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Highlights

Deep learning classifier for life cycle optimization of steel-concrete
composite bridges

D. Mart́ınez-Muñoz, J. Garćıa, J.V. Mart́ı, V. Yepes

• This research proposes a methodology to build a deep learning model
to assess bridge compliance and optimize design calculations.

• The model is integrated into metaheuristic optimization algorithms to
evaluate their performance in terms of time and the quality of the
solutions obtained.

• An environmental and social life cycle analysis is carried out, which
involves more complex objective functions.

• An increase in steel yield strength for optimal solutions is observed
for both environmental and social objective functions in the life cycle
assessment.
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Abstract

The ability to conduct life cycle analyses of complex structures is vitally im-
portant for environmental and social considerations. Incorporating the life
cycle into structural design optimization results in extended computational
durations, underscoring the need for an innovative solution. This paper in-
troduces a methodology leveraging deep learning to hasten structural con-
straint computations in an optimization context, considering the structure’s
life cycle. Using a composite bridge composed of concrete and steel as a
case study, the research delves into hyperparameter fine-tuning to craft a
robust model that accelerates calculations. The optimal deep learning model
is then integrated with three metaheuristics: the Old Bachelor Acceptance
with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine
Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in
computational speed using the deep learning model in certain scenarios. A
comprehensive comparison reveals economic feasibility, environmental ram-
ifications, and social life cycle assessments, with an augmented steel yield
strength observed in optimal design solutions for both environmental and
social objective functions, highlighting the benefits of meshing deep learning
with civil engineering design optimization.
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1. Introduction1

The economic viability and social growth of most countries are found to2

be closely tied to the development, reliability, and durability of their infras-3

tructure [1]. Infrastructure is seen as critical due to its profound influence4

on economic activity, growth, and employment. However, the activities re-5

lated to it can exert substantial environmental and social impacts, poten-6

tially resulting in irreversible consequences that may jeopardize the present7

and future of society. Being a carbon-intensive industry [2], construction8

has been the focus of much research aiming at minimizing emissions, with9

the reduction of the environmental impact of construction projects becoming10

increasingly important. In the pursuit of the state-of-the-art, studies have11

been conducted on sustainable building [3, 4], optimization of energy con-12

sumption [5], and the analysis of the life cycle of CO2 emissions from concrete13

structures [6, 7, 8]14

However, it should be noted that regardless of the criteria that researchers15

consider to represent the sustainability of structures, there is widespread16

agreement that a comprehensive evaluation of sustainability must encompass17

the entire life cycle of the structure [9, 10, 11, 12]. This necessitates, on one18

hand, the consideration of the three pillars of sustainability: economic, envi-19

ronmental, and social. Besides, when defining the objective function guiding20

this optimization, the full life cycle analysis must be taken into account, with21

the life cycle divided into four stages: Manufacturing, Construction, Use and22

Maintenance, and End of Life [13]. Furthermore, all structural designs in-23

volve variability and uncertainty [14, 15]. This implies that the optimization24

process becomes more complex due to the increase in the complexity of the25

objective functions, making the acceleration of calculations a crucial point.26

One method to accelerate these calculations is through the application27

of machine learning techniques. For instance, dimensionality reduction tech-28

niques can be employed to simplify the dimensionality of the search space29

or the objective function. Alternatively, the objective function or the con-30

straints can be replaced with a model that emulates them. For example, in31

the study reported in [16], the kriging technique was utilized to decrease the32

computation times for a concrete box-girder bridge. In [17], neural networks33

were used to model viscosity and conductivity values, which were then inte-34

grated into the NSGA-II (Nondominated Sorting Genetic Algorithm II) for35
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optimization purposes.36

Studies in the field of structural engineering have utilized neural net-37

works to predict the transfer length in prestressed concrete [18]. Similarly,38

neural networks have been applied to forecast the energy consumption of39

heating, ventilation, and air conditioning systems in buildings. Subsequently,40

a multi-objective genetic algorithm was employed to determine the optimal41

consumption conditions [19]. As a result, the multi-objective optimization42

demonstrated improved outcomes in terms of thermal comfort and energy43

consumption when compared to the base case design.44

In light of the remarks outlined in prior sections, a model rooted in deep45

learning techniques has been proposed within this work. Its primary inten-46

tion is to supplant the constraints delineated in the steel-concrete composite47

bridge (SCCB) design. This approach not only streamlines optimization cal-48

culations but also paves the way for modeling intricacies with heightened49

complexity. Notably, the essence of this methodology aims at accelerating50

computation tasks, thereby facilitating the exploration of more intricate sce-51

narios. Although this work focuses on a specific case, the methodology should52

inherently be adaptable to a range of other structural configurations.53

Specifically, the contribution of this article includes:54

• A methodology has been introduced to construct a deep learning model55

tailored for assessing bridge compliance and optimizing design calcula-56

tions.57

• Integration of this model into metaheuristic optimization algorithms58

has been realized, and its performance concerning solution quality and59

time efficiency has been assessed.60

• A comprehensive environmental and social life cycle analysis, which61

involves more complex objective functions, has been conducted.62

The results indicate that the deep learning model is capable of acceler-63

ating calculations by a factor of 50 when utilizing swarm-type algorithms64

and by a factor of 37 when using trajectory algorithms. Additionally, the65

outcomes from the life cycle assessment reveal an increase in steel yield stress66

for optimal solutions for both environmental and social objective functions.67

This occurs because an increase in yield strength does not result in a corre-68

sponding increase in impact. Conversely, for the cost optimization results,69

an increase in steel resistance directly translates into a cost increase, and70

optimal solutions yield lower stress values.71
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The structure of the content is outlined briefly as follows: Section 2 de-72

tails the deep learning techniques used, the optimization techniques applied,73

the objective functions considered, as well as the definition of the optimiza-74

tion problem. The results obtained are described in Section 3. Initially, the75

different experiments carried out to achieve the suitable model for accelerat-76

ing the calculations are outlined, followed by a detailed report on the results77

obtained from the structure’s life cycle analysis. Finally, in Section 4, the78

primary conclusions and the suggested next steps are presented.79

2. Deep Learning metamodel assisted optimization80

Structural problems are often characterized by their high complexity,81

which results in substantial computational costs. The complexity of the82

model often entails such high computational costs that it necessitates the83

elimination of some constraints from the initial model or the simplification84

of the associated objective functions. Moreover, multiple runs of these com-85

plex structural models are required during optimization processes to obtain86

the optimal result. To reduce computation time, this research proposes a87

Deep Neural Network (DNN) metamodel, explained in Section 2.1, to pre-88

dict the feasibility of structural solutions for a steel-concrete composite bridge89

