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A B S T R A C T   

In the context of heat pumps, developing prediction models for compressor performance holds significant 
importance for design, selection, control, and fault detection. Nevertheless, there is not currently an established 
standard for characterizing variable-speed compressors. Various published models offer different advantages and 
trade-offs in terms of accuracy and simplicity however, none of them strike the right balance between complexity 
and data fidelity, which is paramount, especially when working with limited or low-fidelity data. 

This study conducts a detailed analysis on how the compressor performance evolves within the compressor 
envelope focusing on the speed effect and, from this analysis, novel compact empirical models are obtained to 
predict mass flow rate and energy consumption. A study of discharge temperature is also presented in this work 
due to its relevance in quantifying heating capacity and power losses. To model it, a correlation based on electro- 
mechanical efficiency is proposed, which can be generalized for different suction conditions without introducing 
additional coefficients. The proposed models are data-driven by high-fidelity calorimetric tests and aim to 
maintain simplicity, using no more than six coefficients, while delivering acceptable accuracy with average 
prediction errors lower than 5%. Finally, a robustness analysis is carried out, which analyzes the required 
training data needed to fit the model and concludes that the proposed models can compete in accuracy with 
models that use much more coefficients.   

1. Introduction 

System modeling, particularly in the domain of HVAC systems, has 
become increasingly important due to a rapidly changing regulatory 
environment that places greater emphasis on mitigating climate change 
and global warming. Compressors play a critical role in HVAC systems, 
and accurately predicting their performance is essential for optimizing 
energy efficiency and reducing environmental impact. 

Modeling approaches can be broadly categorized as either detailed 
models (white-box), empirical models (black-box) and semi-empirical 
models (grey-box). While all approaches have their merits, the choice 
of modeling approach depends on the available data, computational 
resources, desired accuracy and final application. White-box models, 
which are based on fundamental physical principles, provide detailed 
insights into the underlying physical phenomena but are more compu-
tationally intensive, are less integrable and require extensive knowledge 

of the system which is typically unavailable (utilized mainly by 
component designers and manufacturers). Grey-box models are formu-
lated using equations describing physical processes and use experi-
mental data to fit parameters such as polytropic coefficients, heat 
transfer coefficients, death volumes, etc. Their accuracy is limited and 
related to the assumptions taken. They typically involve fitting expo-
nents or solving complex equations, making them harder to fit for 
general users and more challenging to implement in bigger simulation 
systems. In contrast, black-box or empirical models only rely on data- 
driven relationships, and although they may lack physical interpret-
ability, they offer simplicity and flexibility by capturing the observed 
behavior of the system. 

Manufacturers commonly have used a black-box model for charac-
terizing fixed-speed compressors (standard AHRI-540 [1]). The standard 
defines a third-degree polynomial expression with 10 fitting coefficients 
for predicting energy consumption and mass flow rate as a function of 
evaporating and condensing temperatures. Nevertheless, this standard is 
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becoming outdated today because heat pump and chiller manufacturers 
are now moving to use variable-speed compressors, where the 
compressor speed plays a key role in its performance. 

Unfortunately, there is currently no established standard for char-
acterizing variable-speed compressors, and a common solution adopted 
by manufacturers is to use a similar approach to the one described in the 
AHRI-540 but introducing the speed as an extra independent variable 
[2–5]. This results in a total of 20 terms considering a second-order 
polynomial and three independent variables (Te, Tc and fc) [Eq.(1)]. 
This model will be called AHRI-20 from now on. 

ṁ|Ẇc = k1 + k2Te + k3Tc + k4fc + k5T2
e + k6T2

c + k7f 2
c + k8TeTc + k9Tefc

+k10Tcfc + k11T3
e + k12T3

c + k13f 3
c + k14T2

e Tc + k15T2
e fc + k16T2

c Te

+k17T2
c fc + k18f 2

c Te + k19f 2
c Tc + d20TeTcfc

(1)  

One crucial aspect when proposing a compressor model based on 
experimental information (especially for black-box models) is adapting 
its complexity to the information embedded in the available data. If the 
model becomes too complex, it will start capturing noise rather than 
authentic underlying patterns. This behavior is called overfitting and 
can lead to inaccurate predictions, particularly in cases of limited or low- 
fidelity data. A previous study [6] highlighted the limitations of AHRI- 
20, the study showed that the model tended to overfit when data is 
scarce or lacks fidelity. To avoid such issues, it is essential to carefully 
select and justify the complexity of the proposed model to ensure ac-
curate interpolation and extrapolation. 

Other studies have explored the use of Artificial Neural Networks 
(ANNs) to model compressors [7–10]. While ANNs can capture complex 
relationships within the data, their integration into other systems and 
reporting fitted parameters can be challenging. The difficulty lies in the 
opaque nature of ANNs, making it difficult to interpret the underlying 
relationships and understand the model’s behavior. In contrast, compact 
linear models with justified complexity offer a promising alternative, 
providing acceptable accuracy while remaining transparent and 
interpretable. 

In Ossorio and Navarro-Peris [6], the performance of the most used 
compact models to predict energy consumption for variable speed 
compressors were analyzed. In the analysis, either empirical or explicit 
semi-empirical models were included, and they were evaluated with a 

train-test procedure. Semi-empirical models performed generally well, 
showing an acceptable accuracy with a limited number of fitting co-
efficients. However, due to their non-linear formulation, they had 
convergence problems during coefficient fitting. Among the studied 
models, Shao’s model [Eq.(2)] offered a good trade-off between 
complexity and accuracy and managed to be applicable also to scroll 
compressors, even if it was originally tested only with rotary technology. 
However, the number of coefficients used were not analyzed. Addi-
tionally, a model for discharge temperature was not proposed, and the 
effect of SH on performance was not assessed. 

ṁnom|Ẇc,nom = k1 + k2Te + k3Tc + k4T2
e + k5T2

c + k6TeTc  

km|p =
ṁ

ṁnom
or

Ẇc

Ẇc,nom
= c1

(
fc − fc,nom

)2
+ c2

(
fc − fc,nom

)2
+ c3 (2)  

Modeling discharge temperature in compressors is also vital as it pro-
vides information about power losses, heating capacity and condenser 
inlet temperature. However, it remains a topic of limited study 
compared with the proposed mass flow and energy consumption models. 
The most common approaches assume constant isentropic efficiencies or 
introduce a term dependent on energy consumption to model energy 
losses (e.g., Ashrae Toolkit [11]). Others try modeling ambient losses as 
a function of a virtual compressor shell temperature [12]. 

Given the introduced state of the art, this study proposes compact 
map-based models to predict mass flow rate, compressor energy con-
sumption and discharge temperature with a low number of coefficients. 
The proposed models can also model the effect of speed on the 
compressor performance and show average prediction errors lower than 
5 %, having no more than six fitting coefficients. Moreover, the impact 
of suction conditions on the modeled variables is assessed, and a general 
correlation is proposed to model it without introducing new fitting co-
efficients. Finally, a robustness analysis is carried out based on a train- 
test methodology, which analyzes the required number of train data 
needed to fit the model, avoiding overfitting. 

