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A B S T R A C T

This paper describes an ensemble feature identification algorithm called SEQENS, and measures its capability
to identify the relevant variables in a case-control study using a genetic expression microarray dataset. SEQENS
uses Sequential Feature Search on multiple sample splitting to select variables showing stronger relation with
the target, and a variable relevance ranking is finally produced. Although designed for feature identification,
SEQENS could also serve as a basis for feature selection (classifier optimisation). Cliff, a ranking evaluation
metric is also presented and used to assess the feature identification algorithms when a groundtruth of relevant
variables is available. To test performance, three types of synthetic groundtruths emulating fictitious diseases
are generated from ten randomly chosen variables following different target pattern distributions using the
E-MTAB-3732 dataset. Several sample-to-dimensionality ratios ranging from 300 to 3,000 observations and
854 to 54,675 variables are explored. SEQENS is compared with other feature selection or identification state-
of-the-art methods. On average, the proposed algorithm identifies better the relevant genes and exhibits a
stronger stability. The algorithm is available to the community.
1. Introduction

Being able to identify genes related to a phenotype, or a particular
disease, is one of the main challenges for artificial intelligence and
biocomputing. This process is known as gene identification in genomics
and is related to feature selection in machine learning. Identifying
such relevant variables could lead to the discovery or confirmation of
biological and medical knowledge, and foster current debates about
understanding disease mechanisms. Moreover, it is an important step
to be able to develop decision support tools based on machine learning
useful for clinical practice.

Genetic analysis typically produces high-throughput sequencing or
microarray hybridisation. In this context, the number of variables (gene
expression, variants and mutations, RNA slices, protein coding, etc.) to
be analysed can be vast, which may require considerable effort in terms
of algorithm complexity and computational resources.

Dealing with very high dimensional data comes with important
obstacles inherent to the curse of dimensionality [1]. Indeed, when the
quantity of variables is much greater than the quantity of observations,
the probability of detecting false relationships between one or more
variables and a phenotype increases. The method proposed in this paper
is intended to minimise this phenomenon.
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Gene identification, or more generally feature identification (FI),
is linked with feature selection (FS) as both approaches are based
on ranking the variables by relevance (importance) in relation to a
target (phenotype), though they differ in their purpose. Thus, feature
selection, looks for the smallest subset of variables with the best predic-
tive power, whereas feature identification attempts to identify all the
variables that have an influence on the target. The subset of relevant
variables has not necessarily the best predictive performance due to the
possible redundancies that may exist among them.

Gene selection (or feature selection) is usually evaluated by mea-
suring the quality of the classification (or regression) obtained by the
selected subset of variables [2–4]. In that case, there is no need to know
the relevant variables beforehand.

In this paper, the interest is focused on identifying all the relevant
features related to a target. A groundtruth of these influential variables
is therefore necessary, since the predictive power of a set of variables
is no longer a good indicator of performance. Instead, a direct perfor-
mance metric, Cliff, that explicitly uses that groundtruth information is
proposed.

Physical and chemical processes taking place in living bodies orig-
inate from complex gene–gene interactions (epistasis) resulting in
vailable online 6 December 2022
010-4825/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.compbiomed.2022.106413
Received 28 April 2022; Received in revised form 25 November 2022; Accepted 3
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

December 2022

https://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:fsignol@iti.es
mailto:larnal@iti.es
mailto:jonacer@iti.es
mailto:rllobet@iti.es
mailto:arlandis@iti.es
mailto:jcperez@iti.es
https://doi.org/10.1016/j.compbiomed.2022.106413
https://doi.org/10.1016/j.compbiomed.2022.106413
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2022.106413&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers in Biology and Medicine 152 (2023) 106413F. Signol et al.

e
o

t
r
a
v
o

d
i
p
p
i
a
T

d

a
o
t
s
i
b

f
g
e
b
p
h
2
a
m

m
e
d
k

i

phenotypes [5]. While the groundtruth (relevant variables) is normally
not known a priori, the solution adopted in this paper is to generate it
synthetically. It allows us to model a number of more, or less, complex
and controlled combinations between relevant variables. FI algorithms
should be capable of discovering these dependencies. In this paper,
three different methods of generating synthetic groundtruths have been
used to emulate fictitious diseases.

SEQENS, an ensemble feature identification method, is presented
and compared with other state-of-the-art methods in the task of identi-
fying relevant variables. The proposed algorithm ranks features (genes)
by the importance they have in relation with a target (value to predict).
This is done on a real gene expression dataset, and experiments are de-
signed to test performance when the number of variables is several tens
of times greater than the number of observations. This paper focuses
on case-control studies from microarrays. This involves continuous-
valued data and two-class targets, representing the expression of genes
of interest in a population sample with individuals having, or not, a
disease.

When looking through gene expression association studies, many
FI methods rely on statistical tests (Welch two-sample t-test, ANOVA,
etc.) [6,7]. The limits of statistical tests are understood and range from
a lack of stability (two statistical tests can give rise to two very different
relevance ranking) to a high rate of false positives (noise variables
considered as relevant) [8].

In the machine learning literature, methods addressing feature se-
lection are grouped in three main categories: filtering, wrapper, and
mbedded. Several reviews have gathered and compared characteristics
f methods belonging to the three categories [9–11].

Filtering approaches rely on a variety of statistics computed from
he data to identify variables according to a correlation or entropy crite-
ion against the target values [12,13]. They are usually fast to compute
nd does not depend on a model. However, they often consider the
ariables independently of each other, which can hinder the discovery
f interesting interactions.

In contrast, wrapper and embedded approaches are model-
ependent and use error estimation as a measure to quantify feature
mportance. While embedded methods incorporate feature selection as
art of the prediction model creation [9], wrapper methods incorporate
redictors to the feature selection process [14]. An important character-
stic of embedded and wrapper methods is that they can often take into
ccount more complex variable interactions than filtering approaches.
he use of a model usually comes with a higher computational cost.

Other reviews of FS methods specifically applied to microarray
atasets can be found in [15–18].

In an attempt to overcome the limitations described above, the FI
lgorithm proposed in this paper combines wrapper feature selectors
n multiple sample splits. The mathematical model behind is similar
o bootstrapping but without replacement. In each split, a part of the
amples goes to train an estimator and the rest goes to test (evaluate)
t. Wrapper feature selectors were chosen as they allow interactions
etween genes to be easily explored.