(SCCB) deck. This metamodel has been applied to various metaheuristics,90

as described in Section 2.2, to compare the results obtained. Furthermore,91

this study considers three objective functions, defined in Section 2.3, to com-92

pare results concerning the three pillars of sustainability, treated as single93

objective optimizations.94

2.1. Deep neural networks model95

This section elaborates on the proposed methodology for training the96

deep neural network model designed to accelerate optimization calculations.97

It should be noted that the constructed model resolves the issue of whether98

or not the bridge to be optimized adheres to the imposed constraints. In99

this sense, the model addresses a binary classification problem. The primary100

components of the developed methodology for constructing the classification101

model involve deep learning-based methods. Essentially, there are three as-102

pects to be developed. The first aspect relates to the construction of the103

training dataset; the second involves the definition of the network topology104

and the hyperparameters used. Lastly, the third aspect entails defining the105
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metrics and evaluating the best configuration. These points will be discussed106

in this section.107

2.1.1. Methodology used for the construction of the training data set108

This section details how the dataset used to train various deep neural net-109

work models was constructed. Multiple datasets were assembled to ensure110

the networks were calibrated, with the aim of identifying the most effective111

training approach. Different optimization techniques were explored, and full112

runs were executed for both OBAMO and SCA. During each optimization,113

data was collected and checked against predefined structural standards. Ow-114

ing to an imbalance between the conditions that were met and those that115

were not, a decision was made to compare cases of unbalanced data with cases116

where the training datasets were balanced using the Synthetic Minority Over-117

sampling Technique (SMOTE). Independent training sessions for OBAMO,118

SCA, and a hybrid scenario where both datasets were merged were also com-119

pared. Data integration for both unbalanced datasets and those balanced120

with SMOTE was evaluated. In the case of SMOTE, the sampling strategy121

parameter was set to one.122

2.1.2. Topology network definition, hyper-parameters explored and metrics123

used124

For the network topology’s definition, multilayer perceptron neural net-125

works were used within the TensorFlow framework. In the initial topology126

definition, a single-layer network with different node quantities was exam-127

ined. Configurations with 64, 128, and 256 nodes were specifically tested.128

After the first layer was finalized, the addition of a second layer, having129

half the number of nodes as the first layer, was considered. If improvements130

in the defined metrics were observed with the introduction of this second131

layer compared to the single-layer network, the potential inclusion of a third132

layer was assessed. In this third layer, the number of nodes was set to be133

n
4
of the first layer’s node count. The explored hyperparameters were the134

optimization algorithm, the batch size, and the number of epochs. Three135

techniques were evaluated for the optimization algorithm: SGD, RMSprop,136

and Adam. Configurations of 32, 64, and 128 were tested for the batch size.137

A maximum value of 100 was set for epochs, and early stopping was imple-138

mented. According to this rule, if no improvement was seen in the test set139

after 10 iterations, the training process was halted. Due to the importance140

of minimizing both false positives and false negatives in the used metrics, the141
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F1-score metric was chosen, which calculates the harmonic average between142

precision and recall.143

2.2. Hybrid metaheuristics144

This section presents the metaheuristics utilized in this study, which can145

be categorized into two primary groups: trajectory-based and swarm intel-146

ligence techniques. All the algorithms in this research have undergone a147

process of hybridization. The trajectory-based techniques introduce minor148

modifications to the variable vector to adjust the solution and seek the op-149

timum. Mutation operators have been incorporated into these algorithms150

as part of the hybridization process to enhance the optimization process’s151

exploration capacity. On the other hand, swarm intelligence techniques vary152

the solution by adjusting the variables to search for a particular characteristic153

of the best individual in the population. In this instance, hybridization has154

been achieved through the implementation of a k-means clustering technique.155

It’s worth noting that all algorithms have been modified to accommodate the156

discrete nature of the optimization problem.157

Furthermore, all methods of structural optimization necessitate a struc-158

tural check module to ascertain the solution’s feasibility, which typically ac-159

counts for approximately 80% of the computation time for each iteration of160

the optimization problem. To curtail computation time, a DNN model has161

been trained to predict the solution’s feasibility. Detailed information about162

the DNN model can be found in Section 2.1. It should be noted that while163

it is possible for the model to encounter failures, once the optimization pro-164

cess is complete, the constraints of the structural problem are verified using165

Python-developed software [20].166

2.2.1. Trajectory-based: Old Bachelor Acceptance with a Mutation Operator167

(OBAMO)168

The search strategy employed by such algorithms involves making mi-169

nor alterations to the variable vector and evaluating the consequent changes170

in the objective function. These metaheuristics accept inferior solutions at171

certain stages of the optimization process to avert local optima confinement172

and encourage exploration. A threshold must be defined to restrict the ac-173

ceptance of solutions that exceed acceptable boundaries. In this study, the174

threshold was dynamically adjusted during optimization, being increased or175

decreased based on the solution acceptance rate. The Old Bachelor Ac-176

ceptance with a Mutation Operator (OBAMO2) is an adaptive threshold177
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algorithm utilized in other structural optimization problems [21]. In this178

study, the OBAMO2 method was hybridized with a characteristic of Genetic179

Algorithms, specifically, the mutation operator, which allows for certain mu-180

tations during optimization to stimulate exploration.181

The Old Bachelor Acceptance (OBA) algorithm is an iterative heuristic182

optimization method proposed by Hu et al. [22]. This procedure begins with183

an initial solution and modifies it through movement. If the new solution184

falls within the defined threshold, it is accepted, even if its objective function185

value is inferior. Contrary to Simulated Annealing (SA) [23], which utilizes186

a monotonically decreasing acceptance scheme with decreasing temperature,187

the acceptance criterion used by OBA is based on a dynamically changing188

threshold that adheres to the principle of ’decreasing expectations’. After189

each unsuccessful attempt to improve the solution, the threshold is increased190

to permit the transition to somewhat inferior solutions. Conversely, with191

successive enhancements in the solutions, the threshold is reduced. Hu et al.192

[22] highlight several advantages of OBA over SA, such as the non-monotonic193

acceptance scheme, the self-adjusting growth and decay of the thresholds, and194

the ability to adapt to a preset calculation time.195

The OBA algorithm was selected for this study because it has been suc-196

cessfully applied to other structural optimization problems in the past [24].197

In an effort to enhance exploration during the optimization process, a mu-198

tation operator was incorporated, drawing on recent research [21]. OBAMO199

is a hybrid algorithm that combines the algorithm presented in Algorithm 1200

with a mutation operator. The algorithm depends on five parameters: the201

number of iterations (N), the threshold updating parameter (∆), the limit of202

movements without improvement (δ), the standard deviation (SD), and the203

number of variables (V N) permitted to change between iterations. The most204

effective combination of these parameters was determined using a Design of205

Experiments method [25], yielding values of 20,000, 0.3, 1, 100, and 9 for N ,206