2. Methodology 

The methodology followed to obtain compact prediction models 
starts with studying a high-fidelity experimental data set obtained from 

Nomenclature 

Abbreviations 
CV coefficient of variance of RMSE 
displ compressor displacement 
PR Pressure Ratio 
RMSE Root Mean Square Error 

Symbols 
fc compressor speed [Hz] 
k#,s#,c# fitting coefficients 
kc compressor efficiency ratio 
km mass flow ratio 
kp consumption ratio 
kv volumetric efficiency ratio 
ṁ mass flow [g/s] 
P pressure [bar] 
SH Super Heat [K] 
T temperature [K] 
Ẇc compressor consumption [W] 
X̄ Magnitude average 

Subindex 
0 at no load 
1 suction 
2 discharge 
c condensing 
e evaporating 
esp specific (divided by ṁ)

is isentropic 
nom at reference speed 
pred predicted with a prefitted correlation 
rat ratio with nominal conditions 

Superindex 
# at reference SH 
‘ Redefined 

Greek letters 
α loss fraction of effective work 
ηc compressor efficiency 
ηem electromechanical efficiency 
ηis isentropic efficiency 
ηv volumetric efficiency 
ρ density [kg/m3]  
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a variable-speed compressor, which will be used as a reference. For this 
step, it is essential to use real empirical data obtained from a laboratory 
test bench rather than catalog data, as the latter tends to be predicted 
from pre-fitted models instead. 

The data used for this study has been obtained from a compressor test 
bench whose complete description is available in [6]. On this test bench, 
a variable-speed scroll compressor working with R290 was tested over 
an extensive envelope of condensing and evaporating temperatures 
(Fig. 1). This same pattern was repeated at different speeds ranging from 
30 to 110 Hz to study the influence of speed on performance. It has to be 
noted that the test matrix was designed to be as orthogonal as possible to 
make it possible to study how each variable affects the performance 
independently. In total, 133 different conditions were tested, and each 
individual result can be accessed at [6]. 

From the study of the empirical data, the main trends are retrieved, 
which are then employed to design and improve predicting correlations 
for mass flow, consumption and discharge temperature, focusing on the 
dependence of these variables with speed. 

Then, to ensure that the conclusions obtained for this compressor 
technology can be generalized for multiple compressor models and 
technologies, the obtained correlations will be validated against the 
experimental datasets summarized in Table 1. 

In Table 1, the first three columns represent experimental data ob-
tained by the authors in the mentioned compressor test bench [6]; the 
two first datasets were already reported in a previous study [6] and the 
third data set is reported as complementary material in this manuscript. 
The other datasets (columns 4 to 7) represent datasets of variable-speed 
compressors published in other studies. 

Cuevas and Lebrun [13] provided a dataset with 48 different con-
ditions at five different speeds. Even if it does not cover the complete 
compressor envelope, the test matrix maps a significant portion of it and 
presents quite an orthogonal design. Additionally, the experimental 
uncertainty was low. 

Shao et al. [14] tested a rotary compressor working with R22. 
However, in his study, only the experimental ratio of mass flow and 
consumption for nominal speed seems to be provided, not the absolute 
results (as for nominal speed only a 6-coefficient correlation is pre-
sented). Consequently, this dataset is partially filtered by the model used 
and not exclusively empirical. Nevertheless, it was considered in this 
study, so a direct comparison can be made between their correlation and 
other alternatives. 

Winandy et al. [12] published an experimental data set of a 
mechanically-driven open-type reciprocating compressor working with 
R12. The piston had a significant displacement and the tested speeds 
were very low, which is unusual for domestic heat pumps. The dataset 
consists of only 25 conditions tested at three different speeds ranging 
from 6 to 11 Hz. Both power and mass flow measurements were indirect, 
with a high stated uncertainty of 5 and 3 %, respectively. 

Finally, Moradi et al. [15] studied the performance map of a heat 
pump and published a performance data set with 44 test results over five 
different speeds. The test matrix was not centered on the compressor 
envelope but on the HP instead. Consequently, higher pressure ratios are 
tested as compressor speed increases, so studying the speed effect ceteris 
paribus is challenging. Additionally, the mass flow measurement was 
indirect and the power meter resolution was 100 W, resulting in a high 
observed experimental uncertainty. 

All the mentioned variable-speed compressors were tested at con-
stant superheat conditions and consequently, the effect of suction con-
ditions on performance cannot be studied. That is why the effect of 
suction conditions will be studied in another section using the dataset 
AHRI21 [16] for a fixed-speed compressor and the conclusions are ex-
pected to be extrapolated for variable-speed compressors. 

In the AHRI21[16] dataset, five different refrigerants were tested in 
the same compressor, and for each refrigerant, three complete experi-
mental maps were obtained for different suction conditions; one for SH 
= 11 K, other at SH = 22 K and the last keeping the suction temperature 
at 18 ◦C. A summary of the complete dataset is displayed in Table 2. 

For the evaluation of the accuracy (goodness of fit) of the proposed 
models, RMSE and CV estimators will be used. Root Mean Squared Error 
(RMSE) represents the standard deviation of the prediction errors and it 
is reported with the same units of the modeled variable. Coefficient of 
Variation of RMSE (CV) constitutes a normalized RMSE and could be 
used as an estimator of the expected relative error. It can be used to 
compare models when applied to different ranges. 

CV =
RMSE

X̄
=

1
X̄

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(ŷt − yt)
2

N

√

(3)  

Fig. 1. Test matrix and compressor envelope.  
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3. Results 

3.1. Mass flow 

3.1.1. Experimental results 
In this section the obtained mass flow results of the intensively tested 

scroll-290 compressor are analyzed. 
In Fig. 2 the mass flow evolution is displayed either based on tem-

peratures and pressures. 
The variables that affect mass flow the most are compressor speed 

and the evaporation condition. It should be noted that the influence of 
condensing temperature is very subtle and the variation of mass flow 
with it is barely perceptible with the scale of the graph. It is also worth 
mentioning that the response surface is almost linear if mass flow is 
plotted against the evaporating pressure. 

In Fig. 3, the experimental volumetric efficiency – defined with 
Eq.(4) – is plotted against pressure ratio (PR), and the different lines 
represent the different tested speeds. 

ηv =
ṁ

ρ1fcdispl
(4)  

Volumetric efficiency is close to 1 at low PR and decreases quite linearly 
as PR increases. Volumetric efficiency does not show a strong de-
pendency on speed at medium and high speeds. However, volumetric 
efficiency clearly decreases at low speeds, and this decrease is more 
significant as PR increases. 

