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Introducing Hybrid Vehicle Dynamics in
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Abstract— Hybrid electric vehicles (HEVs) have reached the
market share required to meaningfully affect many aspects of
the road transport system, including traffic behaviour, energy
consumption, and emissions. However, traffic models for hybrids
remain insufficiently addressed in microscopic simulation because
traditional models ignore vehicle dynamics, and therefore, cannot
capture driving differences that exist among the hybrid, conven-
tional, and electric vehicles. This study extends the lightweight
microsimulation free-flow acceleration (MFC) model and fills
the above gap in the literature by introducing hybrid vehicle
dynamics into traffic simulation. First, the methodology under-
lying the MFC model to reproduce hybrid vehicle dynamics is
described, for both charge depleting (CD) and charge sustaining
(CS) modes. Then, the experimental setup for model validation
and implementation was introduced. The simulations suggest the
proposed MFC model can ensure smooth speed and acceleration
profiles while converging to the steady state. The results show the
MFC model can accurately capture the dynamics of the hybrid
vehicle tested on the chassis dynamometer. The MFC model is
compared with the Gipps’ model and the intelligent driver model
(IDM) regarding their abilities to reproduce driving trajectories
of the hybrid vehicle. It was found, in CD mode, the MFC model
leads to reductions in both speed and acceleration root mean
square errors (RMSEs). In CS mode, the MFC model yields
even greater accuracy gains. When predicting the 0-100 km/h
acceleration specifications, the MFC model also outperforms the
Gipps’ and the IDM, reducing RMSE by 45.8 % and 51.9 %,
respectively.

Index Terms— Hybrid electric vehicles (HEVs), microscopic
traffic simulation, driver behaviour, vehicle dynamics, charge
depleting (CD), charge sustaining (CS).
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I. INTRODUCTION

MICROSCOPIC traffic simulation is an important tool
widely used to enhance our understanding of various

complex traffic-related phenomena. Although macroscopic and
mesoscopic simulations have advantages like computational
efficiency, they lack the necessary fidelity in many aspects
such as actual traffic dynamics, road safety, energy or fuel
consumption, emissions, etc. In addition, simulations with
vehicles in the loop, or with detailed nano-level models can be
cost-ineffective or even impossible to perform. Consequently,
studies on connected and automated vehicles and relevant
management systems are usually carried out through micro-
scopic simulations [1], [2], [3], [4].

While microscopic simulation is an indispensable tool,
it does not come without caveats. The number of different
parts that have to be modelled such as the vehicle, the
driver, the road geometry, the pavement conditions, and other
simulation-specific parts, can be overwhelming. To carry out
simulations, the modellers have to make assumptions and often
use simplified models. One example is the impact of road
geometry that is often not addressed, but recent experimental
observations reveal that road geometry can even cause string
instability under certain conditions [5]. Hence, developing
modelling tools to take it into account is an active research
topic [6], [7], [8]

One of the most challenging aspects to model is the
behaviour of a driver/vehicle unit [9]. During the last decades,
several car-following models and lane-changing models have
been proposed [10], [11], [12]. For a more thorough investi-
gation of the literature on this part, we suggest the following
works [13], [14], [15]. However, the effectiveness of those
models in reproducing the trajectories depends on the inves-
tigated quantity and the fidelity of the results [16], [17].
A significant disadvantage of widely used car-following mod-
els is the way the free flow acceleration is modelled, as shown
by Ciuffo et al. [18]. Common car-following models focus on
the distance maintaining behaviour and use simple equations
for the acceleration part. Those simplifications can affect the
estimation of energy consumption. Moreover, these models
neglect vehicle dynamics in the acceleration process, and
therefore, may withhold the emergence of dynamic traffic
phenomena that can be only observable when using more
advanced models with increased granularity [19].

This has led to an increase in research works regarding
dynamics-based models, such as the Searle model [20], the
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Rakha-Pasumarthy-Adjerid model [21], the Fadhloun-Rakha
model [22], and the MFC free-flow model [23]. Such models
ensure a more reliable and robust acceleration behaviour,
by explicitly using vehicle dynamics in their formulations.
The main focus of the present work is the MFC model, which
can be coupled with existing car-following models, limiting
the acceleration to what is realistic [24]. The model has been
originally designed for internal combustion engine vehicles
(ICEVs) in traffic simulation, and then has been extended
to capture the dynamics of electric vehicles (EVs). A more
detailed discussion of the main differences between the MFC
and other dynamics-based models can be found in the work
by He et al. [25]. Recently, the MFC model has been adopted
by Aimsun, a commercial, widely-used microscopic traffic
simulator [26]. Moreover, the MFC can be directly coupled
with different tools, to have a more accurate fuel consumption
estimation [24], [27]. Additionally, the current MFC version
is openly available as a python library.1