SD, V N , ∆, and δ, respectively.207

2.2.2. Swarm intelligence: SCA and CS208

Swarm intelligence methods mimic the behavior of natural systems in the209

pursuit of optimal solutions. These methods generate populations of indi-210

viduals that interact with one another, emulating the behavior of specific211

species. Two such algorithms that have been proposed include the Sine Co-212

sine Algorithm (SCA), which employs sine and cosine functions to simulate213

individual movements, and Cuckoo Search (CS), which models the behav-214
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Algorithm 1 Old Bachelor Acceptance 2 [22]
1: M = Maximum iteration number

2: ∆ = Threshold updating parameter

3: δ = Limit of movements without improvement

4: count = Counter of consecutive movements accepted

5: T0 = 0; prev age = M

6: Choose of random solution s0

7: for i=0 to M-1 do

8: Choose a random neighboring solution s′

9: if f(s′) < f(si) + Ti then

10: si+1 = s′

11: age = 0

12: if prev age < δ then

13: count = count + 1

14: else

15: count = 1

16: end if

17: Ti+1 = Ti − count ·∆ · (1− i/M)

18: else

19: si+1 = si

20: age = age + 1

21: Ti+1 = Ti +∆/δ · (1− i/M)

22: end if

23: prev age = age

24: end for

25: si = si corresponding with minimum f(si) with 0 ≤ i ≤M

ior of natural cuckoo populations. Furthermore, recent studies in structural215

optimization have suggested that the introduction of a hybridization tech-216

nique, such as K-means clustering, can enhance the performance of these217

metaheuristics [26, 27].218

Sine Cosine Algorithm (SCA). The SCA is a swarm intelligence method219

devised by Mirjalili [28], utilizing sine and cosine functions to explore the220
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solution space. The movement of individuals is governed by P t
j , typically221

drawn from the best solution found at the location of the optimal solution222

for iteration t and dimension j. Additionally, the algorithm employs three223

random numbers: r1, r2, and r3. The values of these numbers determine224

whether the movement of the solutions is orchestrated by a sine or a cosine225

function, as illustrated in Equations 1 and 2, respectively.226

xt+1
i,j = xt

i,j + r1 × sin(r2)× | r3P t
j − xt

i,j | (1)

xt+1
i,j = xt

i,j + r1 × cos(r2)× | r3P t
j − xt

i,j | (2)

Cuckoo Search (CS). The CS algorithm is inspired by the cuckoo bird species,227

which lays its eggs in the nests of other bird species and sometimes mimics228

the hues and patterns of the host species’ eggs. In this algorithm, an egg229

represents a solution, and the basic idea is to replace inadequate solutions230

with better ones, analogous to cuckoos replacing the host bird’s eggs. The231

CS algorithm is based on three essential principles:232

1. Each cuckoo lays one egg at a time, which is randomly placed in a nest.233

2. Only the best nests, which produce high-quality eggs, are considered234

for the next generation.235

3. The number of available nests is fixed, and the host bird has a proba-236

bility pa ∈ (0, 1) of discovering the cuckoo’s egg.237

xt+1
i,j = xt

i,j + α
⊕

Lévy(λ) (3)

The step size α > 0 should be chosen proportionally to the scales of the238

problem. The operator
⊕

denotes element-wise multiplication. To simulate239

a random walk, the Lévy flight draws the step length from a Lévy distribution240

Lévy ∼ t−λ, where 1 < λ ≤ 3.241

Hybridization technique: K-means clustering. The hybrid method is em-242

ployed for swarm intelligence metaheuristics, given that both methods are243

naturally suited for continuous domains. The hybrid method takes as input244

the metaheuristic MH, the list of discrete solutions obtained in the previ-245

ous iteration lSol, and a list of transition probabilities transitionProbs, and246

returns a new list of discrete solutions lSol. In the initial stage, the discretiza-247

tion method computes the velocity of MH. For CSA and CS, this velocity248
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corresponds to the component obtained from the difference |xt+1
i,j − xt

i,j| in249

Equations 1 through 3.250

Following that, a transfer function is applied to convert the velocity val-251

ues, which range over R, into values between [0, 1). A v-shape transfer252

function, specifically | tanh(v)|, is used in this instance. Then, for each solu-253

tion and dimension, the value of lSolProbability, obtained by applying the254

transfer function, is compared with a randomly generated number r1 between255

[0,1). If the value of lSolProbability is greater than the random number, an256

update is triggered in that dimension; otherwise, it remains unaltered.257

The updating process presents two possibilities: firstly, a parameter β is258

considered, and a random number r2 is generated. If r2 is less than β, the259

value is replaced with the best solution value obtained for that dimension.260

Otherwise, a random update is executed to enhance the exploration of the261

search space.262

Subsequently, a k-means clustering technique is employed to convert the263

velocity values, which range over R, into transition probability values that264

fall within the range of [0,1). The k-means technique forms clusters, in this265

instance, five clusters, and orders them from the smallest to the largest cen-266

troids. The smallest transition probability is assigned to all velocities within267

the cluster with the smallest centroid, while the largest transition probability268

is assigned to all points within the cluster with the largest centroid. Figure 1269

graphically demonstrates the k-means procedure. The transition probability270

values utilized in this study were [0.1, 0.2, 0.4, 0.8, 0.9].271

In each dimension of every solution, the transition probability, denoted272

by DimSolProbi,j, is calculated. If this probability is greater than a random273

number r1 and if β is greater than another random number r2, the dimension274

value of the solution is updated with the best solution identified thus far. If275

the condition related to β is not met, the dimension is updated with a random276

permissible value. However, if neither the transition probability condition nor277

the β condition are satisfied, the dimension of the solution is not updated.278

This final option serves to broaden the exploration of the search space.279
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Figure 1: K-means discretization techniques diagram.

