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Objectives – The primary objective is to create and evaluate a 5G haptic teleoperation
system that allows users to manipulate objects with a robotic arm by mimicking their hand
movements and recognizing grip gestures, including force applied and fingers involved.
Also, the project seeks to test the configured system on the n78/n40 frequency bands for
indoor/outdoor measurements using the 5G Private Standalone Network of iTEAM-UPV.

Methodology – The system is designed around two main nodes: (1) Local Control and
Orchestration Node: Situated alongside the robotic arm, this node manages communica-
tion with the robot controller and gripper, transmitting and receiving real-time data on
robot state and user commands. (2) Remote Teleoperation and Haptic Node: Operable
at a distance, this node captures user arm movements through a tracking device and
translates them into control signals. It also transmits to the haptic gloves to provide the
user with touch feedback based on gripper interactions.

The communication between these nodes using a 5G Private Standalone Network is a
critical aspect of the project. The effectiveness of combining two communication protocols
(TCP and UDP) on different links is evaluated across diverse environmental conditions
(indoor, outdoor) and varying distances through six distinct teleoperation positions within
UPV Campus. Additionally, three communication flow configurations are investigated to
determine the most efficient and reliable data exchange for optimal system performance.

Theoretical developments – The project leverages existing and new theoretical frame-
works for robotic control and human-computer interaction. Machine learning techniques,
specifically a custom Convolutional Neural Network, are employed to recognize various
grip gestures performed by the user, which allows for a more nuanced translation of user
intent into control commands for the robotic arm. Also, several mathematical structures
are configured, applied and tested in the overall system, including multiple trajectory
mappers for the robot arm, force and width mappers for the gripper, and delay models
as well as static, dynamic and adaptive models for specifying complex haptic sensations.

Prototype development and laboratory work – A functional prototype of the tele-
operation system has been developed utilizing readily available components. The system
integrates a UR5e robotic arm, an OnRobot RG2 gripper, bHaptics TactGloves DK1 for
haptic feedback, and a camera interface for remote control. Software libraries such as
ROS Noetic, mediapipe, and tensorflow have been employed to facilitate communication,
movement tracking, and grip gesture recognition.

The laboratory work focused on defining and configuring the entire study system,
together with measuring and analyzing the communication aspects of the system. This
involved testing the performance of different protocols under various environmental con-
ditions and flow configurations. Latency, jitter, throughput, RSRP/RSRQ and SINR as
well as CPU/RAM requirements were measured to assess the impact of communication
protocols and physical location on system responsiveness and data transmission efficiency.

Results – The project successfully demonstrates the feasibility of an immersive teleop-
eration system with grip recognition and haptic feedback. The communication analysis
yielded a comprehensive dataset on the system’s performance under various conditions.

(A) Impact of Environment: In indoor environments with minimal signal interference,
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the average end-to-end system latency using TCP was measured to be around 95 ms.
This latency increased to an average of 172 ms in outdoor environments with static (e.g.,
trees, buildings) and dynamic signal obstacles (e.g., vehicles, individuals). UDP, on the
other hand, exhibited slightly lower average latency (80 ms indoors and 148 ms outdoors)
but with higher jitter values, indicating less predictable data packet arrival times.

(B) Protocol Suitability: TCP proved more reliable for transmitting critical robot
control data due to its in-order delivery guarantees. However, for haptic feedback data,
UDP offered a viable alternative with acceptable latency, especially considering its lower
overhead and potential for faster transmission rates.

(C) Communication Flow Optimization: The analysis revealed that Option 3 (Parallel
flow) achieved the most efficient network usage. In this configuration, the tracking control
sends simultaneous packets to both robot and gripper controls, and also both the gripper
and tracking controls send independent packets to haptic control with necessary data.
This approach resulted in less overall network load compared to Option 1 (Sequential flow)
and offered better responsiveness albeit worse program efficiency than Option 2 (Cascaded
flow) by reducing the number of independent data packets requiring processing.

Furthermore, subjective user evaluations are also presented, assessing factors such as
perceived control latency, haptic feedback fidelity, and overall system engagement.

Future lines – (1) Environmental Adaptation: Develop algorithms that can adapta-
tively combine 5G transmission modes, communication protocols and flow configurations
based on real-time environmental conditions to optimize system performance.

(2) Semantic Optimization: Investigate the relationship between immersion models
and their impact on contextual QoS/QoE parameters, identifying optimal configurations.

(3) Real-Time Delay Compensation: Define adaptive compensation techniques that
can dynamically adjust to varying network conditions and provide a seamless experience.

Publications – No submitted publications until now, but several proposals are being
considered for future articles in collaboration with other European universities.

Abstract – This paper presents the development and communication analysis of an im-
mersive teleoperation system for robotic arm control with a haptic wearable glove. The
system utilizes a combination of movement tracking, grip recognition, and haptic feed-
back to provide users with an intuitive and tactile experience when manipulating objects
remotely. The effectiveness of different communication protocols and flow configurations
is evaluated across various teleoperation positions and environmental conditions using a
5G Private Standalone Network. The results demonstrate the feasibility of the proposed
approach and highlight the importance of communication strategies in optimizing system
performance and user experience. Future research directions are outlined to further en-
hance the capabilities and broaden the potential applications of this teleoperation system.
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LIST OF ACRONYMS –

• 5G NSA/SA: 5G Non-Standalone / Standalone

• AI: Artificial Intelligence (Emerging Concept)

• AR/VR: Augmented Reality / Virtual Reality

• BCI: Brain-Computer Interface (Emerging Concept)

• BR/XR: Blended Reality / Extended Reality

• CAPIF: Common Application Common Interface Framework

• CNN: Convolutional Neural Network (Deep Learning)

• EPON: Ethernet Passive Optical Network

• DT: Digital Twin (IMT-2020, IMT-2030)

• GUI: Graphic User Interface (Software)

• HMI: Human-Machine Interface (Emerging Concept)

• HSV: Hue Saturation Value (Color Theory)

• IC: Immersive Communications (IMT-2020, IMT-2030)

• IMM-Lab: Immersive Communications Laboratory

• iTEAM: Institute of Telecommunications and Multimedia Applications

• LCON: Local Control and Orchestration Node / Local Node

• LRA: Linear Resonant Actuator (Haptic Vibrator)

• LTE: Long-Term Evolution (4G, IMT-2010)

• MCG: Mobile Communications Group

• MIMO: Multiple Input Multiple Output

• MOS: Mean Opinion Score (Subjective Metric)

• NaC: Network as Code (IMT-2020)

• PX: Position X (Measurements)

• QoS/QoE: Quality of Service / Quality of Experience

• RSRP: Reference Signal Received Power
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• RSRQ: Reference Signal Received Quality

• RTHN: Remote Teleoperation and Haptic Node / Remote Node

• SDR: Software-Defined Radio (Emerging Concept)

• SMA: SubMiniature Antenna (Routing Device)

• SINR: Signal-to-Interference + Noise Ratio

• UDP: User Datagram Protocol (OSI 4th Layer)

• UE: User Equipment (Mobile Device)

• UML: Unified Modelling Language (Programming)

• UPV: Polytechnic University of Valencia (ES)

• UR: Universal Robots (European Company)

• TCP: Transmission Control Protocol (OSI 4th Layer)

• TI: Tactile Internet (Emerging Concept)

• XML-RPC: Extensible Markup Language Remote Procedure Call
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1 Introduction

The burgeoning field of human-robot interaction is constantly seeking novel methods for
intuitive and efficient control of robotic manipulators. Teleoperation systems [49, 50],
which allow remote control and skill transfer capabilities of robots, play a crucial role in
this domain. However, traditional teleoperation methods [26, 41] often lack the dexterity
and sensory feedback necessary for nuanced manipulation tasks.

1.1 Motivation and Applicability

This project is driven by the need for more immersive and user-friendly teleoperation
systems. By incorporating features like grip recognition and haptic feedback, the proposed
system aims to bridge the gap between human intent and robotic action.

Figure 1: Real-world applications that would benefit from haptic teleoperation systems.

This can be particularly beneficial in scenarios where:

• Remote manipulation in hazardous environments: Robots can be employed
for delicate tasks in hazardous or hard-to-reach areas, minimizing human risk [64].
For example, transport or inspection robots such as Automatic Guided Vehicles or
Quadrupeds equipped with the teleoperation system could be deployed in disas-
ter zones to search for survivors in collapsed buildings or perform other tasks in
dangerous environments [24, 67].

• Precision handling in industrial settings: The system can facilitate intricate
assembly or manipulation tasks in manufacturing processes, improving efficiency
and accuracy [25]. For example, the teleoperation system could be employed for
remote inspection and handling of delicate products on a production line, ensuring
quality control without compromising product integrity [5, 65].
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• Assistive applications: The teleoperation system can be tailored to assist indi-
viduals with limited mobility, empowering them to perform daily tasks with greater
autonomy [42]. For example, the teleoperation system could be used to control
robotic arms mounted on prosthetic limbs or wheelchairs, enabling users to perform
tasks like grasping objects or reaching for items placed out of reach [13, 14].

1.2 Historical Background

The concept of teleoperation has a rich history [6], with early examples dating back to
the 19th century. The development of advanced communication technologies and robotics
has significantly accelerated the field in recent decades.

• 1870s: Pioneering inventors like John Louis Lay, John Ericsson, and Victor von
Scheliha developed prototypes for remotely controlled torpedoes, laying the ground-
work for teleoperated devices.

• 1898: Nikola Tesla publicly demonstrated a radio-controlled boat, showcasing the
potential for wireless teleoperation. While not commercially successful at the time,
it foreshadowed the future of wireless robot control.

• 1940s-1950s: World War II spurred advancements in remote control technologies,
with the development of bomb disposal robots and early unmanned aerial vehicles.

• 1950s-1960s: Raymond Goertz’s invention of the first master-slave manipulator
with force feedback revolutionized teleoperation. This system allowed operators
to handle radioactive materials from a safe distance, demonstrating the practical
applications of teleoperation in hazardous environments.