A downside of the original MFC has been the inability to
reproduce the dynamics of hybrid electric vehicles (HEVs)
including full hybrids, mild hybrids, and plug-in hybrids,
which are powered by an internal combustion engine (ICE)
together with one or more electric motors (EMs). Their opera-
tion can be complicated, and harder to reproduce in simulation.
There are detailed powertrain models that can simulate the
operation of hybrid vehicles with high accuracy [28], but they
are demanding in terms of computation time, making them
impractical to be used for microscopic simulations. Moreover,
such works are commonly backward looking, thus the velocity
profile, and the respective accelerations are given as inputs.

In this work, we expand on the original MFC model
formulation, to add the capability to simulate hybrid vehicles.
In the MFC implementation for conventional vehicles [23],
the engine full load potential was coupled with a detailed
drivetrain model, including the clutch, the transmission, and
the differential (or final drive). In the MFC implementation for
electric vehicles [25], the electric motor full load power was
coupled directly with the vehicle’s final drive, for simulating
the electric drivetrain with a fixed gear ratio. For the present
study, a new model is developed, to capture the more realistic
dynamics of hybrid vehicles. Moreover, the model is designed
as an extension of the existing MFC implementation, making
it possible for the dynamics of different vehicle types (ICE,
EV and HEV) to be reproduced in microscopic simulation.
Generally, HEVs can operate in two different modes: resem-
bling an electric vehicle (charge depleting - CD); both the
ICE and the electric motor being able to provide propulsion
(charge sustaining - CS). The resulting MFC model has a flex-
ible framework that can reproduce the operation of different
electric and HEV configurations, with little sacrifice in the
computational cost, suitable for microscopic simulations.

The proposed approach is validated against the trajectories
of actual hybrid vehicles, tested on the laboratory chassis
dynamometer. It should be noted that the new model, as the
existing MFC implementation, takes over only the free-flow
acceleration part, and for microscopic simulation experiment,

1https://github.com/JRCSTU/co2mpas_driver

it has to be coupled to an existing car-following model,
regarding the control of the distance to downstream traffic.
Additionally, it is compared against the free flow part of the
Gipps’ model [10], and that of the intelligent driver model
(IDM) [29] using trajectory data. Finally, it is validated based
on the official 0-100 km/h acceleration time from the hybrid
vehicle specifications database.

Overall, the contributions of this work lie in the extension
of the MFC model to include hybrid vehicle dynamics, pro-
viding valuable insights into the accurate representation of
hybrid vehicles’ behaviour in traffic simulations. The new
model’s capability to reproduce the operation of various
powertrain configurations, with minimal computational cost,
makes it a highly valuable tool for microscopic simula-
tions. By addressing the specific driving differences among
hybrid, conventional, and electric vehicles, our proposed MFC
model offers a more comprehensive and reliable approach
to enhancing the accuracy of traffic modelling in real-world
scenarios.

II. MFC MODEL FOR HYBRID VEHICLES

The MFC model proposed in this work is the first reported
lightweight traffic model that can capture the dynamics of
hybrid vehicles (including HEV and PHEV). Specifically,
as shown in Figure 1 (a) and (b), this model derives the
acceleration (an) of the hybrid vehicle n at a given speed (vn)
from three interacting components: the acceleration potential
curve (an,ap), the deceleration potential curve (an,dp), and the
driver behaviour function (βn,d ). The former two components
(namely, an,ap and an,dp) determine the propulsion and brak-
ing capabilities of a specific hybrid vehicle, respectively, based
on its publicly available technical specifications and chassis
dynamometer tests. The last component (βn,d ) describes the
driver’s response to traffic stimuli, e.g., the difference between
the actual speed (vn) and the desired speed (vD , set by traffic
control elements such as speed limits and traffic lights) in
the free-flow acceleration regime and inter-vehicle distance
in car-following acceleration regime. The βn,d is featured
by two parameters including the driving style (DS) and
the gear-shifting style (GS). The DS factor indicates the
driving aggressiveness, namely, the percentage of the vehicle
capabilities (i.e., an,ap and an,dp) that drivers typically use.
The GS factor determine the threshold speeds for gear shifting
based on the habits of drivers.