Algorithm 2 Hybrid algorithm
1: Function Discretization(lSol, MH,transitionProbs)

2: Input lSol, MH, transitionProbs

3: Output lSol

4: vlSol← getVelocities(lSol, MH)

5: lSolClustered← appliedKmeansClustering(vlSol, K)

6: for (each Soli in lSolClustered) do

7: for (each dimSoli,jl in Soli) do

8: dimSolProbi,j = getClusterProbability(dimSol, transitionProbs)

9: if dimSolProbi,j > r1 then

10: if beta > r2 then

11: Update lSoli,j considering the best.

12: else

13: Update lSoli,j with a random value allowed.

14: end if

15: else

16: Don’t update the element in lSoli,j

17: end if

18: end for

19: end for

20: return lSol
11



Table 1: Cost values of every construction unit for SCCB [29]

Construction unit Unit Cost (e)
Ccncrete C25/30 m3 88.86
Concrete C30/37 m3 97.80
Concrete C35/45 m3 101.03
Concrete C40/50 m3 104.08
Precast pre-slab m3 27.10
Reinforcement steel B400S kg 1.40
Reinforcement steel B500S kg 1.42
Rolled steel S275 kg 1.72
Rolled steel S355 kg 1.85
Rolled steel S460 kg 2.01
Shear-connector steel kg 1.70

2.3. Objective functions280

The optimization problem in this study involves determining the best281

design for an SCCB while also upholding sustainability. This is achieved282

through the incorporation of objective functions that reflect the pillars of283

sustainability. Specifically, we evaluate the economic cost, environmental,284

and social life cycle assessments of the SCCB deck. These are represented285

by equations 4, 5, and 6 respectively.286

C(x⃗) =
n∑

i=1

pi ·mi(x⃗) (4)

The total cost of bridge construction is calculated by the objective cost287

function, which multiplies the unit cost of each required activity with the cor-288

responding measurement. A comprehensive list of all construction units and289

their respective costs, sourced from the BEDEC database [29], is presented290

in Table 1. In equation 4, pi is indicative of the price of each construction291

unit, while its measurement is represented by mi.292

ELCA(x⃗) =
n∑

i=1

p∑
j=1

elcaj ·mj(x⃗) (5)

SLCA(x⃗) =
n∑

i=1

p∑
j=1

slcaj ·mj(x⃗) (6)
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The evaluation of the environmental (ELCA) and social impact (SLCA)293

of the structure, accounting for all involved processes from raw material294

extraction to demolition and transportation to a landfill site, is the primary295

objective of the life cycle assessment (LCA). In equations 5 and 6, each296

life cycle stage is represented by i, with elcaj and slcaj corresponding to297

the environmental and social impact of each process within a given stage,298

respectively. The corresponding measurement of each process is indicated by299

mj. The environmental and social impact of each process along with their300

corresponding measurement are detailed in Table 2. The LCA methodology301

is described in section 2.3.1.302

Table 2: Ecoinvent processes LCA environmental and social impact values
Process Unit elcai (points) slcai (mrh)
concrete production 25MPa m³ 2.037E+01 1.254E+05
concrete production 30MPa m³ 2.631E+01 1.668E+05
concrete production 35MPa m³ 2.478E+01 1.554E+05
concrete production 40MPa m³ 2.585E+01 1.623E+05
steel production 71% of recycling rate kg 1.523E-01 1.941E+03
steel production 98% of recycling rate kg 1.036E-01 2.067E+03
transport, freight, lorry 16-32 metric ton, EURO6 t·km 2.502E-02 4.116E+01
transport, freight, lorry 3.5-7.5 metric ton, EURO6 t·km 7.755E-02 1.655E+02
welding, arc, steel m 2.350E-02 2.535E+02
welding, gas, steel m 2.303E-02 2.429E+02
diesel, burned in building machine MJ 1.361E-02 8.764E+00
carbon dioxide kg 4.369E-02 0.000E+00
rock crushing kg 7.223E-05 8.305E-01

2.3.1. Life cycle assessment method303

The processes involved in an activity or product, including all the neces-304

sary stages to complete it, are evaluated for environmental and social impact305

by the life cycle assessment (LCA). The ISO 14040:2006 [13] regulation is306

adhered to for carrying out the environmental LCA for bridges, while the307

assessment of the social impact is guided by the Guidelines for Social Life308

Cycle Assessment of Products [30]. Impact information from databases and309

a chosen life cycle impact assessment (LCIA) method are required to model310

the life cycle of a structure. The ReCiPe 2008 method [31] for environmental311

LCA and the social impacts weighting method (SIWM) for social impact are312

utilized in this research. The ecoinvent v3.7.1 [32] and soca v2 [33] databases313

are used for environmental and social LCA, respectively, due to their reliabil-314

ity and frequent updates [34]. Additionally, the ability of the soca database to315

13



associate ecoinvent processes with the PSILCA [35] database social impacts316

renders it valuable for scientists [36].317

Four stages are identified in this research to assess the impact of an SCCB:318

manufacturing, construction, use, and end-of-life, which align with the stages319

defined in previous LCA studies on bridges [36]. The manufacturing phase320

is comprised of the transformation of raw materials into products needed for321

construction and the transportation of these products to the construction322

site, taking into consideration the waste generated during these activities.323

A significant influence on the global environmental impact of the SCCB is324

noted from the impact of recycled steel, particularly in the production of steel325

products [36]. The distinction between structural and reinforcement steel is326

deemed critical, given the differing recycling percentages. For instance, a327

71% recycling rate is reported for reinforcement steel, while a rate of 98% is328

reported for structural steel in developed countries such as the US [37].329

The construction phase includes actions required to build the bridge, such330

as equipment and building style, and location. Formwork, scaffolding, vibra-331

tors, and concrete pouring must be considered, and procedures for welding332

the steel sections should be established for steel and steel-concrete composite333

bridges. The diesel consumption of machinery during construction, based334

on manufacturer information, literature, or other sources, is included in the335

LCA model for modeling construction activities.336

All activities required throughout the structure’s lifetime are encom-337

passed within the use and maintenance stage. The potential for concrete338

carbonation to sequester CO2 has been explored in recent research [38, 39].339

An expression for concrete carbonation was developed by Garćıa-Segura et340

al. [40], represented by equation 7. The service life t, the carbonation co-341

efficient k, the exposed area A, and the amount of cement C in one cubic342

meter of concrete are considered in this equation. Additionally, k represents343

the amount of clinker in the cement.344

CO2fixed (kg) = 0.383 ·
k
(

mm√
year

)
·
√

t(year)