This reduction in volumetric efficiency can be explained by internal 
leakages in the compressor chamber. As compression speed decreases, 
the compression is slower and refrigerant has more time to leak. Addi-
tionally, in the tested compressor, the oil sump is in the bottom part of 
the compressor, and a borehole in the shaft (acting as a centrifugal 
pump) is responsible for pumping the oil from the carter to the 
compressor chamber and the main bearings. The centrifugal action is 
significantly reduced at low speeds, and the pumped oil can be 

insufficient to create a hydrodynamic film to correctly seal the 
compression chamber, increasing the leakages and dropping the volu-
metric efficiency. 

3.1.2. Model 
As introduced in the first section, historically mass flow has been 

modeled with correlation based on working temperatures (Te and Tc). 
However, as deduced from Fig. 2, the fact of using pressures instead of 
temperatures as modeling variables could significantly reduce the 
required model complexity. The AHRI-540 standard [1] uses 10 co-
efficients for fixed-speed compressors, including up to cubic terms, but if 
pressures are used as modeling variables, an acceptable accuracy could 
be obtained using fewer coefficients. In this line Marchante-Avellaneda 
et al. [17] proposed a model based on working pressures and using only 
four coefficients for fixed-speed compressors Eq.(5). 

ṁ = k0 + k1Pe + k2Pc + k3PePc (5)  

In order to model the effect of speed in mass flow, Shao et al. [14] 
proposed an approach using a 3-coefficient quadratic equation to model 
the ratio between mass flows at any speed and the nominal one (km) [Eq. 
(2)] and proved that these ratios were dependent only on speed not on 
working conditions. This methodology allows to model the compressor 
in a decoupled manner: with one equation representing how mass flow 
evolves at one speed (typically the rated one) and another to model the 
mass flow variation with speed. 

However, the ratio km is heavily dependent on speed differences and 
it is known a priory that doubling speed will approximately double the 
mass flow. Consequently, modeling km as a function of speed differences 
ends up adjusting this pre-known behavior resulting in a linear term 
very close to unity, an intercept very close to zero and a quadratic term 
with low significance. 

In this study, to solve that limitation, the ratios of volumetric effi-
ciencies (kv) will be used instead to model the speed influence on the 
performance. The process of deducing kv from km is represented in Eq.(6) 
and concludes that the relation between one and the other is just the 
speed ratio between any speed and the nominal one (fc,rat). 

(6)  

In Fig. 4, the km and kv evolution with speed is displayed for two 
different compressors; Shao’s compressor in the first column and the 
reference compressor in the second column. 

In the first row the quadratic fit of km is represented with a dashed 
red line, it should be noted that it is practically indistinguishable from a 
straight line of slope 1. However, if kv are represented, the quadratic 
evolution becomes clear and the decrease of volumetric efficiency at low 

Table 1 
Summary of variable-speed compressor datasets.   

Scroll-R290 Scroll-R410A Scroll- 
R454C 

SCROLL- 
R134a 

Rotary- 
R22 

Piston- 
R12 

Piston- 
R134a 

Source Exp. [6] Exp. [6] Exp. Cuevas[13] Shao[14] Winandy[12] Moradi[15] 
Tech scroll scroll scroll scroll rotary piston piston 
Displ [cm3] 46 44.5 44.5 54.25 20.7 680 74.83 
Refr R290 R410A R454C R134a R22 R12 R134a 
Te [◦C] − 30 / 25 − 30 / 7 − 15/44 14 / 68 − 10 / 15 − 26 / 23 − 13 / 2 
Tc [◦C] 20 / 70 25 / 49 28 / 85 39 / 101 40 / 60 8–68 19 / 65 
fc [Hz] 30 / 110 15 / 100 15 / 100 35 / 75 30 / 120 6–11 30 / 50 
fc_nom [Hz] 70 60 60 50 60 6 45 
SH [K] 10 10 10 7 11 28 12 
Tests 133 35 87 48 296 25 44  

Table 2 
Summary of multiple SH dataset.   

SH11 SH22 T1_18 

Compressor Model ZS21KAE-PFV 
Technology Hermetic scroll 
Displacement [cm3] 50.96 
Refrigerants R404A, ARM31a, D2Y65, L40, R32_R134a 
Tevap Range [◦C] − 23 / 1.6 
Tcond Range [◦C] 21 / 60 
Nominal Speed [Hz] 60 
Suction Conditions SH = 11 K SH = 22 K T1 = 18 ◦C 
Tests 63 63 63  
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speeds becomes evident. Fig. 4 also shows that the variation range of kv 
is very narrow compared with km and typically values close to one are 
achieved meaning that the effect of speed on ηv is reduced and conse-
quently a simplified model as Eq.(7) could be used. 

(7)  

Additionally, from Fig. 4 it is observed that kv reaches a maximum at a 
given speed and the overall behavior is parabolic. Accordingly, if extra 
accuracy is needed and the effect of speed in volumetric efficiency needs 
to be acquainted the proposed correlation in Eq.(6) was proposed. 

kv = km
1

fc,rat
=

ṁ
ṁnom

fc,nom

fc
∼ k4

(

fc,rat −
k5

fc,nom

)2

+ k6 (8)  

By definition, kv must be 1 at nominal speed and thus, that constraint can 
be used to define b3 as a function of the other two fitting coefficients 
[Eq.(9)], resulting in a correction expression with only two coefficients 
instead of three as the one proposed by Shao et al. 

k6 = 1 − k4

(

1 −
k5

fc,nom

)2

(9)  

Furthermore, due to the formulation of the correlation, both fitting co-
efficients represent important information: k5 represents the speed at 
which the volumetric efficiency reaches its maximum and k4 represents 
the curvature of the parabola, in other words the influence of speed on ηv. 

Finally, if equations Eq.(7) and Eq.(8) are combined, a general 
expression is obtained to predict mass flow at any given condition of 
working pressures and speed [Eq.(10)]. 

ṁ = ṁnomfc,ratkv

= (k0 + k1Pe + k2Pc + k3PePc) fc,rat

[

k4

(

fc,rat −
k5

fc,nom

)2

+ k6

]

(10)  

It is important to note that the general equation has only 6 coefficients as 
b3 is calculated with Eq.(9). 

Fig. 5 represents the correlation graph of the presented model 

Fig. 2. Evolution of mass flow with compression conditions at nominal speed (Up). Evolution of mass flow as a function of evaporating temperatures (Down-left) and 
pressures (Down-right). 
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applied to “scroll-R290” compressor. The resulting modeling error is 
low, with a RMSE of 0.219 g/s and a CV lower than 1 %. 

To validate the obtained result, the model was also tested against the 
other experimental datasets described in Table 1 and the obtained RMSE 
and CV are displayed in Fig. 6. 

In Fig. 6 the baseline is reported by the AHRI-20 model which, when 
fitted with all the experimental data set, provides the highest accuracy as 
it has many fitting coefficients (20 coefficients in total). It should be 
remembered though, that the number of coefficients in AHRI-20 model 
was not justified and having a high number of coefficients will always 
adjust better the train data but risks overfitting; incurring in higher 
prediction errors with unseen data as seen in Section 3.2. 