• 1960s-1970s: The development of computer control systems and advancements
in robotics led to more sophisticated telemanipulation systems. The first lunar
rovers, like Lunokhod 1 in 1970, were controlled remotely from Earth, showcasing
the potential of teleoperation in space exploration.

• 1980s-1990s: Advancements in microprocessors, communication technologies, and
sensor development have fueled the miniaturization and increasing sophistication of
teleoperation systems.

• 2000s-2010s: Evolution in digital mobile communication networks enabled initial
long distance remote operations with basic limited grounded haptic feedback.

• 2020s: The widespread adoption of robots in various industries, coupled with re-
search and innovation in wearable haptics and machine learning, continues to push
the boundaries of teleoperation capabilities.

These historical developments [45, 44] highlight the ongoing evolution of teleoperation
technology. The proposed system, with its integration of grip recognition and haptic
feedback, builds upon this rich legacy and aims to further enhance the user experience
and expand the potential applications of teleoperated robotic manipulation.
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1.3 Scope and Objectives

This project focuses on the development and evaluation of an immersive teleoperation
system for a robotic arm. The system leverages three key aspects:

• Hand movement tracking: Capturing the user’s hand movements through spe-
cialized tracking devices, in particular 3D cameras.

• Movement-Action correlation: Mapping user’s movements and intent to robot
trajectories and actions, using diverse models for an augmented user experience.

• Grip recognition: Employing machine learning techniques (specifically, a custom
Convolutional Neural Network) to identify different grip configurations performed
by user identified by force applied (i.e. Hard, Soft) and fingers used (i.e. 2F to 5F).

• Haptic feedback: Providing the user with tactile sensations that simulate the
interaction between the gripper and manipulated objects, using haptic gloves.

The primary objective is to create an intuitive and user-friendly system that allows
for natural and precise remote manipulation of objects. This is achieved by:

• Developing a robust communication architecture: The system utilizes a two-
node architecture for efficient data transmission between the local control unit (co-
located with the robot) and the remote teleoperation unit.

• Evaluating the effectiveness of different communication protocols: The
project assesses the performance of Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) under various environmental conditions (indoor, out-
door, varying distances) to determine the optimal protocol for reliable and efficient
data exchange.

• Analyzing the impact of communication flow configurations: Three poten-
tial communication flow configurations are investigated to identify the most efficient
approach for data routing between the tracking, robot control, gripper control, and
haptic control programs.

In addition to the core objective of user-friendly manipulation, the project also has
secondary objectives focused on measurement and communication analysis:

• Measuring system latency and responsiveness: The project quantifies delays
in data transfer across different communication protocols, configurations, and envi-
ronmental conditions. This is crucial in assessing the system’s overall responsiveness
and suitability for real-time manipulation tasks.

• Evaluating network performance: Throughput (data transfer rate) and Signal-
to-Interference + Noise Ratio (SINR) are measured to assess the impact of commu-
nication protocols, configurations, and environmental factors on network efficiency.
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By achieving these objectives, the project aims to not only create an immersive tele-
operation system but also gain valuable insights into the influence of communication
strategies on system performance. This data is instrumental in refining the system for
real-world deployments, ensuring optimal user experience and reliable remote manipula-
tion capabilities.

1.4 Document Structure

This document is structured to provide a comprehensive understanding of the immersive
teleoperation system and its communication analysis. Firstly, Section 2 establishes the
context by introducing the project’s research environment and the core functionalities
of human-to-machine interaction . It then delves into the criteria for immersion quality,
emphasizing the role of haptic communication and the specific requirements of the targeted
use case. Secondly, Section 3 delves into the technical details of the system, outlining its
architecture, describing the utilized devices, and exploring its extended functionalities,
such as multiple grip recognition and customization options.

Then, Section 4 details the experimental setup, including the measurement positions,
communication protocols and configurations investigated, working models employed, and
the data mapping processes used for analysis. Subsequently, Section 5 presents a thor-
ough analysis of the system’s performance. It dissects the findings based on teleoper-
ation positions (latency, jitter, throughput, and SINR measurements), communication
protocol combinations (network conditions and program execution times), and the chosen
communication configuration (network performance and program resource requirements).
Additionally, it incorporates subjective evaluations to assess the user experience of the
immersive teleoperation system.

Finally, the Section 6 summarizes the project’s achievements, identifies potential areas
for improvement, and outlines promising avenues for future development in the field of
immersive teleoperation systems. Also refer to Annex A for an overview on some article
proposals rooted on the research described in this document.

Figure 2: Main sections and subsections outlined in this document.
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2 Immersive Teleoperation

This section establishes the foundation for the immersive teleoperation system by intro-
ducing the research considerations that facilitated its development and testing, such as
the network configuration that was used in the project as well as relevant aspects of
human-to-machine interactions and criteria for immersion quality.

2.1 Immersive Communications Laboratory

The IMM-Lab [53] serves as a pivotal platform for research and development efforts fo-
cused on evaluating and shaping 5G/6G networks for Immersive Communication (IC)
applications. The following subsections delve into the details of this architecture, ex-
ploring the specific functionalities of each site and how they contribute to the research
conducted at iTEAM.

2.1.1 5G-Advanced Private Network

The 5G-Advanced Private Network managed by iTEAM-UPV [16] serves as the critical
foundation for a recently created Testbed on Immersive Communications [52], providing
the essential infrastructure for researchers to evaluate the performance of next-generation
wireless networks in supporting immersive technologies.

Figure 3: General overview of the distribution of outdoor nodes and indoor femtocells
present on the Building 8G of the Vera Campus of UPV.

This network boasts a versatile architecture comprised of three distinct sites, each
serving a specific purpose and leveraging different functionalities. This three-site archi-
tecture offers UPV researchers a unique advantage. The outdoor nodes provide a realistic
testbed environment that reflects real-world network deployments [46], while the dedi-
cated indoor node with its higher throughput and focused coverage allows for in-depth
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exploration of advanced 5G functionalities [15] specifically tailored for immersive appli-
cations. This combination fosters a comprehensive research platform for evaluating the
capabilities of 5G networks in supporting the next generation of immersive experiences.

• Outdoor Nodes, n40 and n258 Bands:

The network utilizes two outdoor nodes strategically positioned to provide network
coverage across a designated area. These nodes operate in the Non-Standalone
(NSA) mode [12], anchoring to an existing LTE network (provided by Telefonica) in
the n258 band (estimated bandwidth: 800 MHz) [62]. This configuration allows the
network to leverage the established LTE infrastructure for core network functions
while utilizing the 5G air interface in the n40 band (owned by UPV, estimated
bandwidth: 20 MHz) [23] for enhanced capacity and data transfer speeds.

These outdoor nodes primarily serve as the backbone for broader network connec-
tivity, offering wider coverage for user equipment (UE) like smartphones or laptops
equipped with 5G capabilities [17]. They facilitate initial network access and data
exchange between UEs and the core network through existing LTE infrastructure.

• Indoor Node, n78 Band with Pico-Antennas:

Located within the IMM-Lab premises, this dedicated node operates in Standalone
(SA) mode [27], offering researchers a high degree of control and flexibility to exper-
iment with core network functionalities without relying on external infrastructure.
The node utilizes the n78 band (estimated bandwidth: 100 MHz) [1] specifically
allocated to UPV. Additionally, it is equipped with two strategically placed pico-
antennas (provided by Nokia) [18] to provide focused and optimized network cover-
age within the confines of the laboratory.

This indoor node serves as a dedicated platform for researchers to test and evaluate
the performance of 5G core network functionalities in a controlled environment.
The SA mode allows them to experiment with network slicing, edge computing, and
other advanced features crucial for supporting immersive applications. The pico-
antennas ensure high signal strength and minimal interference within the laboratory,
creating an ideal testing ground for various immersive technologies.

2.1.2 Testbed on Emerging Immersive Applications

The ICL’s Testbed adopts a multifaceted architecture designed to meticulously simulate
real-world scenarios relevant to 5G-powered immersive communications. This comprehen-
sive approach allows researchers to evaluate network performance, user experience, and
the effectiveness of various technologies in supporting seamless interaction within Blended
Reality (BR) [11] environments.

• Physical Infrastructure

The testbed leverages a high-performance core network, responsible for routing and
managing data traffic across the entire system. This core network connects to an
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Figure 4: Layered Architecture defined for the Immersive Communications Laboratory
Testbed located at the Building 8G of the Vera Campus of UPV.

access network built upon Software-Defined Radio (SDR) technology [8]. SDRs
offer unparalleled flexibility, acting as programmable radio transceivers that can
be dynamically configured to emulate diverse network conditions. This enables
researchers to simulate various network topologies, such as cellular networks, mesh
networks, or even satellite communication scenarios. Additionally, SDRs allow for
experimentation with different spectrum allocation strategies, optimizing network
resource utilization and exploring novel spectrum sharing techniques tailored for the
specific demands of IC applications.

• Network Management and System Control

The testbed incorporates advanced network slicing functionalities. Network slicing
[37] allows for the logical division of the physical network into multiple virtual net-
work segments. Each slice can be independently configured with dedicated resources
(bandwidth, processing power) to cater to the specific requirements of different ap-
plications. In the context of ICs, researchers can create dedicated network slices with
ultra-low latency and high bandwidth to ensure seamless user experience within VR
and AR environments. Furthermore, the testbed integrates edge computing capa-
bilities. Edge computing [35] distributes processing power and storage resources
closer to the network edge, where data is generated and consumed. This minimizes
latency by reducing the need for data to travel long distances to centralized servers
for processing. For latency-sensitive IC applications, real-time processing of data at
the network edge is crucial for maintaining a high degree of responsiveness within
BR environments.
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• Immersive Communication Interfaces

The testbed is equipped with a diverse range of cutting-edge IC interfaces. This
allows researchers to create a realistic and comprehensive simulation of user inter-
action within BR scenarios. Key interfaces utilized within the testbed are VR/AR
Headsets [70], Haptic Feedback Devices [55] and Motion Tracking Systems [51].

