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ABSTRACT
Incidents like the COVID-19 pandemic or military conflicts disrupted global supply chains, causing
long-lasting shortages in multiple sectors. This so-called ripple effect denotes the propagation of
disruptions to further elements of the supply chain. Due to the severity of the impact that the ripple
effect has on revenues, service levels, and reputation among supply chain entities, it is essential to
understand the related implications. Given the unpredictable nature of disrupting events, this study
emphasises the valueof a reactivedevelopmentof effective recoverypolicies onanoperational level.
In this article, a system dynamics model for a supply chain is used as framework to investigate the
ripple effect. Based on thismodel, recovery policies are generated using reinforcement learning (RL),
which represents anovel approach in this context. Asmain findings, the experimental results demon-
strate the applicability of the proposed approach in mitigating the ripple effect based on secondary
data from amajor aerospace and defence supply chain and furthermore, the results indicate a broad
applicability of the approach without the need for complete information about the disruption char-
acteristics and supply chain entities. With further refinement and real-world implementation, the
presented approach provides the potential to enhance supply chain resilience in practice.
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1. Introduction

A disruption can be defined as an unplanned event,
that has a significant impact on companies’ operations
in a negative way (Sinha, Bagodi, and Dey 2020), and
arises in the upstream supply chain, in inbound logis-
tics, or in the sourcing environment (Golan, Jerne-
gan, and Linkov 2020). More than half of the com-
panies worldwide face a supply chain disruption every
year (Katsaliaki, Galetsi, and Kumar 2022), occurring
as point load (e.g. a natural disaster, Ukraine war) or
as distributed load (e.g. COVID pandemic, economic
recession) (Golan, Jernegan, and Linkov 2020). Current
trends regarding lean inventories (Golan, Jernegan, and
Linkov 2020; Sinha, Bagodi, and Dey 2020), globalisa-
tion, outsourcing, and specialisation increase the vulner-
ability of supply chains for shortages (Ivanov 2019) and
are a potential lever for the so called ripple effect (Dol-
gui, Ivanov, and Sokolov 2018; Katsaliaki, Galetsi, and
Kumar 2022). This effect denotes the situation when
a disruption does not remain localised in one point,
but also is propagated to other entities of the supply
chain (Dolgui, Ivanov, and Sokolov 2018; Ivanov 2019).
Due to the order of magnitude this effect has on rev-
enues, service levels, market share, and reputation of
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members of the supply chain it is essential to under-
stand the implications of the ripple effect (Dolgui, Ivanov,
and Sokolov 2018). As most disruption-triggering events
are unpredictable and located outside of the influ-
ence sphere of the respective supply chain members,
it is suggested to focus on managing and understand-
ing the effects instead of trying to identify and elim-
inate the root causes of disruptions (Dolgui, Ivanov,
and Sokolov 2018; Katsaliaki, Galetsi, and Kumar 2022;
Olivares-Aguila and ElMaraghy 2021). Apart from struc-
tural interventions with the aim of increasing organisa-
tional resilience against disruptions, mitigation can be
achieved by speeding up recovery on operational lev-
els (Jaenichen et al. 2021). Since inventory is a major
cost driver in supply chains (Timme and Williams-
Timme 2003), an important approach for operational
recovery are adaptive order policies that support a quick
normalisation of service and inventory levels (Schmitt
et al. 2017). To investigate the effects of disruptions and
order policies in the supply chain, simulation, and in
particular system dynamics, have shown to be an effi-
cient tool for decision making and risk evaluation (Gu
and Gao 2017; Mortazavi, Khamseh, and Azimi 2015;
Olivares-Aguila and ElMaraghy 2021). Suitable recovery
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policies are derived from the simulation usually with
the help of different ”what-if” scenarios (Dolgui, Ivanov,
and Sokolov 2018). To avoid this time-consuming sce-
nario building, the combination of simulation models
with optimisation algorithms has gained attention, which
is expected to have a significant impact on supply chain
management (SCM) in the future (Ivanov et al. 2019;
Tordecilla et al. 2021). However, due to the stochastic
and dynamic properties of supply chains, many optimi-
sation techniques are not applicable for generating order
policies (Ivanov et al. 2016; Mortazavi, Khamseh, and
Azimi 2015) and additional research is needed (Schmitt
et al. 2017). A frequently applied optimisation approach
for simulations aremetaheuristics (Tordecilla et al. 2021),
but the quality of obtained solutions often is not suf-
ficient in the SCM context (Schmitt et al. 2017). Rein-
forcement learning (RL) is one of the most efficient
techniques to solve dynamic optimisation problems and
was successfully applied for learning order policies (Rolf
et al. 2023; Yan et al. 2022). Thus, system dynamics and
RL are promising approaches for ripple effect mitigation
through order policies, but research on the integration
of both is limited to a proof-of-concept solution pro-
posed by Rahmandad and Fallah-Fini (2008). In gen-
eral, there is a research gap regarding digital twin-based
supply chain simulation and optimisation for disruption
mitigation through recovery policies (Katsaliaki, Galetsi,
and Kumar 2022), which motivates the integration of
system dynamics and RL in a joint framework for this
purpose. Both techniques have shown promising perfor-
mance, and their integration provides the potential to
learn robust order policies without the need for historical
data, which is difficult to obtain for supply chain disrup-
tions. With the proposed integration, order policies can
be generated without information on time, duration, and
location of the disruption and tedious scenario building
can be avoided. The general capabilities of RL in high-
dimensional action spaces (Kurian et al. 2022) make the
approach also scalable to large supply chain models, the
only requirement for applicability in practice is an accu-
rate system dynamics model of the studied supply chain
in the sense of a digital twin.

Motivated by the high probability of future sup-
ply chain disruptions, e.g. through ongoing climate
change (Golan, Jernegan, and Linkov 2020), the inte-
grated use of system dynamics and RL is proposed as
a novel simulation-optimisation approach for disruption
mitigation. For this, the main contributions of this paper
are: (i) to build a system dynamics simulation model to
analyse the behaviour of a supply chain under disruptions
with regard to inventory levels and orders from exist-
ing approaches; (ii) to integrate an RL optimisation into
the simulation model and to mitigate the ripple effect by

robust recovery policies with a focus on intelligent order-
ing mechanisms; and (iii) to evaluate the utility of the
proposed approach in different scenarios.

Section 2 outlines the state of the art of research
regarding supply chain disruptions and recovery policies,
their quantitative modelling, and optimisation possibil-
ities. Based on the reviewed literature, in Section 3, a
problem description is presented, which is followed in
Section 4 by a delineation of the used system dynamics
model to simulate the supply chain behaviour under dis-
ruptions. The optimisation approach using RL is intro-
duced in Section 5, followed by an experimental applica-
tion and evaluation of the proposed algorithmic frame-
work in Section 6. The results are discussed in Section 7,
in Section 8 managerial insights and theoretical implica-
tions are presented, and in Section 9 a summary is given
and further research directions are outlined.

2. Literature review

To give an overview on the current state of the art of
ripple effect mitigation, first, in Section 2.1, general char-
acteristics of supply chain resilience and recovery are
outlined. In Section 2.2, system dynamics models and RL
approaches for the optimisation of supply chains under
disruptions are reviewed.

2.1. Supply chain disruptions and recovery policies

Driven by disrupting events like the COVID pandemic,
the Ukraine war, or ongoing climate change, the objec-
tive of SCM shifted from pure efficiency towards an
additional consideration of resilience against disrup-
tions (Jaenichen et al. 2021). Although efficiency remains
important for a supply chain’s success (Golan, Jernegan,
and Linkov 2020), enabling resilience will be a criti-
cal success factor for the future as competition among
companies has been replaced by competition among
supply chains (Jafarnejad et al. 2019). Resilience can
be defined as the ability to prepare for, recover from,
and adapt to adverse disruptions (Golan, Jernegan, and
Linkov 2020). Measures to improve resilience and thus
to handle disruptions can be classified into proactive and
reactive approaches (Ivanov 2019; Olivares-Aguila and
ElMaraghy 2021) (see Figure 1), which are related to sup-
ply chain robustness and recovery. Robustness describes
the supply chain’s ability to reduce the impact of disrup-
tions whereas recovery describes the ability to recover
fast fromdisruptions (Dolgui, Ivanov, and Sokolov 2018).
To ensure robustness, possible example measures are
multiple suppliers (Llaguno, Mula, and Campuzano-
Bolarin 2022; Olivares-Aguila and ElMaraghy 2021),
inventory buffers (Olivares-Aguila and ElMaraghy 2021),
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Figure 1. Ripple effect mitigating approaches (based on Dolgui, Ivanov, and Sokolov 2018).

increasing supply chain visibility (Li and Zobel 2020),
information sharing (Golan, Jernegan, and Linkov 2020),
location decisions in consideration of resilience crite-
ria (Olivares-Aguila and ElMaraghy 2021), and collabo-
rative planning (Dolgui, Ivanov, and Sokolov 2018). Due
to the unpredictability of disruptions, an operational and
reactive management of their effects required in prac-
tice (Katsaliaki, Galetsi, and Kumar 2022). Reactive mea-
sures can be categorised in structural adaptation (e.g.
the use of backup suppliers Ivanov et al. 2017; Llaguno,
Mula, and Campuzano-Bolarin 2022), process adapta-
tion (e.g. the use of alternative shipping routes (Dolgui,
Ivanov, and Sokolov 2018)), as well as parametric adap-
tation (e.g. increased safety stock (Katsaliaki, Galetsi, and
Kumar 2022)) (Dolgui, Ivanov, and Sokolov 2018; Ivanov
et al. 2017). If several reactive and proactive measures
are realised jointly, redundancy can be achieved, which
enables a resilient supply chain capable to mitigate the
ripple effect (Ivanov et al. 2017). In general, the concept of
resilience is closely associated with flexibility of the sup-
ply chain, which can be seen as a driver enabling robust
and rapidly recovering supply chains (Dolgui, Ivanov, and
Sokolov 2018).

