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ABSTRACT

In this article, we analyze the chaotic behavior of finite difference operators associated with certain differential equations. Our examples range
from numerical schemes for a birth-and-death model with proliferation to a class of second-order partial differential equations that includes
the hyperbolic heat transfer equation, the telegraph equation, and the wave equation. We provide sufficient conditions on the spatial and time
steps of the scheme that guarantee chaos for the corresponding operators, and we compare them with the conditions needed to ensure chaotic
analytical solutions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0158038

The analysis of chaos for partial differential equations is a fash-
ionable area of study nowadays. Most natural phenomena of
interest like cell proliferation, electrostatics, electrodynamics,
elasticity, fluid flow, and heat conduction are described by par-
tial differential equations (PDEs). It is well-known that solutions
to linear PDEs can be represented in terms of C0-semigroups
whose chaotic dynamics have been widely analyzed. With this
motivation, we investigate sufficient conditions to ensure chaos
for numerical discretizations of these equations. This comparison
between chaos for the numerical schemes and the exact solutions
is completely new. Our findings need interaction between differ-
ent areas of mathematics, such as numerical analysis, complex
analysis, and operator theory.

I. INTRODUCTION

The theory of chaos has been extensively studied in finite-
dimensional dynamical systems, which include discrete maps and
ordinary differential equations. This field has resulted in significant
applications in physics, chemistry, biology, and engineering. The
analysis of chaos for partial differential equations (PDEs) is much
more complicated. Most natural phenomena of interest like cell pro-
liferation, electrostatics, electrodynamics, elasticity, fluid flow, heat
conduction, sound propagation, and traffic modeling are described
by PDEs.

The study of C0-semigroups has commonly been associated
with the study of linear partial differential equations of parabolic and
hyperbolic types. It is now well-established that solutions to these
equations can be represented in terms of C0-semigroups.1 The study
of chaotic dynamics of C0-semigroups solution of PDEs was initi-
ated by Desch et al.2 Herzog3 analyzed chaos for C0-semigroups on
certain spaces of analytic functions with controlled growth. Since
then, the dynamics on this kind of phase spaces has been intensively
investigated.4–9,25–27

Finite difference methods are among the most significant
numerical methods for solving differential equations. These meth-
ods involve a system of difference equations where the derivatives
are estimated by divided finite differences, and the solution of this
system provides an approximation of the differential equation solu-
tion in a discrete set of points. Many of these numerical schemes for
differential equations can be modeled as dynamical systems. There-
fore, it is pertinent to study the conditions that ensure the chaotic
behavior of these systems, as was recently shown in Ref. 10.

There exist a wide range of finite divided differences
methods11,12 for approximating the derivatives of a real function
f : R → R. However, one of the most popular corresponds to the
standard finite differences approximations for the first and second
derivatives, namely, the forward, backward, and centered discretiza-
tions. When applying these approximations in an ordinary or partial
differential equation, in many cases, this leads to a finite difference
equation that can be described as a linear dynamical system, that
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is, in terms of the iterates of an operator T in an appropriate space
of sequences. In some cases, this operator is a diagonal-constant
operator, also called a Toeplitz operator, whose dynamics have been
extensively studied in the literature.13–15

In this paper, we will consider finite difference schemes for a
birth-and-death model with constant coefficients given by an infi-
nite system of first-order ordinary differential equations, and also
for a class of second-order partial differential equations. The chaotic
dynamics of the C0-semigroups solution of these models have been
characterized in Ref. 16 and Refs. 7 and 8, respectively. In our work,
we will go a step further, and we will provide sufficient conditions for
these numerical discretizations being chaotic, and we will compare
them with the ones obtained in Ref. 16 and Refs. 7 and 8, respec-
tively. The analysis of the dynamics of finite difference operators is
inspired in Ref. 10 but, as far as we know, the comparison between
chaos for the numerical schemes and the exact solutions is com-
pletely new. Moreover, chaos in the sense of Devaney implies that
the operator is not contractive. Hence, by definition of stability17 for
a numerical algorithm, chaotic finite difference operators are unsta-
ble. Thus, our results provide sufficient conditions on the spatial
and time steps that provide unstable numerical algorithms. Also,
to obtain stable numerical algorithms, the spatial and time steps
cannot satisfy our conditions. Due to the nature of the subject, it
needs the interaction between different areas of mathematics, such
as numerical analysis, complex analysis, and operator theory, among
others.

This paper is organized as follows. In Sec. II, we collect some
basic notions and results about the dynamics of linear operators.
We will recall some criteria from the literature that provide suffi-
cient conditions to ensure chaos for Toeplitz operators, sequences
of operators, and C0-semigroups. In Sec. III, we will concentrate
on the existence of chaos for finite difference schemes applied to a
birth-and-death model with constant coefficients given by an infi-
nite system of first-order ordinary differential equations. It will be
crucial in our results to represent this model in terms of a Toeplitz
operator. We will show the same conditions on the parameters of the
model are needed to guarantee chaos of the numerical and analyti-
cal solution. In Sec. IV, we will apply different numerical schemes
to a class of second-order partial differential equations with respect
to time and space. By using the eigenvector field criterion for the
sequence of operators, we will obtain sufficient conditions on the
time and spatial step to ensure chaos for the numerical solutions.
Finally, in Sec. V, we will show, as an application of our results, suf-
ficient conditions for obtaining chaotic numerical solutions in the
case of the hyperbolic heat transfer equation, the telegraph equation,
and the wave equation.