• Digital Twin Integration

The testbed integrates in this layer the concept of Digital Twins (DT) [19], i.e.
real-time virtual replicas of physical entities or processes. Within the context of
the IMM-Lab Testbed, researchers can create DTs of the physical testbed environ-
ment, including elements such as user locations such as connected courts for remote
driving tests, equipment configurations for robotics simulations, and network traffic
patterns. This digital representation allows researchers to manipulate various as-
pects of the simulated environment (e.g., increase user density, introduce network
congestion) to assess the performance of the network under diverse conditions rele-
vant to specific immersive scenarios. By leveraging DTs, researchers can efficiently
explore a broad range of possibilities without the need for constant reconfiguration
of the physical testbed environment.

2.2 Human-to-Machine Interactions

The efficacy of a teleoperation system hinges on the nature of its human-to-machine inter-
actions [69]. This section delves into the core functionalities that underpin the system’s
operation. By understanding the intricacies of remote manipulation and the potential
of learning from demonstration, we establish a foundation for evaluating the system’s
performance and identifying avenues for improvement.

2.2.1 Remote Manipulation

Remote manipulation technology has witnessed significant advancements in recent years,
driven by the convergence of robotics [60], artificial intelligence [56], and advanced com-
munication protocols [66].

Some of the most innovative trends pushing the boundaries of this field:

• Haptic Feedback and Sensory Richness: Integrating haptic feedback into tele-
operation systems is a growing trend, allowing operators to perceive grasping forces
and textures of manipulated objects. Technologies like haptic gloves with microflu-
idic channels provide increasingly realistic tactile sensations, enhancing dexterity
and control [10].

• Brain-Computer Interfaces (BCIs): Emerging research explores the potential
of BCIs for remote manipulation. By decoding brain signals, BCIs could enable
more intuitive control, bypassing traditional joystick or motion tracking interfaces.
However, challenges remain in achieving robust and reliable decoding of complex
manipulation tasks [43].
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Figure 5: General diagram of Immersive Teleoperation applications. The current work
focuses on the management of complex tactile sensations for the Remote Operator.

• Vision-Based Control and Shared Autonomy: Vision-based systems that
leverage cameras mounted on the robot arm or manipulator are gaining traction.
These systems enable real-time visual feedback and object recognition, allowing op-
erators to manipulate objects based on visual cues. Additionally, shared autonomy
approaches combine human decision-making with the robot’s capabilities, enabling
collaborative manipulation tasks [38].

• Dexterous Robotic Hands and Grippers: The development of more dexterous
robotic hands with multiple articulated fingers is crucial for advanced manipulation
tasks. These hands, inspired by the human hand’s capabilities, are being equipped
with advanced sensors and microfluidic channels to enable grasping and manipulat-
ing objects of varying shapes and textures [31].

• Cloud Robotics and Tactile Internet: Cloud robotics leverages cloud comput-
ing for processing and control tasks, enabling remote manipulation with minimal
on-site computational resources. The emerging concept of Tactile Internet, charac-
terized by ultra-low latency and high bandwidth communication, holds promise for
revolutionizing remote manipulation by ensuring seamless and reliable data transfer
[29].

By integrating these advancements, teleoperation systems are poised to become more
intuitive, dexterous, and adaptable, enabling a wider range of applications in various
industries, from minimally invasive surgery to hazardous environment manipulation.

2.2.2 Requirements for Teleoperated Applications

The successful implementation of a teleoperation system necessitates a deep understanding
of the specific demands imposed by diverse application domains.
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Teleoperation systems designed for hazardous environments must prioritize safety,
robustness, and reliability. Some key requirements [32, 20] encompass:

• Latency and jitter tolerance: Stringent limitations on communication delays
and variations to ensure timely operator feedback and prevent accidents. Typical
latency thresholds range from 100ms to 200ms, with jitter values below 10ms.

• Environmental adaptability: Resilience to harsh environmental conditions such
as extreme temperatures, electromagnetic interference, and physical shocks to main-
tain system functionality.

• Autonomous capabilities: Integration of autonomous behaviors for tasks like
obstacle avoidance and path planning to reduce operator workload and enhance
safety.

• Telepresence and situation awareness: Provision of rich sensory feedback, in-
cluding high-resolution visual and auditory information, to enhance the operator’s
perception of the remote environment.

Teleoperation systems for industrial applications demand high levels of accuracy, re-
peatability, and efficiency. Some critical requirements [2, 34] include:

• Force feedback: Accurate transmission of forces exerted by the robot’s end-effector
to provide the operator with tactile feedback for precise manipulation. Force feed-
back bandwidths typically range from 20 Hz to 1 kHz with force resolution of 0.1 N
or better.

• Position and orientation accuracy: Precise control over the robot’s position and
orientation to ensure accurate task execution. Positional accuracy within the range
of 0.1-1 mm and orientation accuracy within 0.1-1 degrees are common targets.

• Human-robot collaboration: Seamless integration with other automation sys-
tems and human workers to optimize workflow and productivity.

• Human-in-the-loop optimization: Adaptive systems that can learn from human
operators to improve performance over time.

Teleoperation systems designed for assistive purposes must prioritize user-friendliness,
intuitiveness, and adaptability. Some task-specific requirements [7, 59] consist of:

• Intuitive user interface: Simple and easy-to-use control interfaces tailored to the
user’s needs and abilities.

• Adaptability: Customizable systems that can be adapted to individual user pref-
erences and physical limitations.

• Safety and reliability: Robust systems with fail-safe mechanisms to prevent ac-
cidents and injuries.

• Ergonomic design: Consideration of user comfort and fatigue through ergonomic
design of control interfaces and physical devices.
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2.3 Criteria for Immersion Quality

Achieving a truly immersive teleoperation experience necessitates a comprehensive eval-
uation of the factors contributing to the user’s sense of presence and engagement [3].
This section examines the critical role of haptic communication in creating a realistic
and immersive environment. By defining the specific requirements for different use cases,
we establish a framework for assessing the system’s ability to deliver a compelling and
effective user experience.

Figure 6: Conceptual Framework that outlines the primary dimensions contributing to
Immersion Quality and Quality of Experience, such as feelings of Presence, Engage-
ment, Control, Sensory Integration and Cognitive Load.

2.3.1 Haptic Communications

Haptic communication [4, 36], a rapidly developing field, focuses on transmitting and
recreating touch sensations through technological interfaces. This technology plays a
crucial role in achieving immersive teleoperation by providing users with a sense of touch
that complements visual and auditory feedback.

Some of the explored trends pushing the boundaries of haptic communication are:

• Rich Tactile Information Transmission: Beyond simple vibration, advanced
haptic devices are incorporating multiple actuation mechanisms to deliver a wider
range of tactile sensations. Techniques like microfluidics, shape memory alloys, and
ultrasonic actuation enable the creation of pressure variations, texture simulations,
and thermal cues, offering a more nuanced and realistic touch experience [30].

• Biomimetic Haptic Interfaces: Drawing inspiration from the human somatosen-
sory system, researchers are developing biomimetic interfaces that mimic the intri-
cate structure and functionality of human skin. These interfaces employ arrays of
microfluidic channels or pressure sensors to capture and replicate the subtle textures
and pressure variations encountered during touch interactions [68].
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• Exploiting Multimodal Feedback: Integrating haptic feedback with other sen-
sory modalities, such as visual and auditory cues, is a growing trend. By synchro-
nizing haptic feedback with visual representations of grasped objects or the sounds
produced during manipulation, researchers aim to create a more cohesive and im-
mersive sensory experience [33].

• Cloud Haptics and Network Optimization: The burgeoning concept of cloud
haptics leverages cloud computing resources for real-time processing and transmis-
sion of haptic data. This approach can overcome limitations of on-site computational
power and enable high-fidelity haptic experiences even in resource-constrained en-
vironments. However, ensuring ultra-low latency and reliable data transfer through
optimized communication protocols remains a challenge [71].

These advancements in haptic communication are fostering the development of more
immersive and realistic teleoperation systems. By offering a richer and more nuanced
touch experience, haptic technologies are poised to revolutionize various fields, from mini-
mally invasive surgery and remote object manipulation to virtual reality applications and
rehabilitation training.

2.3.2 Requirements for Immersive Applications

The successful integration of haptic feedback into a teleoperation system [40] hinges on
a deep understanding of the specific use case requirements. By tailoring haptic cues to
the unique demands of each application, it is possible to optimize the user experience and
enhance task performance.

In hazardous environments, such as nuclear power plants or disaster zones, haptic
feedback plays a critical role in enabling safe and effective remote manipulation. Some
key requirements [63, 61] include:

• Force feedback fidelity: Accurate transmission of forces encountered by the
robotic end-effector to the operator’s hand is crucial for maintaining control and
preventing damage to both the robot and the environment. Force feedback should
be capable of reproducing forces within a range of 0-50N with a frequency response
of up to 100 Hz.

• Tactile texture rendering: Simulating the texture of objects in the environment,
such as rough surfaces or slippery materials, can enhance the operator’s perception
and manipulation capabilities. Haptic devices should be capable of rendering tex-
tures with spatial resolutions of at least 100 pixels per inch and a temporal resolution
of 100 Hz.

• Collision detection and impact feedback: Providing haptic cues to indicate
collisions with objects in the environment is essential for preventing damage to the
robot and ensuring task completion. Haptic devices should be capable of generating
high-frequency (1-2 kHz) impulsive forces to simulate impact sensations.
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In industrial settings, haptic feedback can enhance the precision and efficiency of
remote manipulation tasks. Some key requirements [28, 39] include:

• Fine force and torque feedback: Accurate transmission of forces and torques
applied to objects is crucial for tasks requiring delicate manipulation, such as as-
sembly or repair operations. Haptic devices should be capable of reproducing forces
and torques with a resolution of 0.1 N and 0.01 Nm, respectively.

• Kinesthetic feedback: Providing haptic cues that reflect the object’s stiffness
and compliance can improve the operator’s perception of the object’s properties
and facilitate precise manipulation. Haptic devices should be capable of rendering
stiffness variations within a range of 1-100 N/m.