These feature selectors make use of an induction algorithm (classi-
ier or regressor, often called inducer, estimator, learner, or predictor) to
uide the selection towards the subset of variables that best predicts. An
xhaustive exploration of all the possible combinations of genes rapidly
ecomes prohibitive as their number is increased. Fortunately, the ex-
loration workload can be drastically reduced using heuristic and meta-
euristic search strategies, such as Sequential Feature Search (SFS) [19,
0], genetic algorithms [21–23], swarm algorithms [24,25], branch-
nd-bound approaches [26], or random subspace selection. SEQENS
akes use of Sequential Feature Search.

The choice of the inducer is an important parameter. Some of them
ake assumptions about the type of interactions between variables (lin-

ar models, logistic regression), others do not (k-NearestNeighbours,
ecision trees). In this paper, the proposed SEQENS algorithm uses a
2

-NearestNeighbours regressor, which allows to make no assumptions 2
about variable relationships nature since, in general, it is not known a
priori.

The ensemble paradigm has been initially used for prediction tasks
[27], like in Random Forest [28] or Gradient Boosting [29] algorithms.
It consists of a set of individually trained inducers whose predictions
are combined [30,31]. Variety can be achieved using different types
of inducers. More recently, the use of ensembles has been extended to
feature selection [11].

FI could suffer from lack of stability (and, consequently, low reli-
ability) [32], particularly when the number of observations available
is low compared to the number of features [33]. Experimental studies
have shown that ensembles out-perform other FS algorithms in terms
of stability [10,34], which can be improved by means of data splitting
or data perturbation [35]. This effect is particularly beneficial in the
context of high-dimensional/small sample size, e.g., in genetic data
domains [36–38]. Thus, the need for stable feature rankings when ex-
ploring interactions between genes makes the combination of ensemble
along with wrapper feature selection, such as the one presented in this
paper, a plausible strategy.

The document is articulated as follows: Section 2 describes the
dataset, the groundtruth generation, the tested FI algorithms and the
evaluation metric. Section 3 details algorithm configurations, describes
the experiments and shows the results obtained. Section 4 presents a
discussion of some relevant findings. Finally, conclusions and perspec-
tives are drawn in Section 5.

2. Material and methods

2.1. Dataset

The publicly available gene expression database used in this work
is named E-MTAB-3732.1 It is a compiled human gene expression,
ontology-annotated dataset including 27,887 Affymetrix HG-U133Plus2
samples, filtered for quality control as described in [39]. No missing
values were found in the database. It contains 54,675 genes from
healthy and with disease individuals. Brute gene expression are contin-
uous values varying between 2 and 15 approximately. Each gene has
been standardised to obtain a zero-mean and unit-standard-deviation
variable.

2.2. Synthetic case-control groundtruth generation

A performance study of several feature identification algorithms
on microarray data is presented in this paper. Given the difficulty of
obtaining a dataset associated with a confident groundtruth of relevant
variables, fictitious diseases are generated from a pre-defined number
of variables of the E-MTAB-3732 microarray dataset. These variables
will be considered as the relevant ones for the generated control-case
targets.

To build the groundtruth, 10 generative (relevant) variables are
randomly chosen from among the 54,675 variables available in the
dataset (from now on denoted by F1 to F10). Fig. 1 shows their distribu-
tions after standardisation2 The remaining variables will be considered
as noise variables (irrelevant). The FI algorithm performances will be
measured by their ability to find and locate the generative variables in
the first positions of their relevance rankings.

Three types of interaction between relevant variables have been
tested: (1) Linear interaction in which the variables combine so as to
separate cases and controls by a hyperplane; (2) A spherical interaction
where controls are grouped around a reference point and cases appear

1 https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3732.
2 For the sake of experiment replication or performance comparisons, the

ndexes (starting at 0) of F1 to F10 are 1486, 7201, 19 287, 27 461, 28 578,
9 884, 30 555, 34 271, 37 922, and 41 109.

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3732
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Fig. 1. Histograms of the 10 relevant variables (F1–F10) after standardisation.
Fig. 2. Hyperplane scenario. A 2D-example built from 200 observations (patients), using two relevant variables (F1 and F2). Controls are green circles and cases are orange plus.
The black line is the frontier between classes.
as one moves away from this point, hence the frontier between controls
and cases is a hypersphere, and; (3) Clustered interaction where cases
and controls are grouped in separate regions of the hyperspace. These
scenarios are respectively called hyperplane, hypersphere and k-Clusters,
and they are meant to be an approximation to a diversity of tasks that
could be encountered in the real world, such as those using either ge-
nomic expression data, or clinical, anthropomorphic and environmental
parameters. In every scenario, 1/3 of the individuals (observations)
have been labelled as cases, and the remainder as controls (case-
control ratio is 1/3). The generation process is detailed in the following
sections.

2.2.1. Hyperplane scenario
A linear interaction separates cases and controls with a hyperplane

in the subspace defined by the relevant variables. To illustrate the
result of the target generation, a two-dimensional example using the
(F1,F2) variable subspace is presented in Fig. 2 (200 patients from E-
MTAB-3732 dataset are shown). This scenario has been inspired by the
computation of a Genetic Risk Score (GRS) as proposed in [40].

Target labelling is determined by the formula of a -dimensional
hyperplane given in Eq. (1), where  is the number of relevant vari-
ables, 𝑤𝑑 is the coefficient associated to the variable 𝑣𝑑 . 𝐶 has been
set to 0 causing the hyperplane to pass through the origin point.
The coefficients 𝑤 have been randomly set to −1 or 1 producing a
3

𝑑

hyperplane with a 45 degrees slope in every dimension, giving this way
the same relevance to each variable.

∑

𝑑=1
𝑤𝑑𝑣𝑑 + C = 0 (1)

This scenario emulates the presence (or absence) of a disease de-
pending on whether the relevant variables have values more frequently
within the first or the second half of their range.

2.2.2. Hypersphere scenario
This scenario allows us to explore a non-linear interaction. Controls

are located close to the origin point and cases appear beyond a certain
distance (radius). The resulting frontier between controls and cases
becomes a hypersphere. The radius of the hypersphere is computed
so that the case-control ratio is 1/3. Fig. 3 shows a two-dimensional
example.

This scenario emulates the presence (or absence) of a disease de-
pending on whether the relevant variables have values more frequently
within a subrange or in both ends of their range.

2.2.3. k-clusters scenario
The distance that separates genotyping from phenotyping is covered

by the processes of transcription and translation followed by the protein
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a

Fig. 3. Hypersphere scenario. A 2D-example built from 200 observations (patients) using two relevant variables (F1 and F2). Controls are green circles and cases are orange plus.
interactions in biological pathways. This additional complexity is simu-
lated through a non-linear geometric scenario: the cause–effect between
gene expression and a disease is modelled in a multi-dimensional
space by grouping observations in a number of clusters resulting from
multiple variable interactions.