In previous papers [23], [25], the study team developed
MFC models for conventional internal combustion engine
vehicles (ICEVs, including gasoline and diesel), battery elec-
tric vehicles (BEV), and series hybrid electric vehicles. As a
follow-up study, this work proposes the MFC model for
parallel hybrid electric vehicles, the system architecture and
energy flows of which are illustrated in Figure 1 (c). Partic-
ularly, the electric motor (EM) is directly connected to the
transmission input shaft. When the clutch is engaged, the
internal combustion engine (ICE) and the EM can be coupled
with each other, rotate at the same speed, and jointly deliver
driving torque to the wheels [30]. The EM can also operate as
a generator, which recovers the kinetic energy during braking
or absorbs a portion of the engine power output, according
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Fig. 1. Introducing the dynamics of hybrid vehicles into microsimulation.
Note: DC = direct current; RPM = revolutions per minute.

to the battery state-of-charge (SoC) and the vehicle power
demand [31], [32].

Therefore, the MFC model components, including an,ap,
an,dp, and βn,d , are sufficient to describe the dynamics of
hybrid vehicles and the human factors as well as their inter-
actions during driving. These components will be elaborated
in next subsections.

A. Acceleration Potential Curve
To capture the maximum acceleration (i.e., the propulsion

capability) across the entire speed range of the hybrid vehicle,
the acceleration potential curve (an,ap) is given in Equation 1,
which represents the interactions between the tractive and
resistance forces acting on the wheels at a given speed.

an,ap(t) =
F f

T
(
vn(t)

)
− FR

(
vn(t)

)
m

, (1)

where vn(t) is the speed (m/s) of the hybrid vehicle n at a
certain time (s) t ; m is the vehicle operating mass (kg); FR
represents the resistance forces (N) including the aerodynamic
drag, the rolling friction, and the grade resistance; F f

T indi-
cates the full-load tractive force (N) of the hybrid vehicle and
can be expressed by Equation 2.

F f
T (t) = min

(
T f

T
(
vn(t)

)
rw

, µ · mta · g
)

, (2)

where rw is the wheel radius (m); µ is the tire-road friction
coefficient; mta is the vehicle mass on the tractive axle
(kg); g is the gravitational acceleration (9.81 m/s2); T f

T is
the full-load tractive torque (Nm), which varies with speed

and hybrid mode (i.e., CD or CS) and can be described by
Equation 3.

T f
T (t) =

 T f
em
(
ωt (t)

)
· it · id · ηd , for CD mode,(

T f
em
(
ωt (t)

)
+ T f

ice
(
ωt (t)

))
· it · id · ηd , for CS mode,

(3)

ωt (t) =
60 · it · id · vn(t)

2π · rw

, (4)

where T f
em and T f

ice are full load torques (Nm) of the elec-
tric motor (EM) and the internal combustion engine (ICE),
respectively; it and id are the engaged gear ratios of the
transmission and the differential, respectively; ηd is the driv-
eline efficiency; ωt is the rotational speed (RPM) of the
transmission input shaft. Equation 3 reveals the distinction
between charge sustaining (CS) and charge depleting (CD)
modes within the MFC model during traffic flow simulation.
When the vehicle operates in CS mode, both the internal
combustion engine (ICE) and the electric motor (EM) work
together to maintain the battery’s charge level while providing
propulsion. In contrast, when the vehicle is in CD mode,
it functions exclusively in an all-electric mode, utilising the
electric motor solely for propulsion. The relationship between
ωt and vn is given by Equation 4.

Figure 1 (d) and (e) qualitatively explain the full-load speed-
torque-power characteristics of the internal combustion engine
(ICE) [23] and normal electric motor (EM) [33], [34], respec-
tively. More specifically, the ICE full-load torque curve (T f

ice)
is low at idle speed (ωidle

ice ) and slowly ascends upwards before
peaking (at T max

ice ) and dropping back down. Compared with
T f

ice curve, the ICE full-load power curve (P f
ice) has a steeper

slope with a larger peak speed. The full-load performance of
the ICE can be described by Equation 5.

T f
ice(t) =

6 × 104
· P f

ice
(
ωt (t)

)
2π · ωt (t)

, (5)

where P f
ice is derived from the CO2MPAS generic ICE

model [23], [35].
In contrast, Figure 1 (e) suggests that the EM provides

the full-load torque and power curves that can be divided
into two operation regions. First, in the lower speed region
(ωt < ωb

em) or the constant-torque region, the full-load motor

torque T f
em is constant and equal to the motor’s peak torque

T max
em ; however, the full-load motor power P f

em is directly
proportional to the motor speed. Second, in the higher speed
region or the constant-power region, P f

em is constant and equal
to the motor’s peak power Pmax

em , but T f
em varies as a reciprocal

function of the motor speed. Specifically, the motor’s full-load
torque T f

em can be defined by Equation 6, which is a stepwise
function of the EM’s rotational speed ωt .