Since reactive measures are implemented after a dis-
ruption has occurred, they represent policies aimed at
improving the recovery of the supply chain. These are
often configured in form of contingency plans, which
provide alternative suppliers or shipping routes, to be
implemented quickly to avoid a long-term impact of the
disruption (Ivanov et al. 2016). Parametric adaptation
represents a simpler and more cost-effective approach
where the recovery policy can be determined by adjust-
ing critical parameters such as lead time, inventory
control models (Ivanov et al. 2017), or adaptive and
rush orders (Golan, Jernegan, and Linkov 2020; Ivanov

et al. 2016). As a major aspect of supply chain dynamics,
inventory levels and orders are influenced by disruptions
and recovery policies. In turn, inventory levels and orders
impact the supply chain behaviour and ripple effect sever-
ity. Therefore, a recovery policy in form of ordering
model should be defined to manage a supply chain under
disruptions (Ivanov 2017). Based on the expected dura-
tion and severity of a disruption, simulations of dif-
ferent recovery policies can be used to estimate their
operational and financial impact, supporting managers
to select the most appropriate one (Ivanov et al. 2017).
Simulation thus enables a deeper understanding of the
dynamic behaviour of supply chains under disruption
and allows to evaluate the trade-off between resilience
improvement and costs for the respective recovery
policy (Golan, Jernegan, and Linkov 2020).

2.2. System dynamics and RL for supply chain
optimisation

Simulation models are designed to mimic the behaviour
of a real system. To derive recommendations from the
simulation model, a series of runs is required, usually
in form of a sensitivity analysis (Aslam and Ng 2016;
Campuzano and Mula 2011). Simulation can be advan-
tageous in situations where the observed system is highly
complex (Olivares-Aguila and ElMaraghy 2021) or to test
planned systems or changes in advance without involve-
ment of a real system (Campuzano and Mula 2011). A
common approach for the simulation of supply chain dis-
ruptions is system dynamics. This methodology is based
on equation-basedmodelling and allows for the incorpo-
ration of non-linearities and feedback loops (Campuzano
and Mula 2011). Unlike other simulation approaches,
system dynamics enables modelling of a system at a
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high abstraction level, making simulations less compu-
tationally expensive and less prone to errors (Jaenichen
et al. 2021). Feedback loops emerging from flows of
information or material can be incorporated inherently,
making system dynamics a well-suited approach for sim-
ulating supply chains (Aslam and Ng 2016).

In recent years, several studies were conducted that
use system dynamics modelling to investigate the effects
of disruptions on supply chains. An overview about
the existing approaches is provided in Table 1. Regard-
ing their target industry, no significant clusters could
be observed but most approaches focus on manufac-
turing in general. Mostly, a size of three or four enti-
ties is assumed for the simulated supply chains. In one
approach, that considers the supply chain as closed loop,
a supply chain consisting of seven elements (supplier,
producer, manufacturer, wholesaler, retailer, collector,
disassembly centre) is simulated (Gu and Gao 2017).
In one case, resilience is modelled independent from a
specific supply chain directly by related variables like
a level of agility or information sharing (Jafarnejad
et al. 2019). The used key performance indicators (KPIs)
varied across the different approaches. In three models,
monetary objective values are used (Gu and Gao 2017;
Jafarnejad et al. 2019; Llaguno, Mula, and Campuzano-
Bolarin 2022; Olivares-Aguila and ElMaraghy 2021)
(sales, cash reserves, profit, and cost, respectively). The
other frequent approach is the usage of supply chain
performance metrics as objectives, this can be a vul-
nerability index (Ghadge et al. 2022), a measure for
supply chain agility (Jafarnejad et al. 2019), the ser-
vice level (Olivares-Aguila and ElMaraghy 2021), or the
capacity utilisation (Zhu, Krikke, and Caniëls 2021). Dis-
ruptions in the models are induced on different points of
the supply chain, this can be a cut in demand (Ghadge
et al. 2022; Gu and Gao 2017; Zhu, Krikke, and
Caniëls 2021), supply (Ghadge et al. 2022; Llaguno,
Mula, and Campuzano-Bolarin 2022; Zhu, Krikke, and
Caniëls 2021), transport (Ghadge et al. 2022; Zhu,Krikke,
and Caniëls 2021), or production capacities (Olivares-
Aguila and ElMaraghy 2021). Independent variables that
are used to mitigate or model the effects of disruptions
can be demand and supply (Ghadge et al. 2022; Lla-
guno, Mula, and Campuzano-Bolarin 2022), inventory
cover times (Gu andGao 2017), disruption duration (Lla-
guno, Mula, and Campuzano-Bolarin 2022; Olivares-
Aguila and ElMaraghy 2021), or information delay (Zhu,
Krikke, and Caniëls 2021). In the majority of considered
articles, different scenarios are built and compared as
optimisationmethodology, which is a common approach
for simulation models. In two papers, only the effects
of disruptions are quantified and visualised using the

simulation models (Ghadge et al. 2022; Llaguno, Mula,
and Campuzano-Bolarin 2022).

Instead of performing a tedious sensitivity analysis,
recommendations can also be derived from a simula-
tion model with the help of optimisation algorithms.
This approach is referred to as simulation-optimisation
(SimOpt) (Zhou and Zhou 2019). In the context of
SCM, a frequently employed optimisation approach is
RL. Applications of RL include several logistics prob-
lems, inventory replenishment, risk management, pric-
ing decisions, and, as presented in this work, global
order management (Rolf et al. 2023; Yan et al. 2022).
The general working principle of RL is that an agent
has a determined goal and interacts with the environ-
ment through selecting one action at every time step.
The environment responds to the action with presenting
a new state to the agent. If a favourable state accord-
ing to the agent’s goal is reached, a reward is given to
enable a learning over time. During this learning pro-
cess, themapping from states to promising actions, which
is called policy, is updated (Sutton and Barto 2018). As
RL environment, a setting in reality can be used, but
especially if the costs of interacting with the environ-
ment are high, a simulation is necessary to gather the
required amount of data (X. Wang et al. 2022). Although
the use of RL in SCM is common in research (see, e.g. Rolf
et al. 2023 and Yan et al. 2022), approaches focusing
in particular on RL for disruption mitigation are lim-
ited. A summary of recent articles related to supply chain
disruptions employing RL as optimisation technique is
shown in Table 2. Specifically, the approaches focus on
inventory management optimisation (Kegenbekov and
Jackson 2021; Perez et al. 2021), the effects of risk averse
sourcing (Heidary and Aghaie 2019), the measurement
of disruption risks propagating along supply chains (Liu
et al. 2022), and the optimisation of production plan-
ning anddistributionwith uncertain demands (Alves and
Mateus 2022). All considered approaches are based on
models for a general supply chain, industry-specific vari-
ations are not apparent. In most cases, the model is a
four-echelon supply chain, either with multiple entities
per echelon (Alves and Mateus 2022; Perez et al. 2021)
or with only one entity per echelon (Kegenbekov and
Jackson 2021). For the other approaches, a two-echelon
supply chains is used as base model (Heidary and
Aghaie 2019; Liu et al. 2022). As environment modelling
technique, most frequently Markov decision processes
are used (Alves and Mateus 2022; Kegenbekov and Jack-
son 2021; Perez et al. 2021) with two articles (Kegen-
bekov and Jackson 2021; Perez et al. 2021) making use
of a pre-built supply chain environment from the OR-
Gym package (Hubbs et al. 2020). Further techniques
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used for environment modelling in the context of sup-
ply chain disruptions are a graph theory-based model,
namely a dynamic Bayesian network (Liu et al. 2022),
and a model determined by agents based on stochastic
programming (Heidary and Aghaie 2019).