Thus, observations are grouped in k clusters by means of a k-means
algorithm3 in the subspace of the relevant variables. In this work, a
number of 16 clusters (𝑘 = 16) is chosen for experimentation. Half of
the clusters are randomly assigned to controls and the other half to
cases. To reach a 1/3 case-control ratio, the quantity of observations
inside a case cluster is a half that in a control cluster.

As an illustrative example, two hundred patients are represented in
the (F1,F2) relevant variables subspace. It is displayed as a Voronoi dia-
gram in Fig. 4, where each background colour corresponds to a cluster.
Orange plus and green circles denote cases and controls, respectively,
as black triangles are the sixteen cluster centroids.

In this scenario, relevant variables can contribute to protecting from
diseases in certain regions of the hyperspace while promoting them
in other regions. This scenario can be considered as more complex
regarding the interaction patterns among variables.

2.3. SEQENS: an ensemble feature identification method

SEQENS is an ensemble feature identification method whose ker-
nel is a Sequential Feature Search (SFS) algorithm [20]. As a wrap-
per method, SFS benefits SEQENS by identifying potential interac-
tions among relevant features using inducers as selectors, even with
high dimensional spaces. The components of the proposed method are
depicted in Fig. 5 and detailed in the following subsections.

The fundamentals of ensemble methods for feature selection are
to combine the results of multiple instances of weak selectors in or-
der to produce more stable results [41] and better performance than
individual instances or methods [35]. It is particularly useful when
the sample-to-dimensionality ratio is unfavourable, as in genomic-data
samples.

Such different instances can be obtained by means of data split-
ting (homogeneous approach), as well as, using different selectors

3 scikit-learn implementation https://scikit-learn.org/stable/modules/gener
ted/sklearn.cluster.KMeans.html.
4

(heterogeneous approach). Data splitting is usually carried out by re-
sampling the observations in multiple partitions (bagging or boosting)
[11,36,42], but also through feature subspace partitioning or grouping
(dimensionality reduction) [15,37,43], and simultaneously [44].

The heterogeneous approach combining results from different se-
lectors can entail benefits from diversity. Moreover, the homogeneous
approach combining results from multiple splits contributes to stability
of the overall results [45].

A selector uses an inducer algorithm (classifier or regressor) to select
the subset of variables that best predicts the targets of a given data split.
Suboptimal solutions are provided because an approximated search in
the feature space is imposed due to the computational unfeasibility
of the exhaustive search. The pseudo-code of SEQENS is given in
Algorithm 1.

Algorithm 1 SEQENS pseudocode
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 ← generate 𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑠 random splits where
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑖𝑧𝑒% of observations goes for train and the rest for
test
for 𝑝 in 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 do

𝑏𝑒𝑠𝑡_𝑠𝑢𝑏𝑠𝑒𝑡, 𝑠𝑐𝑜𝑟𝑒 ← looks for the best predictive subset of variables
using Sequential_Feature_Search with 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 forwards
steps followed by 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 backwards steps

end for
Count the number of occurrences of each variable in all 𝑏𝑒𝑠𝑡_𝑠𝑢𝑏𝑠𝑒𝑡,
disregarding low-scored selections (threshold on 𝑠𝑐𝑜𝑟𝑒)
return ranking of variables in descending order of the number of
occurrences

2.3.1. Data splitting
Different data splitting strategies can be used by ensembles depend-

ing on the characteristics of the task to be solved and the available
data. When the number of observations is low, it is advisable to use as
many of them as possible to achieve the best performance and stability.
In practice, this is the usual case when selecting features from genetic
data because of the very high number of input variables, i.e., tens of
thousands.

A resampling strategy is proposed here by splitting the whole in-
put dataset without replacement, where each split corresponds to a

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


Computers in Biology and Medicine 152 (2023) 106413F. Signol et al.
Fig. 4. 16-Clusters scenario. A 2D-example using F1 and F2 variables from 200 observations (patients). 8 clusters contain controls (green circles) and 8 contain cases (orange
plus). Each background colour corresponds to a cluster region. Black triangles are the clusters centroids.
Fig. 5. (left) SEQENS Data Flow Diagram. (right) Detailed SEQENS components overview. (a) Dataset with observations (individuals) in rows and features (variables) in columns.
(b) Observations are split into train and test. (c) Each split is sent to one or several feature selectors for SFS. Each selector outputs a scored subset of selected variables. (d) Discard
low scored subsets. (e) Result aggregation from the selected subsets. (f) The output is a list of features ranked by relevance.
different training-test set partition. Each split will be input to a SFS
algorithm to produce a subset of selected features. This is one of the key
advantages of the ensemble methods: multiple training data are taken
to the selectors, which allows learning from different data distributions,
which in turn leads to a bias reduction [35].

The percentage of observations assigned to training and test can
be adjusted to optimise performance. Smaller training sets lower the
quality of the estimations while smaller test sets lower variability. A
parametrisation for a hold-out error estimation is proposed in [46].

2.3.2. Sequential feature search
In real problem, it is likely that numerous variables are inter-

acting in a complex way (e.g. through pathways) suggesting that it
5

is fundamental to consider their relationships rather than take them
individually.

The core of SEQENS is a Sequential Feature Search (SFS) greedy
wrapper algorithm that implements a fast and approximate search of
the most predictive combination of variables [19,20,47]. A greedy
approach makes the use of wrapper methods in high dimensional spaces
computationally affordable, and this is a typical situation when dealing
with genetic data. Wrapper methods make no assumptions on variable
distributions or on their interaction types (independence, linearity or
other kernel).

A SFS forward step adds the variable that maximises the predictive
power of the subset obtained in the previous step (initialised with
empty subset). A SFS backward step consists in removing from the
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previous subset the variable that contributes the least to the prediction
(initialised with the complete set of available variables).

In this work, the proposed SFS search strategy is based on the
plus l take-away r method presented in [47] and applies 𝐿 forward
teps followed by the same number of backward steps (𝐿 = 𝑅).
ackward steps allow us to remove non-contributing variables selected

n the forward stage, and the subset with the better prediction score is
elected. The number of variables of the final subset will be between 1
nd 𝐿. This strategy can be seen as a simple version of the Oscillating
earch [48]. The proposed parametrisation does not explore the feature
pace as exhaustively as Floating or Oscillating Search, but it is faster
o compute.

Setting the number of forward steps 𝐿 will predetermine the maxi-
um number of interacting variables to be explored by an SFS run. It is
orth nothing that this does not imply a limit on the number of relevant
ariables or in the total amount of interactions that can be identified
y the ensemble. Indeed, different groups of variables can be selected
n different SFS runs and will be counted during the aggregation phase.