II. PRELIMINARIES

In this section, we recall some basic notions and results about
dynamics of linear operators, paying special attention to Toeplitz
operators and C0-semigroups.

A. Chaos for Toeplitz operators

In what follows, we will consider the following notation. If
M = N0 or Z, let us denote the space of sequences `p(M)

:= {(an)n∈M :
∑

n∈M |an|p < ∞}. Let us denote T := {z ∈ C : |z|
= 1}, D := {z ∈ C : |z| < 1},

Lp(T) :=
{

f : T → C :

∫

T

|f(z)|pdz < ∞
}

,

L∞(T) :=
{

f : T → C : sup |f(z)| < ∞
}

,

and

H
2(D) := {f : D → C is holomorphic: sup

0≤r<1

1

2π
∫ 2π

0

|f(reit)|2dt < ∞}.

Recall that a Toeplitz operator Tφ : H2(D) → H2(D), with sym-
bol φ ∈ L∞(T) is defined as Tφ(f) = P(Mφ(f)), f ∈ H2(D), where
Mφ is the multiplication operator by φ and P : L2(T) → H2(D) is
the Riesz projection. Given φ(z) =

∑

n∈Z anzn ∈ L∞(T), and f(z)
=

∑∞
n=0 bnzn ∈ H2(D), we can write (Tφ f)(z) =

∑∞
n=0 cnzn, where

the sequence c = (cn)n is obtained as the convolution of a = (an)n,
with b = (bn)n, i.e.,

cn = (a ∗ b)n =
n

∑

j=−∞

ajbn−j, n ∈ N0,

and the Toeplitz operator is then considered as an infinite matrix
operator Tφ : `2(N0) → `2(N0). In case φ(z) =

∑

n∈Z anzn is so
that a = (an)n ∈ `1(Z), then Tφ is a well-defined bounded operator
in `p(N0), 1 ≤ p < ∞.

In Ref. 14, the authors characterized Devaney chaos for a
Toeplitz operator Tφ when the symbol φ has the form φ(z) = a−1

z

+ a0 + a1z in terms of the coefficients. The equivalence was based
on the characterization given in Ref. 13, where sufficient conditions
for chaos were also provided for more general symbols. In the con-
text of linear dynamics, we recall that an operator T on a Banach
space X is Devaney chaotic if it is hypercyclic, that is, there is a vec-
tor x ∈ X such that its orbit Orb(x, T) = {x, Tx, T2x, . . .} is dense in
X and the set of periodic points Per(T) is dense in X, a concept that
comes from Refs. 18 and 19.

For the applications to numerical schemes for first-order PDEs,
the tridiagonal case when the coefficients are real was especially
useful, as obtained in Ref. 10. Here, we will need it for the birth-
and-death model.

Proposition 1 Ref. 10. Let Tφ : H2(D) → H2(D) be a
Toeplitz operator with symbol φ(z) = a−1

z
+ a0 + a1z, where a0, a−1,

a1 ∈ R, a−1, a1 ∈ R\{0}. Then, Tφ is chaotic if and only if |a−1|
> |a1| and

| |a0| − 1| < |a−1 + a1|, (1)

except when a1 · a−1 < 0, |a1| + |a−1| < 1, and α = (|a1|
+ |a−1|)2 ≥ |a−1 + a1|, in which case (1) has to be changed to

2

√

|a−1||a1|(1 − α)

α
|a0| < 1 + |a−1 + a1|. (2)
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B. Universality

We now recall some basic notions about dynamics for
sequences of operators. We refer the reader to Ref. 20 for more
information about this topic.

Definition 1. A sequence of operators Tn : Z → X, n ∈
N0, is hypercyclic (or universal) if there exists z ∈ Z such that
Orb(z, (Tn)) := {Tnz : n ∈ N0} is dense in X.

Let us now introduce a useful sequence of operators that will be
needed in order to prove our results for the finite differences applied
to the second-order PDEs.

Definition 2. Let T : X × X → X × X be an operator,
then we define the projection sequence of operators Tn : X
× X → X given by

Tn(x1, x2) := π(T n(x1, x2)) for (x1, x2) ∈ X × X,

where π : X × X → X is the first coordinate projection operator.
Within this framework, (Tn)n is said to be Devaney chaotic if it

satisfies the following two conditions:

(i) There exists a T -invariant subspace Y of X × X with π(Y) = X.
(ii) The operator T |Y is Devaney chaotic.

Remark 1. Observe that if a projection sequence (Tn)n as con-
sidered in Definition 2 is Devaney chaotic, then the sequence of
operators Tn : X × X → X, n ∈ N0, is hypercyclic, and the set {x ∈
X : ∃z ∈ X with (x, z) ∈ Per(T )} is dense in X.

Given an operator T : X → X on a complex Banach space X,
a function E : A → X for certain A ⊂ C is an eigenvector field if
E(λ) ∈ ker(λI − T) for any λ ∈ A. The following criterion adapts
the classical eigenvector field criterion for operators21 to a projection
sequence of operators.