As RL algorithm, all reviewed approaches make use
either of Q-learning or proximal policy optimisation
(PPO). In Q-learning, values for all state-action pairs
are learned through the algorithm in a tabular form.
Since this basic approach allows only for discrete and
finite action and state spaces, policy-based algorithms
like PPO were developed that approximate the policy
directly. Neural networks have proven to be powerful
function approximators and thus can be integrated into
both approaches, substituting the Q-table or policy func-
tion, respectively (Alves and Mateus 2022; Sutton and
Barto 2018; X. Wang et al. 2022). If the used neural
network is composed of multiple hidden layers, this is
often referred to as deep reinforcement learning (DRL)
or deep Q-learning if a Q-function is learned (Alves
and Mateus 2022; Sutton and Barto 2018; X. Wang
et al. 2022). However, in two of the presentedQ-learning-
based SCM optimisation frameworks normal Q-tables
are applied (Heidary and Aghaie 2019; Liu et al. 2022).
In a related setting to disruption mitigation, supply chain
coordination deep Q-learning is studied by Oroojlooyja-
did et al. (2022) for bullwhip effect reduction using a beer
game simulation. In contrast to the ripple effect, the bull-
whip effect denotes high-frequency-low-impact distur-
bances due to increased order variability in the upstream
supply chain (Jaenichen et al. 2021; Llaguno, Mula, and
Campuzano-Bolarin 2022). In addition to this differ-
ent setting, the applied Q-learning approach does not
allow the handling of continuous action spaces, which is
expected to improve the accuracy of supply chain coor-
dination algorithm (Oroojlooyjadid et al. 2022). DRL is
considered to be appropriate for RL problems with large
or continuous state and action spaces as required in SCM
and is especially applicable to simulation environments
due to the possibility of sampling the required amount of
data from the environment efficiently (Kurian et al. 2022;
X. Wang et al. 2022). PPO is designed to prevent too
large or too small policy updates for the underlying neu-
ral network (Schulman et al. 2017). Due to the resulting
stable learning characteristics and low hyperparameter
sensitivity, it is a popular RL algorithm (Kegenbekov and
Jackson 2021; Perez et al. 2021) and is also applied in
the remaining three approaches to approximate the pol-
icy function (Alves and Mateus 2022; Kegenbekov and
Jackson 2021; Perez et al. 2021).

Following the SimOpt principle (Tordecilla et al. 2021),
RL can be used for optimisation purposes based on sys-
tem dynamics simulations. Only one article could be
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Table 2. Summary of recent approaches of RL optimisation in SCM.

Use Case RL Characteristics

Objective RL Algorithm Environment Modelling
Technique

Action Space State Space Reward RL Comparison

Alves and
Mateus (2022)

optimisation of pro-
duction planning
and distribution with
uncertain demands

PPO Markov decision process material to produce and mate-
rial to deliver

demand, remaining time
steps, stock levels, material
availability forecast

negative of the sum
of all incurred costs
at a time step

linearised
non-linear program

Heidary and
Aghaie (2019)

study the effects of risk
averse sourcing

Q- learning agent-based approach
(one agent represents
one SC entity) in
combination with
stochastic programming

demand (customer agents),
orders and order values from
suppliers (retailer agents),
amount of satisfied demand
(supplier agents), excess
demand of the retailer (spot
market agent)

amount of unsatisfied
demand (customer
agents), inventory
position (retailer and
spot market agent),
remained and remained
reserved capacity
(supplier agent)

profit of the retailer genetic algorithm

Kegenbekov and
Jackson (2021)

inventory manage-
ment optimisation,
synchronisation for
inbound and outbound
material flow

PPO Markov decision process
(OR- Gym package)

reorder quantities for each
entity

inventory levels revenue base-stock policy

Liu et al. (2022) measure the risk of
disruptions
propagating along
SCs (estimate the
robustness of the
producer in the final
period)

Q- learning Dynamic Bayesian Network
(graph theory-based)

neighbourhood structure for
VNS (current iteration)

neighbourhood structure
for VNS (previous
iteration)

difference between
objective values
VNS (worst-case
disruption risk)

VNS, MIP

Oroojlooyjadid
et al. (2022)

bullwhip effect mitiga-
tion

Q-learning beer game simulation pro-
gram

order quantity change backlogs, order quantities,
shipment quantities, inven-
tory levels

shortage and
inventory costs

different
Q-learning versions

Perez et al. (2021) inventory
management
optimisation

PPO Markov decision process
(OR-Gym package)

reorder quantities for each
entity

demand, inventory levels
(nodes), inventory in the
pipeline (edges)

profit summed up
from all entities

linear program,
stochastic
program
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found that follows this principle of integrating an RL
optimisation into a system dynamics simulation. In this
approach, which is not related to SCM, a simple system
dynamicsmodel is presented that simulates a task accom-
plishment rate based on a task assignment rate using
an inverse U-shaped function (Rahmandad and Fallah-
Fini 2008). As RL algorithm, Q-learning is applied with
a continuous state space (task completion) and a discre-
tised action space (task input). A comparison with other
algorithms is not carried out, only different configura-
tions for the overall setting are tested. A general proce-
dure to integrate machine learning into system dynam-
ics simulations is proposed by Gadewadikar and Mar-
shall (2023). This procedure describes how to fit a sys-
tem dynamics simulation model to historical data, which
then can be used for sensitivity analysis. Instead, when
applying RL, optimised and prescriptive outputs can be
generated based on the system dynamics simulation.

3. Problem description

Motivated by low-frequency-high-impact disruptive
events like the COVID pandemic or the Ukraine war,
the ripple effect and supply chain resilience are subject
to current research. Since disruptions are unpredictable,
reactive operational measures like recovery policies that
implement intelligent ordering models are mentioned in
the literature as a simple and cost-effective approach for
ripple effect mitigation (Ivanov et al. 2017). If adapted
to a real-world supply chain, a simulation model can
serve as digital twin, mirroring the actual inventory and
demand (Ivanov et al. 2019). Based on the outcomes
of monitoring tools, this enables the measurement of
disruption propagation and potential impact as well as
the testing of recovery policies (Katsaliaki, Galetsi, and
Kumar 2022). However, simulation is a descriptive tech-
nique and the derivation of measures requires the inte-
gration of an optimisation approach, resulting in the
growing field of SimOpt research (Tordecilla et al. 2021).
As identified by Katsaliaki, Galetsi, and Kumar (2022),
there is a research gap regarding SimOpt approaches for
disruption mitigation. In particular, research is required
to quantitatively test and validate recovery policies and
strategies with the aim of reducing the supply chain’s
exposure to risk (Liu et al. 2021; Llaguno, Mula, and
Campuzano-Bolarin 2022).

To address the stated research gap, an integrated use of
system dynamics and RL is proposed to generate adap-
tive orders as recovery policies for ripple effect mitiga-
tion. System dynamics has proven to be a robust and
computationally efficient simulation technique for sup-
ply chains (Campuzano and Mula 2011), while RL pro-
vides competitive optimisation results in this field (Esteso

et al. 2023; Yan et al. 2022), making the combination of
both a promising integrated approach for mitigating sup-
ply chain disruptions. Although RL is used frequently in
the broader field of SCM, research is sparse for an appli-
cation in the context of supply chain disruptions (Rolf
et al. 2023). In addition to themethodological novelty, the
proposed integration of RL and system dynamics allows,
in contrast to existing simulation models, the genera-
tion of actionable order policies for disruption mitiga-
tion (see Table A1). A comparable setting was researched
with promising results for bullwhip effect mitigation,
although here the application of Q-learning neglects
some optimisation potential in comparison to policy-
based approaches (Oroojlooyjadid et al. 2022). The pro-
posed framework combining system dynamics and RL
allows for an easy modification of the simulated supply
chain while the use of state-of-the-art policy-based RL
allows a precise generation of order quantities.

In the described integrated setting of system dynam-
ics and RL, the system dynamics simulation serves as
environment while the RL agent can learn how to mit-
igate the impact of the ripple effect based on interact-
ing with the simulation. Out of the reviewed system
dynamics approaches (see Table 1), Gu and Gao (2017)
proposed the most extensive supply chain model that
incorporates orders and material as flow. Since this
enables the implementation of intelligent orderingmech-
anisms as recovery policies for disruptions, the model
is used as foundation in the following. For the param-
eters of the experimental evaluation, secondary data
from a major aerospace and defence supply chain was
adopted from Ghadge et al. (2022), if applicable to the
used model. Concretely, this includes the general struc-
ture of the supply chain with four echelons as well as
the data for demand, expected and initial inventory lev-
els, disruption characteristics, and transport capacities.
This data was collected in the company for a period of
five years and covers multiple human-made, and natural
supply chain risks (Ghadge et al. 2022). The remain-
ing supply chain parameters are taken from the founda-
tional model developed by Gu and Gao (2017), which is
the main basis of this work. Thus, the problem context
consists of a company from the aerospace and defence
industry that is facing a COVID-related disruption in
the transport capacities of the supply chain. The pro-
posed RL-based optimisation aims to mitigate the ripple
effect by minimising variations of inventories and back-
logs caused by the disruption. Additionally, the utility
of the developed approach for ripple effect mitigation
is demonstrated in different experiments considering
fixed and random disruption characteristics as well as
complete and incomplete information about the supply
chain.
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4. Simulationmodel