• Task-specific haptic cues: Tailoring haptic feedback to specific industrial tasks,
such as tool usage or part insertion, can enhance task performance and reduce
operator fatigue. Haptic devices should be capable of generating task-specific haptic
patterns, such as vibration patterns for tool activation or force feedback profiles.

3 Configured System

This section delves into the technical architecture and components constituting the pro-
posed teleoperation system. It provides a detailed overview of the system’s structure,
encompassing both hardware and software elements. Furthermore, it explores the ex-
tended functionalities that enhance the system’s capabilities beyond basic teleoperation,
such as advanced grip recognition and user customization options. An overarching user
manual for the installation and utilization of this configured system is detailed in Annex B.

Figure 7: HW/SW components of the proposed immersive teleoperation solution.
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3.1 Solution Architecture

The proposed teleoperation system adheres to a distributed architecture comprising two
primary nodes: the Local Control and Orchestration Node (LCON) and the Remote
Teleoperation and Haptic Node (RTHN). These nodes are interconnected via a robust
communication network, facilitating the exchange of essential data for seamless operation.

LCON, situated in close proximity to the robotic arm, serves as the central hub for
coordinating robotic actions and environmental interactions. It encapsulates the robotic
arm controller, the gripper, and the necessary communication interfaces. This node is
responsible for:

• Low-level robot control: Executing precise motion commands to the robotic
arm and gripper through Universal Robots’ Polyscope, multithreaded URScript
programs and ROS Noetic packages, based on received instructions.

• Sensor data acquisition: Collecting sensory information from the robot’s sensors,
such as joint positions, end-effector forces, and environmental data using ROS topics
provided by Universal Robots and a XML-RPC server for gripper interaction.

• Communication management: Handling the exchange of data between the local
(robot control and gripper control programs) and remote nodes, ensuring reliable
and timely information transfer.

• Local processing: Performing real-time computations for tasks such as motion
planning, obstacle avoidance, and force feedback generation using the rospy library,
goal-based cartesian trajectory controllers and a XML-RPC controller.

RTHN, located at the remote user’s site, is dedicated to capturing user inputs, pro-
cessing sensory data, and rendering the haptic feedback of the immersive teleoperation.
The key components of this node are:

• Human-machine interface: Facilitating user interaction through devices such as
a 3D camera as motion capture sensors, bHaptics applications with haptic gloves,
and a basic user interface for system status information on visualization displays.

• Sensory data processing: Processing data from the human-machine interface
using mediapipe library for hand detection and gesture models in order to recognize
user’s intentions, and transforming it into control commands for the robots.

• Communication management: Coordinating data exchange (of tracking control
and haptic control programs) with the local control node, seeking for low-latency
and reliable communications.

• Haptic feedback generation: Creating realistic tactile sensations using tact-
python library based on information received from the remote environment which
is translated to actuator selection, vibration intensity and stimuli duration.
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The communication network between the two nodes is designed to minimize latency
and packet loss, crucial for maintaining a seamless teleoperation experience. Redundancy
mechanisms and error correction protocols are implemented to enhance system reliabil-
ity and fault tolerance. By adopting this distributed architecture, the system seeks to
partition functionalities, improve scalability, and enhance system robustness.

3.2 Description of Devices

The system requires a couple of physical devices on LCON and RTHN in order to function
adequately. This equipment need not necessarily be the exact same model used in this
system, but should work with the same HMIs (e.g. controller topics, messages structure,
middle-ware compatibility) as the ones specified below. For a software-specific review of
the controllers operation and tracking algorithms, please refer to Annex C.

3.2.1 Local Robot Equipment

LCON needs a robot arm with similar controllers as Universal Robots UR5e and a compat-
ible gripper that can be manipulated through PolyScope’s Digital I/O such as OnRobot
RG2 with 6-axis force/torque sensor. Using a different e-Series robot arm would require
changing the spatial domain limits accordingly, as well as the established safety planes.

Robot Arm [58] Robot Gripper [54]
UR5e + Teach Pendant OnRobot RG2 + Stand

Running Device Debian OS 8.9 in Atom-E3845
2GB RAM, 4 GB SSD

Max. Payload / Reach 5 kg / 850 mm 2 kg / 110 mm
(max. stroke)

Repeatability ±0.03 mm ±0.02 mm
Degrees of Freedom 6 (base, shoulder, elbow, 2 (fingers)

3 wrists: yaw, pitch, roll)
Power Supply 100-240 V AC 24 V DC
Communication Ethernet, Modbus TCP, RTDE Ethernet, Modbus TCP,

Fieldbus, EtherNet/IP RTDE, Digital I/O
Weight / Precision 18.4 kg / 5 mm 0.4 kg / 1 mm
Mounting Interface Standard UR flange HEX-E QC or other UR-

compatible mounting plate
Control Interface Teach pendant with UR-interface and

PolyScope 5.16.0 Digital Outputs
Safety Features Collision detection, force Force sensing, 3-40 N

sensing, safety-rated operation adjustable grip force
Environmental Rating IP54 IP40

(waterproof, dust protection) (basic, not waterproof)

Tabla 1: Technical specifications of LCON equipment: Robot Arm & Robot Gripper.
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3.2.2 Remote Equipment

RTHN has been tested with a 720p 30 fps camera for motion tracking which needs to
be integrated or connected to the computer node, and vibrotactile gloves that have to
interface with bHaptics Player, like bHaptics TactGloves DK1. The camera should have
at least the required minimum characteristics for a proper hand detection, including
management for adequate brightness and contrast proportions.

Tracking Device [57] Haptic Gloves [9]
RealSense D415 Camera bHaptics TactGlove DK1

Resolution 1920x1080 (RGB), Haptic 6 LRA motors per glove
≤ 1280x720 (Depth) Actuators (Linear Resonant Actuator)

Frame Rate 30 fps (RGB), Connectivity Bluetooth Low Energy (BLE)
≤ 90 fps (Depth)

Limits (X-Y)[0.000, 1.000], Vibrotactile Range 1-10 m/s2

(x,y,z) Z[-0.050, -0.020] Intensity Precision 8-12 bits
Depth ≤2% at 2 metres Battery Lithium-ion rechargeable
Accuracy Bat. Life approx. 3.5 hours
Interface USB 3.0 Type-C Charging 2hrs with 5V 0.5A (max)

Charge Time approx. 2 hours
Dimensions 99mm x 20mm x 23mm Compatibility VR/AR headsets with

camera-based hand tracking
Weight Approximately 30g Size / Weight L, XL / Approx 112-115g

Tabla 2: Technical specifications of RTHN equipment: Tracking Device & Haptic Gloves.

3.2.3 Computers Specification

The local and remote equipment communicates with computing processors whose charac-
teristics are specified below in the interest of testings for processing requirements. LCON
computer uses Ubuntu 20.04 as it needs to execute ROS, while RTHN computer utilizes
Windows 10 as it requires to run bHaptics Player.

LCON Computer RTHN Computer
MSI Modern-14 [48] MSI Cyborg-15 [47]

Model C12M-077XES Model A12UCX-657XES

CPU / RAM Available Intel Core i7-1255U / 16GB Intel Core i7-12650H / 32GB
(1.70 GHz) (2.30 GHz)

Storage / Description 1TB SSD / 14” LLVM 12.0 512GB SSD / 15.6” RTX 2050
(256 bits) (4GB GDDR6 VRAM)

Operative System Ubuntu 20.04.6 LTS, 64 bits Windows 10 Pro 22H2, 64 bits

Tabla 3: Technical specifications of the Computers used in LCON and RTHN.
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Additionally, the communication modems used for the testings are a couple of Fivecomm
5G-Broad for SA/NSA with Release-16 and network slicing support [22]. These modems
are prototypes built on top of Raspberry Pi 4, and are enabled to function with an in-
serted SIM card on low and mid frequency bands such as n40 and n78 for outdoor and
indoor procedures respectively. Outside the modem box, it contains connectors for 6 SMA
external antennas for MIMO as well as Ethernet/USB connectors for external devices.

3.3 Extended Functionalities

In order to tailor the system for more task-specific functionalities, several grip formats
and customization options are proposed and implemented. This allows for an more nu-
anced and smooth experience as well as a more comfortable and easy-to-use testbed for
immersive teleoperations. These functionalities have been implemented using the object-
oriented code structure with procedural controls specified in Annex D.

3.3.1 Multiple Grip Recognition

Seeking a better experience quality for the user, the system needs to be able to identify the
user intentions, i.e. moving the robot, opening/closing the gripper. With that objective,
the CNN for gesture recognition, comprised of a feed-forward X-Model structure with 2
hidden layers, is trained to recognize over 90 different grip formats for both strengths
(open/soft/medium/hard/close grip) and fingers used (2F/3F/4F/5F).

Figure 8: Examples of hand and gestures detection recognized as grip intentions.
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The training is performed by loading many tracking examples of different hand po-
sitions, and thus adding new input neurons to the neural network. Then, the testing is
done by comparing relative positions of the hand landmarks and comparing it to each
possibility of the training set. This entails the definition and optimization of 4 fingers
positions and 3 grip strengths for each of the 7 hand position as showed in the picture
above, as the CNN is orientation-dependant albeit not size nor location dependent.

Similarly, the hand detection algorithm provided by Google through mediapipe library
is color-dependant, which requires to modify in real-time the HSV properties of the input
image when using the haptic gloves with colors blue, yellow or black. Also, note that the
detection algorithm works properly when the fingers are separately distinguished and not
overlapped or covered by any obstacle.

3.3.2 Customization Options

Several customized functionalities have been added to both LCON programs (robot ctrl
and gripper ctrl) as well as to both RTHN programs (tracking ctrl and haptic ctrl), which
can be defined at the nodes initialization step as system arguments through the command
line. These options cannot be modified at runtime due to performance and security
reasons, given that they change the expected system behaviour and some of them (e.g.
communication-related ones) rely on a mutual agreement between the programs.

Figure 9: Different landmarks tracking for customized mean point localization.

RTHN’s tracking program uses a hand model characterized by 21 landmarks as shown
in the above figure, which enables for different configurations to localize a mean point
cartesian position to send to LCON node. These positions influence on the precision and
quality of experience for gripping teleoperation procedures. Other customization options
include the minimum detection and minimum tracking confidence of the gesture model,
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as well as the selected gloves color, the initial position for starting robot functions, and
the switching of the orientation followup procedure (horizontal/vertical).