Theorem 1. Given a projection sequence of operators Tn : X ×
X → X, n ∈ N0, induced by the operator T : X × X → X × X, if
U ⊂ C is a nonempty connected open set such that U ∩ T 6= ∅ and
G : U → X × X is a weakly holomorphic eigenvector field of T such

that π(Y) = X, where

Y := span{G(λ) : λ ∈ U},

then (Tn)n is Devaney chaotic.

C. Chaos for C0-semigroups

We now recall the corresponding notions in linear dynamics
for C0-semigroups.

Definition 3. Let X be a Banach space. A one-parameter fam-
ily {Tt}t≥0 ⊂ B(X) is a C0-semigroup if T0 = I, Tt+s = Tt ◦ Ts and
lims→t Tsx = Ttx for all x ∈ X and t ≥ 0. The operator

Ax := lim
t→0

1

t
(Ttx − x)

exists on a dense subspace of X denoted by D(A); the so-called
domain of A and (A, D(A)) is called the infinitesimal generator of
the semigroup.

As a consequence of the Hille–Yosida theorem (Theorem 7.4 of
Ref. 22), the solution of the abstract Cauchy problem on X given by

{

∂tu(t) = Au(t),
u(0) = ϕ

(3)

can be obtained in terms of a C0-semigroup {Tt}t≥0 on X whose
infinitesimal generator is A. If A ∈ B(X), that is, A is a bounded lin-
ear operator, then the semigroup is uniformly continuous and can
be represented as Tt = etA =

∑∞
k=0 (tA)n/n! for all t ≥ 0 (see Chap.

I, Prop. 3.5 of Ref. 1). We recall the definitions of Devaney chaos and
sub-chaos for a C0-semigroup, the second one introduced in Ref. 23.

Definition 4. An element x ∈ X is called a periodic point for
{Tt}t≥0 if there exists some t > 0 such that Ttx = x. A C0-semigroup
{Tt}t≥0 is called Devaney chaotic if there exists x ∈ X such that the set
{Ttx : t ≥ 0} is dense in X and the set of periodic points is dense in
X. It is said to be sub-chaotic if there exists a closed subspace Y 6= {0}
invariant under {Tt}t≥0, such that {Tt|Y}t≥0 is Devaney chaotic as a
C0-semigroup on Y.

For linear second-order PDEs, it is usual to convert them into
first-order PDEs, to which one can apply the theory of solution C0-
semigroups to the Cauchy problem by setting u1 = u and u2 = ∂tu.
The solution depends on the initial conditions for u and its deriva-
tive with respect to t, belonging to a common Banach space X. If
we want to study the chaotic behavior for the analytic solutions,
it makes sense to consider a projection (uniparametric) family of
operators, as we did in the discrete case.

Definition 5. Let {Tt : X × X → X × X}t≥0 be a C0-semigroup.
Then we define the projection family of operators Tt : X × X → X,
t ≥ 0, given by

Tt(x1, x2) := π(Tt(x1, x2)), for (x1, x2) ∈ X × X,

where π : X × X → X is the first coordinate projection operator.
{Tt}t≥0 is said to be Devaney chaotic if {Tt}t≥0 is sub-chaotic with
respect to a closed subspace Y 6= {0}, invariant for the C0-semigroup,

with π(Y) = X.
As we will see when dealing with second-order PDEs, once they

are converted into a first-order PDE, we will be interested in the
chaotic behavior of the associated projection family. This means the
existence of initial conditions ϕi ∈ X, i = 1, 2, such that the solution
u(t)t≥0 with u(0) = ϕ1 and ∂tu(0) = ϕ2 is such that the set {u(t) :
t ≥ 0} is dense in X (hypercyclic behavior) and, at the same time, we
can find a sequence (ϕn,1)n ∈ XN, dense in X, and another sequence
(ϕn,2)n ∈ XN, such that the solutions un(t)t≥0 with un(0) = ϕn,1 and
∂tun(0) = ϕn,2, are periodic.

The following criterion was stated in Ref. 23 and provides suf-
ficient conditions to ensure sub-chaos for C0-semigroups. We refer
the reader to Ref. 2 (see also Th. 7.30 of Ref. 20) for the so-called
Desch–Schappacher–Webb (DSW) criterion of chaos.

Proposition 2 Ref. 23. Let X be a complex separable infinite-
dimensional Banach space and let (A, D(A)) be the generator of a
C0-semigroup {Tt}t≥0 on X. Assume that there exists an open con-
nected subset U and a weakly holomorphic function f : U → X such
that

(i) U ∩ iR 6= ∅,
(ii) f(λ) ∈ ker(λI − A) for every λ ∈ U.
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Then, the restriction of the C0-semigroup {Tt}t≥0 to the invariant
space

XU := span{f(λ) : λ ∈ U}

is Devaney chaotic. In particular, the C0-semigroup {Tt}t≥0 is sub-
chaotic. Also, if XU = X, then {Tt}t≥0 is chaotic.

Finally, we recall the definition of the space of analytic func-
tions of Herzog type.3 Given ρ > 0, let

Xρ =
{

f : R → C : f(x) =
∞

∑

n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0(N0)

}

endowed with the norm ‖f‖ = supn≥0 |an|. This space is isometri-
cally isomorphic to c0 = {an : N0 → C : limn→∞ |an| = 0}.