In order to develop a system dynamics model that is
capable of simulating the ripple effect for different types
of disruptions, the reviewed system dynamics models
were studied to identify appropriate variables and set-
tings. To investigate the effects of different order policies,
it is required that the model considers order flows and
inventories. This applies to the model proposed by Gu
and Gao (2017), which is the basis of this study, and the
adopted version from Llaguno, Mula, and Campuzano-
Bolarin (2022). In order to adjust the model to the use
case from the aerospace and defence industry (Ghadge
et al. 2022), the reverse supply chain was removed from
the model and the echelons have been also adopted from
the use case. The resulting structure with four eche-
lons also makes the model comparable and adaptable to

other manufacturing use cases (see Table 1) or to the
fast-moving consumer goods sector (Bottani and Mon-
tanari 2010). In supply chains, disruptions can occur
related to a cut or variation of demand, supply, or logistics
capacity (Golan, Jernegan, and Linkov 2020). To be able
to consider all types of possible disruptions, the trans-
port mechanism was modified according to the model
by Ghadge et al. (2022). Based on the outlined points,
the resulting system dynamics model for the investiga-
tion of ripple effect mitigation is presented in Figure 2
as flow diagram. In this model, all presented disruption
types can be applied individually or in combinations.
As level variables (see Table 3), the inventory of sup-
plier, manufacturer, distributor and retailer (SI, MI, DI,
RI) are considered. Also, the order backlog of manufac-
turer (MOB), distributor (DOB), and retailer (ROB) are

Figure 2. Flow diagram of the four-echelon supply chain model.



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 9

Table 3. Declaration of the used level variables.

Abbreviation Name Unit

DB Demand Backlog piece
DI Distributor’s Inventory piece
DOB Distributor’s Order Backlog piece
MI Manufacturer’s Inventory piece
MOB Manufacturer’s Order Backlog part
RI Retailer’s Inventory piece
ROB Retailer’s Order Backlog piece
SI Supplier’s Inventory part

Table 4. Declaration of the used flow variables (excerpt).

Abbreviation Name Unit

D Demand piece/week
DO Distributor’s Orders piece/week
MSR RawMaterial Supply Rate kg/week
MO Manufacturer’s Orders part/week
RO Retailer’s Orders piece/week

Table 5. Declaration of the used auxiliary variables (excerpt).

Abbreviation Name Unit

DSC Distributor Shipping Capacity piece
MSC Manufacturer Shipping Capacity piece
SSC Supplier Shipping Capacity part

Table 6. Declaration of the used parameter settings (excerpt).

Abbreviation Name Value Unit

BM BOM Pieces (Manufacturer) 3 part/piece
DVN Distributor Vehicle Number 25 car
MVN Manufacturer Vehicle Number 25 car
SVN Supplier Vehicle Number 25 car

taken into account in addition to the demand backlog
(DB). An excerpt of the flow variables is introduced in
Table 4, while relevant auxiliary variables are indicated
in Table 5 and assumed parameter settings are partly
displayed in Table 6. If applicable, the parameters from
the use case (Ghadge et al. 2022) were adopted and the
remaining parameters were set according to the base
model (Gu andGao 2017).More specifically, based on the
data from the case study from the aerospace and defence
industry, the demand D(t) was assumed to be normally
distributed with mean μD = 50,000 and variance σ 2 =
5000:

D(t) ∼ N (μD, σ 2); D(t0) = 0 (1)

The full list of all model variables and parameters is pro-
vided in Appendix A.1, as well as the formulas thatmodel
the relations between the variables (Appendix A.2).

5. Reinforcement learning approach

The use of a system dynamics model as environment
makes the use of model-free methods applicable as, in
comparison to model-based approaches, the required
larger amount of data can be sampled efficiently from the

simulation (T.Wang et al. 2019; X.Wang et al. 2022). Tak-
ing into account that the system dynamics simulation is
already amodel for the physical supply chain, model-free
algorithms seem to be more suitable in this context to
avoid further inaccuracies through approximation. Fur-
ther advantages ofmodel-freemethods are lower compu-
tational effort, less tuneable hyperparameters (Moerland
et al. 2023), and that they are more straightforward to
implement (Zhang and Yu 2020).

Since the inventories of a supply chain are a high-
dimensional solution space with a discrete, but very
large number of possible states and actions, the assump-
tion of continuous state and action spaces appears to be
appropriate, making policy-based methods the preferred
choice. Further advantages of this type of algorithms is
their better convergence and simpler policy parameteri-
sation (Zhang and Yu 2020).

The next differentiation of RL algorithms can bemade
whether they are on- or off-policy learners. Off-policy
algorithmsmaintain twodifferent policies, one behaviour
policy for data sampling and one target policy that is
learned, resulting in higher data efficiency as training
samples remain valid over a longer period of time. On-
policy algorithms use the same policy for data sampling
and learning (X. Wang et al. 2022). As data efficiency
is not required with the use of a simulation as environ-
ment, in terms of simplicity, on-policy algorithms are
the favoured option. For learning a policy in RL, deep
neural networks have proven to be suitable general func-
tion approximators, also in high dimensional spaces (X.
Wang et al. 2022), overcoming a traditional limitation of
RL, the curse of dimensionality (Kurian et al. 2022). As
recent progress in RL is based on the combination with
neural networks (X. Wang et al. 2022), neural networks
are selected as framework for approximating the policy
function in this work.

Thus, RL algorithms with the outlined properties are
applicable for the presented scenario. Specifically, model-
free (1) and policy-based (2)methods that are trained on-
policy (3) with the help of deep learning (4) are required.
A set of possible RL algorithms that fulfils the outlined
requirements is presented in Table 7.

The policy gradient (PG) algorithm makes use of
stochastic gradient descent to update the policy param-
eters directly (on-policy) based on the estimated gra-
dient of the reward function (Sutton et al. 1999). This
basic version of the algorithm suffers from poor data-
efficiency and robustness due to improperly sized pol-
icy updates (Schulman et al. 2017). In order to achieve
more efficient and stable policy updates, regularisation
approaches were included into the algorithms to balance
the trade-off between exploration and exploitation of the
action space. In actor-critic methods this is realised with
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Table 7. Comparison of applicable RL algorithms.

Regularisation Update measurement Scaling

Algorithm Year Policy update evaluation Actor-critic Advantage function Value function Asynchrony

PG 1999
PPO 2017 X X
A2C 2012 X X
A3C 2016 X X X
IMPALA 2018 X X X

training a function (the ‘critic’) to adjust the updates
of the original policy (the ‘actor’). More specifically, in
the advantage actor-critic (A2C) algorithm an estimate
for the advantage function is calculated from the main-
tained value function and then used to scale the pol-
icy updates. For a specific action in a given state, this
advantage function indicates the difference between the
future discounted reward and the state-value (Degris,
Pilarski, and Sutton 2012; Mnih et al. 2016). Thus, more
intuitively, actor-critic methods scale the policy updates
based on how much better a specific action is compared
to the average of all actions in a specific state. Out of
the actor-critic methods, IMPALA and A3C are designed
for asynchronous scaling, which is especially important
resource-intensive learning tasks. However, the regarded
supply chain model does not require an extensive scal-
ing of computational resources. This motivates the use
of A2C, a conceptually simpler approach that has shown
to provide competitive performance compared to other
actor-critic approaches (Schulman et al. 2017). Never-
theless, for models of real-world supply chains the asyn-
chronous versions of the algorithm may be a valuable
approach. In contrast to the actor-critic methods, in PPO
the regularisation of policy updates is based on a sur-
rogate expected advantage function, which makes it a
conceptually different technique. In order to test different
algorithmic approaches for the application on a system
dynamics simulation, PPOandA2Cwere both chosen for
experimentation.

The principle of RL builds on the interaction of an
agent with an environment. If not declared otherwise, in
the experiments the status of all level variables (DB, DI,
DOB,MI,MOB, RI, ROB, SI) is reported to the RL agent
as observation. High inventory levels in supply chains
are associated with costs, therefore it is desirable to ful-
fil the arising demand D(t) as accurate as possible. To
encourage lean inventories with simultaneous demand
fulfilment along the supply chain, the reward function
R is defined as the negative standard deviation from
the expected demand μD. With the tuple of level vari-
able values Lt = (DB(t),DI(t),DOB(t),MI(t),MOB(t),
RI(t),ROB(t), SI(t)) at timestep t, the corresponding

reward can be calculated as follows:

Rt = −
√∑

lt∈Lt
(lt − μD)2 (2)

This function offers the advantage that it represents the
optimisation objective more precisely compared to func-
tions that depend directly on the level variables. The
relative approach takes into account that a certain level
of inventories and backlogs (the expected demand) is
unavoidable to meet the customers’ demand and there-
fore not gets penalised. This has shown to prevent the
agent from the unintended behaviour of accepting the
penalty for a high demand backlog by not passing the
orders upstream, as this would increase even more level
variables. The supplier’s inventory and the manufac-
turer’s order backlog are scaled according to the number
of parts per piece before the usage in the reward function.
Operational recovery policies are then learned by the RL
agent based on the observations of the environment and
rewards for the taken actions. As actions the tuples At =
(DO(t),MO(t),RO(t)) are used, indicating the orders
from the respective supply chain entities at each timestep
t. As policy, a neural network is learned, which takes
the observation as input, gives the action as inference
output and is trained using the calculated rewards. As
environment, an adapted version of the system dynam-
ics model that is presented in Figure 2 was used. Since
in the RL approach the model behaviour is controlled by
the agent, feedback loops were removed from the system
dynamics model and orders are inserted as time-varying
parameters. The resulting flow diagram is included in
the appendix (Appendix A.3) and the described working
principle of the RL integration is summarised in Figure 3.