Additionally, to AHRI-20 results, the modeling errors of Shao cor-
relation and the new proposed model are also displayed. It is remarkable 
how, with less than half the number of fitting coefficients, both obtain 
similar fitting results compared to AHRI-20 in most compressors. This is 
other indicator that using 20 coefficients is overmuch. 

Comparing Shao and the proposed correlation, the proposed corre-
lation performs better consistently, even with less fitting coefficients (six 
versus nine). The only data set that Shao had better accuracy is piston- 
R12 in which the difference in accuracy falls in the experimental un-
certainty band. 

In the piston-R12 compressor, the difference between the modeling 
accuracy of AHRI 20 and the compact models increases which can be 
explained by the high experimental error and the low number of tests. 
AHRI-20 has 20 fitting coefficients and the dataset only 25; conse-
quently, the chances are high that AHRI-20 is overfitting the given 
dataset. 

Finally, in piston-R134a the obtained CV surpass the 5 % threshold 
even for AHRI-20 model which clearly indicates a high experimental 
error. However, what is remarkable is the impossibility of Shao’s model 
to adjust the data. This fact can be explained as the tested temperature 
range was not the same for all tested speed and thus important extrap-
olations are involved. 

Fig. 3. Evolution of volumetric efficiency with pressure ratio and speed.  

Fig. 4. km and kv evolution with speed for two different compressors.  
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Proven the accuracy of the proposed model, the obtained fitted co-
efficients for the different compressors are listed in Table 3 (using g/s, 
bar and Hz) together with its fitting accuracy expressed as RMSE, MRE 
and CV. Note that the coefficient k5 represents the speed at which the 
volumetric efficiency becomes maximum and, in the studied compres-
sors, it tends to be in the high-speed domain of each compressor. 

3.2. Energy consumption 

3.2.1. Experimental results 
This section analyses the energy consumption results of the inten-

sively tested scroll-290 compressor. 
In Fig. 7 the evolution of energy consumption with working tem-

peratures and speed is displayed. 
The main variable affecting consumption is the compressor speed, 

which affects the energy consumption proportionally. For a given speed, 

the variable affecting the most the energy consumption for the analyzed 
compressor is the condensing temperature. Regarding the evaporating 
temperature, when it increases two counteracting phenomena occur: 
firstly, the suction pressure and density increase, increasing the mass 
flow and thus increasing the expected energy consumption; secondly, 
the pressure ratio reduces thus decreasing the expected consumption. 
These counteracting phenomena make the energy consumption practi-
cally independent on suction temperatures for pressure ratios higher 
than three for the selected compressor working at nominal speed. This 
analysis was conducted with an scroll compressor and it could be 
different for piston as stated in [18]. 

Fig. 8 shows the evolution of compressor efficiency (defined with Eq. 
(11)) with pressure ratio and speed – at different condensing tempera-
tures –. 

ηc =
ṁ(h2s − h1)

Ẇc
(11)  

It should be pointed out that compressor efficiencies at central speeds 
(50, 70 and 90 Hz) behave homogeneously, having a maximum between 
pressure ratios of 2.5 and 3. This maximum is explained by the scroll’s 
built-in volume ratio; for lower PRs the refrigerant is discharged with an 
overpressure that is dissipated in the discharge valve (explaining the 
rapid decrease in efficiency). The designed scroll’s built-in volume ratio 
is parameter that is not displayed in catalogs and thus it is not known a 
priori; however similar results have been reported by Winandy et al 
[19]. 

At low speeds and high condensing temperatures, a decrease in 
compressor efficiency is manifested. Cuevas and Lebrun [13] suggested 
a possible explanation of this effect: a lack of lubrication at low 
compressor speeds, which increased internal leakages and possibly also 
frictional losses. The internal leakages are related to the pressure dif-
ference, which explains why these become more relevant at high 
condensing temperatures. 

Additionally, the compressor efficiency decreased also slightly at 
high speeds due to increased mechanical losses. These mechanical losses 
do not depend heavily on the working temperatures; thus, at lower 
condensing temperatures where the compressor has a lower consump-
tion, they have a major impact on efficiency. 

Another variable that can be analyzed is the specific consumption, 
defined as the ratio between energy consumption and refrigerant mass 
flow [Eq.(12)]. Its evolution with compression conditions is displayed in 
Fig. 9. 

Ẇesp = Ẇc/ṁ (12)  

The evolution of the specific energy consumption seems to have a cor-
relation with the pressure ratio as the isolines tend to be quite parallel to 
the pressure ratio lines. However, the isolines tend to converge at a 
virtual point lower than the convergence point of pressure ratio lines 
[18]. 

On the other hand, specific consumption seems to be independent 
with speed except for the lowest speed in which an increase of specific 
consumption is evident and it becomes more significant at higher 
pressure ratios. The increase in specific consumption at low speeds is 
explained by a decrease of volumetric and compressor efficiency due to 
lubrication problems and could be used to limit the compressor 
envelope. 

3.2.2. Model 
As observed in the obtained results, the specific consumption is the 

simplest variable to model due to its smooth and linear behavior. The 
modeling of power consumption through a correlation based on specific 
consumption was already proposed for fixed-speed compressors by 
Marchante-Avellaneda et al. [18], whose general expression is displayed 
in Eq.(13). In his study, Marchante-Avellaneda et al. [18] also concluded 
that this correlation could apply to both reciprocating and scroll 

 RMSE = 0.219 (g/s)
 CV = 0.747 (%)
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Fig. 5. Correlation plot of mass flow model applied to reference compressor.  

Fig. 6. Goodness of fit of mass flow models applied to different data sets.  
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compressors as they behave homogeneously in the domain of specific 
consumption. 

Ẇesp= Ẇc/ṁpred = k0 + k1P′
r + k2P′

r
2
+⋯+ knP′

r
n  

with P′
r =

Pc − zc

Pe − ze
(13)  

Being k#, zc and ze the fitting parameters and the determination of the 
order (n) of the correlation is done iteratively. The required order of Eq. 
(13) for the studied dataset was one, as adding a quadratic term did not 
significantly improve the model accuracy. Regarding zc and ze they 
represent a translation of the cartesian origin to the convergence point of 
the iso-specific-consumption lines in Fig. 9-LEFT as stated in [18]. 