III. CHAOS FOR THE DISCRETIZATION OF

BIRTH-AND-DEATH MODELS WITH PROLIFERATION

In Ref. 24, the authors studied a model of growth population for
drug-resistant cancer cells, i.e., tumor cells that are not affected by
chemotherapy. The model considers a population of copies of drug-
resistant genes, which is divided into subpopulations. They assume
that a gene in a subpopulation j can generate only gens in the neigh-
boring subpopulations j + 1 and j − 1, at a rate b and d, respectively,
or in the same subpopulation j at a rate a. This leads to the following
birth-and-death model with constant coefficients:

f1
′ = af1 + df2,

fn
′ = afn + bfn−1 + dfn+1, n ≥ 2.

(4)

Let us define L as the operator in `p(N0), 1 ≤ p < ∞, and c0 given
by the infinite matrix

L :=

















a d 0 0 . . .

b a d 0 . . .

0 b a d . . .

0 0 b a
. . .

0 0 0
. . .

. . .

















.

In Ref. 16, the authors obtained the following result, which states
sufficient conditions to ensure Devaney chaos for the analytic solu-
tion of (4) given by the C0-semigroup (etL)t≥0 when the initial
conditions belong to the spaces `p(N0) or c0.

Theorem 2. If a, b, d ∈ R are such that

|b| < |d|, |a| < |b + d|,

then the semigroup solution of (4) given by (etL)t≥0 is Devaney chaotic
in `p(N0) or c0 for 1 ≤ p < ∞.

We will now show that under the same assumptions on the
coefficients a, b, d, the solution of the forward discretization of
model (4) is also chaotic. To do so, let us recall that the forward

discretization of the first derivative is given by the following approx-
imation:

f ′
k(t) =

fk(t + h) − fk(t)

h
=

f n+1
k − f n

k

h
,

where h denotes the time step and t = nh, n ∈ N0. Applying the
forward discretization to (4) we get the following numerical scheme:

f k+1
1 = f k

1 (ha + 1) + hdf k
2 ,

f k+1
n = hbf k

n−1 + f k
n (ha + 1) + hdf k

n+1, n ≥ 2.
(5)

If f k ∈ `2(N0), we can express system (5) as f k+1 = Tφ f k where Tφ

is the tridiagonal Toeplitz operator with symbol φ(z) = hd 1
z
+ (ha

+ 1) + hb · z. We can now state our theorem.
Theorem 3. Given the birth-and-death model (4), if the

coefficients a, b, d ∈ R satisfy

|b| < |d|, |a| < |b + d|,

then for every time step h such that h <
|b+d|

(|b|+|d|)2 , the operator Tφ ,

which defines the forward derivative discretization of (4) is Devaney
chaotic.

Proof. In order to prove our result, we will use Theorem 1
identifying a−1 = hd, a0 = ha + 1 and a1 = hb. Since |b| < |d|, we
immediately have |a1| < |a−1|. We now divide the proof into two
cases.

• Case 1. If b · d > 0, since h <
|b+d|

(|b|+|d|)2 ≤ 1
|b|+|d| , we have that

|hb| + |hd| = h(|b| + |d|) < 1. Also, since |a| < |b + d|, we get

for a 6= 0, h <
|b+d|

(|b|+|d|)2 < 1
|a| . Thus, ||ha + 1| − 1| = |ha + 1

− 1| = |ha| < h|b + d| and the coefficients a, b, d satisfy (1) of

Proposition 1. This implies that for b · d > 0 and h <
|b+d|

(|b|+|d|)2 the

operator is chaotic if, and only if, |b| < |d| and |a| < |b + d|.
• Case 2. If b · d < 0, then |hb| + |hd| = h(|b| + |d|) < 1, and since

h <
|b+d|

(|b|+|d|)2 , we have h(|b| + |d|)2
< |b + d|, which is equiva-

lent to (|hb| + |hd|)2
< |hd + hb|. It is also verified that ||ha + 1|

− 1| = |ha + 1 − 1| = |ha| < h|b + d|, and, therefore, the coeffi-
cients satisfy (1) of Proposition 1, which implies that for b · d < 0

and h <
|b+d|

(|b|+|d|)2 the operator is chaotic if and only if |b| < |d| and

|a| < |b + d|.

� �

As an immediate consequence, we obtain the following
corollary that provides a sufficient condition that ensure both the
analytical solution and the forward derivative discretization solution
of the birth-and-death model (4) are chaotic.

Corollary 1. Given the birth-and-death model (4), if the
coefficients a, b, d satisfy

|b| < |d|, |a| < |b + d|,

then for h <
|b+d|

(|b|+|d|)2 both the semigroup (etL)t≥0 and the operator Tφ

associated to the forward discretization with step h are chaotic.
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IV. CHAOS FOR THE DISCRETIZATION OF A CLASS OF

PARTIAL DIFFERENTIAL EQUATIONS

We will now consider the following second-order partial differ-
ential equation with respect to the time and space given by

∂2u

∂t2
(t, x) + γ

∂u

∂t
(t, x) + θu(t, x) = α

∂2u

∂x2
(t, x), t ≥ 0, x ∈ R,

(6)

where γ , θ and α ∈ R. This equation can be reduced into a first-
order system on the phase space that is the product of a certain space
of Herzog type with itself. Setting u1 = u and u2 = ∂u

∂t
, we have



















∂

∂t

(

u1

u2

)

=
(

0 I

α ∂2

∂x2 − θI −γ I

)(

u1

u2

)

,

(

u1(0, x)
u2(0, x)

)

=
(

ϕ1(x)
ϕ2(x)

)

, x ∈ R.