6. Experimental evaluation

In the implementation, the described system dynam-
ics model was transformed into a Python-readable form
using the PySD library (Martin-Martinez et al. 2022) and
then integrated into a custom gym environment. In this
way, the system dynamics simulation can be accessed
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Figure 3. Visualisation of the RL integration approach.

by the RL-agent. The observation space for each level
variable was restricted to [0, 1,000,000] and the action
space for orders was restricted to [0, 100,000] each. The
restrictions for MO, SI, and MOB were scaled with BM
accordingly. For the RL algorithms, the Stable Baselines3
implementation (Raffin et al. 2021) was used. In the
implementation, both, action and state values were scaled
to continuous values from the interval [−1, 1]. As train-
able policy for PPO and A2C, feed-forward neural net-
works with unchanged settings from Stable Baselines3
were applied. Hyperparameters that were changed com-
pared to the default settings are indicated in Appendix
A.4. All experimental runs were repeated r = 10 times
to mitigate random deviations in the algorithmic perfor-
mance. The evaluation was executed on a machine with
an Intel(R) Core(TM) i7-1065G7 CPU and 16GB RAM
in CPU-only mode.

Different types of disruptions are investigated in the
experiments, namely disruptions of transport capacities,
demand, and supply. In case of simulating a disruption
of transport capacities, the parameters DV N, MV N
and SV N become time-dependent. DVN(t) then can be
calculated as

DVNdisrupt(t)

=
{
16, if tdisrupt < t ≤ tdisrupt + ddisrupt
25, otherwise.

(3)

MVNdisrupt(t) and SVNdisrupt(t) are calculated accord-
ingly. As the mentioned parameters vary over time in
the disruption scenarios, also the variables indicating the
total transport capacities (DSC,MSC, SSC) become time-
dependent (DSCdisrupt(t),MSCdisrupt(t), SSCdisrupt(t) ). A

disruption of demand Ddisrupt(t) can be calculated as

Ddisrupt(t)

=
{
0, if tdisrupt < t ≤ tdisrupt + ddisrupt
D(t), otherwise

(4)

whereas a disruption of supply can be calculated as

MSRdisrupt(t)

=
{
0, if tdisrupt < t ≤ tdisrupt + ddisrupt
MSR(t), otherwise.

(5)

In the experiments, there is a distinction between sce-
narios with fixed disruptions, in which initiation time
and duration are the same in all runs, and scenarios with
variable disruptions, in which disruption start and dura-
tion are sampled randomly. For the variable disruption
scenario, it is assumed that disruptions can not be pre-
dicted and therefore that the occurrence of a disruption
is equally likely for every timestep. Hence, the variable
disruption timing tdisrupt,var is sampled from a uniform
distribution

tdisrupt,var ∼ U(t0, tn − 10), (6)

ensuring that the disruption takes place completely dur-
ing the observed time period. For the variable duration of
disruptions ddisrupt,var , a normal distribution with with
mean μ = 7 and variance σ 2 = 3 is assumed:

ddisrupt,var ∼ N (μ, σ 2) (7)

To avoid unintended effects in the implementation, nega-
tive disruption durations are set to zero. In case of a fixed
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disruption, the starting time is set to tdisrupt,fix = 50 and
the duration is set to ddisrupt,fix = 10.

In total, the proposed approach is tested in three differ-
ent experimental setups. Experiment 1 serves as a general
validation of the RL optimisation under consideration of
the given use case from the aerospace and defence indus-
try during the COVID pandemic. This experiment also
includes a comparison with the Vensim built-in meta-
heuristic Powell’s method, for which as objective func-
tion the stated reward function (Equation 2) is imple-
mented. In this setup, the general conditions are fixed
according to the given use case, this includes a fixed
disruption location (transport capacities), a fixed disrup-
tion timing and duration (as outlined above), and a fixed
demand pattern that is sampled once for all episodes.
As in practice disruptions are not predictable, in exper-
iment 2 the algorithmic performance of the proposed RL
optimisation approach is investigated under uncertain
conditions. The goal is to determine whether it is pos-
sible to learn an inventory control policy that is robust
against different types of disruptions. The setup of both
experiments assumes complete information about inven-
tories and order backlogs along the entire supply chain.
Since this is usually not the case in practice, the goal
of experiment 3 is to investigate the algorithmic per-
formance under incomplete information. In the Vensim
simulation, it is not possible to include changing disrup-
tion locations in the optimisation process. Also, Pow-
ell’s method does not rely on observations, which makes
experiment 3 meaningless for this algorithm. For these
reasons, only PPO and A2C are compared in experi-
ments 2 and 3. A smoothing function was applied for
plotting the experiments to improve the readability of all
diagrams.

6.1. Experiment 1 – validation of the RL
optimisation on the use case

The objective of experiment 1 (a) is a comparison of the
proposed RL optimisation approach with the results of
the simulation without optimisation under consideration
of the given use case. A comparison with the Vensim
built-in metaheuristic Powell’s method is carried out in
experiment 1 (b). The settings used for the Vensim opti-
misation are provided in Appendix A.5. In experiment 1
(a), the RL approach as described is used with a sampling
of orders at every timestep. The Vensim optimisation
only allows the generation of order values that are con-
stant during an episode and act like a parameter in the
simulation. To account for this in experiment 1 (b), the
environment is modified in a way, that for every simula-
tion run constant orders are generated. The length of an
episode is set to five simulation runs and as observation

always the initial observation is returned to narrow down
the agent on learning only one state-action pair.

An overview of the results of experiment 1 (a) is pro-
vided in Figure 4. The upper diagram shows for both
compared algorithms PPO and A2C the mean learn-
ing curves of all performed runs including the standard
deviation in lighter colours. The lower diagrams com-
pare the inventory and backlog levels summed over all
supply chain entities during the simulation interval, indi-
cating the averaged best episode per run. Based on the
adopted use case data from Ghadge et al. (2022), these
diagrams include simulation results fromadisrupted (red
lines – disrupted simulation) and a non-disrupted setting
(green lines – base simulation). Since both simulations
result in partly similar curves, the red lines cover the
green lines to some extent. After an initialisation period
of about 20 timesteps, the following peak in the curve
for the cumulative backlogs results from the fixed disrup-
tion occurring from t = 50 until t = 60. The disruption
has no effect on the cumulative inventories, even though
the inventories of single entities might be affected (see
Appendix A.6). In the diagrams, these simulation results
are depicted together with the optimisation results of the
RL integration (blue lines – PPO, orange lines – A2C).
The curves for the aggregated inventories and backlogs
show that both algorithms are able to learn undistorted
order policies. With regard to the use case, the policies
generated by PPO are effective in reducing the variance
in inventory and backlog levels caused by the ripple effect
of COVID-related disruptions. Additionally, these poli-
cies result in lower overall levels of inventory andbacklog.
Detailed results for all single level variables are presented
in Appendix A.6. The learning curves depicted above
indicate that, compared to A2C, PPO is leading to bet-
ter results faster and with less variation. Both algorithms
converge in a stable manner without high deviations or
performance drops.

Figure 5 illustrates the results of experiment 1 (b) with
a constant order scheme but besides that identical con-
ditions as in (a). As benchmark, also the curves for the
proposed stepwise order sampling from experiment 1 (a)
are included in the diagrams. The reward curves indicate
that stepwise order sampling is more suitable for the RL
setting, as both regarded RL algorithms perform signif-
icantly better. Powell’s method generated the most suit-
able order policy for the constant order scheme without
making use of the maximum number of allowed itera-
tions, since the termination criteria (see Appendix A.5)
are met beforehand. In comparison with the stepwise
order policy learned by PPO, Powell’s method generated
a parameter setting with comparable absolute levels of
inventory and backlog but with more variation induced
by the ripple effect caused by the COVID disruption.
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Figure 4. Results of experiment 1 (a) – Comparison with the simulation results.

Thus, compared to the Vensim built-in metaheuristic
optimisation, the proposed RL approach is more suit-
able to mitigate the ripple effect in the setting adopted
from the use case with a fixed disruption. The superior
results are causedmainly through the improved flexibility
in the stepwise order sampling. However, when compar-
ing Powell’s method with the constant orders generated
by the RL approach, the metaheuristic results in signifi-
cantly lower inventory and backlog levels as well as less
severe variations.