It should be noted that the specific energy consumption correlation is 
coupled with the mass flow model. Consequently, the uncertainty of 

Table 3 
Model coefficients and goodness of fit of the mass flow model applied to the different compressors.   

scroll-R290 scroll-R410A scroll-R454C scroll-R134a rotary-R22 piston-R12 piston-R134a 

k0 − 0.810*** − 2.910 − 5.716** 3.873 − 7.894*** − 12.569* 1.130 
k1 6.815*** 10.290*** 12.281*** 12.441*** 20.278*** 26.817*** 8.789** 
k2 − 0.019* − 0.215** − 0.121 − 0.681*** − 0.298*** − 0.241 0.466 
k3 − 0.008*** − 0.008 − 0.059*** 0.021+ − 0.128*** − 0.269+ − 0.300 
k4 − 0.026*** − 0.073*** − 0.088** − 0.198*** − 0.125*** 0.143 − 0.050 
k5 104.386*** 92.450*** 72.354*** 55.535*** 99.723*** 7.850*** 79.378 

Num.Obs. 133 35 87 48 296 25 44 
RMSE 0.22 0.64 2.46 1.76 0.66 3.25 1.34 

CV 0.75 1.23 3.28 1.47 0.60 4.12 7.54  
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Tc = 20 ºC Tc = 30 ºC Tc = 40 ºC
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Fig. 7. Evolution of energy consumption with compression conditions at nominal speed (Up). Evolution of energy consumption as a function of evaporating tem-
peratures and speed (Down). 
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mass flow measurements will affect the accuracy of the energy con-
sumption model. That is why using predicted values obtained from a 
pre-fitted mass flow model is generally preferred over empirical results, 
as using a correlation partially filters the noise level introduced by 
experimental uncertainty. 

This correlation also has the advantage of partially accounting for 
the speed effect (as it normalizes the consumption with the mass flow) 
and thus, it can be used to extrapolate energy consumption to different 
speeds, especially if the compressor efficiency is not greatly affected, 
which typically happens at speeds close to rated speed. 

If higher precision is required in the analysis of the speed effect, an 
approach similar to the one followed by Shao et al. [14] can be followed. 
Shao et al. [14] defined a power ratio with respect to rated speed (kp) 
and modeled it with a 3 coefficients quadratic equation [Eq.(1)]. How-
ever, as happened with mass flow, it ends up modeling a pre-known 
behavior as consumption is expected to approximately double when 
speed is doubled. 

To correct that, the ratio kc will be studied instead of kp. kc is defined 
in Eq.(14) as the ratio of specific consumptions. It should be noted, that 
this ratio also represents the inverse of the ratio of compressor efficiency 
and can be deduced from kp and km rations [Eq.(15)]. 

(14)  

kc =

Ẇc
ṁpred

Ẇc,nom
ṁpred,nom

=
kp

km
(15)  

Fig. 10 shows a comparison between the evolution of kp and the inverse 
of kc with speed for two different compressors (Shao’s compressor in the 
first column and the reference compressor in the second column). The 
inverse of kc was plotted (instead of kc) as it represents the compressor 
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efficiency ratio, and its maximum represents the most efficient 
condition. 

The evolution of kp with speed ratio is plotted in the first row. The 
evolution presents a slight curvature but it is not far from a straight line 
with 45◦ slope which implies that kp has a strong dependence with speed 
ratio. This linear dependence is normalized in the case of kc which al-
lows to retrieve more significant results from its study. In particular, it 
permits to analyze how speed affects compressor efficiency. In both 
compressors the optimum compressor efficiency is obtained at speeds 
close to the nominal and in the rotary-R22 data set the effect of speed in 
compressor efficiency is much more significant reaching a decrease in 
efficiency close to 25 % at low and high speeds. 

To model the evolution of kc with compressor speed, the same 
parabola equation used to model kv in Eq.(8) is proposed. 

kc =
Ẇesp

Ẇesp,nom
=

ηc,nom

ηc
∼ k4

(

fc,rat −
k5

fc,nom

)2

+ k6   

with k6 = 1 − k4

(
1 − k5

fc,nom

)2                                                            
(16) 

With this formulation k5 represents the speed at which compressor 
efficiency reaches its maximum and k4 represents the influence of speed 
on kc. 

If both Eq.(13) and Eq.(16) are combined, a general expression for 
the energy consumption of variable-speed compressors can be written as 
Eq.(17). 

Ẇc/ṁpred =

(

k0 + k1
Pc − k2

Pe − k3

)[

k4

(

fc,rat −
k5

fc,nom

)2

+ k6

]

(17)  

Resulting in a correlation with six coefficients which, compared to Shao 
et al. [14] model with nine, implies a reduction of three coefficients. The 
result of training the proposed correlation with the complete data set of 
the reference compressor is displayed in Fig. 11. 

The obtained RMSE is lower than 100 W and the CV is close to 3 % for 
the reference compressor. In order to validate that result, the energy 
consumption model in Eq.(17) was fitted for all the presented data sets 
in Table 1 and the model accuracy is plotted in Fig. 12 among the fitting 
results obtained by Shao et al. [14] model and using as baseline the 
goodness of fit of AHRI-20 model. 

Both compact models have similar modeling errors and tend to 
achieve less than 5 % CV values. Despite having more coefficients (9 vs 
6), only two data sets were adjusted better by Shao et al. [14] model and 
with very subtle differences. Additionally, it should be noted the case of 
the rotary-R22 compressor, which was reported in Shao et al. [14], and 
how the proposed model managed to perfectly fit the dependence of 
compressor efficiency with the speed, performing significantly better 
than Shao et al. [14] model itself and obtaining very similar results 
compared with AHRI-20 model (but using less than one-third of co-
efficients). However, even if the proposed model fitted very accurately, 
it should be remembered that the rotary-R22 data set was partially 
reconstructed using pre-fitted models and more experimental data from 
rotary compressors would be needed to generalize the results to all ro-
tary compressors. 

AHRI-20 model managed to fit all datasets with reduced prediction 
errors, but it should be noted that the coefficient fit was made using the 
complete data set and, when this happens, models having a great 
amount of coefficients tend to perform better but risk overfitting when 
adjusted with limited train data. The overfitting in AHRI-20 model was 
evaluated in Section 3.2 Robustness Analysis. 

In Table 4 the fitted coefficients of the proposed model are displayed 
for the different compressor data sets (using kJ/kg, bar and Hz as units). 
k1 tends to be the most significant parameter as it models the variation of 
specific consumption with the corrected pressure ratio. It should also be 
noted that k1 and k2 represent zc and ze respectively which represent 
how the point of convergence of specific consumption isolines are dis-
placed from the origin in Fig. 9-LEFT. The displacement tends to be more 
relevant in the condensing pressure axes and negative (which was ex-
pected to account for no-load losses). Finally, k5 represents the speed at 
which the compressor runs more efficiently; the obtained optimum 
speeds tend to be slightly lower than the ones obtained for volumetric 
efficiency which indicates that the compressor efficiency drop at very 
high speeds is lower than the drop seen in volumetric efficiency. 

3.3. Discharge temperatures 

3.3.1. Experimental results 
The variable-speed scroll compressor working with R290 was tested 

with a suction temperature 10 K higher than the evaporating tempera-
ture and at a controlled ambient temperature of 35 ◦C. In Fig. 13, the 

Fig. 10. kp and kc evolution with speed for two different compressors.  

R. Ossorio et al.                                                                                                                                                                                                                                 



Applied Thermal Engineering 244 (2024) 122666

11

experimental discharge temperatures are plotted. The left graph displays 
the evolution of discharge temperatures around the envelope at rated 
speed. And in the graph at the right, all the tested results are displayed as 
a function of pressure ratio, compressor speed and condensing 
temperatures. 