RTHN’s haptic program processes grip output characteristics and sends it to the haptic
glove that is being used (left or right), and allows for customization on the intensity
range and value shift, maximum fingers allowed, initial and final delay on the vibrations
activation, and whether to use several discrete sensations (quantized at 10 ms each) or a
unique continuous sensation (of sampled time). In addition to this, the intensity model
based on grip width difference and initial force can be selected, which proved to have a
great effect on molding the quality experience to each user’s sensitiveness.

Figure 10: Spatial domains for volumetric Cartesian coordinates in Camera vs Robot.

LCON’s robot arm control program allows for the goal-based cartesian trajectory con-
troller specification, as well as the initial robot position and camera-to-robot coordinates
mappings in both values and directions, as seen in the above figure. Other customiza-
tion options include the movement precision, velocity and acceleration indication, which
changes the trajectory models used by the robot controllers. Apart from this, the robot
arm can be limited for moving in one single direction (X, Y or Z), or in a plane in two di-
mensions (XY, YZ or XZ), together with specifying whether the movement should mirror
or mimic the user tracking result.

LCON’s gripper control program provides with options such as maximum width and
maximum force indication, their tolerance and gripping models according to tracking
strength and sample duration respectively, as explained in Section 4. The program can
also limit the maximum amount of considered grip levels, thus optionally filtering tighter
closes of the grip in order to avoid increased pressure on the object being manipulated.

Finally, the configured system also allows for a completely local mode, with all tracking
management and robot control capabilities enabled while using one single node. This was
necessary for cases when both nodes were not available to use simultaneously. However,
as the selected haptic drivers are not Unix-compatible, this standalone local mode cannot
carry on with tactile functionalities.

For a complete list and description of the customization options, please refer to the
HapticTeleop’s Github Repository [21], managed by XR iTEAM UPV and iTEAM MCG.
Also, refer to Annex E for more detailed information on helper functions used for defining
robot trajectories, gripper width and haptic intensity, among others system variables.
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4 Methodology

In addition to the system configuration, this project seeks to evaluate and optimize the
immersive teleoperation experience by studying different communication procedures and
contexts in order further characterize the usage conditions of the prospective service. In
this regard, testing aspects such as diverse measurement positions with similar condi-
tions as where the remote manipulation might take place, together with several sets of
communications protocols and configurations are implemented and analyzed below.

4.1 Measurement Positions

To systematically assess the teleoperation system’s performance under a range of con-
trolled conditions, a comprehensive definition of physical measurement positions was im-
plemented. This involved establishing a series of diverse testing environments encom-
passing both indoor and outdoor locations. These positions were selected to introduce
variations in factors known to influence communication effectiveness, such as signal atten-
uation, line-of-sight availability, and distance. By meticulously varying these parameters,
we aimed to collect data that characterizes the system’s robustness and fidelity across a
spectrum of potential real-world usage scenarios. The following sections detail the specific
indoor and outdoor positions chosen for this evaluation.

4.1.1 Selected Indoor Positions

To comprehensively evaluate the teleoperation system’s performance under diverse oper-
ational scenarios, a series of controlled indoor testing environments were established.

Figure 11: Locations of indoor measurement positions within the UPV Campus, along
with pictures of the remote stations where the immersive teleoperation is performed.
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These positions aimed to replicate potential real-world usage conditions using the n78
frequency band while systematically varying factors such as:

• Line-of-Sight: Position 1 (P1), located within the robot room with no obstacles,
represents a best-case scenario with a clear line of sight between operator and robot.

• Signal Attenuation: Position 2 (P2) introduces controlled signal attenuation by
placing the operator station within the same building but in proximity to the robot
room. Walls and other building structures weaken the communication signal, allow-
ing assessment of system robustness under such conditions.

• Vertical Distance: Position 3 (P3) investigates the impact of vertical separation by
positioning the operator station three floors below the robot room within the same
building. This introduces additional signal attenuation and potential multipath
propagation effects.

4.1.2 Selected Outdoor Positions

The evaluation extends beyond indoor environments to encompass a set of controlled
outdoor testing locations.

Figure 12: Locations of outdoor measurement positions within the UPV Campus, along
with pictures of the remote stations where the immersive teleoperation is performed.

These positions were chosen to represent potential real-world scenarios with varying
degrees of signal propagation challenges using the n40 frequency band:

• Line-of-Sight with Minimal Obstructions: Position 4 (P4) locates the operator
station on the terrace of the same floor as the robot room. This scenario offers a
relatively clear line of sight with minimal obstructions, allowing assessment of the
system’s performance in an open-air environment.
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• Long-Range Teleoperation: Position 5 (P5) delves into a more challenging sce-
nario by placing the operator station in a student dormitory room located approx-
imately 600 meters away from the robot in a different building on campus. This
extended distance test the system’s capabilities under significant signal attenuation
and potential interference from other wireless networks.

• Moderate Distance with Multiple Obstructions: Position 6 (P6) situates the
operator station outdoors at the sports velodrome, approximately 300 meters away
from the robot. This position introduces a moderate distance with the potential for
signal attenuation due to intervening foliage or other static and dynamic structures.

4.2 Communication Protocols

Following an initial investigation into communication protocols across various measure-
ment positions, this section delves deeper into optimizing these protocols for real-time
teleoperation performance. These protocols are treated as {α, β, γ} combinations where:

• α: Protocol between RTHN’s Tracking Control and LCON’s Robot Control.

• β: Protocol between RTHN’s Tracking Control and LCON’s Gripper Control.

• γ: Protocol between LCON’s Gripper Control and RTHN’s Haptic Control.

The filtered combinations of these protocols, shown in Figure 13, focus on selecting the
most effective protocols for each control channel based on factors like real-time require-
ments, data integrity needs, and the specific control task. This also acknowledges physical
limitations and network infrastructure realities that influence communication feasibility.

4.2.1 Filtered Combinations

Building upon the evaluation of various communication protocol combinations over diverse
network infrastructures, the subsequent stage involves meticulously filtering out unsuit-
able configurations. This selection process considers factors such as real-time performance
requirements, data integrity demands, and the specific control task at hand. For instance,
preliminary testing reveal that UDP is an unacceptable choice for gripper control due to
its inherent lack of error correction mechanisms. In such scenarios, the high probability
of undetected data loss could lead to a multitude of false-positive gripping commands
in contrast to more reliable TCP commands, compromising the safety and precision of
manipulation tasks. Conversely, UDP demonstrates suitability for haptic control interac-
tions where the data stream is inherently transient and focused on conveying real-time
sensations. In these situations, the potential for occasional data loss is less detrimental as
overall haptic experience prioritizes the immediacy of feedback over absolute data fidelity.

This filtering process, guided by the specific demands of each control task, ensures that
only the most effective communication protocols are retained for further optimization.
By carefully balancing real-time responsiveness with data reliability, we aim to establish
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Figure 13: Protocols considered for the interactions between control programs of the
study system, emphasizing the filtered combinations in darker colours.

the optimal protocol configuration for each control channel, ultimately contributing to a
seamless and immersive teleoperation experience.

Consequently, the selected filtered protocols combinations resulted in:

• Comb. 1 (C1): {TCP, TCP, TCP}

• Comb. 2 (C2): {UDP, TCP, TCP}

• Comb. 3 (C3): {TCP, TCP, UDP}

• Comb. 4 (C4): {UDP, TCP, UDP}

4.2.2 Additional Considerations

While the evaluation primarily focuses on the communication protocols between distinct
control programs, it’s crucial to acknowledge limitations imposed by the physical infras-
tructure. Notably, wired EPON connections are only feasible when both communicating
nodes reside within the same physical space due to the inherent limitations of cable length.
Conversely, intra-node communication, where data exchange occurs entirely within a sin-
gle physical device, is independent of the communication medium as it doesn’t traverse
a network. Recognizing these physical constraints alongside the performance characteris-
tics of different communication protocols pave the way for a comprehensive understanding
of the system’s capabilities and limitations, informing the development of optimization
strategies tailored to specific use cases.

4.3 Communication Configurations

This section explores various communication configurations that govern the data flow be-
tween the control entities of the study system. These configurations determine the order
and dependencies within the communication sequence, ultimately influencing factors like
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latency, processing overhead, and network traffic. Three primary configurations are inves-
tigated: sequential flow, cascaded flow, and parallel flow. Each offers distinct advantages
and drawbacks, and the optimal choice hinges on the specific performance requirements
and resource constraints of the immersive teleoperation system.

4.3.1 Sequence Flow

This configuration embodies a linear data flow, where the tracking control transmits
separate packets directly to both robot arm and gripper controls. Subsequently, the
gripper control, upon receiving relevant information, transmits an independent packet to
the haptic control unit. This approach offers a relatively straightforward implementation
and potentially lower latency for tracking control data. However, it introduces increased
network traffic due to the multiple packets and potential delays for haptic control, which
relies on feedback from the gripper.

Figure 14: Interaction between control entities for the Sequence Flow Configuration.

4.3.2 Cascaded Flow

In contrast to the linear approach of sequential flow, cascaded flow establishes a chain
of communication dependencies. Here, the tracking control transmits a single packet
containing control information to the robot arm control unit. The robot control unit
then processes this information and relays it, along with additional processing results, to
the gripper control unit. Finally, the gripper control unit transmits a separate packet to
the haptic control unit, conveying relevant feedback data. This configuration offers the
potential benefit of centralized processing and decision-making within the robot control
unit. However, it introduces additional processing steps that lead to increased latency
for all control entities. Cascaded flow also introduces a single point of failure if the robot
control unit malfunctions, and its implementation is fairly more complex compared to
sequential flow.
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Figure 15: Interaction between control entities for the Cascaded Flow Configuration.