An excerpt of the learned policy is presented in
Figure 6. For every timestep, the action learned by the
RL algorithm (the order quantity of the distributor) is
visualised as blue dot in dependency of the environ-
ment. In order to obtain a readable diagram, only the
variables indicating the distributor’s inventory and the
retailer’s backlog are included, although the taken action
also has a dependency on the remaining level variables.
Furthermore, only the learned policy for the distribu-
tor is presented. For comparison, the resulting policies
of the disrupted simulation (red dots) and the Vensim

optimisation (green dots) are included in the diagram
as well. Since only the 3D perspective could be mislead-
ing, the dependency on each, the distributor’s inventory
(left diagram) and the retailer’s backlog (right diagram)
is visualised as well. The plots indicate that the varia-
tions in the order quantity are comparable for the RL
optimisation and the simulation. Also, the fixed order
quantity of the Vensim optimisation is apparent in the
diagram. The distribution of the dots indicates that in
the simulation, there is a higher variation in the inven-
tory level while for the RL policy, the variation is similar
for both level variables. This shows that the objective
function, which assigns equal weights to variations in
inventory and backlog levels, has the intended balancing
effect.

Table 8 shows a comparison of mean computation
times of the algorithms. The metaheuristic Powell’s
method has a significantly lower computation time than
the RL algorithms, which are on the same scale with a
slight advantage of A2C. During experimentation, it was
apparent that the computation times are mainly caused
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Figure 5. Results of experiment 1 (b) – Comparison with Powell’s method (Vensim optimisation).

Figure 6. Results of experiment 1 – Visualisation of the learned policy for the distributor.

by the interaction with the environment, making this
more efficient therefore could speed up the process sig-
nificantly. Even though, it is unrealistic to reach the
metaheuristic computation times due to the computa-
tional overhead that RL entails. Thus, the results imply
a trade-off between quality of results and computational
effort.

Table 8. Comparison of mean computation times for
experiment 1 (a).

Algorithm Mean computation time [sec]

Powell’s Method (Vensim) < 1
PPO 1006
A2C 958
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The overall results from experiment 1 validate that
with the proposed RL approach improved order policies
can be learned that mitigate the ripple effect induced by
the COVID pandemic for a company from the aerospace
and defence industry. Out of the tested approaches, step-
wise order policies generated by PPO provide the most
significant ripple effect mitigation. However, the Vensim
built-in metaheuristic Powell’s method leads to slightly
worse results with significantly less computation time,
indicating a trade-off between quality of results and com-
putational effort.

6.2. Experiment 2 – validation of the RL
optimisation under uncertainty

In this experiment, the fixed disruption from experiment
1 serves as first scenario but with a demand sampled
randomly for every episode. In a second scenario, disrup-
tion duration and disruption start are sampled randomly
as indicated above. In supply chains, common disrup-
tion locations are demand, supply, and logistics capacity

(Golan, Jernegan, and Linkov 2020) and it is also not
predictable where a disruption occurs. Therefore, in a
third scenario, additionally the location of the disruption
sampled randomly from the three listed possibilities.

In Figure 7, the results of experiment 2 are sum-
marised, presenting the learning curves, summed inven-
tories, and summed backlogs of the different algorithm-
scenario combinations. The missing disruption-related
oscillations in the randomised scenarios can be explained
by the averaging procedure over all 10 runs. A better
performance of PPO can be observed for all three sce-
narios in the accumulated inventories and backlogs. It
can be observed that randomised time characteristics of
the disruption do not affect the algorithmic performance
negatively while the additional random location slightly
increases the variance and absolute value of inventory
and backlog levels. The algorithmic performance in the
randomised scenarios can be seen as a validation of the
RL approach under uncertainty since generalised order
policies, independent from a fixed disruption, could be
learned. The results from the experiment imply that also

Figure 7. Results of experiment 2 – Validation of the RL optimisation under uncertainty.
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if duration, starting time, and location of a disruption are
not known beforehand, the proposed approach is able to
generate ripple effect-mitigating order policies. Regard-
ing the use case this means that without prior informa-
tion on the COVID pandemic the reliability of the supply
chain can be improved with the combination of system
dynamics and RL.

6.3. Experiment 3 – validation of the RL
optimisation under incomplete information

The effects of incomplete information, which are the
subject of this experiment, are investigated under
the assumption of time-varying disruptions, generated
according to Equations (6) and (7) and a disruption loca-
tion fixed to the transport capacities. In this experiment,
only the distributor is in scope and the action space
is reduced to the distributor’s orders accordingly. The
remaining orders are covered again by the original sim-
ulation. In the first scenario of this experiment, the RL

agent can observe all level variables (complete informa-
tion) whereas in the second scenario, the observation
space is reduced to the distributors’ inventory, the dis-
tributor’s backlog, and the retailer’s backlog (incomplete
information).

For this experiment, the results are presented in
Figure 8. Again, PPO leads to lower inventories, lower
backlogs, and less variation compared toA2C in both sce-
narios. The order policies learned by PPO result in almost
identical accumulated level of inventories and backlogs in
both scenarios, which can be seen as a validation for the
applicability of the proposed approach under incomplete
information about the state of the supply chain. However,
from the learning curve it can be observed that in the
beginning of the learning procedure for the scenario with
incomplete information it is more difficult for the PPO
algorithm to generate suitable order policies. Regarding
the use case, this implies that complete information on
the supply chain is not mandatory for an effective ripple
effect mitigation.

Figure 8. Results of experiment 3 – Validation of the RL optimisation under incomplete information.
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7. Discussion

Due to the relevance of supply chain disruptions and
their impact on enterprises, there is a need for increased
resilience. As disruptions are difficult to predict and the
origin typically is located outside the supply chain (Li
and Zobel 2020; Llaguno, Mula, and Campuzano-
Bolarin 2022), adaptive order policies are an impor-
tant lever to mitigate the ripple effect at an operational
level (Ivanov et al. 2019). The reviewed literature indi-
cates that, in order to address the research gap of SimOpt
approaches for ripple effect mitigation through the gen-
eration of dynamic recovery policies (Katsaliaki, Galetsi,
and Kumar 2022; Liu et al. 2021; Llaguno, Mula, and
Campuzano-Bolarin 2022), an RL-based optimisation of
system dynamics models is an unexplored but promising
field of research. The experimental results show that the
proposed approach for creating adaptive order policies
is effective in mitigating the ripple effect in a simulation
setting.

Experiment 1 demonstrates that an adaptive order-
ing model based on secondary data from the aerospace
and defence industry (Ghadge et al. 2022) can be trained
to reduce variations in inventories and order backlogs
whendisruption characteristics are known. Furthermore,
it is shown that an adaptive ordering model trained by
the PPO algorithm is more effective in reducing the rip-
ple effect than Powell’s method. With this metaheuristic
optimisation approach, only an optimised constant value
for the orders can be generated. When restricting the
RL algorithms also to the generation of a constant order
value, the metaheuristic approach shows a significantly
better performance, indicating that the superior results of
PPO are related to the possibility of stepwise changes in
the order quantity. Experiment 2 proves that RL is also
effective for learning adaptive order policies when dis-
ruption characteristics are not known beforehand. Since
the occurrence and properties of real-world disruptions
are not predictable (Dolgui, Ivanov, and Sokolov 2018),
this represents a more realistic setting. In both experi-
ments, the RL agent is trained with information about
inventories and order backlogs from all supply chain
entities. Since this complete information is an assump-
tion that usually does not hold in practice, experiment
3 showcases the effectiveness of the proposed approach
also in a setting with incomplete information about
inventories and backlogs along the supply chain. The
plots of the resulting policy from the RL optimisation
(Figure 6) allow for a comparisonwith traditional heuris-
tic inventory policies. For example, an (s,Q) policy, where
below inventory level s, an order with a fixed quantity
Q is placed (El-Aal et al. 2010), would result in a pat-
tern similar to the Vensim simulation. Since traditional

inventory policies are only dependent on the current
inventory level (El-Aal et al. 2010), neglecting the infor-
mative value of order backlogs, a higher variation in the
backlog levels is to be expected. A detailed comparison
with different traditional inventory policies is subject to
further research, but as shown by Kegenbekov and Jack-
son (2021), an optimisation with RL is more effective
in streamlining inventor management than a traditional
base-stock policy.

Since the proposed combination of system dynamics
and RL works in a simulation environment, a continuous
validation of the learned order policies should be per-
formed when using the approach in real conditions. If a
model does not reflect the reality and influencing factors
are not considered, the generated order policies are likely
to be inaccurate as well. Furthermore, the scaling proper-
ties of the approach to large supply chains have not been
not tested.