Fig. 13 – LEFT shows that the highest obtained discharge tempera-
tures are produced in the high-pressure ratio region; in fact, the working 
envelope is typically limited in the high pressure region by the 
maximum allowable discharge temperature, as most frequently used 
lubricating oils degrade at temperatures around 120–130 ◦C. 

In Fig. 13 – RIGHT, discharge temperature shows a high dependence 
on pressure ratio and condensing temperature. However, the effect of 
compressor speed in discharge temperatures is small and typical varia-
tions lower than 5 K are obtained from minimum to maximum speed. 

Typically, modeling discharge temperatures directly is not recom-
mended as the obtained predictions are only valid for the defined SH. 
That is why, modeling other variables less dependent on the suction 
conditions is typically preferred. Fig. 14 plots the compressor isentropic 
efficiencies defined in Eq.(14). 

ηis =
h2s − h1

h2 − h1
(18)  

It can be noted that the evolution of isentropic efficiency is very similar 
to the observed evolution of the compressor efficiency, with a maximum 
at the built-in pressure ratio. This variable is still significantly dependent 
on compression conditions and complex models would be needed to 
model their behavior accurately. 

Another dimensionless variable that could be studied is the electro- 
mechanical efficiency. It is defined as the ratio between the energy 
transferred to the refrigerant and the energy consumption [Eq.(19)] and 
its evolution with the compression conditions is displayed in Fig. 15. 

ηe− m =
ηc

ηis
=

ṁ(h2 − h1)

Ẇc
(19) 

Electro-mechanical efficiency shows low dependence with 
compression conditions for medium and high speeds with stable values 
between 0.85 and 0.9. However, as speed decreases, a strong depen-
dence with pressure ratio appears and the efficiency drops as pressure 
ratio increases. 

3.3.2. Model 
In the literature, the most extended approach to model discharge 

temperatures is to assume a constant isentropic efficiency or to model 
power losses as two terms: a term depending on total compression work 
and a constant term. This last methodology is the one proposed by 
ASHRAE in Toolkit [11], and its formulation is displayed in Eq.(20) 
where the two fitting parameters are: the constant power losses (Wloss0 ) 
and the fraction of usefull energy that is lost as heat (α). 

Ẇc = ṁ(h2 − h1)(1+ α)+Wloss0 (20)  

Eq.(20) can also be rewritten as a function of the previously introduced 
electro-mechanical efficiency, resulting in Eq.(21). 

ηem =
ṁ(h2 − h1)

Ẇc
=

1
1 + α

⎛

⎝1 −
Wloss0

Ẇc

⎞

⎠ = k0 −
k1

Ẇc
(21)  

However, this expression does not consider the pressure ratio or the 
compressor speed, which were proven to affect electro-mechanical los-
ses in variable-speed compressors (Fig. 15). Consequently, if extra ac-
curacy is needed, additional terms can be added, resulting in the model 
of Eq.(22). The predicted electro-mechanical efficiencies with this latter 
model are displayed in Fig. 15 as solid lines. 

ηem = k0 + k1PR+ k2
PR
fc,rat

+ k3
1

Ẇc
(22)  

Eq.(22) was the result of the analysis of the specific power losses and 
their dependence with the studied variables. For more information, 
please refer to Appendix 1: Electro-mechanical losses. 

Once electro-mechanical losses are modeled, the predicted discharge 
enthalpy can be calculated using Eq.(19). And finally, knowing 
discharge enthalpy and pressure, the predicted discharge temperature 
can be computed using any thermodynamic database [20]. 

If the proposed model in Eq.(22) is fitted with the reference 
compressor, the correlation graph in Fig. 16 is obtained with a RMSE 
lower than 1 K for discharge temperatures. 

To validate the presented model, it was fitted to the other 
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Fig. 11. Correlation plot of energy consumption model applied to refer-
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Fig. 12. Goodness of fit of energy consumption models applied to different 
data sets. 
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Table 4 
Model coefficients and goodness of fit of the energy consumption model applied to the different compressor data sets.   

scroll-R290 scroll-R410A scroll-R454C scroll-R134a rotary-R22 piston-R12 piston-R134a 

k0 − 0.251 − 2.783+ − 11.618*** − 5.468*** − 0.662*** 0.665 2.345 
k1 21.030*** 14.283*** 18.378*** 12.970*** 4.315*** 9.862*** 11.775* 
k2 − 6.696*** − 2.328* − 1.921* − 0.029 − 1.487*** − 2.578* − 1.974 
k3 − 0.511*** 0.214 − 0.539** 0.629** − 0.092** − 0.398 − 1.000 
k4 0.185*** 0.139*** 0.144*** 0.545*** 0.533*** − 0.165 0.293 
k5 72.916*** 65.960*** 64.293*** 58.650*** 77.625*** 11.013*** 37.577*** 

Num.Obs. 133 35 87 48 296 25 43 
RMSE 90.77 57.73 137.15 99.88 9.89 127.34 30.32 

CV 3.25 1.75 3.84 2.72 0.54 4.46 4.13  

Fig. 13. Discharge temperature as a function of working pressures for nominal speed (LEFT). Discharge temperatures as a function of pressure ratio, compressor 
speed and condensing temperature (RIGHT). 
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compressors in the dataset and the obtained results are displayed in 
Fig. 17, together with the fitting performance of the reference Toolkit 
model [11]. 

From the results in Fig. 17 the studied compressors can be separated 
into two different groups: one that shows a significant modeling 
improvement when PR and fc are considered and other that does not. 
The grouping does not correlate with the compression technology and 
could be related to dispersion in the empirical results, tested range or 
another non-studied factor. 

In Table 5, all the proposed model’s fitted coefficients [Eq.(22)] are 
displayed for the different compressor data sets. k0 represents the base 
percentage of the compressor consumption that is lost as ambient heat 
and for the reference compressor is close to 10 %. 

3.4. Effect of suction conditions 

This section describes how to modify the presented models to ac-
count for a change in the vapor superheat temperature. 

Regarding refrigerant mass flow and compressor consumption, 
extensive research is available in the literature. For refrigerant mass 
flow, Dabiri and Rice[21] correlation is proposed to correct the effect of 
suction conditions. Its formulation is displayed in Eq.(23). 

ṁ = ṁ#

(

1+F
(

ρsuc

ρ#
suc

− 1
))

(23)  

Regarding ṁ# it represents the mass flow at a rated suction conditions 
whose correlation is given in Eq.(10). The F parameter introduced in the 
expression can be assumed to be 0.75, value that has been generally used 
in the literature. However, if extra accuracy is needed and datasets at 
different superheats are available the parameter F can be fitted using 
experimental data. 

The literature also mentions that compressor consumption tends to 

be relatively unaffected by suction conditions, and the impact of su-
perheat on consumption is usually disregarded. Consequently, Eq.(24) 
can be applied directly with Ẇ#

esp being the specific consumption ob-

tained at rated suction conditions in Eq.(17) and ṁ# the mass flow at the 
same suction conditions at which the coefficients in Eq.(17) were 
adjusted. 