An SFS run is independently applied to each dataset split. Any
stimator can be used in SFS. For each split, the training samples are
sed to fit the estimator and the test samples to evaluate its predic-
ive power. The estimation score is calculated based on an objective
unction, i.e., accuracy for classification or the negative mean squared
rror (negative MSE) for regression. The objective function guides the
lgorithm towards the best predictive variable subset. In this paper, an
FS is also called sequential.

.3.3. Aggregation criteria
An aggregation of the results coming from the multiple selections

ust be carried out to obtain a relevance (or importance) index for each
ariable, from which a ranked list can be obtained. It can include direct
ote aggregation, discarding low quality selections, weighting variables
r observations as a function of the selection score, or the aggregation
f variable importance indexes provided by the selector used. This can
mprove the convenience of setting thresholds, which can be as simple
s based on fixed percentages, or more novel automatic methods such
s those based on data complexity measures [45]. Specific work on
ggregation methods in genomic applications can be found in [49,50].

Thus, given a number of subsets of variables selected by sequentials,
ach of them associated with a score provided by the selector, the
ptions considered in this work are:

1st. Discarding low quality selections. Depending on the inherent
difficulty of the problem, the input sample, the objective func-
tion, as well as, other issues, selectors could not always reach a
sufficient prediction quality. Thresholding can be applied on the
selection score or on a percentage of the best scored subsets.

2nd. Vote aggregation. A selected variable is considered as an elector
emitting a vote. The basic option is counting the number of
votes received by each variable through the selected subsets
(one-feature-one-vote). More sophisticated methods are weighting
a vote by the selection score, or by the relevance position of the
variable within the selected subset.

This aggregation step changes the behaviour of the whole algorithm.
ince it proceeds by accumulating evidence from different selectors
ithout taking into account possible correlations among the variables,

he final set of votes can include similar or highly correlated variables
hat would not appear in a single selector. Each selector avoids corre-
ated or similar variables, even if they are predictive, because together
hey do not contribute more than each of them individually to classi-
ication performance. Different selectors can retain different variables
nd therefore the final result can include all of them. That is the reason
f the difference we make between selection and identification. We
ant to identify all the genes that influence a target condition, not to
6

uild the smallest predictive set. t
.4. Other feature selection or identification methods

The other methods with which SEQENS is compared are briefly
escribed in this section. In all these techniques, the variables can be
anked by relevance according to their respective computed feature-
mportance statistics.

Analysis of variance test (ANOVA), Pearson correlation (Pearson),
nd statistical Welch’s two samples t-test (Welch) are model-free uni-
ariate techniques that do not take into account variable interactions
univariate). ANOVA is a test based on analysis of variance. The Pear-
on correlation is computed to measure the linear dependence between
ach variable taken separately and the target. Welch’s t-test test checks
f two samples of unequal variances have the same mean to separate
ases and controls using this difference in mean.

Minimum Redundancy Maximum Relevance (mRMR) feature se-
ection [51,52] is a model-free approach looking for variables that
aximise their relevance to the target (correlation) but minimise their

edundancy with other variables using mutual information criterion. It
s an iterative process in which, for a given iteration, the algorithm
elects the variable presenting both the best relevance with the target
nd the minimum redundancy with the variables already selected in
he previous stages.

ReliefF approaches [53–56] are also model-free. They are based on
he idea that in a region of the hyperspace where the observations
f a given class are in the majority, the nearest neighbours of the
ame class will be closer than the neighbours of the other classes.
or a given observation of a given class, the algorithm calculates the
ifference between the distance from the observation to its nearest
eighbour of the same class subtracted to the distance between the
bservation and the nearest neighbour of the other classes. In this
rocess, several neighbours can be used to improve the stability of the
ethod. The feature importance is then computed accumulating the

bsolute differences in each dimension (variable). Relevant variables
re likely to accumulate higher differences than noise variables. In this
aper, the MultiSURF implementation is tested.

Lasso linear modelling has been extensively used in bioinformat-
cs in the task of feature selection [57–61]. Lasso considers that the
ariables interact in a linear way (weighted sum) and calculates the
oefficients (weight) of each variable using a least square minimisation
nriched with a constraint on the sum of the coefficients. The weight
ssociated to each variable is its feature importance. Adjusting the
onstraint allows the algorithm to select more or less relevant features,
etting the weight of the irrelevant variables to 0. The higher the
onstraint, the fewer the number of variables selected. On the contrary,
null constraint is equivalent to apply directly a linear regression and

o make no selection.
SVM-based recursive feature elimination (SVM-RFE) is a combina-

ion of a linear Support Vector Machine inducer with a recursive feature
limination process where, at each iteration, a percentage of the less
mportant features are removed [62–64]. In this iterative process, a
inear SVM is trained and tested following a cross-validation scheme
t each iteration. Variables are sorted according to their absolute linear
eight. A percentage of the less weighted (less important) are discarded
nd the process is repeated.

Like SEQENS, Random Forest (RF) [28] and Gradient Boosting
GBoost) [29] are ensemble methods. They both combine multiple de-
ision trees. RF computes the trees from splits of the dataset following
bagging strategy (like SEQENS). GBoost builds a sequence of decision

rees (boosting) where the errors made on one tree are used to weight
he observation importance for the next tree. Both methods aggregate
ndividual tree feature selections into a collective decision to rank
eatures by importance.

Table 1 lists all the methods tested, provides some keywords to
dentify which category of approximations they belong to and specifies

he inducer (or not) they depend on.
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Table 1
Description of the feature identification algorithms tested.

Algorithm FI type Inducer

ANOVA Filter, univariate Model free
Pearson Filter, univariate Model free
Welch Filter, univariate Model free
mRMR Filter Model free
MultiSURF Filter Model free
Lasso Embedded Constrained linear model
SVM-RFE Embedded Linear support vector machine
RF Wrapper, ensemble (bagging) Decision tree
GBoost Wrapper, ensemble (boosting) Decision tree
SEQENS Wrapper, ensemble (bagging) k-neighbours, sequential search

2.5. Cliff, a ranking evaluation measure

Measuring the quality of a feature identification ranking allows us
to directly and accurately assess the performance of a given technique,
as well as compare different techniques. A metric named Cliff is pre-
sented here. It aims to quantify the quality of a feature identification
list ranked by relevance when a groundtruth of relevant variables is
available.

Cliff is designed to score 1 when all the relevant variables
(groundtruth) are located in the first positions of the ranking. The score
tends towards 0 as the relevant variables move away from the first
positions.