8. Managerial insights and theoretical
implications

An implication from a practical and managerial per-
spective to mitigate the costly consequences of the rip-
ple effect like shortages and excess inventories is the
integration of an algorithmic ordering approach into a
general supply chain resilience framework. As preven-
tive recovery policy, classical heuristic inventory control
policies could be substituted by the proposed combina-
tion of system dynamics and RL, which has shown to
effectively balance inventories and order backlogs, even
under practice-oriented conditions such as uncertainty
about disruption characteristics and incomplete infor-
mation about the supply chain. Based on the SimOpt
approach, robust order policies can be generated with-
out information on time, duration, and location of the
disruption and tedious scenario building as necessary
for simulation-only approaches can be avoided. In com-
parison to proactive mitigation approaches or structural
adaptations of the supply chain, the algorithmic gener-
ation of recovery policies with a SimOpt approach is
also a cost-effective option to build resilience. Thus, the
combination of system dynamics and RL appears to be
a promising approach that requires a practical evalua-
tion. As additional managerial implication, the SimOpt
approach could be used as part of the mathematical
engine of a digital twin for supply chains.Managerial sup-
ply chain decision-makers can be supported inmitigating
the ripple effect through improved visibility on the supply
chain behaviour under disruptions. A digital twin allows
for the evaluation of a multitude of different resilience-
buildingmeasures such as backup suppliers or alternative
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shipping routes. Moreover, the creation of a digital twin
would require information sharing and the collaboration
of multiple supply chain echelons, which has synergies
with the proactive ripple effect mitigation approach.

An implication from a theoretical and research per-
spective is the extension of the set of SimOpt-based
approaches for SCM as well as the advance of research
in supply chain resilience. Based on existing research
on system dynamics simulations supply chain disrup-
tions, the effectiveness of the integration of RL for ripple
effect mitigation has been demonstrated in comparison
to a pure simulation and a metaheuristic for a use case
from the aerospace and defence industry. From a theoret-
ical viewpoint, the approach combines the computational
efficiency and robustness of system dynamics simula-
tions (Jaenichen et al. 2021) with the suitability of RL
for solving dynamic optimisation problems (Mortazavi,
Khamseh, and Azimi 2015). Furthermore, the approach
allows to learn robust order policies without the need
for historical data, which is difficult to obtain for supply
chain disruptions. RL approaches for inventory optimi-
sation usually refer to the inventory management model
from the OR-Gym package as environment that supports
single product systems with stationary demand (Hubbs
et al. 2020). Hence, the proposed approach of using a sys-
tem dynamics simulation as environment allows a flexi-
ble adaption to different supply chain configurations, i.e.
multi-product or seasonal demand, using a graphical rep-
resentation of the model as well as the opportunity to
integrate a variety of different disruptions to test the sys-
tem under varying conditions. Here, this proposal can be
seen as a foundation for future research, as it presents a
flexible optimisation approach that is applicable to a wide
range of supply chain-related problems.

9. Conclusions and future research

Due to the significant impact of supply chain dis-
ruptions on companies’ operations, resilience is an
inevitable requirement for competitiveness. Resilience
can be increased on an operational level through adap-
tive order policies for recovery, which can be generated
by algorithmic approaches. Since a research gap exists
regarding the development of SimOpt approaches for the
generation of these recovery policies, a novel framework
that integrates system dynamics and RL is proposed for
the generation of adaptive order policies. For this pur-
pose, (i) a system dynamics model is derived from the
literature that allows for the simulation of all types of
disruptions based on secondary data from a real use
case. In addition, (ii) the proposed approach is presented,
in which the supply chain behaviour is simulated with
the system dynamics model and adaptive order policies
for improved disruption recovery are learned by the RL

agent. The effectiveness of the approach is demonstrated
in an experimental setting (iii). The results indicate that
the general working principle of the proposed optimisa-
tion approach is promising since the proposed combina-
tion of a system dynamics simulation with RL has shown
to be robust also with uncertainty about the disruption
characteristics and under incomplete information about
the state of the supply chain. The proposed approach is a
versatile framework that allows a flexible and straightfor-
ward adaptation to changing supply chain configurations.
In all experimental runs, PPOoutperformedA2C regard-
ing the quality of results, even though A2C had slightly
lower computation times.

A limitation of this study relates to the comparison
with alternative ripple effect mitigation approaches with,
e.g. backup suppliers or alternative shipping routes. This
would provide the ability to assess the effectiveness as
well as the financial and organisational efforts of the dif-
ferent methods, allowing a derivation of guidelines for
preferable mitigation approaches depending on the dis-
ruption characteristics and supply chain configuration.
Related to this, a comparison with traditional order poli-
cies could provide additional insights about the effective-
ness of the system dynamics-RL framework for ripple
effect mitigation. Another major limitation for the pre-
sented approach is that the generated order policies were
not evaluated in practice. By using the learned order
policies in a real-world supply chain setting, the effective-
ness and practicality can be evaluated. This may lead to
valuable improvements and allows conclusions regarding
the applicability of the approach and an identification of
optimisation potential. In addition, models are always a
bounded representation of reality, limiting the range of
conclusions that can be drawn from the results, in partic-
ular for special cases of disruptions. Also, the used system
dynamics model only represents a small supply chain.
Usually multiple entities per echelon exist and multi-
ple products are in scope of a similar analysis. Another
limitation is that, despite trial runs during the imple-
mentation, different reward functions were not tested
systematically. The experiments indicate that the used
reward function depending on the variance is able to bal-
ance the level variables under disruptions but the objec-
tive of minimum inventories and backlogs is not directly
addressed, which could further improve the results. Dur-
ing experimentation, the model has shown to be very
sensitive for changes on the hyperparameter settings. The
use of a systematic approach to optimise the hyperpa-
rameter settings and the configuration of the underlying
neural network is likely to lead to more precise order
policies and would also enable a structured testing of dif-
ferent reward functions. Despite a justified selection of
algorithms, further RL approached that were not tested
in this work may increase the performance.
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Since the proposed integration of system dynamics
and RL represents a novel approach for ripple effect mit-
igation, several possible directions for future research
exist. With regard to supply chain resilience, in general,
additional research is needed to combine existing proac-
tive and reactive measures with the system dynamics-RL
framework to achieve redundancy in ripple effect mit-
igation. Alternative approaches are the integration of
these measures, e.g. backup suppliers, into the model or
the inclusion of the system dynamics-RL approach in
other frameworks with the aim to increase supply chain
resilience. Furthermore, a benchmark with other algo-
rithmic approaches might be beneficial where alternative
simulation or optimisation techniques can be tested and
assessed regarding their applicability in the given setting.
Additional activities are required regarding the applica-
tion of the proposed approach in practice. For a suc-
cessful application on a real-world supply chain a precise
model of the supply chain is inevitable for obtaining use-
ful results. In this context, further investigationsmight be
necessary to refine the approach. Current trends regard-
ing sustainability may be also considered and the effects
on a closed-loop supply chain (e.g. Gu and Gao 2017)
can be tested in future research. As shown in Figure
6, the resulting policies could be investigated system-
atically in future research, especially in comaprison to
traditional order policies. The problem of incomplete
information about the supply chain, which was inves-
tigated in experiment 3, may be addressed by research
on federated learning, which provides the potential to
enhance the willingness for and security of data shar-
ing along the supply chain. In this context, also fur-
ther collaborative approaches like joint coordination and
decision-making can be explored to mitigate the ripple
effect more effectively. A further line of investigation can
be related to the design of effective reward functions, tai-
lored towards the problem of minimal inventories and
backlogs for all supply chain entities. Approaches from
multi-objective RL (e.g. Hayes et al. 2022) can be suitable
to design a reward function that addresses all level vari-
ables independently and thus avoids the dependency on
the estimated demand. In contrast to the applied reward
function that relies only on inventory and backlog lev-
els, further approaches may focus on optimising costs
of inventories and backlogs, service levels, or lead time.
Future algorithmic research may be related to multi-
agent approaches (see, e.g. H. Wang et al. 2022), which
provide the potential to represent real-world supply chain
behaviour more closely.
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Appendix. Additional Vensim implementation
details

A.1 Variable declarations

In the following, all used variables are declared together with
their respective unit. For completeness, also the variables
introduced in the main text are included.

A.2 Model formulas

The dynamic relations between the variables are indicated by
Equations (A1)–(A49). Equations (A1)–(A8) determine the
behaviour of the level variables. They result from the inte-
gral of incoming and outgoing flow determined by the state
of the flow variables. With exception of the supplier inventory
SI(t) (Equation (A8)), all level variables have an initial value
10,000. Considering the composition of one piece out of three
parts (indicated by BM), the supplier inventory SI(t) was set to
30,000 as initial value ensure a demand coverage comparable
to the other inventories. The flow variables, that are fully deter-
mined by the system, are indicated by Equations (A9)–(A24).
The demandD(t) is sampled randomly for every timestep from
a normal distribution (Equation (A9)). The behaviour of the

Table A1. Declaration of the used level variables.

Abbreviation Name Unit

DB Demand Backlog piece
DI Distributor’s Inventory piece
DOB Distributor’s Order Backlog piece
MI Manufacturer’s Inventory piece
MOB Manufacturer’s Order Backlog part
RI Retailer’s Inventory piece
ROB Retailer’s Order Backlog piece
SI Supplier’s Inventory part

Table A2. Declaration of the used flow variables.