4.3.3 Parallel Flow

Here, the tracking control transmits simultaneous packets to both the robot arm and
gripper controls, each containing the necessary information for their respective tasks.
Additionally, both the gripper and tracking controls can independently transmit packets
to the haptic control unit, including data streams specific to their functions. This approach
prioritizes minimizing latency for both tracking and gripper control data. Furthermore,
the haptic control unit can receive a richer set of information directly from both sources,
leading to a more comprehensive and nuanced haptic feedback experience. However,
parallel flow comes at the cost of significantly increased network traffic due to the high
number of data packets and potential redundancy within the information streams.

Figure 16: Interaction between control entities for the Parallel Flow Configuration.
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Additionally, the haptic control unit faces a greater processing burden as it needs to
handle and reconcile multiple data streams simultaneously. Implementing parallel flow
also requires careful coordination to avoid conflicting information being received by the
haptic control unit, which could negatively impact the overall teleoperation experience.

4.4 Haptic Teleoperation Experience

In addition to the optimization of QoS performance parameters, a reserved survey has
been carried out in multiple stages of the project in order to measure immersive QoE
aspects. These tests, done by diverse 10 male individuals of 18 to 45 years old, requested
the user to successfully grip a small object located within range of the robotic arm, and
then rise and lower the arm position with the gripped object.

Figure 17: Examples of the Haptic Teleoperation System being tested for User Experi-
ence Quality in the Immersive Communications Laboratory of iTEAM-UPV.

The brief survey following the experience focused on quantifying subjective perceptions
on MOS scales of 0 to 5 collected by a brief questionnaire completed by the user:

• To what extent did you feel physically immersed in the remote environment?

• How engaged were you in the task at hand during the teleoperation experience?

• How much control did you feel you had over the remote robot during the task?

• How well did the visual and haptic feedback combine to create a cohesive experience?

• How mentally demanding was the task during the teleoperation experience?

Their main objective was to obtain user feedback on immersion quality for feelings
of presence, engagement, control, sensory integration and cognitive load across several
tries while key system characteristics are being changed. These characteristics involved
robot trajectory and grip width mappers as well as haptic intensity models described
in Annex E. These experiments also allowed to get outside hands-on commentaries and
observations for further improving the system configuration in later stages.
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5 Results and Observations

This section delves into the QoS/QoE measurement results from the haptic telemanipula-
tion in various teleoperation positions and using different communication protocols com-
binations and configuration formats. These measurements have been performed through
AT, ping and iperf commands, as well as with in-code registries collected as logs. Clock
synchronization between LCON and RTHN is carefully gauged prior to the measurements.

5.1 Analysis by Teleoperation Position

The analysis of system performance across the six designated measurement positions
reveals distinct trends in end-to-end latency (from tracking control enabler to haptic con-
trol receiver) and signal quality, with significant implications for immersive teleoperation.
While indoor environments generally exhibited lower latency and higher signal strength,
outdoor conditions introduced challenges due to increased signal attenuation and interfer-
ence. These findings underscore the importance of robust communication infrastructure
in ensuring a seamless and responsive teleoperation experience.

5.1.1 Latency and Measurements Correlation

A comprehensive analysis of latency across the six measurement positions reveals a strong
correlation with both distance and environmental conditions. Indoor positions, particu-
larly those within the same building, exhibited average end-to-end latencies ranging from
85 to 125 milliseconds, with minimal fluctuations over time. In contrast, outdoor posi-
tions, especially the sports velodrome at 300 meters, demonstrated significantly higher
latencies, averaging between 145 and 195 milliseconds, with noticeable spikes during pe-
riods of increased environmental interference.

The correlation between latency and signal strength seems evident, with a general
trend towards increased latency as signal strength deteriorated. However, the relationship
is not strictly linear, as other factors such as multipath propagation, interference, and
network congestion influenced the overall latency experience. For instance, while P2
(indoor, nearby robot room) offered generally strong signal levels, the presence of walls
and structural elements introduced signal attenuation, resulting in slight latency increases
compared to P1 (indoor, within robot room). In contrast, P6 (outdoor, sports velodrome)
exhibited both periods of relatively low latency and sudden spikes, likely attributed to
fluctuations in signal strength caused by user movement and environmental dynamics.

These aspects are observed in the charts of Figure 18, where Parallel Flow and C4
protocol combination for inter-Node communication has been used. Indeed, the left chart
reveals patterns such as consistent low latency in indoor environments and intermittent
spikes in outdoor settings, particularly during periods of high user activity or adverse
weather conditions. In the case of the right chart, a general trend of increasing latency
with decreasing signal strength is detected, although other factors like in-band interfer-
ence from unrelated applications and multipath propagation from trees and contiguous
buildings have influenced the results.
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Figure 18: Position-related measurement results for similar gripping operation proce-
dures: End-to-End Latency over Time and Latency over Signal Strength.

5.1.2 Signal Levels and Response Observations

Signal strength measurements, quantified by metrics such as RSRP, RSRQ and SINR,
exhibited significant variations across the six measurement positions. Indoor environments
generally recorded higher RSRP and RSRQ values, indicating stronger signal reception.
Conversely, outdoor environments, especially at the sports velodrome, experienced lower
signal levels due to increased path loss and interference.

Figure 19: Position-related measurement results: RSRP, RSRQ and SINR over Time.

These considerations can be appreciated in the charts of Figure 19 where RSRP for
signal fluctuations, RSRQ for signal quality and SINR for signal interference are analyzed.
The left chart shows patterns such as consistent signal strength in indoor environments
and intermittent drops in outdoor settings. Then, the middle chart incorporates additional
factors like modulation and coding scheme, offering a more comprehensive view of signal
conditions. Finally, the right chart indicate higher SINR values for positions (e.g. P2, P3)
with better signal quality, while lower values (e.g. P5, P6) suggest increased interference.
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5.2 Analysis by Protocol Combinations

The evaluation of various protocol combinations across the control channels yielded dis-
tinct performance characteristics with significant implications for system responsiveness,
reliability, and overall network utilization. The four configurations tested demonstrated
unique strengths and weaknesses in terms of latency, jitter, packet loss, and error rates.

5.2.1 Comparison of Network Performance

A comparative analysis of network performance metrics across the four protocol combina-
tions revealed nuanced trends in latency and jitter. The C1 configuration, while offering
robust error correction and reliable data delivery, exhibited higher latency compared to
the other combinations, particularly in scenarios with significant network congestion. The
introduction of UDP for the tracking control channel in the C2 configuration led to a re-
duction in latency, but at the cost of increased packet loss rates. Conversely, the C3
combination demonstrated a trade-off between latency and reliability, with improved la-
tency for the tracking and gripper control channels but potential data loss in the haptic
control channel. The fully UDP-based C4 configuration achieved the lowest latency but
suffered from the highest packet loss rates, necessitating careful consideration of the spe-
cific requirements of each control channel.

Figure 20: Protocol-related measurement results for similar gripping operation proce-
dures: Network Latency and Jitter over Time.

5.2.2 Packet Loss and Error Rates per Link

An analysis of packet loss and error rates across the different protocol combinations pro-
vides crucial information regarding data integrity and reliability. The C1 configuration
exhibited the lowest packet loss rates due to its inherent error recovery mechanisms. How-
ever, the use of TCP for all channels can introduce additional overhead and latency. The
introduction of UDP in the C2 and C3 configurations led to increased packet loss rates,
particularly for the UDP-based control channels. The fully UDP-based C4 configuration
demonstrated the highest packet loss rates, highlighting the trade-off between low latency
and data reliability.
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The occurrence of these packet losses and errors generate a dynamic additional delay
to the entire system process, which is most noticeable in between consecutive frames of
the robot trajectories. This behaviour improves when considering variable-length instead
of fixed-length PDUs. Apart from this, note the delay on communications involving the
gripper control needs to be added to the frames with the manager of haptic interactions.

Figure 21: Protocol-related measurement results: Packet Loss Rate and Packet Error
Rate over Time for P1 measurement location and Parallel Flow configuration.

5.3 Analysis by Selected Configuration

The evaluation of the three communication configurations (i.e. sequential, cascaded, and
parallel) revealed distinct performance characteristics with significant implications for
the immersive experience. These configurations exhibited varying degrees of efficiency in
terms of control traffic, network utilization, and computational resource demands.

5.3.1 Control Traffic and Network Utilization

A comparative analysis of control traffic and network utilization across the three config-
urations unveiled notable disparities.

The sequential configuration, characterized by a linear data flow, generally exhibited
lower network utilization due to reduced number of data packets exchanged. However,
this configuration often resulted in increased latency for the haptic control channel, as it
relied on information cascaded from the gripper control.

The cascaded configuration, while introducing additional processing overhead at the
robot control node, demonstrated potential benefits in terms of network efficiency by con-
solidating data transmission. However, the increased latency introduced by the sequential
processing steps could impact the overall system responsiveness.

In contrast, the parallel configuration, characterized by simultaneous data transmis-
sion, exhibited higher network utilization but offered the potential for lower latency across
all control channels. This configuration, however, required careful management to prevent
data redundancy and ensure consistent information delivery to the haptic control unit.
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Figure 22: Configuration-related measurement results for similar gripping operation
procedures: Latency per Program over Time.

These latency analysis across the three configurations for each control channel (track-
ing, robot arm, gripper, and haptic gloves) shown in Figure 22 provides valuable insights
into the impact of configuration on system responsiveness according to measures carried
out in P1 location and with C4 protocol combination for inter-Node communication.

The most relevant perceived bottleneck found in this study is the communication with
the Robot Control program, which then causes an overall greater latency for the Cascaded
Flow. Both other types of communication flows are not particularly affected by this, as
their interactions with the Robot Control program is only circumstantial for modifying
the arm trajectory and not a medium for other functionalities.

5.3.2 Program Requirements for each Node

The computational demands placed on the local and remote nodes varied significantly
across the three communication configurations. The sequential configuration, with its
relatively simple data flow, imposed lower computational requirements on both nodes.
The cascaded configuration, particularly at the robot control node, exhibited higher CPU
utilization due to the additional processing tasks involved. The parallel configuration,
while distributing computational load across multiple nodes, introduced challenges in
terms of data synchronization and processing at the haptic control unit.