T f
em(t) =

 T max
em , 0 ≤ ωt (t) < ωb

em,

6 × 104
· Pmax

em

2π · ωt (t)
, ωb

em ≤ ωt (t) < ωmax
em ,

(6)

ωb
em =

6 × 104
· Pmax

em

2π · T max
em

, (7)

where T max
em and Pmax

em are the peak torque (Nm) and the
peak power (kW) of the EM, respectively; ωmax

em is the EM’s
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maximum rotational speed (RPM); ωb
em is the EM’s base speed

(RPM) and can be calculated by Equation 7, which represents
the split point between constant-torque and constant-power
regions.

In addition, the aforementioned resistance force FR as a
function of speed and road grade is calculated by Equation 8.

FR(t) = f0 · cos
(
θ(t)

)
+ f1 · vn(t) + f2 · vn(t)2

+ mg · sin
(
θ(t)

)
, (8)

where θ indicates the road grade (rad); f0, f1, and f2 are
road load coefficients (N, kg/s, and kg/m, respectively). More
detailed explanations [36], [37] and typical values [38] of these
coefficients can be found in the literature.

B. Deceleration Potential Curve

Based on prior experimental observations in the litera-
tures [25] and [39], the deceleration potential (an,dp) of a
typical passenger car can be formulated as a quadratic function
of the driving speed (vn), as shown in Equation 9.

an,dp(t) = ϵ
(
vn(t)

)
· alim

d ,

alim
d = µ · g,

ϵ(t) = b0 + b1 · vn(t) + b2 · vn(t)2,

(9)

where µ is the road friction coefficient; g is the gravitational
acceleration (m/s2); and thus alim

d is the vehicle’s theoretical
deceleration capability (assumed to be constant and equal
to 4.80 m/s2 in this study), which represents the maximum
ability of the tire to sustain braking shear forces between
the tire-road interface [22]; ϵ is the reduction factor that
denotes the acceptable deceleration rate for drivers in the field,
in which b0, b1, and b2 are coefficients equal to -0.3924,
-0.0563, 0.0012, respectively, based on the data from chassis
dynamometer deceleration tests.

Equations 1-9 suggest that the acceleration potential (an,ap)
and the deceleration potential (an,dp) are two vehicle-specific
components in the MFC model. The former can be derived
directly from the publicly available specifications. The latter is
a generic component, namely, once its regression coefficients
are estimated using the chassis dynamometer test data, they
can be used for other vehicles of the same type (e.g., passenger
cars).

C. Driver Behaviour Function
In the proposed MFC model, the driver behaviour function

(βn,d ) can reproduce the patterns of drivers’ acceleration,
which serves as a variable reduction factor multiplied by
an,ap and an,dp curves. Consequently, the typical acceleration
and deceleration characteristics of drivers can be modelled in
Equation 10.

an(t) =

{
βn,d

(
vn(t)

)
· an,ap

(
vn(t)

)
, 0 ≤ vn(t) < vD,

βn,d
(
vn(t)

)
· an,dp

(
vn(t)

)
, vn(t) ≥ vD,

(10)

where an is the acceleration (m/s2) of the hybrid vehicle n; vD
is the desired (or free-flow) speed (m/s); βn,d is the driving
behaviour function, which is defined in Equation 11.

βn,d(t) = DS · max
[

1 −

(
1 +

c0
(
vn(t) − vD

)
vD + c1

)c2

,

1 −

(
1 −

vn(t) − vD

c3

)c4
]
, (11)

where the factor DS denotes the driving style and ranges
from 0 to 1; the coefficients c0, c1, c2, c3, and c4 determine the
way in which drivers approach the desired speed (vD) and are
set as 2, 0.1, 30, 50, and 100, respectively. The formulation
and coefficients of Equation 11 have been derived from our
previous MFC models, which were initially developed for con-
ventional vehicles (see Equation 9 in [23]) and later extended
to electric vehicles (see Equation 11 in [25]). In this study,
we have undertaken further refinements and reorganisation of
the formulation, resulting in a more simplified representation
while preserving its inherent robustness and reliability.

