg-
uide (GGW) [20] and Ridge Gap Waveguide (RGW) [21]
being extensively examined. Typically, in GGWs, the groove
forming the waveguide is integrated into the Bed Of Nails
(BoN) in a single piece. Consequently, any bends, curves,
or transitions along the groove affect the adjacent nails,
causing them to become narrower and thinner. A recently
proposed alternative approach, as detailed in [22] and [23],
is known as Half-Mode Groove Gap Waveguide (HM-GGW),
and it entails manufacturing the waveguide and BoN as
separate components. The significant advantage lies in the
ease of manufacturing, as the groove does not interfere with
the standard pin layout. Additionally, the BoN component
can be standardized and reused for other devices. This
technology appears better suited to design low SLL antennas
with fewer layers, enabling an easier fabrication of the
amplitude-tapering feeding networks, and becoming more
convenient for mass production.

This paper applies Taylor synthesis to design a
non-uniform power distribution waveguide network in HM-
GGW technology. Novel unequal waveguide splitters are
proposed to build the intricate feeding network, resulting in a
compact single-layer structure, robust against manufacturing
tolerances. These unequal power dividers can achieve large
power ratios between output ports with small phase differ-
ences of less than 5°. As a result, the full network feeds an
8 x 8 slot array to obtain a suitable power distribution among
the antenna elements, achieving a low SLL high-efficiency
array. Unlike previous developments, an individual array
weighting is successfully achieved. The final antenna array
takes advantage of the benefits of HM-GGW technology,
i.e., its low profile, high efficiency, and robustness against
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FIGURE 1. Dispersion diagram of the HM-GGW.

TABLE 1. Design parameters of the HM-GGW structure.

Variables Geometrical sizes (mm)
Air gap 0.2
Length of nails 2.6
Width of nails 0.8
Nail periodicity 1.8
Height of HM-GGW 3.88
Width of HM-GGW 1

fabrication tolerances [23]. This fact is demonstrated by
fabricating a prototype with additive techniques, showing a
good electrical performance. The remainder of the paper is
organized as follows. Section II describes the feeding network
with the novel implementation of unequal power splitters in
HM-GGW technology. In Section III, the integration of the
feeding network to create a slotted antenna array is presented.
The antenna manufacture and the experimental results are
reported in Section IV. Finally, Section V draws the main
conclusions of this work.

Il. FEEDING NETWORK DESIGN

A. HM-GGIW BANDGAP

The electromagnetic bandgap (EBG) of the HM-GGW is first
illustrated in Fig. 1. It can be observed that the BoN creates
a stopband between 15 GHz and 40 GHz, and within the
band of interest of our design (29 GHz - 31 GHz), only
the fundamental mode (Mode 5), equivalent to a half-TEj,
propagates along the HM-GGW. An air gap of \o/20, where
Ao is the free-space wavelength at the center frequency, is left
between the BoN and the feeding network. The length of
the nails is Ag/4, approximately, to function as an AMC
(Artificial Magnetic Conductor). The height of the HM-GGW
is half the length of a horizontally-polarized GGW (3.88 mm
in this case) [24]. The nail height-to-width ratio is typically
2:1, and the nail periodicity is 0.2)\g [25]. Table 1 shows the
design parameters of the HM-GGW structure.

B. UNEQUAL POWER SPLITTERS

The low-sidelobe characteristic of the antenna array relies
on a proper amplitude-tapering feed network enabled by
a robust and versatile design of unequal power dividers.
Specifically, this work proposes novel unequal T-junction
splitters in HM-GGW technology. Such waveguide realiza-
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HM-GGW balanced divider

GGW balanced divider

FIGURE 2. Schematic of a balanced HM-GGW (left) and GGW (right)
power divider.
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FIGURE 3. Schematic of a balanced (left) and unbalanced (right) power
T-junction splitter in HM-GGW technology.

tion has demonstrated [23] appealing design and fabrication
advantages over conventional GGWs. In fact, Fig. 2 compares
a balanced T-Junction divider in HM-GGW technology and
its equivalent in GGW technology. It can be appreciated that
in HM-GGW technology, the waveguide and the BoN are
built in separate layers so nails remain intact. In contrast
to splitters in GGW technology, nails do not need to be
thinned to accommodate the waveguide, thus improving the
robustness and the manufacturing ease. In addition, it is
noteworthy to stress that the HM-GGW version reduces the
coupling between nearby waveguides [23], which becomes
essential when designing large arrays.

The T-junction splitters shown in Fig. 2 provide an
equal power distribution because of the structure symmetry.
Furthermore, the phase difference produced between the
output ports is 180°, as a horizontally-polarized HM-GGW
is employed. In order to achieve a wideband impedance
matching, a centered septum [26] has been used.

This simple divider architecture can be easily modified
to achieve an unbalanced T-junction splitter. The idea is to
use septums of different widths to achieve the desired power
unbalance.