Ẇc = Ẇ#

c = Ẇ#

espṁ# (24)  

As mentioned in the previous section, suction conditions greatly affect 
discharge temperatures, and that is why its modeling was based on 
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electro-mechanical efficiencies (dimentionless) rather than on working 
temperatures. Considering η#em as the electro-mechanical efficiency at a 
reference suction condition, the ratio expressed in Eq.(25) can be writ-
ten as: 

(25)  

Then, if it is supposed that consumption and enthalpy difference are not 
affected by the suction conditions, the proposed ratio can be simplified 
as a ratio of mass flows, which in turn can be approximated by Dabiri 
and Rice correlationin Eq.(23), resulting in the general expression for 
different suction conditions displayed in Eq.(26). 

ηem = η#
em

ṁ
ṁ#

=

⎛

⎝k0 + k1PR+ k2
PR
fc,rat

+ k3
1

Ẇc

⎞

⎠

(

1+F
(

ρsuc

ρ#
suc

− 1
))

(26)  

This general correlation was tested with the dataset summarized in 
Table 2, consisting of a fixed-speed scroll compressor working with 
different refrigerants. Each refrigerant was tested at three suction con-
ditions (SH = 11 K, SH = 22 K and T1 = 18 ◦C). First, the electro- 
mechanical model was fitted with the dataset at SH = 11 K and then it 
was used to predict discharge temperatures for the other suction 

conditions without using any correction - Fig. 18 (Left) - and using the 
Dabiri and Rice correction with F = 0.75 – Fig. 18 (Right) –. 

The results in Fig. 18 show that the correction effectively reduces the 
prediction errors when the model is extrapolated to different suction 
conditions. For the particular case shown in Fig. 18 Dabiri and Rice 
correction reduced the prediction RMSE from 2.7 ◦C to values lower 
than 1 ◦C without introducing any further fitting parameters. To confirm 
that this result can be generalized, the same methodology was applied to 
the rest of the tested refrigerants and the results are summarized in 
Table 6. 

With all the tested refrigerants, the correction significantly decreased 
the prediction errors of the discharge temperature without introducing 
new fitting parameters. 

3.5. Robustness analysis 

As introduced in the first section, when fitting empirical models, a 
recurrent problem is overfitting, which occurs when the complexity of 
the model is higher than the information imbibed in the data. When 
overfitting occurs, the model seems to fit well the train set but will fail to 
predict new data. To test the model against overfitting a train-test 
methodology is needed in which the data set is split into two groups; 
one will be used to fit the model coefficients and then the complete 

Fig. 17. Goodness of fit of discharge temperature models applied to different data sets.  

Table 5 
Model coefficients and goodness of fit of the proposed discharge temperature model applied to the different compressor data sets.   

scroll-R290 scroll-R410A scroll-R454C scroll-R134a piston-R12 piston-R134a 

k0 1.03e− 01*** 1.30e− 02 2.75e− 01*** 8.45e− 02*** 1.29e− 01*** 3.10e− 01+
k1 − 3.90e− 03*** 6.34e− 04 − 1.86e− 02+ − 2.69e− 02*** − 3.24e− 03 − 5.76e− 02 
k2 8.00e− 03*** 1.31e− 02*** 6.97e− 03 1.89e− 02*** 3.40e− 02** 4.36e− 02+
k3 − 1.48e + 01** − 3.63e + 01 − 1.59e + 02** 9.27e + 00 − 1.40e + 01 − 1.39e + 02* 

Num.Obs. 133 35 87 48 25 43 
RMSE 0.01 0.03 0.09 0.01 0.03 0.06 

CV 1.31 3.10 10.47 1.48 3.95 6.82  
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dataset is used to check the accuracy of new predictions. 
This train-test procedure was applied to both AHRI-20 model and the 

new proposed models to study the minimum number of tests required to 
fit a model avoiding overfitting. 

The train-test methodology was applied 50 different times to each 
model and dataset. 50 different prediction errors were computed for 
each case which are represented aggregated using box-whiskers dia-
grams in Fig. 19. 

For selecting the position of the train tests different methodologies 
arise. The simplest one is choosing the train samples randomly, however 
this methodology does not map the complete working range homoge-
neously. Clustering techniques solve this problem but tend to exclude 
train samples located in the borders of the working range, forcing the 
models to make extrapolations. 

To ensure comprehensive coverage of the complete working range, 
including its limits, maxDissim methodology was selected [22]. It in-
volves adding train tests iteratively trying to that maximize the 
dissimilarity between the new added samples and the existing ones. 
Additionally, this technique can ensure obtaining 50 different train sets 
by selecting each time a differernt first seed of three tests. It is important 
to note that the train sets selected were the same for the evaluation of 
both models, so a poorly train set choice would affect the performance of 
both tested models. Other sampling techniques, such as fully random or 
clustering were tested but tended to penalize AHRI-20 model more 
aggressively as they introduced more important extrapolations. 

When less than 20 observations were selected, the AHRI-20 model 
was truncated, discarding high-order terms to check whether a simpli-
fied AHRI-like model could compete in accuracy with the proposed 
model. 

Fig. 19 shows that, on average, the proposed mass flow model per-
formed more accurately when fitted with 7 samples compared with 

AHRI-20 fitted with 20 samples. Additionally, Fig. 19 shows that 
increasing the fitting sample above 10 observations does not further 
improve the accuracy of the proposed model for the studied dataset. In 
turn, the AHRI-20 model needs to reach 25 samples to avoid overfitting 
and reach accuracy values similar to those obtained by the proposed 
model. Finally, from Fig. 19, it can also be concluded that the proposed 
model has better accuracy than a scaled-down AHRI-20. 

Fig. 20 shows that the proposed consumption model also reaches a 
good accuracy with 10–15 distributed samples, but on the contrary 
AHRI-20 needs 25. The proposed model trained with only 10 samples 
performs comparable to AHRI-20 fitted with 20, and the proposed model 
works better than a truncated AHRI-20 model for low train sample 
conditions. Finally, AHRI-20 starts giving more accurate predictions for 
train sets with more than 25 tests for some compressors, so the latter 
would be preferred if a high amount of train data is available for the 
studied case. However, in the rotary-R22 and piston-R134a datasets, 
even with a high number of train samples, AHRI-20 does not manage to 
outperform the proposed model. 

It should be remarked though, that the reported training samples 
were chosen trying to homogeneously map the complete compressor 
envelope using a smart maxDissim methodology so extrapolations were 
limited. However, the train data cannot always be gathered following a 
well-designed methodology, and, in those cases, models with an 
elevated number of coefficients could incur much higher prediction 
errors. 