Regarding RAM demands, the parallel configuration exhibits the highest RAM con-
sumption on both the local and remote nodes, at around 3000MB and 2500MB respec-
tively. This can be attributed to the simultaneous data processing requirements inherent
to this configuration. The cascaded configuration demonstrates a moderate increase in
RAM usage compared to the sequential configuration, particularly on the local node
(2900MB compared to 2650MB in average). This is likely due to additional processing
tasks involved in handling cascaded data streams. The sequential configuration exhibits
the lowest RAM consumption across both nodes, reflecting reduced processing demands
associated with its linear data flow.
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Figure 23: Configuration-based measurements: CPU & RAM usage for LCON & RTHN.

5.4 Empirical Quality of Immersive Experience

A comprehensive evaluation of the immersive teleoperation experience was conducted
through a survey involving participants from diverse backgrounds.

Figure 24: Survey results of the Haptic Teleoperation Experience regarding the 5 pa-
rameters or dimensions of the considered Immersion Criteria.

Analysis of the survey data revealed a strong correlation between perceived presence
and both haptic feedback quality and system responsiveness. Participants reported a
heightened sense of immersion when haptic cues accurately reflected the interaction with
the remote environment and system latency was minimal. Conversely, delays in haptic
feedback and system sluggishness diminished the feeling of presence, leading to a sense of
disconnection from the remote task.



Conclusions 42

Engagement levels were found to be influenced by task complexity and the level of
challenge presented by the teleoperation scenario. Participants reported higher levels of
engagement when faced with tasks that required a degree of adaptation. Additionally,
the quality of haptic feedback played a role in maintaining engagement, with accurate
and informative haptic cues contributing to a sustained focus on the task.

Perceived control was closely linked to system responsiveness and the accuracy of
haptic feedback. Participants reported a strong sense of control when the system exhibited
low latency and the haptic cues accurately reflected the forces and interactions experienced
by the robot through context-adequate haptic intensity models. Conversely, delays in
system response and inaccurate haptic feedback diminished the feeling of control, leading
to frustration and reduced task performance.

Sensory integration, the seamless integration of visual, auditory, and haptic feedback,
emerged as a critical factor in creating a cohesive and immersive experience. Partici-
pants reported a more immersive experience when the sensory cues were congruent and
complementary, enhancing the overall sense of presence and engagement. Conversely,
inconsistencies between sensory modalities led to cognitive overload and diminished the
overall quality of the experience.

Cognitive load, as measured by subjective ratings of mental effort, was influenced by
factors such as task complexity, system responsiveness, and the quality of haptic feedback.
Participants reported higher cognitive load when faced with complex tasks, experiencing
system delays, or encountering ambiguous haptic cues. Effective haptic feedback, by
providing additional information and reducing reliance on visual and auditory cues, con-
tributed to lower cognitive load and improved overall user experience.

These findings underscore the importance of optimizing haptic feedback, system re-
sponsiveness, and task design to create an immersive teleoperation experience intended
to maximize user engagement and minimize cognitive load.

6 Conclusions

The preceding analysis delved into the intricate interplay of communication protocols, net-
work infrastructure, and system configuration on the overall performance of the immersive
teleoperation system. Next, this section provides with a brief summary and closing ar-
guments to the project related to improvement possibilities and further developments
inteded for the configured system.

6.1 General Summary

This project created the baseline configuration of an immersive teleoperation system that
functions according to requirements, with some movements lagging still being analyzed.
The overarching evaluation of this system working on a 5G SA Private Network across
diverse measurement positions, communication protocols, and configurations has yielded
valuable insights into the critical factors influencing system performance and user experi-
ence. The analysis underscores the intricate interplay between environmental conditions,
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network infrastructure, and system architecture in shaping the overall efficacy of the tele-
operation system. While indoor environments provided a foundation for establishing base-
line performance metrics, outdoor conditions exposed the system’s vulnerabilities to signal
attenuation and interference, necessitating robust communication strategies. The com-
parative analysis of communication protocols highlighted the trade-offs between latency,
reliability, and network utilization, emphasizing the need for careful protocol selection
tailored to specific control channel requirements. The investigation of communication
configurations demonstrated the impact of data flow patterns on system performance,
with each configuration exhibiting distinct strengths and weaknesses in terms of latency,
network traffic, and computational resource demands.

6.2 Improvement Possibilities

To further enhance the immersive teleoperation experience, several areas for improvement
can be identified. Optimizing communication protocols through adaptive algorithms that
dynamically adjust to changing environmental conditions is essential for maintaining con-
sistent performance. Implementing advanced error correction techniques and forward
error correction codes can mitigate the impact of packet loss and improve data integrity.
Additionally, exploring the integration of edge computing with 5G networks can offload
computational tasks, reducing latency and improving overall system responsiveness. To
fully exploit the potential of 5G, the development of novel haptic algorithms that can
effectively utilize the increased bandwidth and low latency is essential. By optimizing
these aspects, the teleoperation system can achieve a higher level of immersion and user
satisfaction. Furthermore, the integration of intelligent algorithms for network congestion
control and resource allocation can contribute to a more efficient and responsive system.

6.3 Future Developments

Building upon the insights gained from this study, future research can focus on develop-
ing innovative teleoperation systems that seamlessly integrate with emerging technologies.
The integration of artificial intelligence and machine learning techniques can enable adap-
tive systems capable of learning user preferences and optimizing performance over time.
Furthermore, exploring the semantic correlation between immersion models and QoS/QoE
metrics can provide valuable insights for tailoring the system to specific user needs. Addi-
tionally, developing dynamic delay recovery procedures can significantly enhance the user
experience By combining these advancements, it is envisioned that future teleoperation
systems will achieve unprecedented levels of performance, usability, and user satisfaction.
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A Article Proposals

This section outlines three potential research avenues that delve into the intricacies of
immersive teleoperation systems. The proposed articles explore distinct facets of the
system, ranging from communication protocols and network optimization to the impact
of haptic rendering and human-robot interaction on the overall user experience.

A.1 Article 1: Configuration, Evaluation and Optimization of a
Haptic Teleoperation Experience

Abstract: This paper delves into the intricate relationship between communication pro-
tocols, system configuration, and haptic feedback in shaping the overall immersive teleop-
eration experience. By meticulously evaluating diverse network topologies, control algo-
rithms, and haptic rendering models, we aim to optimize system performance and enhance
user engagement. The study explores the impact of various communication configurations
on latency, jitter, and packet loss, identifying optimal combinations for real-time control.
Furthermore, the investigation encompasses the role of robot trajectory, grip width, and
force models in generating realistic and informative haptic feedback. Through rigorous
experimentation and data analysis, this research provides valuable insights into the design
and optimization of immersive teleoperation systems, paving the way for future advance-
ments in human-robot interaction.

Keywords: Haptic Teleoperation, Immersive Experience, Robot Trajectory, Grip
Control, Tactile Feedback

Note: Intended to be created in collaboration with Technische Universität Munchen
(TUM) within the framework of TOAST Doctoral Network.

A.2 Article 2: Advantages of Asynchronous Variable-Length
PDUs for Dynamic Delay in Immersive Telemanipulations

Abstract: This paper investigates the efficacy of asynchronous variable-length protocol
data units (PDUs) in mitigating the challenges posed by static, arbitrary or cumulative
delay in immersive telemanipulation systems. By departing from traditional synchronous
communication paradigms, this approach enables adaptive and flexible data exchange
with dynamic self-managed delay, enhancing system responsiveness and user experience.
Empirical analysis demonstrates the potential of asynchronous variable-length PDUs in
reducing latency and improving overall system performance, despite the inherent trade-offs
in network efficiency. The findings underscore the importance of tailored communication
strategies for achieving optimal results in complex, real-time applications such as long-
distance telemanipulation.

Keywords: Asynchronous Communication, Variable-Length Packages, Long-Distance
Telemanipulation, Dynamic Delay, Immersive Experience.

Note: Intended to be created in collaboration with Technische Universität Dresden
(TUD) within the framework of TOAST Doctoral Network.
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A.3 Article 3: Quality of Immersive Services and Experiences
for Remote Tactile Applications

Abstract: This paper delves into the intricate relationship between quality of service and
experience (QoS/QoE) metrics and the immersive experience afforded by remote tactile
applications. By scrutinizing a diverse array of telemanipulation scenarios, encompassing
both gripper and robotic hand operations, we explore the critical factors influencing the
perception of presence, engagement, and control. The study investigates the interplay
of network parameters, haptic rendering techniques, and human factors in shaping the
overall user experience. Through rigorous experimentation and analysis, this research
aims to establish a comprehensive framework for evaluating and optimizing QoS/QoE in
remote tactile applications, paving the way for future advancements in telepresence and
human-robot collaboration.

Keywords: Immersive Telemanipulation, Quality of Service, Haptic Feedback, Human-
Robot Interaction, User Experience

Note: Intended to be created in collaboration with Universitetet i Oslo (UiO) within
the framework of the Eurocluster INGENIOUS and INGENIOUS project.
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B User Manual

This section provides a practical description for the requirements and installation pro-
cedure of each node, as well as overall system initialization and utilization sequence for
intended normal functioning. Each subsection is accompanied by required commands and
instructions to better understand the purpose of each stage of the process.

B.1 Local Control and Orchestration Node (LCON)

• Control of the trajectories of robot arm using coordinates and orientation together
with gripper movements (width, force/speed) limited to their defined spatial domain.

• Object detection when current width is different than the objective after a configured
time. Grip levels configuration for different objective widths and width variations.

B.1.1 LCON Requirements

Hardware Requirements:

• UR e-Series Robot Arm

• UR e-Series Teach Pendant

• OnRobot Gripper RG2/RG6

• OnRobot HEX-E QC Stand

Software Requirements:

• UR PolyScope v.5.16.0

• ROS Noetic v.1.16.0

• Base OS: Ubuntu 20.04

• Python 3.8.3 (Python 3)

B.1.2 LCON Installation and Configuration

Follow these steps to properly install the Software of Local Node, prior to its utilization.