The overall structure of the proposed balanced and
unbalanced dividers in HM-GGW technology can be seen in
Fig. 3. In addition to the asymmetric width, the septum center
can be slightly shifted with respect to the input waveguide
to improve phase difference and the power ratio response.
The splitter structure is defined by the variables shown in
Fig. 3. Therefore, splitters with a power imbalance of up to
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FIGURE 4. S-parameters of 6 dB,4.5 dB and 3 dB unequal splitters:
(a) Sq1; (b) power ratio error between output ports; (c) Phase difference
between output ports.

6 dB or even more can be achieved by controlling only these
five septum parameters. Fig. 4 show the performance of 2:1
splitters with an unbalance of 3, 4.5 and 6 dB respectively,
achieving good matching (below —20 dB), power and phase
imbalance less than 0.12 dB and 5 degrees between the output
ports respectively, in the band of interest. Table 2 shows the
dimensions of HM-GGW unequal power dividers.

It is worth mentioning at this point that it is not trivial at
all to design unbalanced waveguide dividers with high output
power ratios and small phase differences, in addition to a
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TABLE 2. Dimensions of the unequal power dividers.

Power Ratio 3dB 4.5dB 6dB
W_I (mm) 0.72 0.83 0.88
L_I (mm) 2.82 2.74 2.84
W_r (mm) 0.39 0.36 0.25
L_r (mm) 2.83 2.75 2.85
Disp (mm) 0.03 0.035 0.03
Input/output width (mm) 1 1 1

TABLE 3. Comparison with other unbalanced splitters.

\ Ref. | PR(dB) | PRE(B) | PDEE(°) |
[15] 5.58 0.30 15
[16] 2.67 1 *

[27] 6 0.5 12
[28] 6 2 4
[18] 5.61 0.3 9
Our work 6 0.12 5

P.R: Power Ratio; PRE: Power Ratio Error; P.D.E:
Phase Difference Error
*unknown P.D.E

wide input impedance bandwidth. Such specifications often
lead to critical dimensions which compromise the robustness
and reliability of the fabrication process. In this sense, the
novel HM-GGW splitter architecture adopted in this work
enables low-cost 3D manufacturing technologies rarely found
in low-sidelobe waveguide arrays.

Table 3 presents a comparison of different unequal power
splitters from the existing literature. Splitters used in [15]
exhibit a phase difference of more than 15 degrees between
the output ports. Furthermore, in [16] and [27], splitters with
a limited power ratio are developed, resulting in worse SLL
levels. Finally, in [28] dividers with high return loss and
small phase imbalance between output ports are designed.
However, the desired power ratio over the whole bandwidth is
not properly maintained. In contrast, in this work splitters of
6 dB power ratio with less than 0.12 dB power ratio error and
5 degrees of phase imbalance are achieved. For large arrays,
minimizing these phase difference and power ratio errors
is crucial as they are cumulative along the whole network,
leading to undesired results.

C. TAYLOR DISTRIBUTION DESIGN
An 8 x 8 element power distribution network has been
built with the power dividers presented. A 25-dB Taylor
distribution has been adopted along both planes, resulting
in three different horizontal and vertical power distribution
levels. In Fig. 5, the first splitters present a balanced power
ratio at the center of the distribution network in both planes.
The next horizontal and vertical splitters need power ratios
of 6 dB, 1.48 dB, and 5.77 dB, sorted from the input to the
output ports.

With these computed amplitude ratios, the optimal unequal
HM-GGW splitters, constituting the 8 x 8 distribution
network, have been fine-tuned. Consequently, the designed
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FIGURE 5. Schematic of the power distribution ratios for the
8 x 8-element feeding network.

4x4 corporate-feed network
-

FIGURE 6. Corporate-feed network in HM-GGW for 8 x 8 elements.

feeding network can be divided into four quadrants, with
4 x4 outputs each. These quadrants are identical but mirrored,
directing the majority of power toward the central outputs,
as illustrated in Fig. 6.

IIl. ANTENNA DESIGN

The architecture of the designed antenna array is shown in
Fig. 7. It comprises only two pieces. The first one consists of
the equispaced BoN and the input port (WR-28), whereas the
second layer comprises the Taylor feed network (bottom face)
and the slot elements (upper face). The radiating element
consists of a rectangular slot fed by a short-circuited HM-
GGW. In order to maximize the field coupling, the slot is
located \/4 away from the waveguide shortcircuit.

The array spacing is 0.8 \g x 0.9\ along the x- and y-axis,
respectively, to minimize the appearance of grating lobes as
much as possible. Radiating slot dimensions are optimized to
maximize the element bandwidth. The bandwidth is mostly
dominated by the main dimensions of the radiating slot (/g
and wy).

In this regard, narrow enough radiating elements have been
chosen to avoid unwanted cross-polarization effects [29].
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FIGURE 7. Layers of the 8 x 8 antenna: first layer a) and b), second layer
c) and d). a) BoN (top view), b) input port (rear view), c) radiating slots
(top view), d) feeding network (rear view).

HM-GGW shot-circuited

Second layer (bottom view) First layer (BoN)

FIGURE 8. Configuration of the 2 x 2 unit cell.

Second layer (top view)

In order to enhance the limited impedance bandwidth of
rectangular slots [30], they have been surrounded by a
double-ridged open cavity [23], [31]. Finally, a compact
realization of a typical chandelier-type feeding is adopted
to compensate for the 180-degree shift of the HM-GGW T-
splitters, as shown in Fig. 8.