To exemplify this, Fig. 21 shows the result of adjusting AHRI-20 and 
the proposed model with 20 random training points. In the figure, the 
training tests are highlighted as black dots (and were the same for both 
models), the compressor envelope with the original experimental results 
are plotted as a solid surface (with one color for each speed), and finally 
the model predictions are displayed as semi-transparent meshes. It 
should be noted that the prediction area was deliberatively chosen to be 
larger than the original envelope to analyze the extrapolation capabil-
ities of the studied models. 

In Fig. 21a it can be clearly seen how the prediction surfaces of the 
fitted AHRI-20 model present a non-homogenous behavior that is not 
observed in the experimental data. In fact, even negative energy con-
sumptions are predicted when extrapolating at low-pressure ratios. This 
non-desired behavior is typical of overfitted models that predict well the 
training data (in this case with zero prediction error as the number of 
coefficients matches the number of training samples) but fail to model 
the general behavior of the studied system (obtaining in the displayed 
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Fig. 18. Discharge temperature correlation graphs. Without correction (LEFT). Using the correction term with F = 0.75.  

Table 6 
Improvement of prediction errors when Dabiri correction is implemented.  

Refr No corrected Corrected (F = 0.75)  

RMSE [K] CV [%] RMSE [K] CV [%] 

R404A  1.66  2.03  0.92  1.12 
ARM31a  2.46  2.58  0.70  0.73 
D2Y65  2.21  2.32  0.80  0.84 
L40  2.74  2.75  0.74  0.74 
R32_R134a  2.74  2.61  0.91  0.87  
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case a CV of 35 %). On the contrary, Fig. 21b shows the predictions of 
the proposed model, which faithfully reproduces the observed empirical 
results and manages to extrapolate the predictions outside the original 
tested range. 

To check that the obtained results can be generalized, 100 different 
random sets were selected and the prediction errors were calculated for 
each of them. The average obtained CV was 33.7 % for the AHRI-20 
model and more than 20 runs resulted in an even worse performance 

than the displayed in Fig. 21a. On the other hand, the proposed model 
obtained more consistent results (average CV of 5 %). 

The obtained results outline the limitations of the AHRI-20 model to 
perform extrapolations (negative predictions at low pressure ratios) and 
also interpolations (non-physical behavior in the prediction surfaces 
even between train tests) when the training data is small. On the con-
trary, the proposed model was proven to be robust and provides 
reasonable extrapolation and interpolation capabilities. This can be 

Fig. 19. Train-Test methodology to evaluate the robustness of the studied mass flow models.  

Fig. 20. Train-Test methodology to evaluate the robustness of the studied consumption models.  
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explained by the reduction of the number of model coefficients, which 
makes the correlation less sensitive to the position of the train data. 

Given the results, in the case of using AHRI-20 model, it is highly 
recommended to fit its coefficients with a high number of training data 
and also well distributed in the response surface. Additionally, no ex-
trapolations are recommended as the third-order terms present in the 
AHRI-20 correlation can create model instabilities outside the tested 
area. 

4. Conclusions 

Analyzing the performance of variable-speed compressors presents a 
significant challenge due to the extensive data requirements, which may 
explain the limited availability of published data on the subject. This 
study conducted an exhaustive analysis of a high-fidelity calorimetric 
dataset of a variable-speed compressor. The observed tendencies were 
crucial to designing data-driven empirical correlations using no more 
than six coefficients to predict mass flow, consumption and discharge 
temperatures. The obtained models were validated with other published 
datasets and the following conclusions arise:  

– Mass flow  
o A correlation with four coefficients is proposed  
o Correlating mass flow as a function of saturating pressures, rather 

than temperatures, is preferred due to the resulting linear 
relationship.  

o Compressor speed affects volumetric efficiency, which is modeled 
with a quadratic expression, adding two more fitting coefficients.  

– Consumption  
o A correlation with four coefficients is proposed.  
o Correlating specific consumption, rather than base consumption, 

is favored as it partially filters the speed effect by dividing it by the 
refrigerant mass flow.  

o If higher precisions is needed at extreme speeds a quadratic 
expression is proposed to consider the speed effect on compressor 
efficiency.  

– Discharge temperature, 

o the chosen modeled variable was the electro-mechanical effi-
ciency, which was correlated using four coefficients dependent on 
pressure ratios and compressor speed.  

– All the proposed models were generalized for changing suction 
conditions without adding additional coefficients to be fitted.  

– Finally, a robustness analysis concluded that the proposed models 
are preferable to models with many coefficients, especially when the 
amount and quality of the empirical data is scarce and extrapolations 
are needed. A set of 15 tests is enough to adjust the coefficients of the 
proposed model. However, a model with 20 coefficients would 
require a minimum of 25. 

In conclusion, the insights gained from this study and the robust 
models developed offer a practical approach to enhance the accuracy 
and efficiency of variable-speed compressor performance predictions. 
These findings contribute to the advancement of compressor technology, 
providing essential tools for design, selection, control, and fault detec-
tion in HVAC systems. 
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Fig. 21. Comparation between model predictions. Models were fitted using 20 tests distributed randomly. a) AHRI-20 predictions b) Proposed model predictions.  
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Appendix 1. Electro-mechanical losses 

This appendix studies in depth the influence of working variables on electro-mechanical efficiency and serves as a justification for the electro- 
mechanical efficiency correlation proposed in Eq.(22). 

The study starts with a reformulation ASHRAE expression of electro-mechanical efficiency in which Wloss,0 is the no-load power loss and α is defined 
as the specific power losses (the fraction of total consumption that is lost as ambient heat [Eq.(27)]: 

ηem = 1 − α −
Ẇloss,0

Ẇc  

with α =
Ẇloss

Ẇc
=

Ẇc − m(h2 − h1)

Ẇc
(27) 

In Fig. A the evolution of specific power losses (α) with the working conditions is plotted:   

Fig. A. Evolution of specific losses as a function of pressure ratio and speed.  

Fig. A shows a clear dependence of α with PR which can be modeled with a linear equation as Eq.(28). 

α = α0 − k1PR (28)  

According to the given formulation k1 represents the effect of PR in specific losses and the experimental values of k1 are plotted in Fig. B. 
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Fig. B. Evolution of k1 as a function of pressure ratio and speed.  

Fig. B shows high data dispersion at low PR which can be explained by empirical error, specially by the power meter uncertainty (check the 
uncertainty bars). On the other hand, at medium and high PR the empirical uncertainty decreases allowing the study of the effect of speed in k1: at low 
speeds the effect of PR in specific losses is high and tends assimptotically to zero as speed reduces. This effect can be modeled with the correlation in 
Eq.(29) whose predictions are displayed in Fig. B with solid lines. 

k1 = k10 + k11
1

fc,rat
(29)  

Once the effect of the different variables in compressor losses has been analyzed, Eq.(27), Eq.(28) and Eq.(28) can be fusion into a final correlation for 
ηem [Eq. (30)] from where Eq.(22) is deduced. 

ηem =

(

1 − k0 −

(

k1 + k2
1

fc,rat

)

RP

)

−
Wloss,0

Ẇc
(30)  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.applthermaleng.2024.122666. 
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