1000
·A(m2) ·C

(
kg

m3

)
· k(%) (7)

The end-of-life stage includes the procedures that occur after the struc-345

ture’s lifetime, specifically the dismantling of the structure. This stage in-346

volves using machinery to demolish the structure and transporting and treat-347

ing the waste generated during this process. The distances between the build-348
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ing site and the landfill or waste treatment facilities must be specified as part349

of the analysis. Depending on the properties of the waste materials, there are350

three primary options for their disposal: reuse, recycling, or landfilling. Con-351

crete and steel are the most commonly used materials in bridge construction,352

and waste treatment options depend on the region and population’s needs.353

The inventory analysis involves collecting data on all the materials and354

energy consumed during the bridge life cycle. Considering these processes’355

outputs allows for determining the product’s environmental impact. Figure356

2 shows the processes involved in each stage.357

Stages of bridge LCA model

Manufacturing Construction Use and Maintenance End of Life

Activities:

• Concrete production
• Reinforcement steel 

production
• Hot rolled steel 

production
• Bridge sections 

welding
• Concrete transport
• Reinforcement 

transport
• Bridge sections 

transport

Activities:

• Pre‐slab production 
(used as formwork)

• Pre‐slab transport
• On site welding
• Concrete pouring

Environmental Impact

Activities:

• Concrete repair
• Concrete carbonation

Activities:

• Concrete dismantling 
and crushing

• Steel cutting and 
dismantling

• Concrete transport to 
landfill

• Steel transport to 
landfill

• Concrete carbonation

Figure 2: Bridge life cycle model stages and activities

The LCA impact was assessed using a Python script incorporating data358

from Ecoinvent version 3.7.1 [32] and soca version 2 [33]. One unit of each359

product was modeled using GreenDelta’s OpenLCA software, an open-source360

tool widely used in the scientific community for LCA [41].361

2.4. Problem definition362

The optimization of a 60-100-60 meter SCCB deck structure with a box-363

girder geometry is the aim of this study. The optimization problem has been364

defined in previous research, which used single-objective metaheuristic op-365

timization methods to evaluate cost, CO2 emissions, and embodied energy366
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Figure 3: SCCB structural optimization problem cross-section variables

[26, 27, 5]. A metamodel-assisted strategy utilizing deep neural networks367

(DNN) for environmental and social life cycle assessment (LCA) optimiza-368

tion is introduced in this paper. The strategy enables a comparison of the369

computational costs and design changes associated with considering a com-370

prehensive social and environmental impact profile.371

2.4.1. Variables and parameters372

The structural problem for this research involves a 60-100-60 meter SCCB373

deck with a box-girder geometry. The problem includes 34 design variables374

considering the bridge’s cross-section, stiffeners geometry, slab reinforcement,375

and material strength. The variables are grouped into four categories: cross-376

section geometry variables (b, αw, hs, hb, hfb, tf1 , bf1 , hc1 , tc1 , tw, hc2 , tc2 ,377

bc2 , tf2 , hs2); stiffener and floor beam variables (nsf2
, dst, dsd, sf2 , sw, st, hfb,378

bfb, tffb , twfb
), which define the stiffeners’ and transverse elements’ position379

and geometry; reinforcement and shear connector variables (nr1 , nr2 , ϕbase,380

ϕr1 , ϕr2 , hsc, ϕsc); and material strength variables (fck, fyk, fsk). The ge-381

ometric variables’ position in the cross-section is shown in Figure 3, while382

the floor beams and stiffeners variables are presented in Figure 5. The op-383

timization problem is discrete, as previously reported in related research on384

this optimization problem [27]. Lower and upper bounds and step sizes have385

been defined for all SCCB variables, and the discretization of the variables is386

summarized in Table 3. Considering all possible combinations, the number387

of designs is equal to 1.38×1046.388

Additionally, there are parameters in the optimization problem that are389

kept constant throughout the optimization process, referred to as fixed pa-390

rameters. These parameters remain consistent with those defined in the orig-391

inal problem [36]. The first fixed parameters consist of the bridge’s length392
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Table 3: Optimization problem variables and boundaries [26, 5, 27]

.

Variables Unit Lower Limit Upper Limit Step Size Possibilities
Geometrical variables

b m 7 10 0.01 301
αw deg 45 90 1 46
hs mm 200 400 10 21
hb cm 250 (L/40) 400 (L/25) 1 151
tf1 mm 25 80 1 56
bf1 mm 300 1000 10 71
hc1 mm 0 1000 1 101
tc1 mm 16 25 1 10
tw mm 16 25 1 10
hc2 mm 0 1000 10 101
tc2 mm 16 25 1 10
bc2 mm 300 1000 10 71
tf2 mm 25 80 1 56
hs2 mm 150 400 10 26

Stiffeners and floor beams
nsf2

u 0 10 1 11
dst m 1 5 0.1 41
dsd m 4 10 0.1 61
sf2 mm IPE 200 – IPE 600 * 12
sw mm IPE 200 – IPE 600 * 12
st mm IPE 200 – IPE 600 * 12
hfb mm 400 700 100 31
bfb mm 200 1000 100 9
tffb

mm 25 35 1 11
twfb

mm 25 35 1 11
Reinforcement and shear connectors

nr1 u 200 500 1 301
nr2 u 200 500 1 301
ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3

Material strength
fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

* Following the series of IPE profiles defined in [42].
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Figure 4: SCCB structural optimization stiffeners and floor beam variables

and width. A total length of 200 m is spanned by the bridge, with two lat-393

eral spans of 60 m and a central span of 100 m, and the width (W ) is set394

at 16 m. The bounds of the variables defined in Table 3 are also treated as395

fixed parameters. Furthermore, the position and minimum values for certain396

elements, such as the reinforcement areas, lower flange, web thicknesses, and397

lower slab distributions, are defined by other parameters, as shown in Fig-398

ure 5. Specific design guidelines [43, 44] stipulate that the minimum values399

of the web and bottom flange thicknesses (twmin
, tf2min) should be 15 mm400

and 25 mm, respectively. The last geometrical parameter, the reinforcement401

coating, is set to 45 mm by Eurocode 2 [45] for an XD2 environment.402

In addition, the following parameters define the characteristics of the403

concrete according to Eurocode 2 [45] regulations. These parameters include404

the maximum aggregate size, fixed at 20 mm, and the steel and concrete405

Young’s longitudinal and transverse moduli. The parameter values for steel406

are fixed at 210,000 MPa and 80,769 MPa, respectively, while for concrete,407

they depend on the strength, with the expressions 22 · ((fck + 8)/10)3 and408

Ecm/(2 · (1 + 0.2)).409

Finally, the last set of parameters defines the bridge service life, structural410

class, and loading parameters. The service life for this type of structure is411

set at 100 years, while the structural class is determined to be S5 following412

Eurocodes [46]. The loads considered in the bridge include self-weight, dead413

loads, traffic, temperature variation, and wind, with all loads defined per414

Eurocode 1 [46].415

2.4.2. Constraints416

The optimization problem is subject to constraints that ensure structural417

safety (ULS) and serviceability (SLS), as prescribed by Eurocodes [47, 48, 45].418
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Figure 5: Reinforcement, thicknesses and lower slabs distribution in bridge spans