Equations 1-11 show that the proposed MFC model, built
on our well-established methodology [23], [25], efficiently
captures the simple longitudinal dynamics of hybrid vehicles
using an,ap and an,dp, both of which are functions of the
vehicle speed vn(t) and are parameterised using publicly
available specifications at the start of the simulation. As a
result, the model can be easily implemented and tested without
introducing significant computational complexity. By rely-
ing on readily available technical specifications, the MFC
model strikes a balance between accuracy and computational
efficiency, making it well-suited for practical application in
large-scale traffic simulations. In addition, the gear-shifting
style (GS) in the driver model correlates the gear shift thresh-
old points with the power curve of the vehicle and thus the
powertrain operating speed. A dedicated driver gear-shifting
model was developed by Makridis et al. [23] and adopted in
this work.

III. EXPERIMENTAL SETUP

The experimental setup describes chassis dynamometer tests
performed in the premisses of the European Joint Research
Centre (JRC), on-road driving tests, model calibration and
validation against driving trajectories, validation against
0-100 km/h acceleration specifications, and two behavioural
models (Gipps’ and IDM) that are used in the validation
workflow for comparison purposes.

A. Chassis Dynamometer Tests and On-Road Driving Tests

Chassis dynamometer tests were conducted at the Vehicle
Emissions Laboratory (VELA) of the JRC, Ispra, aiming to
validate the reliability of the acceleration and deceleration
potential curves (i.e., an,ap and an,dp). A 2016 Kia Niro PHEV
was selected to conduct acceleration-deceleration test cycles
in CD and CS modes. In the tests, the vehicle was operated
within a speed range between 0 and 35 m/s. The testbed can
collect data with a 10 Hz measurement rate.

On-road driving tests were performed between December
2021 and March 2023 using a Volkswagen Golf 8 PHEV
in both CD and CS modes, covering diverse traffic environ-
ments including rural, urban, and motorway, where the vehicle
operated at average speeds of 68.9 km/h, 31.5 km/h, and
107.8 km/h, respectively. We collected real-world operational
data to calibrate and validate the models. The test routes
included various uphill and downhill sections, providing an
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TABLE I
MAIN SPECIFICATIONS OF THE TEST HYBRID VEHICLES

ideal setting for evaluating different tractive load conditions.
To determine the road gradient, we extracted the elevation
profile using the GPS Visualizer (www.gpsvisualizer.com).
Table I lists the main specifications for the hybrid vehicles
being examined above.

B. Calibration and Validation Experiments Against
Trajectory Data

The hybrid vehicle’s CD and CS driving trajectories were
employed to calibrate and validate the parameters of the
proposed model. The LMFIT (non-linear least-squares min-
imization and curve-fitting) served as the optimization tool.
According to the approaches in the literature [40], the calibra-
tion objective function is defined based on the sums of squared
errors, as described below.

J (χ) =

K∑
i=1

(
ln
(

vχ (i)
vN (i)

))2

, ∀χ, (12)

where i is a distance instance (every 2 m along the predefined
path); vN is the measured speed of the naturalistic driving
trajectory; vχ is the speed trajectory produced by the model
with a vector of parameters χ .

Apart from the proposed MFC model (for hybrids), another
two widely accepted behaviour models, namely, Gipps’ and
IDM, are utilized for comparison purposes in the calibration
and validation experiments. The free-flow term of the Gipps’
model is described below.

an(t) = max
(
α · a0 ·

(
1 −

vn(t)
vD

)
·

(
λ +

vn(t)
vD

)γ

, b0

)
, (13)

α =
(1 + γ )1+γ

γ γ · (1 + λ)1+γ
, (14)

where vn and an are simulated speed (m/s) and acceleration
(m/s2) at time t (s); vD is the desired speed (m/s); a0 is
the desired acceleration (m/s2); and b0 indicates the most
severe braking that the driver wishes to undertake and is equal
to -3 m/s2 in this work. The coefficients α, λ, and γ are
assumed to be 2.5, 0.025, and 0.5 in the original formulation
of the Gipps’ model [10], but for the sake of generality, they

TABLE II
CALIBRATION PARAMETERS AND THEIR CONSTRAINTS

Fig. 2. Main specifications of hybrid vehicles from the database. Note: ICE =
internal combustion engine; EM = electric motor.

are specified as adjustable parameters to fit different driving
behaviour. Moreover, Ciuffo et al. [41] reported that α, λ, and
γ follow the relationship described in Equation 14. In terms
of the IDM, according to previous studies [42], its free-flow
branch can be expressed as Equation 15.

an(t) = max

(
a0 ·

(
1 −

vn(t)
vD

)δ

, b0

)
, (15)

where δ is an exponent factor, which controls the decrease in
acceleration when desired velocity is met by the driver [43].