IV. EXPERIMENTAL RESULTS

The antenna assembly was fabricated using the Selective
Laser Melting (SLM) 3D printing technique. The total
dimensions of the prototype are 88 mm x 80 mm in surface
and 14.9 mm in height. An image of the manufactured
antenna with both layers can be seen in Fig. 9. Fig. 10 plots
the measured Sp;-parameter at the input port compared to
simulation. Return loss better than 10 dB has been measured
from 29.7 GHz to 31.87 GHz.

Fig. 11 displays the measured directivity, simulated gain,
and measured gain versus frequency. The entire measured
band achieves an overall radiation efficiency above 84%
(29.5 t0 31.87 GHz). The measurements have been performed
in the anechoic chamber of our own laboratory. A slight
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FIGURE 9. Photographs of the manufactured antenna using selective
laser melting (SLM). (a) Top view. (b) Lateral view.
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deviation of 0.5 dB between simulated and measured gain is
observed, which is to be expected, even more so due to the 3D
printing technique tolerances and the surface roughness. The
ideal, simulated, and measured radiation patterns at 30 GHz
are presented in Fig. 12. The measured XZ- and YZ-plane
sidelobe levels are better than —22 dB, and cross-polarization
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FIGURE 12. Simulated and measured radiation patterns at 30 GHz: (a) XZ-
and (b) YZ-plane.

discriminations (XPD) above 30 dB are recorded at the center
frequency. Finally, the measured radiation patterns at the edge
frequencies (29 and 31 GHz) are shown in Fig. 13.

Table 4 presents a comparison of the antenna charac-
teristics with several low-SLL antennas from the existing
literature. Our proposed approach significantly enhances
the radiation efficiency compared to previous studies while
maintaining minimal sidelobes within a straightforward,
compact, and purely metallic structure, ideal for SATCOM
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applications. Furthermore, our antenna design lends itself
well to fabrication using current additive manufacturing
techniques, thereby reducing associated production costs,
being a highly considered alternative given the current
rise of 3D printing structures in the field of wireless
communications [36]. It is worth noting that in [15] and [28],
an additional layer known as the backed cavity is introduced
to enhance coupling. As a result, it deviates from the strict
definition of Taylor distribution (referred to as quasi-Taylor),
as each output of the feeding network excites a group of
four slots uniformly. In contrast, in our work, the feed
network is able to individually excite each radiating slot
with the required weight, improving the array synthesis and
approaching the ideal SLL performance. Furthermore, [32]
and [33] make use of an additional layer, besides the feeding
network and the radiating element layers, to avoid mutual
coupling so that the SLL response is not compromised. In our
design, such a layer is not necessary since the HM-GGW
technology naturally reduces the coupling level thanks to
the intact BoN homogeneity. Finally, in [18], two different
layers are used to perform the Taylor amplitude tapering,
which results in a more complex and bulky structure, less
appropriate for mass production.

VOLUME 12, 2024



A. Castella-Montoro et al.: Low-Sidelobe Flat Panel Array

IEEE Access

TABLE 4. Performance comparison of low-sidelobe antennas.

[ Ref | Full Metal structure [ 1B | Freq.Band | RE [ SideLobe Level [ Fabrication Cost | Number of Layers | Dimensions |
[15] Yes 13.8 Ku 70 -24.1 High 4 12.18%12.18x0.9
[16] No 16 Ka 42 -18 Low 4 8.15x8.15x1.4
[17] Yes 6 E 79 -20.5 Med. 1 15.61x1.40x3
[18] Yes 19.2 E 70 -21 Med-High 3 8.40x8.40x1.84
[27] No 33 Ka 30 -14 Med. 3 6.50x6.50x 1
[28] No 18.5 \Y 50 -23 Med. 4 13.18x13.18 x*
[32] Yes 13.6 Ka 70 -18 Med. 3 11.10x8.50x 1.07
[33] Yes 0.34 X 30 -28.8 Med. 3 7.27x7.27x*
[34] Yes 6.8 E 70 -20 High. 7 17.75x17.75x*

Our work Yes 7.2 Ka 84 =22 Low-Med. 2 8.80x8.00x1.2

V.

IB: Impedance Bandwidth (-10 dB) (%); RE: Realized Radiation Efficiency (%) [35]; Dimensions: Dimensions in terms of central wavelength; *

unknown dimension

CONCLUSION

This paper introduces an 8 x 8 Ka-band antenna array,
composed of a novel and simple design of asymmetrical
dividers, harnessing the Half-Mode Groove Gap waveguide
technology. This recent waveguide version is better suited

for

practical industrial manufacturing when compared to

other technologies such as GGW. The developed antenna
boasts a single-layer amplitude-tapering feeding network and
maintains a compact, purely metallic structure using just two
metal pieces. The experimental findings showcase its effec-
tive reduction in sidelobe levels, high radiation efficiency,
and stable performance across a broad bandwidth. The use
of additive manufacturing techniques further underscores the
viability of our approach for scalable mass production, being
a very suitable option for SATCOM applications.
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