(7)

Since the second-order differential operator ∂2

∂x2 turns out to be a
bounded operator on Xρ , then the operator-valued matrix

A :=
(

0 I

α ∂2

∂x2 − θI −γ I

)

defines a bounded operator on X := Xρ

⊕

Xρ for every ρ > 0 and,
consequently, we have that (etA)t≥0 is the uniformly continuous
solution semigroup. The following result stated in Ref. 8 showed
sufficient conditions to guarantee the solution of Eq. (6) is chaotic.

Theorem 4. Let γ , θ , α be real positive numbers. Suppose that

γ 2 = 4θ .

Then, A generates a uniformly continuous semigroup, which is
Devaney chaotic on Xρ

⊕

Xρ for each ρ >
γ

2
√

α
.

Remark 2. From the proof of Theorem 4 in Ref. 8, it is easy to
show that no restriction on the positive parameters γ , θ , α are needed
if we just want to ensure Devaney chaos, in the sense of Section II, for
the analytical solution of (6) in Xρ applying Theorem 2.

We will now obtain sufficient conditions in terms of the space
and time steps that ensure Devaney chaos for the numerical solution
of Eq. (6) when applying different discretizations. More concretely,
we will consider forward discretization in time and space, forward
discretization in time and centered in space and forward discretiza-
tion in time and backward in space. Let f : R → R, then fixed x0 ∈
R and with the notation h > 0, xn = x0 + kh, k ∈ Z, f k = f(xk) and
(f k)′ = f ′(xk), the first and second derivatives can be approximated
by the following schemes:

(f k)′ ≈
f k+1 − f k

h
, (f k)′′ ≈

f k+2 − 2f k+1 + f k

h2
, Forward,

(f k)′ ≈
f k − f k−1

h
, (f k)′′ ≈

f k − 2f k−1 + f k−2

h2
, Backward,

(f k)′ ≈
f k+1/2 − f k−1/2

h
, (f k)′′ ≈

f k+1 − 2f k + f k−1

h2
, Centered.

When applying a numerical scheme to system (7), it can be
defined as an operator T acting on the complex Banach space
X := c0 × c0, where c0 := {(an)n : limn |an| = 0}. This operator T

defines the projection sequence of operators (Tn)n : c0 × c0 → c0

that gives the numerical solution of Eq. (6) when taking finite differ-

ence derivatives. We will denote these operators as (T
f
n)n, (Tc

n)n, and

(Tb
n)n when applying forward discretization in time and forward in

space, centered in space, and backward in space, respectively. In the
following result, we analyze the chaotic behavior of such sequences
of operators.

Theorem 5. Let γ , θ , α be real positive numbers and let h and
m denote the time step and spatial step of a numerical scheme applied
to Eq. (6). The following assertions hold:

(1) If h < 2
γ

and m < 2h
√

α

2(2−hγ )+h2θ
, then the sequence of operators

(T
f
n)n is Devaney chaotic in c0.

(2) If h < 2
γ

, then the sequence of operators (Tc
n)n is Devaney chaotic

in c0.

(3) If h < 2
γ

and m < h
√

α

2(2−hγ )+h2θ
, then the sequence of operators

(Tb
n)n is Devaney chaotic in c0.

Proof. (1) Applying the forward discretization in time and
space to system (7), we obtain the following system:







(u1)
k+1
n −(u1)kn

h
= (u2)

k
n

(u2)
k+1
n −(u2)kn

h
= α

(u1)kn+2−2(u1)kn+1+(u1)kn

m2 − θ(u1)
k
n − γ (u2)

k
n.

(8)
After a simple computation system (8) reduces to







(u1)
k+1
n = h(u2)

k
n + (u1)

k
n,

(u2)
k+1
n = hα

m2

[

(u1)
k
n+2 − 2(u1)

k
n+1 + (u1)

k
n

]

− hθ(u1)
k
n

+(1 − hγ )(u2)
k
n.

(9)

If we consider (u1)
k, (u2)

k ∈ c0 the previous system can be
expressed as a matrix system,

(

(u1)
k+1

(u2)
k+1

)

=
(

I hI
hα

m2 (B2 − 2B + I) − hθ (1 − hγ )I

)(

(u1)
k

(u2)
k

)

,

where I : c0 → c0 is the identity operator and B : c0 → c0 is the
backward shift operator. The operator Tf : c0 × c0 → c0 × c0 is
defined by the matrix

(

I hI
hα

m2 (B2 − 2B + I) − hθ (1 − hγ )I

)

and the projection sequence of operators (T
f
n)n : c0 × c0 →

c0 that gives the numerical solution of (6) is defined by

T
f
n := π((T f)

n
), where π : c0 × c0 → c0 is the first coordinate

projection. Let now λ ∈ C be an eigenvalue of T f. Solving
system (9) by the substitution, we arrive to











(u2)
k
n = λ−1

h
(u1)

k
n

(u1)
k
n

[

λ2−λ

h
− hα

m2 + hθ − λ−1
h

(1 − hγ )

]

= hα

m2

[

(u1)
k
n+2 − 2(u1)

k
n+1

]

.