Table II summarizes the three free-flow acceleration mod-
els, namely, the Gipps’, the IDM, and the proposed MFC.
As described by their equations, these models have the same
output (an) and input (vn and vD) variables. To construct
calibration experiments, the calibration parameters and the
corresponding constraints of these models are provided. Since
the MFC is a dynamics-based model, the vehicle-related
parameters in the equations can be derived from technical
specifications or empirical data.

C. Validation Against 0–100 Km/h Acceleration
Specifications

The publicly available vehicle specifications often provide
0-100 km/h acceleration time (T0−100km/h , s), which denotes
vehicle’s acceleration capability in real-world driving tests, and
therefore, can be utilized to validate the model’s ability to
capture hybrid vehicles’ acceleration performances. To this
end, a hybrid vehicle specification database was created.
Figure 2 shows the main specifications of 203 hybrid vehicles,
which are associated with their acceleration performances and
include the vehicle mass, and the power and the torque of the
ICE and the EM. The data in this parallel plot suggest that
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Fig. 3. Chassis dynamometer tests of a hybrid vehicle to validate an,ap and an,dp curves. Note: EU = European Union; JRC = Joint Research Centre;
VeLA = Vehicle Electric Laboratory; CD = charge depleting; CS = charge sustaining; ICE = internal combustion engine; SoC = state-of-charge; RPM =
revolutions per minute.

higher performances of the EM and the ICE (i.e., Pmax
em , T max

em ,
Pmax

ice , T max
ice ) can lead to lower 0-100 km/h acceleration time

(T0−100km/h), which ranges from 2.6 to 11.5 s.

IV. RESULTS AND DISCUSSION

This section gives a comprehensive analysis regarding the
results obtained from the experimental and simulation tests
described above.

A. Model Validation Using the Laboratory Data

As elaborated in Figure 1, the acceleration potential (an,ap)
and the deceleration potential (an,dp) are two key components
in the proposed MFC model. To demonstrate their capabil-
ities to reproduce the longitudinal driving dynamics of the
hybrid vehicles, Figure 3 validates the theoretical an,ap and
an,dp curves from the MFC model against the experimental
data from the chassis dynamometer tests in the laboratory.
Figure 3 (a) illustrates the EU Interoperability Centre at the
JRC (Ispra) and the chassis dynamometer test bench for hybrid
vehicles.

Figure 3 (b) and (d) present the driving data collected from
the hybrid vehicle on the chassis dynamometer in CD and CS
modes, respectively. More specifically, their top subplot gives
the vehicle speed (m/s) and acceleration (m/s2); while the
bottom one shows the battery state-of-charge (SoC, %) and

the rotational speed (RPM) of the ICE. The initial values of
the battery SoC in CD and CS modes are 83.5% and 12%,
respectively. Figure 3 (b) suggests that CD mode aims to
exhaust the all-electric range (AER), and therefore, prioritizes
the use of the EM over the ICE. The ICE only operates
if the vehicle’s power demand exceeds the limits of the EM.
The proposed MFC model assumes that hybrid vehicles in
CD mode are propelled by the EM only for simplification
purposes, as described by Equation 3. Therefore, Figure 3 (c)
selects the CD test points, where the ICE speed is equal to zero
(ωice = 0). In contrast, as demonstrated in Figure 3 (d), the CS
mode, to which the hybrid vehicle switches after the battery
has reached the minimum SoC threshold, uses a combination
of ICE and EM management to maintain the battery SoC
at a specified level and at the same time meet the vehicle’s
power demand. Consequently, Figure 3 (e) chooses the CS test
points where ωice ̸= 0 to validate this combined propulsion
capability. The results suggest that the theoretical an,ap curve,
which derived directly from hybrid vehicle specifications,
demonstrates a fair correlation with the upper boundary test
points. Furthermore, the empirical an,dp curve is very close
to the lower boundary test points. In addition, by comparing
Figure 3 (c) and (e), both the empirical data points and
theoretical an,ap curves suggest that the CD mode has much
lower acceleration capability at high speeds compared with the
CS mode.
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Fig. 4. Acceleration simulation of the MFC model with different driving
and gear-shifting styles (represented by DS and GS, respectively): (a)-(e) CS
mode; (f)-(i) CD mode. Note: DS = driving style; GS = gear-shifting style;
SoC = state-of-charge.