Abbreviation Name Unit

D Demand piece/week
DBR Demand Backlog Reduction Rate piece/week
DO Distributor’s Orders piece/week
DOR Distributor’s Order Reduction Rate piece/week
DSR Distributor Supply Rate piece/week
MSR RawMaterial Supply Rate kg/week
MO Manufacturer’s Orders part/week
MOR Manufacturer’s Order Reduction Rate part/week
PR Production Rate piece/week
RO Retailer’s Orders piece/week
ROR Retailer’s Orders Reduction Rate piece/week
RSR Retailer Supply Rate piece/week
S Sales piece/week
SRD Shipment Rate to Distributor piece/week
SRM Shipment Rate to Manufacturer part/week
SRR Shipment Rate to Retailer piece/week

Table A3. Declaration of the used auxiliary variables.

Abbreviation Name Unit

DID Discrepancy of Distributor’s Inventory part
DIS Discrepancy of Supplier’s Inventory part
DIR Discrepancy of Retailer’s Inventory piece
DIM Discrepancy of Manufacturer’s Inventory piece
DDI Desired Distributor’s Inventory piece
DMI Desired Manufacturer’s Inventory piece
DRI Desired Retailer’s Inventory piece
DSC Distributor Shipping Capacity piece
DSI Desired Supplier’s Inventory part
DSP Distributor Shipped Products piece
ED Expected Demand piece/week
EDO Expected Distributor’s Order Rate piece/week
EMN Expected Material Need Rate kg/week
EMO Expected Manufacturer’s Order Rate part/week
EPN Expected Parts Need Rate part/week
ERO Expected Retailer’s Order Rate piece/week
MD RawMaterial Discrepancy kg
MSC Manufacturer Shipping Capacity piece
MSP Manufacturer Shipped Products piece
PD Parts Discrepancy part
SDO Shippable Distributor’s Orders piece
SMO Shippable Manufacturer’s Orders part
SRO Shippable Retailer’s Orders piece
SSC Supplier Shipping Capacity part
SSP Supplier Shipped Parts part

Table A4. Declaration of the used parameter settings.

Abbreviation Name Value Unit

AD Adjust Time Distributor’s Inventory 5 week
AM Adjust Time Manufacturer’s Inventory 5 week
AR Adjust Time Retailer’s Inventory 5 week
AS Adjust Time Supplier’s Inventory 5 week
BS BOM Parts (Supplier) 12 kg/part
BM BOM Pieces (Manufacturer) 3 part/piece
CD Cover Time Distributor 1.5 week
CS Cover Time Supplier 1.5 week
CM Cover Time Manufacturer 1.5 week
CR Cover Time Retailer 2 week
DT Delivery Time to Customer 1 week
DVC Distributor Vehicle Capacity 2500 piece/car
DVN Distributor Vehicle Number 25 car
MVC Manufacturer Vehicle Capacity 2500 piece/car
MVN Manufacturer Vehicle Number 25 car
SD Shipment Time to Distributor 1 week
SM Shipment Time to Manufacturer 1 week
SR Shipment Time to Retailer 1 week
SVC Supplier Vehicle Capacity 7500 part/car
SVN Supplier Vehicle Number 25 car

auxiliary variables is defined by Equations (A25) –(A49), of
which the equations for expected demand (ED(t)), expected
distributor’s orders (EDO(t)), expected manufacturer’s orders
(EMO(t)), and expected retailer’s orders (ERO(t)) describe an
information delay of one period until they receive the states
from their associated flow variables. Accordingly, the simula-
tion is initialised in period t = 0 with the values indicated by
the formulas and starts in period t = 1.

Level variables:

DB(t) =
∫ t

t0
D(t) − DBR(t) dt; DB(t0) = 0 (A1)

DI(t) =
∫ t

t0
DSR(t) − SRR(t) dt; DI(t0) = 20,000 (A2)
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DOB(t) =
∫ t

t0
DO(t) − DOR(t) dt; DOB(t0) = 0 (A3)

MI(t) =
∫ t

t0
PR(t) − SRD(t) dt; MI(t0) = 20,000 (A4)

MOB(t) =
∫ t

t0
MO(t) − MOR(t) dt; MOB(t0) = 0 (A5)

RI(t) =
∫ t

t0
RSR(t) − S(t) dt; RI(t0) = 20,000 (A6)

ROB(t) =
∫ t

t0
RO(t) − ROR(t) dt; ROB(t0) = 0 (A7)

SI(t) =
∫ t

t0

MSR(t)
BS

− SRM(t) dt; SI(t0) = 60,000

(A8)

Flow variables:
For comprehensiveness, the demand D(t) is normally

distributed with mean μ = 50,000 and variance σ 2 = 5000:

D(t) ∼ N (μ, σ 2); D(t0) = 0 (A9)

The rest of the flow variables is defined as follows:

DBR(t) = S(t) (A10)

DO(t) = max
{
ERO(t) + DID(t)

AD
, 0

}
; DO(t0) = 0

(A11)

DOR(t) = SRD(t) (A12)

DSR(t) = SRD(t) (A13)

MSR(t) = max
{
EMN(t) + MD(t)

AS
, 0

}
(A14)

MO(t) = max
{
EPN(t) + PD(t)

AM
, 0

}
; MO(t0) = 0

(A15)

MOR(t) = SRM(t) (A16)

PR(t) = SRM(t)
BM

(A17)

RO(t) = max
{
ED(t) + DIR(t)

AR
, 0

}
; RO(t0) = 0 (A18)

ROR(t) = SRR(t) (A19)

RSR(t) = SRR(t) (A20)

S(t) = min{DB(t),RI(t)}
DT

(A21)

SRD(t) = MSP(t)
SD

(A22)

SRM(t) = SSP(t)
SM

(A23)

SRR(t) = DSP(t)
SR

(A24)

Auxiliary variables:

DID(t) = DDI(t) − DI(t) (A25)

DIS(t) = DSI(t) − SI(t) (A26)

DIR(t) = max{DRI(t) − RI(t), 0} (A27)

DIM(t) = DMI(t) − MI(t) (A28)

DDI(t) = ERO(t) ∗ CD (A29)

DMI(t) = EDO(t) ∗ CM (A30)

DRI(t) = ED(t) ∗ CR (A31)

DSC = DVC ∗ DVN (A32)

DSI(t) = EMO(t) ∗ CS (A33)

DSP(t) = min{DI(t), SRO(t)} (A34)

ED(t) = D(t − 1) (A35)

EDO(t) = DO(t − 1) (A36)

EMN(t) = EMO(t) ∗ BM (A37)

EMO(t) = MO(t − 1) (A38)

EPN(t) = EDO(t) ∗ BM (A39)

ERO(t) = RO(t − 1) (A40)

MD(t) = DIS(t) ∗ BS (A41)

MSC = MVC ∗ MVN (A42)

MSP(t) = min{MI(t), SDO(t)} (A43)

PD(t) = DIM(t) ∗ BM (A44)

SDO(t) = min{MSC(t),DOB(t)} (A45)

SMO(t) = min{SSC(t),MOB(t)} (A46)

SRO(t) = min{DSC(t),ROB(t)} (A47)

SSC = SVC ∗ SVN (A48)

SSP(t) = min{SI(t), SMO(t)} (A49)

A.3 Model used in optimisation approach

A.4 RL hyperparameter settings

Hyperparameters deviating from the default settings are set as
follows in the optimisation. The batch size was set to b = 156,
corresponding to the episode length, which is in turn represent-
ing the regarded time period of 156 weeks. The discount factor
was set to γ = 0.9. In each experimental run, the respective RL
algorithm was trained for I = 1000 episodes and the results of
the episode with the highest cumulative reward was saved for
later evaluation. As learning rate α, an adaptive schedule with i
indicating the current episode number was used:

αi = 0.0003 ∗ e
I−i
I −1 (A50)

A.5 Vensim optimisation settings

In the experiments, the following settings for the Vensim opti-
misation were used:

:OPTIMIZER=Powell
:SENSITIVITY=Off
:MULTIPLE_START=Off
:RANDOM_NUMER=Default
:SEED=0
:OUTPUT_LEVEL=On
:TRACE=6
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Figure A1. Flow diagram of the supply chain model without feedback loops used for optimisation.

:MAX_ITERATIONS=1000
:SIMS_MAX=1000
:RESTART_MAX=1
:PASS_LIMIT=2
:FRACTIONAL_TOLERANCE=9e-009
:TOLERANCE_MULTIPLIER=21
:ABSOLUTE_TOLERANCE=0.001
:SCALE_ABSOLUTE=0.01
:VECTOR_POINTS=25
0<=distributor’s orders<=100000
0<=manufacturer’s orders<=100000
0<=retailer’s orders<=100000
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A.6 Experiment 1 (a) – level variables diagrams

Figure A2. Detailed inventory and backlog curves for experiment 1 (a).
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