Let  be a list of variables ranked by relevance merits, and let ′ be
the set of positions of the relevant variables in . The cliff score of  is
the sum of position scores 𝑠 of the relevant variables in , as expressed
in Eqs. (2) and (3), where R is the number of relevant variables. The
function 𝑠 assigns a score to a position 𝑝 on the list.

score() =
∑

𝑝∈′
𝑠(R, 𝑝) (2)

𝑠(R, 𝑝) =
⎧

⎪

⎨

⎪

⎩

1
R − 𝛼

2 (2𝑝 − R − 1), 𝑝 ≤ R

𝑠(R,R)(𝑝 − R + 1)−𝛽 , 𝑝 > R
(3)

We considered variables in the top R positions to have a different
reatment from the rest. Hence, 𝑠 is a piecewise function made up of
wo decreasing sub-functions whose slopes can be independently tuned
sing two coefficients denoted by 𝛼 and 𝛽. The first part (𝑝 ≤ R) applies
o relevant variables found within the top R positions, and decreases
inearly or keeps constant. Thus, a variable retrieved in position 𝑝 ≤ R
ill be assigned an higher or equal score than a variable in position
+ 1. The second part (𝑝 > R) decreases following a negative power

unction with exponent −𝛽 and will apply to variables retrieved over
osition R.
𝑠 has the shape of a cliff, as shown in the example of Fig. 6, where

is set to 10. By setting 𝛼 = 0 and 𝛽 → +∞ a Heaviside function
s obtained (green line). This configuration could be used to obtain a
liff score equal to the percentage of relevant variables retrieved in the
irst R positions, regardless of the relevant variables positioned clearly
ver R. In this case, two algorithms with the same number of relevant
ariables found within the top R positions will obtain the same score.
evertheless, if one wish all the relevant variables to contribute to the

inal score, a configuration with 𝛼 > 0 and 𝛽 being a positive real value
ust be considered, as depicted by blue and black lines. 𝛼 = 0.008 and
= 0.5 are the settings chosen in the experiments of this paper (black

ine).
The higher the 𝛼, the higher the score mass is moved from the

econd half to the first half of the R-top positions amplifying the
mportance of the very first positions. The higher the 𝛽, the faster the
ecrease in the score after the R position. 𝛼 and 𝛽 must be positive real
alues, and 𝛼 has to be constrained to the range [0, 2

R(R−1) ] to avoid 𝑠
crossing the abscissa axis.

Variables not being selected (or receiving no votes in a voting
scheme) by the FI algorithm are considered at the ∞ position and are
7

assigned 𝑠 = 0. In case of ties of relevance merits, the average position
of the tied variables is assigned to all of them.

3. Results

For the experiments, three sets of case/control targets
(groundtruths), named hyperplane, hypersphere and 16-Clusters, have
been generated from interactions of 10 relevant variables (generative
variables) following the three different interaction patterns proposed
in Section 2.2. This process has been carried out using all the 27,887
observations of the E-MTAB-3732 database.

The goal of the experiments is to measure the ability of several
state-of-the-art algorithms, including SEQENS, to identify and locate
the relevant variables in the top positions of their ranks in the three
proposed scenarios. The cliff metric presented in Section 2.5 is used as
a quality indicator of the ranks obtained.

For a given scenario, several sample-to-dimensionality ratios (SDR)
are explored. A different number of observations, ranging from 300
to 3000, are combined with four amounts of variables, 854, 3417,
13,669 and 54,675 (total amount of variables in the database), which
corresponds to SDR ranging from 0.0055 to 3.5.

To select the subsets of observations, random subsampling of the
27,887 observations available (already labelled) is carried out. Each
set of variables to be tested include the 10 relevant variables plus the
corresponding number of noise variables randomly selected. To provide
information about the stability, each presented result is achieved from
ten runs, where each run is performed on a different subsampling. The
resulting ten scores are averaged, and the mean and 95% confidence
interval (CI) are provided.

The following two sections detail the configurations of the FI meth-
ods evaluated, and then, Section 3.3 presents a comparative analysis of
their performances and stability.

3.1. SEQENS configuration

The SFS greedy algorithm was set to perform 10 forward steps
(parameter 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 in Table 2), reflecting the quantity of rel-
evant variables that are actually interacting. In a real task, such a
number would not be known, therefore, this parameter should be
set based on a trade-off between a maximum number of underlying
interactions expected and the computational cost associated to the
search in high dimensionality spaces. As discussed in Section 2.3.2, the
number of backward steps was set equal to the forward steps. If a draw
occurs among candidate variables at any stage, one of the variables is
randomly chosen.

A hundred independent runs of the SFS algorithm, or sequentials,
was considered to compose one ensemble. Each sequential is run on
a different sample split. The higher the number of sequentials, the
higher the number of votes to be spread out, which would lead to
the overall result to converge. Ideally, the votes received by the noise
variables should be uniformly distributed, while the relevant variables
should accumulate votes, avoiding the noise variables to reach the
first positions of the ranking. This should be the case where the noise
variables do not have a significant influence on the target.

Within a given split, 20% of the observations was used for training,
and the remaining 80% for test (hold out estimation) preserving the
case/control ratio within both sets. This parameter was optimised using
a single subsampling of 1200 observations and 54,675 variables. This
subsampling was not used to compute the results.

A single inducer was used, a k-Nearest Neighbours regressor
weighted by inverse distance [65] with 𝑘 = 5 using the coefficient of
determination R2 as objective function (score). The Eq. (4) presents R2

score. It is based on the ratio between the error made by the predictor
and the error that a simple predictor always returning the mean of the
target values would obtain. 𝑦𝑖 is the groundtruth target value of the 𝑖-est
sample, 𝑦̂ is the estimation made by the predictor and 𝑦̄ is the mean of
𝑖
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Fig. 6. Example of three configurations of the function 𝑠: (green line) A Heaviside function that assigns all the score mass to the top 𝑅 positions equally distributed; (black line)
configuration used in our experiments; and (blue line) intermediate configuration. Compared to the black curve, the two last configurations reward relevant variables found over
R in different magnitudes and the score assigned to any position 𝑝 is higher than the score of position 𝑝 + 1.
the target values. A R2 of 1 is equivalent to a perfect estimation while
a R2 inferior or equal to 0 indicates that the predictor is making more
error than the predictor returning the mean of the target values.

R2 = 1 −
∑

𝑖(𝑦𝑖 − 𝑦̂𝑖)2
∑

𝑖(𝑦𝑖 − 𝑦̄)2
(4)

The selector is embedded in the SFS algorithm. Thus, as a result of
a SFS execution, the subset of features exhibiting the maximum R2 is
selected.