B. Model Implementation in Microsimulation

Figures 4 and 5 show the modelling results after imple-
menting the developed MFC model in microsimulation. The
colour-coded solid lines depict the profiles of three indicative
drivers for the same hybrid vehicle. Specifically, the first
driver, (DS, GS) = (1, 1), is the most aggressive, as the
full capabilities of the hybrid’s acceleration and deceleration
are exploited. The second driver, (DS, GS) = (0.8, 0.8),
is more timid and the third, (DS, GS) = (0.6, 0.6), is the
most conservative.

Figure 4 presents the driving data of different drivers and
compares the CD and the CS modes in acceleration simulation,
where a wide speed range (from 0 to 45 m/s) is selected to
comprehensively demonstrate the model performance and the
differences between drivers. The speed-acceleration profiles
of Figure 4 (a) and (f) indicate that the smaller the GS, the
earlier the driver changes gears, that is in line with previous
observations in the literature [23]. Figure 4 (b)-(e) and (g)-(i)
are time-series data of the CS and CD modes, respectively.
Specifically, the time-speed profiles suggest that, in CS mode,
the hybrid vehicle can reach the reference speed (i.e., 45 m/s)
within 40 s. In CD mode, however, it cannot reach the
reference speed even after a long period due to limited power
derived from the EM only. In addition, Figure 4 (c) and (h)
show the battery SoC, in which the CS mode manages to
maintain the battery SoC at 30 % by coordinating the power
outputs of the ICE and the EM; while the CD mode deplete
the battery SoC from 80 % to 20 %. In Figure 4 (e), the fuel
consumption (ml/s) results imply that the aggressive driver,
(DS, GS) = (1, 1), consumes more fuel.

Figure 5 provides the speed and acceleration results of the
proposed MFC model in a driving scenario with varying road
speed limits. It is clear that, in both CS and CD modes, the
MFC model can guarantee a smooth transition between differ-
ent speed levels; while obvious oscillations or overshoots can

Fig. 5. Artificial driving cycle with the response of the MFC model:
(a)-(b) CS mode; (c)-(d) CD mode.

TABLE III
ROOT MEAN SQUARE ERRORS (RMSES) OF SPEED (vn ) AND

ACCELERATION (an ) WHEN CALIBRATING AND VALIDATING MODELS
AGAINST DRIVING TRAJECTORIES OF HYBRID VEHICLES

be avoided when gradually approaching the reference speed.
This smooth feature is praiseworthy given that significant and
omnipresent acceleration cliffs are observed in many renowned
traffic models [22].

C. Calibration and Validation Against Driving Trajectories
Table III presents the root mean square errors (RMSEs) for

speed (vn) and acceleration (an) during the calibration and
validation of models using driving trajectories from hybrid
vehicles. The table is divided into two sections: calibration
(upper) and validation (lower). It includes results for two
different vehicles, Kia Niro and VW Golf 8, operating in
two hybrid modes: CD (charge depleting) and CS (charge
sustaining). As described in Section III, Kia Niro underwent
in-lab driving tests on a chassis dynamometer, whereas VW
Golf 8 was subjected to on-road driving tests that encompassed
diverse traffic conditions and varying road gradients.

Regarding speed (vn) calibration, the MFC model demon-
strated noteworthy precision. For the Kia Niro, the MFC
achieved RMSE values of 0.30 m/s in CD mode and 0.26 m/s
in CS mode. Similarly, when applied to the VW Golf 8, the
MFC yielded RMSE values of 0.23 m/s in CD mode and
0.13 m/s in CS mode. It’s worth highlighting that, during
this calibration phase, both the Gipps’ model and the IDM
produced RMSE values that exceeded those of the MFC.

In terms of acceleration (an) calibration, the MFC model
delivered exceptional results. It recorded RMSEs of 0.12 m2/s
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Fig. 6. Validation of the 0-100 km/h acceleration time predicted by models
against the official specifications of hybrid vehicles.

for both CD and CS modes of the Kia Niro. For the VW
Golf 8, the MFC demonstrated an RMSE of 0.21 m2/s in CD
mode and a notably lower 0.09 m2/s in CS mode. Once again,
the MFC model outperformed its counterparts, the Gipps’
model and IDM.

In the validation phase, the MFC model maintained its
superior performance. It delivered competitive RMSE values
for speed (vn), with 0.15 m/s for the Kia Niro in CD mode,
0.05 m/s in CS mode, 0.20 m/s for the VW Golf 8 in CD
mode, and 0.75 m/s in CS mode. These values surpassed the
performance of the Gipps’ model and IDM. In acceleration
(an) validation, the MFC model demonstrated its superiority
with RMSEs of 0.04 m2/s for the Kia Niro in CD mode,
0.02 m2/s in CS mode, 0.20 m2/s for the VW Golf 8 in CD
mode, and 0.18 m2/s in CS mode, reaffirming its consistent
excellence across diverse vehicle types and driving conditions.