(10)
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Now, let us define

ϕ(λ) :=
(λ2 − λ)m2

h2α
− 1 +

m2θ

α
−

(λ − 1)m2

h2α
(1 − hγ )

=
m2

h2

λ − 1

α
(λ − 1 + hγ ) − 1 +

m2θ

α
.

With this notation, the second equation in (10) can be reformu-
lated as follows:

(u1)
k
nϕ(λ) =

[

(u1)
k
n+2 − 2(u1)

k
n+1

]

.

Let now define g(λ) := 1 + ϕ(λ) and f(λ) := 1 − e
1
2 log(g(λ)),

where log(z) is a branch of the logarithm defined on C\{z :
Re(z) ≤ 0}. Let us now consider the vector sequence

ef(λ) =
(

f(λ), f(λ)2, . . .
)

.

It is easy to prove that ef(λ) verifies the second equation in (10),

and, thus,
(

ef(λ),
λ−1

h
ef(λ)

)

is a candidate for an eigenvector of the

operator T f. Nevertheless, it is necessary to define the domain
of g that makes f a holomorphic function. Indeed, notice that

g(−1) = m2

h2
2
α
(2 − 2hγ ) + m2θ

α
> 0. Since g is an entire function

there exists an open and connected neighborhood V of −1 such
that g(V)

⋂

{z : Re(z) ≤ 0} = ∅ and f is holomorphic in V. Since

by hypothesis m < 2h
√

α

2(2−hγ )+h2θ
it follows that

f(−1) = 1 −
m

h

√

2(2 − hγ ) + h2θ

α
∈ D.

Since f is holomorphic in V, there exists U ⊂ V an open and
connected neighborhood of −1 such that f(U) ⊂ D, and, there-
fore,

(

ef(λ),
λ−1

h
ef(λ)

)

is an eigenvector of T f for all λ ∈ U. Let us
now define G : U → c0 × c0 as

G(λ) :=
(

ef(λ),
λ − 1

h
ef(λ)

)

.

It is clear that G(λ) is a weakly holomorphic map. Now, by the
open mapping theorem for holomorphic functions, we have that
f(U) is an open and connected subset of D, and, therefore, it has
an accumulation point on the disk. Finally, from Example 3.2
of Ref. 20, we get that span{ef(λ), λ ∈ U} is dense in c0 and the
conclusion holds from the eigenvalue field criterion 1 for the

projection sequence of operators (T
f
n)n.

(2) Applying the forward discretization in time and centered in
space to system (7), we obtain the following scheme:







(u1)
k+1
n = h(u2)

k
n + (u1)

k
n,

(u2)
k+1
n = hα

m2

[

(u1)
k
n+1 − 2(u1)

k
n + (u1)

k
n−1

]

−hθ(u1)
k
n + (1 − hγ )(u2)

k
n.

(11)

As in (9), the previous system (11) defines an operator T c acting
on c0 × c0 given by the following matrix:

(

I hI
hα

m2 (B − 2I + F) − hθ (1 − hγ )I

)

,

where F : c0 → c0 is the forward shift operator. Furthermore,
this operator defines a projection sequence of operators Tc

n :

c0 × c0 → c0, such that Tc
n := π((T c)n) and it gives the numer-

ical solution of (6) taking forward derivatives in time and
centered in space. If λ ∈ C is an eigenvalue of T c, then we obtain

{

(u2)
k
n = λ−1

h
(u1)

k
n,

(u1)
k
nϕ(λ) = (u1)

k
n+1 + (u1)

k
n−1,

(12)

where

ϕ(λ) :=
m2

h2

λ − 1

α
(λ − 1 + hγ ) + 2 +

θm2

α
.

Let us now define f(λ)

f(λ) :=
ϕ(λ) − e

1
2 log(ϕ(λ)2−4)

2
,

where log(z) is a branch of the logarithm defined on C\{z :
Re(z) ≤ 0}. It is clear that

ef(λ) :=
(

f(λ), f(λ)2, . . .
)

verifies the second equation in (12). Also, ϕ(−1)2 − 4

= m2

h2
2
α
(2 − hγ ) + 2 + θm2

α
> 0, and since (ϕ2 − 4) is an entire

function there exists V an open and connected neighborhood of
−1 such that (ϕ(V)2 − 4)

⋂

{z : Re(z) ≤ 0} = ∅ and, therefore,
f is holomorphic in V. Since ϕ(−1) > 2, it follows that

f(−1) =
ϕ(−1) −

√

ϕ(−1)2 − 4

2
∈ D,

so there exists U ⊂ V an open and connected neighborhood of
−1 such that f(U) ⊂ D. Hence,

(

ef(λ),
λ−1

h
ef(λ)

)

is an eigenvector
of T c for all λ ∈ U. As before, G : U → c0 × c0 given by

G(λ) :=
(

ef(λ),
λ − 1

h
ef(λ)

)

is a weakly holomorphic map and the conclusion holds as in part
(1).