Regarding the aggregation criteria, on one hand, one-feature-one-
vote was selected due to its simplicity and interpretability, thereupon
no weighting function was applied. On the other hand, thresholding
on the score of the selected subsets provided by the sequentials was
applied to reject the lower quality ones, which can be seen as a simple
filter to improve results. In all the experiments, 20% of the best scored
sequentials are kept for polling (and the rest are rejected).

3.2. Other algorithm configurations

Table 2 summarises the implementations and configurations of
the methods included in the experiments. Some of them have no
parameters, such as ANOVA, Pearson, and Welch t-test. Moreover, the
MultiSURF implementation tested, representing ReliefF approaches, has
no parameters to set along with the mRMR implementation based on
mutual information quotient (MIQ) schemes. For Lasso, SVM-RFE, GB,
and RF, a few parameters were optimised. The subsamplings used for
optimisation were not used for performance evaluation.

The main Lasso parameter, 𝛼, is the weight associated to the con-
straint on the sum of the linear coefficients. The optimal value was
calculated by exploring within the range 10−6 to 101 the 𝛼 value that
maximises the cliff measurement. In order to do this, tests on four
subsamplings per scenario (twelve samples) of 1500 observations each,
have been run. The optimal 𝛼 was computed as the average of all the
twelve runs, and as a result, it was set to 0.008.

SVM-RFE relies on two main parameters. Firstly, 𝑠𝑡𝑒𝑝, is the number
of variables discarded at each step of the recursive feature elimination.
This was set to 0.05, meaning that 5% of the less important variables
are discarded in each iteration. Secondly, parameter 𝐶, is the SVM
margin. Its optimisation was carried out in the same conditions as the
one from Lasso, and, as a result, its value was set to 0.002. The support
vector machine used in the experiments had a linear kernel.

Given that both Gradient Boosting (GBoost) and Random Forest (RF)
are ensemble methods, as with SEQENS, the number of trees was set
equal to the number of sequentials in SEQENS, i.e., 100 estimators.
8

Each tree was built with all the available variables. In RF, a bootstrap of
20% of the samples was used to train the trees (parameter 𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠
in Table 2), as in SEQENS, and no limit was applied on the tree depth.
In GBoost, all the observations were used to fit the trees and the
maximal tree depth was 3 (default values in the implementation used).
RF and GBoost are both used in their regression version to be consistent
with SEQENS (using a k-nearest neighbours regressor).

3.3. Performances evaluation

Each row in Fig. 7 shows the results obtained for the four variable
amounts tested (854, 3417, 13,669, and 54,675) on the three generated
scenarios (hyperplane, hypersphere, and 16-Clusters). Each group of
variables includes the variables of the smaller group plus new variables
randomly selected. All the four groups include the same 10 relevant
variables. The sample size is indicated in the horizontal axis and the
obtained cliff-score in the vertical axis. Each method is represented by
a different colour line. Each point of a curve is the average cliff-score
obtained from ten experiments of its corresponding method coming
from ten different subsamplings of the dataset. The 95% confidence
interval is indicated in low-tone background colour around the solid
mean line. Any given subsampling includes the observations of its
respective smaller subsampling. The black line represents the results
of a random identification, where each point was calculated following
the same subsampling and averaging procedure as in other methods.

When comparing performance in different scenarios, different rank-
ings of methods are observed. Globally, SVM-RFE, Lasso, RF, GBoost
and SEQENS are the ones that provide better results.

ANOVA and Welch do not provide more information than a random
identification in any scenario, and, in general, Pearson shows low
scores except for small amounts of variables, where its results are
still poor compared to the rest of the methods. Thus, as expected, the
high dimensionality is revealed to be a major obstacle for pure filter
univariate approaches.

MultiSURF and mRMR provide scores superior to Random and Pear-
son methods but remain significantly lower than the best algorithms.
Besides, they do not clearly benefit from the increase in the number of
individuals.

In the hyperplane scenario (left column), Lasso presents the best
performance, followed by SEQENS. Lasso is able to identify all the
relevant variables in top positions of the rank (cliff score = 1) with
a sufficient number of observations, except when dealing with 54,675
variables. SEQENS fails to discover two out of the ten variables (always
the same two), independently of the amount of noise variables it deals
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Fig. 7. Cliff-scores obtained by each FI method tested for different SDR on the three interaction scenarios. The columns are the scenarios, the rows are the number of variables
used, and the sample size is indicated in the horizontal axis of the plots. The mean of 10 runs on different subsamplings and the 95%-CI (background area) are depicted. For
computation time reasons (see Table 4), MultiSURF was not calculated in the Hyperplane and 16-Clusters scenarios because the expected results would be worse than with 13,669
variables where they are already close to a random identification.
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Table 2
Algorithm implementations and configurations.

Algorithm Implementation Configuration

ANOVA sklearn.feature_selection.f_classif a Default

Pearson scipy.stats.pearsonrb Default

Welch scipy.stats.ttest_indb Default

mRMR mrmr.mrmr_classif
https://github.com/smazzanti/mrmr Default

MultiSURF skrebate.MultiSURF
https://epistasislab.github.io/scikit-rebate Default

Lasso sklearn.linear_model.Lassoa 𝛼 = 0.008c

SVM-RFE sklearn.svm.LinearSVR, sklearn.feature_selection.RFEa 𝐶 = 0.002c

𝑠𝑡𝑒𝑝 = 0.05

Random Forest sklearn.ensemble.RandomForestRegressora 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100
𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 0.2

Gradient Boost sklearn.ensemble.GradientBoostingRegressora 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100

SEQENS seqens.Seqens 𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑠 = 100
https://www.kaggle.com/itiresearch/seqens 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = 10

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑖𝑧𝑒 = 0.2c

ascikit-learn library [66] version 0.24.2 (https://scikit-learn.org/stable/user_guide.html).
bscipy library [67] version 1.6.3.
cThese parameters have been optimised.
𝐹

with. In this scenario, SVM-RFE obtains competitive results, particu-
larly with 13,669 variables. However, as denoted by its CIs, it is the
least stable algorithm, a phenomenon which was also observed during
the optimisation of its margin 𝐶 parameter (Section 3.2).

In the hypersphere scenario (centre column), ensemble methods
(GBoost, RF and SEQENS) show the best scores. With 54,675 variables,
GBoost reaches a 0.9 cliff-score using only 900 observations while
SEQENS, the second ranked method, requires 1800 observations. It
should be noted that MultiSURF performs much better in this scenario
than in the other scenarios.