Specific design guidelines [43, 44] were also considered to establish additional419

constraints.420

Structural resistance of the bridge sections falls under ULS constraints,421

while SLS constraints relate to prescribed stresses and deflection limitations422

of materials and the structure. Load and combination prescriptions were423

taken from Eurocode 1.424

Both local and global structural models were utilized to perform ULS425

checking. The global analysis evaluated shear, flexure, torsion, and flexure-426

shear interaction, checking for solution feasibility. Shear lag [47] and Class427

4 section slenderness [45] were taken into account when determining section428

resistance. A 10-6 accuracy was specified for the iterative Class 4 reduction429

method. Homogenization of sections was done by considering the coefficient430

(n) between the longitudinal deflection modulus of steel (Es) and concrete431

(Ecm) according to Equation 8. Concrete creep and shrinkage was deter-432

mined according to Eurocodes [47, 48, 45]. Local modeling was employed to433

assess floor beam and diaphragm response to ULS.434

n =
Es

Ecm
(8)

Regarding SLS constraints, the deflection limit was determined according435

to Spanish regulation IAP-11 [49], which stipulates a maximum deflection436

value of L/1000 for frequent combinations of live loads, where L denotes437

the length of each span. Structural and geometrical constraints were also438

specified. All structural tests were performed using a Python-programmed439

numerical model [20].440

The ULS and SLS checking coefficients were determined based on the441
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difference between the design values of the effects of actions (Ed) and their442

corresponding resistance values (Rd), as illustrated by Equation 9. The sec-443

tion satisfies the constraints if these coefficients are greater than or equal to444

one.445

Rd

Ed

≥ 1 (9)

3. Results and discussion446

This section provides details of the primary experiments conducted in447

the integration of the deep learning model with the described optimization448

algorithms. For ease of understanding, the results section is divided into two449

sub-sections. In the first sub-section, 3.1, the central experiments that facili-450

tate the construction of the deep learning model are detailed. Subsequently,451

the results concerning the times and minimums obtained by applying the452

deep learning model to the different optimization algorithms are described,453

using the best model obtained. Once the best configurations are identified,454

the algorithms are applied to environmental and social life cycle analysis in455

the second sub-section. The comparison and discussion of these results are456

detailed in sub-section 3.2.457

3.1. Algorithm Analysis458

This section is dedicated to detailing the methodology employed to de-459

velop the deep learning model. The primary hyperparameters and techniques460

utilized in achieving the model are outlined. Subsequently, a comparison is461

made between different metaheuristics that solve the optimization problem,462

with and without the integration of the deep learning model463

3.1.1. Neural Network models comparison464

The construction of the classification model considered multilayer per-465

ceptron networks, [50]. The values of the 34 variables that define the design466

of a bridge were used as input variables (Table 3). A series of parameters467

that require exploration for proper tuning are encompassed within multilayer468

perceptron networks. Prominent among these parameters are the number of469

layers and the optimization method employed for network learning. In addi-470

tion, due to an imbalance between the classes, SMOTE, [51], was employed471

as an oversampling method. Moreover, the data set used for the training, a472
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critical aspect of the model construction, was carefully selected. Building a473

good data set for this type of problem presents several difficulties, such as474

class imbalance and fewer points usually associated with values close to the475

minimum of the objective functions. Therefore, various experiments were476

conducted to build the training set. Two types of heuristic techniques, one477

based on trajectory, OBAMO, and another of the swarm class, SCA, were478

employed to generate the data set. Three scenarios were tested: a dataset479

generated by OBAMO, one generated by SCA, and one that integrates both480

datasets.481

The data set hybrid used has approximately 20,000 bridges that satisfy482

the constraints of the structural problem and 7,000 points that do not meet483

the conditions. Table 4 shows the results of the 5-fold cross-validation con-484

sidering 1, 2, and 3 hidden layers and using oversampling with SMOTE. The485

test set was generated prior to performing the oversampling process. It is486

also important to consider that the Batch Size parameter, the optimization487

method, and the type of dataset used (hybrid) remained fixed in the exper-488

iment. When looking at the F1-score, it is clear from the table that using489

three hidden layers performs better when using the original data set or the490

oversampled dataset. We also observe that the oversampling case is higher491

than the standard model in the four indicators analyzed.492

Models Data

Training Testing

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

1 hidden layer (128) 0.62 0.61 0.75 0.67 0.61 0.60 0.74 0.67
2 hidden layer (128-64) 0.79 0.73 0.93 0.82 0.78 0.84 0.72 0.78
3 hidden layer (128-64-32) 0.85 0.94 0.76 0.84 0.85 0.94 0.76 0.85
1 hidden layer-SMOTE 0.84 0.94 0.75 0.83 0.84 0.94 0.75 0.83
2 hidden layer-SMOTE 0.83 0.79 0.93 0.85 0.83 0.79 0.93 0.85
3 hidden layer-SMOTE 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92

Table 4: Neural network configurations explored. The parameters used in the structure of
the networks were ADAM as optimization algorithm, 128 as batch size, and hybrid data
set.