(3) We now apply the forward discretization in time and backward
in space to system (7), which leads to the difference system,







(u1)
k+1
n = h(u2)

k
n + (u1)

k
n,

(u2)
k+1
n = hα

m2

[

(u1)
k
n − 2(u1)

k
n−1 + (u1)

k
n−2

]

−hθ(u1)
k
n + (1 − hγ )(u2)

k
n,

(13)

which can be defined in terms of the operator T b : c0 × c0

→ c0 × c0 given by the matrix

(

I hI
hα

m2 (I − 2F + F2) − hθ (1 − hγ )I

)

.

The operator T b defines the projection sequence of opera-
tors Tb

n : c0 × c0 → c0 given by Tb
n := π((T b)

n
). Proceeding as
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before, if λ ∈ C is an eigenvalue, then
{

(u2)
k
n = λ−1

h
(u1)

k
n,

(u1)
k
nϕ(λ) = −2(u1)

k
n−1 + (u1)

k
n−2,

(14)

with

ϕ(λ) :=
m2

h2

λ − 1

α
(λ − 1 + hγ ) − 1 +

θm2

α
.

We define

f(λ) :=
−1 + e

1
2 log(1+ϕ(λ))

ϕ(λ)
,

where log(z) is a principal branch of the logarithm defined

on C\{z : Re(z) ≤ 0}. Notice that ϕ(−1) := m2

h2
2
α
(2 − hγ ) − 1

+ θm2

α
, and since ϕ is an entire function, there exists V1 an open

and connected neighborhood of −1 such that 0 /∈ ϕ(V1). Let us
also observe that

1 + ϕ(−1) =
m2

h2

2

α
(2 − hγ ) +

θm2

α
> 0

and by the continuity of ϕ, there exists V2 an open and
connected neighborhood of −1 such that (1 + ϕ(V2))

⋂

{z :
Re(z) ≤ 0} = ∅. Let us define U = V1 ∩ V2. It is clear that
f is holomorphic in U. Furthermore, due to the fact that

m < h
√

α

2(2−hγ )+h2θ
we have m2

h2
2
α
(2 − hγ ) + θm2

α
< 1 and,

therefore,

|f(−1)| =

∣

∣

∣

∣

∣

∣

−1 +
√

m2

h2
2
α
(2 − hγ ) + θm2

α

−1 + m2

h2
2
α
(2 − hγ ) + θm2

α

∣

∣

∣

∣

∣

∣

=
1 −

√

m2

h2
2
α
(2 − hγ ) + θm2

α

1 − m2

h2
2
α
(2 − hγ ) + θm2

α

< 1.

Since f is continuous in U, we can find V ⊂ U an open and con-
nected neighborhood of −1 such that f(λ) ⊂ D for all λ ∈ V
and, therefore,

(

ef(λ),
λ−1

h
ef(λ)

)

is an eigenvector of T b for all λ ∈
V, where ef(λ) :=

(

f(λ), f(λ)2, . . .
)

. The conclusion now follows
exactly as in parts (1) and (2).

� �

Corollary 2. Given h < 2τ and m < h
√

αd
2(2τ−h)

, the numerical

solution of Eq. (6), when considering forward discretization in time
and forward in space, forward discretization in time and centered in
space and forward discretization in time, and backward in space are
always Devaney chaotic.

Remark 3. Observe that when γ = 0, the sequence of opera-
tors (Tc

n)n is chaotic in c0 for any time and spatial steps.
Figure 1(a) represents three consecutive iterations of the

sequence of operators T
f
n with α = 4, θ = 1 and γ = 1, h = 2/300,

m = 0.004 and the initial conditions are of order 1
n

with some ran-
dom multiplication factors. In particular, in yellow, red, and blue
colors we see the representation of the solution for the iterations
149, 150, and 151, respectively. Figures 1(b) and 1(c) also represent

three consecutive iterations of T
f
n for the same α, θ and γ but tak-

ing h = 2.5 × 10−6 and m = 0.2. It is easy to verify that in Fig. 1(a),

h and m satisfy the condition of Corollary 2 while the other case
does not. We can observe that Fig. 1(a) represents, as predicted, an
unstable numerical solution of Eq. (6) since for only 150 iterations
the error is of order 10174. We can also notice how the error rapidly
grows between the three consecutive iterations. On the other hand,
Figs. 1(b) and 1(c) represent a stable solution and even taking 10 000
iterations error is small and the graphics of the three consecutive
iterations overlap.

V. APPLICATIONS

A. The hyperbolic heat transfer equation

The hyperbolic heat transfer equation in the absence of internal
heat sources can be seen as a particular case of the class of PDEs (6)
and it is given by







τ ∂2u
∂t2

+ ∂u
∂t

= αd
∂2u
∂x2 ,

u(0, x) = ϕ1(x), x ∈ R,
∂u
∂t

(0, x) = ϕ2(x), x ∈ R,

(15)

where ϕ1 and ϕ2 represent the initial variation of temperature,
respectively, αd > 0 is the thermal diffusivity, and τ > 0 is the ther-
mal relaxation time. In Ref. 7 (see also Chap. 7 in Ref. 20), the
authors stated that the solution semigroup of the hyperbolic heat
equation is chaotic on Xρ × Xρ under some conditions on ρ, which
can be relaxed if we just care about the chaotic behavior of the
solution.