In summary, the MFC model outperformed the Gipps’
model and IDM, delivering lower RMSE values in both
calibration and validation phases for vn and an prediction.

D. Validation Against 0-100 Km/h Acceleration
Specifications

As illustrated in Figure 6, the models are validated using
official 0-100 km/h acceleration time (T0−100km/h) based on
the specifications database of 203 hybrid vehicles, which is
described in Figure 2. Specifically, the scatter plot in Figure 6
compares the acceleration time predicted by models (i.e.,
T M

0−100km/h) with the value in technical specifications of the
corresponding hybrid vehicle (i.e., T S

0−100km/h). In addition,
the varying marker color depends on the vehicle maximum
power (Pmax , a combined power delivered from the EM and
the ICE). The results in this graph suggest that, compared to
the Gipps’ model and the IDM, the MFC model leads to a
cluster more closely located around the diagonal, indicating
small errors between the predicted (T M

0−100km/h) and specified

TABLE IV

RMSE BETWEEN THE PREDICTED (T M
0−100km/h ) AND THE SPECIFIED

(T S
0−100km/h ) 0-100 KM/H ACCELERATION TIME

(T S
0−100km/h) values. In contrast, as circled by the black

dash lines, the Gipps’ model and the IDM both significantly
underestimate T0−100km/h values (see circled clusters below
the diagonal). In addition, Gipps’ model gives rise to overes-
timated predictions when Pmax approximately ranges between
200 and 270 kW.

Table IV summarizes the data in Figure 6 and gives
the RMSE between the predicted (T M

0−100km/h) and specified
(T S

0−100km/h) 0-100 km/h acceleration time. The results show
that the Gipps’ model and the IDM yield T0−100km/h RMSEs
of 3.05 and 3.44 s, respectively. Alternatively, the proposed
MFC model can deliver a much more accurate T0−100km/h
prediction with a RMSE of 1.65 s, which is 45.8 % and
51.9 % lower than those of the Gipps’ model and the IDM,
respectively.

V. CONCLUSION

The present work builds on the MFC modelling framework
and proposes the first traffic model that can capture the dynam-
ics of hybrid electric vehicles, which differ from conventional
and electric ones in driving capabilities/behaviours due to
different propulsion systems and dynamics. The MFC model
developed in this study is a lightweight and robust approach
to reproducing the dynamics of hybrids in traffic simulation,
especially the hybrids’ speed and torque coupling between the
internal combustion engine (ICE) and the electric motor (EM)
charge depleting (CD) and charge sustaining (CS) modes. The
results suggest that:

• The data from chassis dynamometer tests of the hybrid
vehicle are well-approximated by the acceleration and
deceleration potential curves underlying the proposed
MFC model.

• After being implemented in microsimulation, the MFC
model can ensure smooth transitions between different
speed levels, avoiding oscillations or overshoots.

• When reproducing driving trajectories of the hybrid vehi-
cle, in CD mode, the MFC model can yield significant
reductions in root mean square errors (RMSEs) of both
speed and acceleration, compared with the Gipps’ model
(by ∼16 %) and the intelligent driver model (IDM,
by ∼40 %). In CS mode, the MFC model can give
rise to even greater accuracy gains due to its accurate
representation of ICE-EM coupling dynamics.

• The MFC model also outperforms traditional models in
predicting the 0-100 km/h acceleration specifications. Its
prediction RMSE is 45.8 % and 51.9 % lower than those
of the Gipps’ model and the IDM, respectively.
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This study successfully demonstrates the capability of the
MFC model to capture hybrid vehicle dynamics, however,
there are several important aspects that require further investi-
gation to enhance the applicability and scope of our findings:

• The performance of the MFC model in simulating a
broader spectrum of hybrid vehicle configurations (e.g.,
power-split) remains unexplored within the current study.
This will provide a deeper understanding of the model’s
performance and its adaptability to different hybrid vehi-
cle designs.

• The potential ramifications of hybrid vehicle adoption
on traffic patterns, energy consumption, and emissions
were not delved into in this study, limiting the broader
applicability of our findings. This analysis will contribute
to a more holistic understanding of the impact of hybrid
vehicle integration in transportation networks.
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