Another relevant experiment aims to quantify whether the hybrid dataset493

obtains better metrics than the other datasets. Table 5 summarizes the494

results using a batch size of 128, ADAM, and a three-layer network topology.495

The table shows that the hybrid case is more robust than each of the datasets496

separately in the four indicators. Finally, in Table 6, three techniques are497

evaluated to carry out the learning process, keeping the rest of the parameters498

constant. From the table, it can be seen that the ADAMmethod works better499
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than Rmsprop and SGD. From the above, it is observed that the training set,500

the number of layers, and the oversampling are essential to obtain a model501

with good metrics. From now on, the model with three layers, Adam, batch502

size 128, will continue to be used.503

Models Data

Training Testing

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

OBAMO dataset 0.87 0.90 0.85 0.87 0.87 0.90 0.85 0.87
SCA dataset 0.86 0.80 0.97 0.88 0.86 0.80 0.97 0.88
Hybrid dataset 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92

Table 5: Exploration of different data sets. The network configuration was ADAM, with
three hidden layers and a batch size of 128 and SMOTE oversampling.

Models Data

Training Testing

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SGD 0.88 0.82 0.93 0.87 0.87 0.81 0.92 0.86
RmsProp 0.90 0.90 0.91 0.90 0.90 0.89 0.90 0.89
ADAM 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92

Table 6: Exploration of different optimization algorithms. The network configuration was
three hidden layers and a batch size of 128, SMOTE oversampling, and hybrid data set.

3.1.2. Time and optimization values analysis504

With the classification model defining whether the bridge complies with505

the constraints, the integration of the model into the different algorithms506

described in section 2.2 is undertaken. The primary aim of the classification507

model is to accelerate calculations. The purpose of this section is to assess508

this acceleration efficiency through the execution times of the optimization.509

A correction factor must be incorporated for a fair evaluation, especially510

in the case of the algorithm using the classification model. This is due to511

the potential for errors in the model, which could invalidate the final result.512

Each algorithm should generate 30 valid executions; for those incorporating513

the DNN model, the total execution times will be added and divided by the514

times of the valid executions. This process yields a factor greater than one,515

which will be applied to the time of each valid execution conducted by the516

algorithm. The results, upon applying the correction factor, are displayed in517

table 7, with the cost functioning as the objective function in this case. The518

table shows a significant reduction in execution times. The algorithm with519
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DNN is 38 times faster in the case of OBAMO, and 50 times faster for CS520

and SCA. In absolute terms, CS was the fastest, followed by SCA. Another521

notable point is the improved optimization values; on average, all models522

with DNN obtain better values, and the dispersion of the values decreases as523

well. The next step is to utilize the algorithms with DNN for more complex524

objective functions.525

3.2. Comparison of Objective Function Results526

The primary objective of this research is to achieve a sustainable and op-527

timal design for an SCCB. To fulfill this purpose, the impact of various vari-528

ables and material quantities has been examined. To ensure a consistent com-529

parison of solutions across all objectives, 100 iterations were conducted, and530

the top 30 results were selected from each of three distinct single-objective531

optimization sets, considering cost, ELCA, and SLCA. This approach was532

chosen due to the varying number of feasible solutions associated with each533

optimization objective. This section also includes a comparison with recent534

SCCB optimization studies.535

The primary parameters of the cross-section and transverse stiffeners were536

examined initially. As depicted in Figure 6, the results exhibited similarity537

in terms of the distance of stiffeners and diaphragms (dst, dsd), with values538

oscillating between 2 to 3.5 m for the three objectives for transverse stiffeners539

and 5.5 to 8 m for diaphragms. The most pronounced disparity was discerned540

in the web angle αw, where values ranged from 60 to 75 degrees for ELCA,541

while for both cost and SLCA, the range was higher, spanning from 60 to 85542

degrees. For the ELCA and SLCA objective functions, the height of the steel543

beam tended towards lower values. The value distribution analysis revealed544

that, for SLCA and ELCA, higher groupings correlated with lower heights.545

This is due to the fact that the cost objective’s design sought solutions with546

lower yield strength, thereby necessitating an increase in the cross-section547

height to avoid surpassing the tension limit.548

The results underscore the delicate balance between sustainability consid-549

erations (as represented by ELCA and SLCA) and cost, a challenge frequently550

encountered in real-world design scenarios. Given the increasing emphasis551

on sustainability in contemporary construction practices, the distinctions in552

parameters observed in this study offer crucial insights for stakeholders.553

For instance, the variations in web angle αw and the height of the steel554

beam are not merely numerical distinctions; they represent tangible trade-offs555

in design choices. Engineers, designers, and policymakers can utilize these556
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insights to make informed decisions that harmoniously blend sustainability557

with cost-efficiency. Furthermore, the results suggest that when transition-558

ing to a more sustainable infrastructure paradigm, certain traditional design559

practices might need revisiting.560

Building on this, considering the global drive towards sustainable infras-561

tructure, it’s imperative to understand how these SCCB optimization insights562

can be adapted to various geographic or climatic contexts.563
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Figure 6: Cross-section main variables results for Cost, ELCA and SLCA objective func-
tions

The variables subsequently analyzed in this study are related to the sug-564

gested cell values for the design. As depicted in Figure 7, positive values565

were exhibited by the height variables (hc1 , hc2) for both upper and lower566

cells, confirming the efficacy of these elements in reducing the distance be-567

tween steel plate webs without stiffening. In contrast, the thickness of these568

elements was minimal for the upper cell tc1 , while for the lower one, values569

oscillated between 17 to 22. A contribution to improving the flexural behav-570

ior of the cross-section, reducing the section reduction that is often classified571

as class 4, was made by these elements [48].572

The quantities of primary materials and the values of the objective func-573
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Figure 7: Cross-section cells geometry and thicknesses results for Cost, ELCA and SLCA
objective functions

tion achieved by each optimization method are examined in this study. These574

results are summarized in Figures 8 and 9. It was observed that an iden-575

tical amount of structural steel was produced by all optimization methods.576

However, the quantity of reinforcing steel was marginally higher for SLCA577

and ELCA. This increase was not substantial enough to highlight a distinct578

difference between the methods. Focusing on the rate of material reduction,579

the structural steel’s quantity decreased more slowly with ELCA and Cost580

optimizations than with SLCA. This reduction was influenced by the inclu-581

sion of recycled steel (steel scrap) in the production process. Recent research582