We get that the heat equation (15) is a particular case of model
(6) when θ = 0, γ = 1

τ
, and α = αd

τ
. As an immediate consequence

of Theorem 5, we obtain sufficient conditions in terms of the space
and time steps that ensure Devaney chaos for the numerical solu-
tion of model (15) when considering forward discretization in time
and space, forward discretization in time and centered in space, and
forward discretization in time and backward in space. Following
a similar notation as in Sec. IV, we will denote the corresponding
projection sequence of operators (Tn)n : c0 × c0 → c0 that gives the
numerical solution of the hyperbolic heat transfer equation (15) as
(THF

n )n, (THC
n )n, and (THB

n )n, respectively.
Corollary 3. Let τ , αd be real positive numbers and let h and

m denote the time step and spatial step of a numerical scheme applied
to Eq. (15). The following assertions hold:

(1) If h < 2τ and m < 2h
√

αd
2(2τ−h)

, then the sequence of operators

(THF
n )n is Devaney chaotic in c0.

(2) If h < 2τ , then the sequence of operators (THC
n )n is Devaney

chaotic.

(3) If h < 2τ and m < h
√

αd
2(2τ−h)

, then the sequence of operators

(THB
n )n is Devaney chaotic in c0.

In particular, if h < 2τ and m < h
√

αd
2(2τ−h)

, the projection sequences

of operators (THF
n )n, (THC

n )n, and (THB
n )n are all Devaney chaotic in c0.

B. The telegraph equation

The telegraph equation models a telegraph wire as an electrical
circuit consisting of a resistor R and an inductance L. The function
u(t, x) gives the voltage on the wire in time t and at position x. The
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FIG. 1. Iterations of the operator (T f

n
)
n
for α = 4, θ = 1, and γ = 1. (a) Chaotic discretization taking iterations 151, 150, and 149. (b) Non-chaotic discretization taking

iterations 151, 150, and 149. (c) Non-chaotic discretization taking iterations 10 001,10 000, and 9999.

equation also considers the possibility of a current leakage to the
ground either through a resistor G or through a capacitance C. It is
given by

∂2u

∂t2
− c2 ∂2u

∂x2
+ (a + b)

∂u

∂t
+ abu = 0, (16)

where a = G
L
, b = R

L
, and c2 = 1

LC
. In Ref. 8, the authors proved

that the solution semigroup of the telegraph equation is chaotic
on Xρ × Xρ for a = b and ρ > a

c
. It is easy to prove that

applying Proposition 2, no restrictions on the parameters a, b, c
are needed to ensure Devaney chaos for the analytic solution
in Xρ .
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The telegraph equation (16) labels into model (6) when α = c2,
γ = (a + b), and θ = ab. As in the hyperbolic heat equation, we
can obtain the projection sequences of operators (TTF

n )n, (TTC
n )n, and

(TTB
n )n that gives the numerical solution of (16) when taking for-

ward derivatives in time and space, forward derivatives in time and
centered in space, and forward derivatives in time and backward in
space, respectively. Applying Theorem 5, we obtain the following
result.

Corollary 4. Let a, b, c be real positive numbers and let h and
m be the time step and spatial step of a numerical scheme applied to
Eq. (16). The following assertions hold:

(1) If h < 2
a+b

and m < 2hc
√

1
2(2−h(a+b))+h2ab

, then the sequence of

operators (TTF
n )n is Devaney chaotic in c0.

(2) If h < 2
a+b

, then the sequence of operators (TTC
n )n is Devaney

chaotic.
(3) If h < 2

a+b
and m < hc

√

1
2(2−h(a+b))+h2ab

, then the sequence of

operators (TTB
n )n is Devaney chaotic in c0.

Also, if h < 2
a+b

and m < hc
√

1
2(2−h(a+b))+h2ab

the numerical solutions

of Eq. (16), when considering forward discretization in time and for-
ward in space, forward discretization in time and centered in space,
and forward discretization in time and backward in space are always
Devaney chaotic.

C. The wave equation

The wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
(17)

is clearly a particular case of Eq. (6) when γ = θ = 0 and α = c2.
In Ref. 7, the authors stated that the semigroup solution of the wave
equation is always chaotic in Xρ × Xρ .

As in models (15) and (16), we denote by (TWF
n )n, (TWC

n )n, and
(TWB

n )n the projection sequences of operators that give the numeri-
cal solution of the wave equation taking forward derivatives in time
and space, forward derivatives in time and centered in space, and
forward derivatives in time and backward in space, respectively.
We immediately get the following result that states sufficient con-
ditions on the spatial and time steps to ensure chaotic numerical
discretizations.

Corollary 5. Let c be a real number and let h and m be the
time step and spatial step of a numerical scheme applied to Eq. (17).
The following assertions hold:

(1) If m < h|c|, then the sequence of operators (TWF
n )n is Devaney

chaotic in c0.
(2) The sequence of operators (TWC

n )n is Devaney chaotic for every h
and m.

(3) If m < h |c|
2

, then the sequence of operators (TWB
n )n is Devaney

chaotic in c0.

Given m < h |c|
2

, the numerical solution of Eq. (17), when considering
forward discretization in time and forward in space, forward dis-
cretization in time and centered in space, and forward discretization
in time and backward in space are all Devaney chaotic.
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