In the 16-clusters scenario (right column), where variable interac-
tions are more complex, SEQENS clearly outperforms the rest of the
methods, and it reaches full identification (10 relevant variables on top
10 positions) in some configurations. Only with the smallest sample
sizes (300 and 600 observations), do the SEQENS, Lasso and GBoost
confidence intervals overlap.

In the most unfavourable SDR (e.g., 300 observations for 54,675
variables), the scores obtained are low even for the best algorithms
(GBoost, Lasso, SEQENS). Only one or two variables are expected to be
found in the first ten positions of the ranking. Nevertheless, in all the
experiments, the scores show a significant improvement when stepping
from 300 to 600 observations. The magnitude of this improvement
slows down as the sample size increases until the plateau of the curves
is reached. This reinforces the importance of collecting a sufficient
number of observations, and also shows that an upper boundary on
observations exists for each method. As can be noted, this boundary
depends not only on the number of variables found in the database
(SDR) but also on the type of scenario, i.e., the type of interactions
among the relevant variables.

In practice, the interactions between relevant variables (scenario)
are not known a priori, either in number or type. Therefore, it is not
possible to select the most suitable method according to this criterion.
Thus, considering the overall performances on the three different syn-
thetic diseases tested, SEQENS turns out to have a higher generalisation
power and can be considered the most appropriated method to be used.

To argue this point, the average performance of the algorithms on
the three fictitious diseases (hyperplane, hypersphere, and 16-Clusters)
is illustrated in Fig. 8. Each point of the curves represents the cliff-
10

score mean of all the 30 subsamplings (ten per scenario), and its
corresponding confidence interval is depicted. In general, up to 900
observations, SEQENS is sharing with GBoost the best average score.
Over 900 observations, SEQENS obtains the best average score on the
four datasets and its distance with the second best method increases as
the dimensionality increases.

Stability is an important characteristic of feature identification. Ide-
ally, feature rankings should remain the same in the presence of slight
perturbations of the dataset. In this work, the stability is measured
as the variation of the cliff score among different subsampling of a
population. On average over the three scenarios considered, SEQENS
exhibits a smaller CI than the other methods, which indicates that
it produces rankings of relevant features that are more stable and
less sensitive to data variations, and therefore, it can be considered
as the more stable gene identification option. To illustrate this point,
Table 3 shows the average cliff scores across all scenarios with 54,675
variables. The 95% confidence interval is depicted for the four methods
with the highest mean score at 3000 observations.

3.4. Computational considerations

This section aims at giving an idea of the complexity of algorithms
in a concrete example. It is difficult to be completely fair given the
variety of implementations, and that some incorporating elements of
parallelism and optimisations into the code while others do not. The
computing time for each method is presented using the dataset with
1200 observations and 54,675 variables.

The computer used is a 16 core Intel Xeon Processor (Skylake, IBRS)
2.3 GHz with 32 GB RAM. Table 4 presents the average elapsed time
for the 10 runs separating results per disease.

SEQENS clearly has the heaviest computational load. Despite this,
in practice, identifying the relevant variables is not a calculation that
needs to be repeated many times. It therefore seems worth it to allow
several hours or days of calculation in order to obtain a better quality
gene identification.

Moreover, it is worth mentioning that SEQENS is a perfectly parallel
algorithm, which means that the computation time decreases in an
almost proportional way with the quantity of available cores.

Each SFS performed by SEQENS will train and test 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠×
models, 𝐹 is the number of variables and 𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 the number

of forwards steps. The quantity of models to train and test increases
linearly with the number of variables and the maximum interaction size
desired. Complete SEQENS algorithmic complexity is then determined
by the inducer embedded into the sequential feature search and how it
behaves when the number of observations or variables increases.

https://github.com/smazzanti/mrmr
https://epistasislab.github.io/scikit-rebate
https://www.kaggle.com/itiresearch/seqens
https://scikit-learn.org/stable/user_guide.html
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Fig. 8. Averaged cliff-scores of the three scenarios. The columns are the number of variables in the dataset. The mean and 95%-CI from all the 30 runs are shown. SEQENS
obtains the best average score over 900 observations and exhibits a smaller CI than the other methods.
Table 3
Mean cliff scores across all scenarios with 54,675 variables. 95% CI interval is shown for SEQENS, GBoost, Lasso and RF methods. Methods are sorted by decreasing mean score
for 3000 individuals. For each sample size (column), the method with the highest mean score is indicated in bold.

#samples 300 600 900 1200 1800 2400 3000
method

SEQENS 0.146
±0.033

0.391
±0.038

0.552
±0.035

0.694
±0.036

0.837
±0.030

0.898
±0.018

0.913
±0.016

GBoost 0.159
±0.041

0.390
±0.082

0.546
±0.093

0.603
±0.092

0.671
±0.082

0.699
±0.075

0.721
±0.071

Lasso 0.120
±0.049

0.333
±0.083

0.427
±0.101

0.472
±0.102

0.543
±0.099

0.598
±0.099

0.639
±0.094

RF 0.019
±0.018

0.079
±0.025

0.140
±0.036

0.254
±0.066

0.337
±0.097

0.427
±0.114

0.477
±0.119

SVM-RFE 0.047 0.098 0.126 0.155 0.171 0.149 0.209
mRMR 0.080 0.107 0.130 0.135 0.141 0.152 0.145
Pearson 0.056 0.066 0.065 0.067 0.067 0.064 0.064
Random 0.006 0.006 0.005 0.005 0.006 0.005 0.006
Welch 0.004 0.004 0.004 0.004 0.003 0.003 0.003
ANOVA 0.004 0.004 0.004 0.004 0.003 0.003 0.003
Table 4
Algorithms computing mean time in seconds for the 10 runs with 1200 observations
and 54,675 variables.

Algorithm Hyperplane Hypersphere 16-clusters

ANOVA <1 <1 <1
Pearson 4 4 4
Welch 10 10 10
Lasso 29 43 34
RF 293 439 409
SVM-RFE 459 458 460
mRMR 1496 1500 1493
GBoost 1677 1679 1671
MultiSURF 2366a 9256 2160a

SEQENS 50,972 46,910 37,173

aObtained with 13,669 variables so the duration is underestimated.

4. Discussion

To a greater or lesser extent, the performances of all methods
decrease as the dimensionality (amount of variables) increases. In
addition, performance tend to increase as the sample size increases,
with the exception of MultiSURF and mRMR methods. FI methods
reach an asymptotic plateau more or less quickly as the sample size
increases. These observations are coherent with the well-known curse
of dimensionality that affects the induction algorithms.