[36] indicates a growing trend in steel production to maximize the utilization583

of steel scrap, aiming for optimal material reuse. Nevertheless, this tends584

to amplify the impact on the social aspect of sustainability, resulting in an585

elevated overall effect. Given that structural steel significantly influences ob-586

jective functions, its quantity is curtailed in social optimization to mitigate587

this impact.588

A further implication of the steel scrap’s quantity used in the steel pro-589

duction process is depicted in Figure 9. Recent research addressing this590
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optimization challenge, focusing on CO2 emissions and embodied energy as591

sustainability criteria [27, 5, 26], as well as the LCA of SCCB [36], suggest592

that the environmental and social impacts of steel are not linked to yield593

stress. Instead, they primarily depend on the volume of steel scrap uti-594

lized during manufacturing. In contrast, the cost is closely related to yield595

strength. This is attributed to the prevalent yield stress of commercial pro-596

files being 275 MPa. The demand for steels with a higher yield strength597

is less, leading to reduced production and an increased cost. This notable598

distinction is illustrated in Figure 9, where the correlation between cost re-599

duction and a decrease in ELCA and SLCA is evident, though the reverse600

isn’t necessarily true. These findings align with the outcomes presented by601

Mart́ınez-Muñoz et al. [5, 27], reinforcing the notion that CO2 emissions and602

embodied energy can serve as accurate indicators of environmental sustain-603

ability. A comparison of the top individual outcomes revealed that ELCA604

and SLCA result in solutions with superior yield stress compared to cost. To605

derive a balanced solution, it would be pertinent to employ a multi-objective606

optimization approach, a direction worth exploring in subsequent studies.607

The results of the best individuals obtained through metamodel-assisted608

optimizations are displayed in Table 8. These are the best feasible individu-609

als selected from 100 algorithm runs. The primary difference lies in the yield610

stress values, which can be observed in the table. Higher values are exhib-611

ited by the best individuals for ELCA and SLCA since there is no penalty for612

increasing resistance in the objective function. Although the steel distribu-613

tion across the cross-section may differ, the total material amount remains614

unchanged. These results can be compared to those obtained in previous615

studies by Mart́ınez-Muñoz et al. [5, 27] that consider CO2 and embodied616

energy as environmental impact indicators. Furthermore, a comparison with617

recent SCCB optimization studies indicates that the number of stiffeners in618

the lower flange is reduced to zero in this optimization problem. However,619

this outcome is heavily dependent on the chosen construction method.620
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Table 8: Best solutions obtained for cost, ELCA, and SLCA objective functions
Variables Unit Cost ELCA SLCA

b m 7 7 7
αw deg 64 71 73
hs mm 200 200 200
hb cm 255 262 363
hfb mm 400 590 530
tf1 mm 25 25 25
bf1 mm 300 300 300
hc1 mm 690 430 370
tc1 mm 16 16 16
tw mm 16 16 16
hc2 mm 840 0 0
tc2 mm 18 22 19
bc2 mm 300 300 300
tf2 mm 25 25 25
hs2 mm 150 150 150
nsf2

u 0 0 0
dst m 3.7 2.6 1
dsd m 5.7 6.3 4
bfb mm 500 900 500
tffb

mm 29 26 30
twfb

mm 27 31 25
nr1 u 200 200 200
nr2 u 204 200 200
ϕbase mm 6 6 6
ϕr1 mm 6 6 6
ϕr2 mm 6 6 6
sf2* mm 300 500 450
sw* mm 300 360 240
st* mm 360 600 400
hsc mm 100 100 100
ϕsc mm 19 22 16
fck MPa 25 25 25
fyk MPa 275 460 355
fsk MPa 500 500 500

Structural steel kg 2,060,892 2,060,892 2,060,892
Reinforcement steel kg 56,271 56,239 56,239

Concrete m³ 528 528 528
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Figure 8: Steel amounts results in trajectories for Cost, ELCA and SLCA objective func-
tions
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Figure 9: Cost, ELCA, and SLCA variation for every objective function

4. Conclusions621

Incorporating the deep learning model to identify compliance with the622

hybrid bridge’s regulations led to a substantial acceleration of calculations623

across the evaluated metaheuristics. Specifically for OBAMO, the acceler-624

ation factor was 38.18 times. For CS and SCA, the impact was even more625
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pronounced, with rates of 50.93 and 49.71, respectively. Moreover, regarding626

solution quality, it was observed that for OBAMO, the results were enhanced627

on average; the solution with deep learning improved by 0.94%. For CS and628

CSA, the improvements were 0.17% and 0.11%, respectively.629

In the context of this research, a deep neural network metamodel was in-630

tegrated to expedite the optimization of an SCCB. The optimization and per-631

formance assessments were carried out utilizing the SCA, CS, and OBAMO632

algorithms. The neural network model adopted in this investigation man-633

ifested significant elevations in optimization velocity, spanning between 37634

to 50 times swifter than conventional approaches. Notably, while the neu-635

ral network model occasionally yielded non-feasible solutions, the heightened636

calculation speed rendered such discrepancies tolerable.637

Additionally, when using the validation model in the optimization pro-638

cess, more feasible results were obtained for ELCA and SLCA due to the639

higher steel yield stress. However, since the environmental and social impact640

of the design is independent of the yield stress, solutions considering these641

as objective functions resulted in higher yield stress.642

In general, the solutions obtained using different objective functions con-643

sistently involved the use of cells in the bridge’s cross-section. This study644

suggests that deep learning models have immense potential in optimizing645

complex engineering designs, particularly in reducing the computational time646

required for optimization. However, the trade-off between speed and accuracy647

needs to be carefully considered in practical applications. Future work will648

apply this DL acceleration to multi-objective and robust optimization tech-649

niques to derive more comprehensive design solutions. Additionally, there is650

an interest in exploring other machine learning techniques, such as Support651

Vector Machine and the Gaussian process. Notably, these techniques have652

been applied to structural problems as highlighted in [53, 54]. Furthermore,653

probing the methodology’s applicability to varied types of structural design654

problems becomes essential to assess its universality.655
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[34] J. Pascual-González, G. Guillén-Gosálbez, J. M. Mateo-Sanz,766
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[36] D. Mart́ınez-Muñoz, J. V. Mart́ı, V. Yepes, Social impact assessment772

comparison of composite and concrete bridge alternatives, Sustainability773

14 (9) (2022) 5186.774

[37] SRI, Construction | SRI - Steel Recycling Institute775

https://www.steelsustainability.org/construction, accessed on 30 Jan-776

uary 2021.777

[38] F. Collins, Inclusion of carbonation during the life cycle of built and778

recycled concrete: influence on their carbon footprint, The International779

Journal of Life Cycle Assessment 15(6) (2010) 549–556.780

34



[39] A. Dodoo, L. Gustavsson, R. Sathre, Carbon implications of end-of-life781

management of building materials, Resources, Conservation and Recy-782

cling 53(5) (2009) 276–286.783
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