Depending on the scenario observed, the optimal method is dif-
ferent, which is a strong signal in favour of the use of ensemble
methods which take advantage of the diversity of points of view. With
this perspective, this work presents the highly parallelisable ensemble
machine learning algorithm SEQENS for feature identification in high
dimensionality spaces, such as genomic data. On microarray data,
11
SEQENS shows good performance in the three proposed scenarios and,
on average, it worked better and is more stable than the methods it is
compared with.

Special attention has been paid to comparing algorithms as fairly
as possible. We are aware that variations and improvements of the
methods tested can be found in the literature. Meanwhile, SEQENS
remains wide open to optimisations in many different ways. In this
work, only one parameter of SEQENS has been optimised.

Increasing diversity should lead to significant improvements of
SEQENS. These could be achieved by means of:

• Combining inducers. The algorithm presented in this paper uses
a single inductor (k-nearest neighbours) but it is possible to
combine several of them. Some tentative experiments suggested
it would strengthen gene identification in different scenarios.

• Exploring new selector types. Current implementation of SEQENS
is linked with sequential feature search, other selectors like ge-
netic or swarm approaches could be tested and even combined.

• Extending data splitting. Combining results from multiple sam-
ple splits is the base for stability in ensembles. Variable space
partitioning could also contribute to improving the results.

Regarding the SEQENS parametrisation, while additional parame-
ters can be studied (such as those related to the selector parametrisation
or result aggregation), three parameters have been tackled in this work:

• The number of sequentials (𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑠) to run will determine
the degree of convergence of the results. It is linearly related to
the computing time. Despite the fact that a trade-off between
runtime and convergence should be assumed, its setting is not
critical. One hundred has been a satisfactory amount in our
experiments.
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• The training size (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑖𝑧𝑒) is the percentage of samples used
to train an inducer, the remaining samples going to its evaluation.
In this work, it has been optimised, and only 20% was set aside for
training. It is consistent with the fact that the ensemble method
uses weak selectors, where preference is given to test rather than
train.

• The maximum number of interactions (𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠) parame-
ter corresponds to the number of forward steps in the Sequential
Feature Search algorithm. It can be interpreted as the maximum
number of interactions within a group of variables that can be de-
tected. Small values will provide only a partial view of the entire
interaction while large values increase the computational cost and
tend to introduce extra noise variables into the selection (despite
this, it does not necessarily affect the results). To configure the
experiments in a proper manner, its value is set to ten, according
to the number of relevant features defined in the groundtruth.

The Lasso algorithm offers the best performance in the hyperplane
cenario. This is as expected because it is intrinsically designed to detect
inearities (minimisation of a quadratic error with respect to a linear
unction). Nevertheless, this result is conditioned by the optimal setting
f its main parameter 𝛼, which allows us to adjust the quantity of vari-
bles to be considered as relevant. With the optimisation methodology
f 𝛼 followed in this paper, the scores presented for Lasso were, on
verage, the best possible. Nevertheless, in practice, for a given dataset
ith no groundtruth, it is not possible to calculate the optimal value of
directly, but only estimate it [68] (e.g., maximising the classification

core in a cross-validation strategy). The same reasoning applies to
VM-RFE method but, in this case, its performance is significantly
ower.

It is worth highlighting that GBoost, which is an ensemble approach
ike SEQENS, achieves the second best performance on average. This
s one more signal confirming the strength of ensemble methods for
ene identification. With Random Forest, the overall performance is
ower but it is however important to observe that it works well in
ypersphere scenario.

In our benchmark, FI using classic univariate statistical methods do
ot work in the presence of a several hundred variables or more, even
hen the number of observations is large [8]. In almost all the cases,
I using statistical tests is not distinguishable from a random selection.

Regarding the synthetic disease generation (groundtruth), the mech-
nism of cause–effect underlying a real disease and the variables in-
olved, and their interactions, is very difficult to fully understand, and
ence, to translate into a synthetic scenario. Nevertheless, the three
roposed scenarios cope with three classic tasks in machine learning,
mulating a wide range of tasks of the real world. In fact, the results
resented clearly show that different methods perform different in
ifferent scenarios. In this sense, SEQENS performs better than the rest
s it seems to be a more generalisable method. More work on new
cenarios, particularly those based on real disease knowledge, when
vailable, could be done.

The presented Cliff evaluation measurement takes advantage of
aving synthetic disease scenarios, which can help with parameter
ptimisation. Cliff measures the quality of the variable identification
irectly. For various reasons, this can be better than using prediction
ests if a groundtruth is available. On one hand, prediction involves ad-
itional tasks such as removing redundant features and training models.
n other hand, many times, the immediate goal of FI is to discover
iomarkers associated to a phenotype, which involves post-selection
iological analysis and cohort studies. This does not necessarily entail
prediction task as a target. In this sense, the Cliff measurement can

e easily adapted to tolerate a wide range of top positions of the rank
s relevant.

Although the computational load of SEQENS is costly in absolute
erms, and significantly higher than the rest of the methods, it is
erfectly affordable with currently available resources. In practice,
12
.g., in biomarker discovery, the process of finding relevant genes, SNP,
etabolites, or whatever kind of attribute, should be run only once (or
small number of times) before sending the results to a laboratory for

alidation.

. Conclusions

In this article, SEQENS, a method for relevant gene identification is
resented and compared with other state-of-the-art approaches.

In order to directly measure the ability of algorithms to identify rele-
ant variables, a groundtruth was generated as three fictitious diseases.
n practice, it is difficult to have a reliable groundtruth because the rel-
vant variables are precisely the object sought. The disease generation
ethodology presented is a first proposal, and further fictitious diseases

ould be generated according to more realistic biological knowledge.
None of the methods presented outperforms the others in all the

cenarios (diseases). Therefore, on average, SEQENS identifies signif-
cantly better the genes associated to the three proposed fictitious
iseases when a minimum number of individuals are available. In other
ords, it generalises better to different diseases (scenarios) than the
ther methods it is compared with. It also gives better stability. As
n practice it is difficult to know beforehand the kind of interaction
etween relevant variables, this is a strong argument towards the use
f SEQENS in gene identification.

It is essential to continue collecting data from patients in order
o build up large databases of several thousand observations. As the
esults of this paper suggest, the more observations, the better the gene
dentification results.

An implementation is made available to the community at https:
/www.kaggle.com/itiresearch/seqens. It allows the user to adjust the
ain parameters of the algorithm.

SEQENS computational cost is high but should not be seen as a
imitation. Indeed, the identification of genes is a task that should only
e carried out once and is of great use for medical research since it can
elp focus on genes that may have an influence on a particular disease.
t is also an important step towards the development of decision support
ools to bring artificial intelligence into clinical practice.
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