1. Create workspace:

mkdir -p ./catkin_ws/src

2. Add Universal Robot packages:

cd ./catkin_ws/src

git clone https://github.com/fmauch/universal_robot.git

cd universal_robot

git reset --hard 1ffdd69181389b14b7d6342f0c5bad3b45c5e32f

3. Clone the repository including the LCON Local Node folder:

cd <destination_folder>

git clone https://github.com/xriteamupv/Haptic_Teleop.git
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4. Keep the LCON Local Node folder contents and remove the rest:

cd <destination_folder>

mv ./Haptic_Teleop-main/LCON_Local_Node/* /catkin_ws/src

rm -r ./Haptic_Teleop-main

5. Install Python libraries:

pip install numpy

pip install rospy

pip install actionlib

pip install datetime

pip install pymodbus

6. Compile packages:

cd /catkin_ws

catkin_make

B.2 Remote Teleoperation and Haptic Node (RTHN)

• Capture of the hand position and movements of the human arm through a video
camera or tracking device, and generate vibro-tactile sensations on a haptic glove.

• Recognize different gripper configurations, including types of grips (soft, medium,
hard) and how many fingers (2F, 3F, 4F, 5F) are involved in the grip.

B.2.1 RTHN Requirements

Hardware Requirements:

• bHaptic TactGloves DK1/DK2

• RealSense D415 Camera or similar

• Alternatively: Camera 720p 30fps

Software Requirements:

• bHaptics Player v2.3.5 or newer

• Base OS: Windows 10 v1703 or newer

• Python 3.11.3 (Python 3)

B.2.2 RTHN Installation and Configuration

Follow these steps to properly install the Software of Remote Node, prior to its utilization.

1. Clone the repository including the RTHN Remote Node folder:

cd <destination_folder>

git clone https://github.com/xriteamupv/Haptic_Teleop.git
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2. Keep the RTHN Remote Node folder contents and remove the rest:

move /y ./RTHN_Remote_Node/* ./

rmdir /s ./RTHN_Remote_Node

rmdir /s ./LCON_Local_Node

rmdir /s ./Teloperation_Local_Node

3. Modify the following files with your corresponding directories:

cd ./haptic_ur5e/src

nano ./utils/Classifier.py

nano ./model/keypoint_classifier/keypoint_classifier.py

nano ./model/point_history_classifier/point_history_classifier.py

If you decide to use Windows Subsystem for Linux (WSL), you have to modify the
directories of:

./init_remote_node.sh

./initialize_remote_node.sh

4. Install Python libraries:

pip install numpy

pip install datetime

pip install pymodbus

pip install websocket

pip install websocket-client

pip install opencv-python

pip install mediapipe

pip install tensorflow

B.3 System Initialization and Utilization

The system allows a user to manipulate remote objects imitating the movements of their
own arm through movement capture sensors. The experience is enriched by haptic feed-
back, providing the user with a real contact sensation with the manipulated object.

Follow these steps for initializing the entire system, i.e. both LCON and RTHN. Make
sure to have access and control to all system devices and terminals. Respecting the steps
sequence is recommended.

(A) Turn on and connect all devices from LCON and RTHN

(B) RTHN - Put your TactGloves on and link them to bHaptics Player



B.3 System Initialization and Utilization 55

(C) RTHN - Open a terminal and run the haptic control.py file

This operation will open the receiving end of the communication between nodes,
and connect to bHaptics SDK.

cd <folder_location>/haptic_ur5e

python haptic_control.py <param1> <value1> <param2> <value2> ...

Success Indicator:

LINK ESTABLISHED. Waiting for commands from Local Node ...

Note: Change paramX and valueX as needed to modify default application.

(D) LCON - Launch ROS package for URXe and XML-RPC for RG2 com-
munication

If successful, this operation will set the communication between nodes, and connect
with Robots through Polyscope.

cd <ros_workspace>

. init_controllers.sh --model <ur_model> --robot_ip <robot_ip> //

--calibration <calibration_file.yaml>

Success Indicator:

3 tabs will open in the same window, successfully running UR Robot Arm bringup,
XML-RPC server and Gripper Controller.

Note: Change ur model, robot ip and calibration file.yaml as needed if you want to
modify default application.

(E) Teach Pendant - Load and start program rg2 remote control.urp in Polyscope

This URScript program contains the Variables Setup, the Robot Program with
instructions to connect to host, and the RGX Gripper initializer. It should be
previously loaded via USB to the URXe Teach Pendant containing Polyscope.

Success Indicator:

Robot requested program.

Sent program to robot.

Robot ready to receive commands.

(F) LCON - Run the robot control.py and gripper control.py programs

This operation will established the communication between the nodes and connect
to the local Robots Movement Controllers.
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cd <ros_workspace>

. init_local_node.sh <param1> <value1> <param2> <value2> ...

Success Indicator:

2 tabs will open in the same window, one for each program.

Output on each console:

LINK ESTABLISHED. Waiting for commands from Tracking Program ...

Note: Change paramX and valueX as needed to modify default application.

(G) RTHN - Open another terminal and run the tracking control.py program

This operation will activate the whole system. By default, a camera window should
be displayed, which will start tracking the user’s hand.

cd <folder_location>/haptic_ur5e

python tracking_control.py <param1> <value1> <param2> <value2> ...

Success Indicator:

A camera window appears and starts the hand movements tracking.

Output on Tracking console:

System started, currently tracking your hand ...

Note: Change paramX and valueX as needed to modify default application.

(H) Enjoy the experience!

(a) Ensure the tracking system correctly detects your hand landmarks, successfully
identifies its coordinates and properly follows your movements:
Robot State: Inactive.

(b) Observe a red dot that should appear in the landmarks baricenter, thus indi-
cating the hand is NOT within the tolerance of the initial reference position.

(c) Activate the robot and gripper control by making a Pointer gesture with index
finger or OK gesture by touching thumb and index in initial reference region:
Robot State: Active.

(d) Observe a green dot that should appear in the landmarks baricenter, thus
indicating the hand is within the tolerance of the initial reference position.

(e) Telemanipulate the robot arm by moving your hand within camera range and
making appropriate hand gestures for operating on the gripper. When an
object is gripped, you will feel an adequate feedback on the tactile glove.

(f) Deactivate the robot and gripper control by repeating procedure on Step (c).

(g) Press ESC key to stop the tracking system and close the entire system.
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C Software Examination

This section provides a comprehensive overview of the underlying software architecture
that drives the system’s functionality.

C.1 Controllers Operation

First, we delve into the core functionalities that govern the system’s physical components.

Figure 25: Overview of the ROS-Driver architecture for Robot Arm and Gripper.

C.1.1 Robot Arm: Trajectory Controllers

Universal Robots offers a suite of goal-based Cartesian trajectory controllers accessible
through the Teach Pendant with PolyScope interface, and specific topics and messages
types with ROS on Ubuntu OS. These recommended controllers, available to use in system,
leverage robot kinematics and dynamics to achieve precise and flexible motion planning.

1. Controller ID: pose based cartesian traj controller

• Type: pose controllers/CartesianTrajectoryController

• Function: Accepts desired end-effector poses as input.

• Processing: ROS continuously sends these poses to the robot controller.

• Kinematics: The robot’s internal inverse kinematics engine calculates the
corresponding joint commands for each pose. This approach ensures smooth
and accurate execution based on the robot’s actual configuration.

• Benefits: Precise control over end-effector position and orientation.

2. Controller ID: joint based cartesian traj controller

• Type: position controllers/CartesianTrajectoryController
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• Function: Takes desired Cartesian waypoints as input.

• Processing: ROS performs inverse kinematics calculations to convert these
waypoints into joint space commands.

• Kinematics: Unlike pose based, the ROS side handles the inverse kinematics,
offering more flexibility for customization.

• Benefits: Balance between Cartesian intuitiveness and computational effi-
ciency, suitable for various applications.

3. Controller ID: forward cartesian traj controller

• Type: pass through controllers/JointTrajectoryController

• Function: Directly receives the complete desired Cartesian trajectory.

• Processing: ROS forwards the entire trajectory to the robot controller with-
out any interpolation.

• Kinematics: The robot’s internal forward and inverse kinematics handle tra-
jectory execution. This method offers real-time performance and leverages the
robot’s optimized control mechanisms.

• Benefits: Precise control over the Cartesian path, similar to motions pro-
grammed on the Teach Pendant. However, ROS doesn’t check for configuration
changes, potentially leading to safety stops.

While ROS interacts with the robot and potentially performs some calculations, the
core kinematics processing (both forward and inverse) primarily happens within the Uni-
versal Robots controller. This ensures real-time performance and efficient interaction with
the robot’s low-level control mechanisms. The choice of controller depends on the desired
balance between user control, computational efficiency, and motion fidelity.

C.1.2 Gripper: Multithreading and XML-RPC

To ensure synchronized and efficient operation between the robot arm and the gripper,
a multithreading approach is employed. This strategy enables concurrent execution of
robot arm movements and gripper control within separate threads.

The robot arm thread handles the overall robot motion, utilizing the robot’s built-in
control system. A brief delay between instructions is incorporated to allow for potential
synchronization adjustments but does not considerably affect user experience.

The gripper thread employs XML-RPC communication to interact with the OnRobot
RG2 gripper. XML-RPC is a protocol that allows for communication between different
systems and languages by executing functions on a remote system as if they were local. On
the server side, the gripper’s control unit acts as an XML-RPC server, exposing functions
like open, close, get position, etc. On the client side, the main application acts as an
XML-RPC client, making calls to the server’s functions.

The system establishes a connection to the gripper’s XML-RPC server and contin-
uously monitors for incoming commands. Upon receiving a MOVE COMMAND, the



C.2 Tracking Algorithms 59

thread retrieves the desired gripper position and force from the XML-RPC server and
executes the grip operation using the rg grip function. Subsequently, the thread updates
the gripper’s actual position through the XML-RPC interface.

The control script provides the necessary framework for both threads, including vari-
able initialization, robot program setup, and XML-RPC communication parameters. It
also incorporates functions for gripper control, data acquisition, and TCP/IP communi-
cation with gripper. This multithreading architecture offers several advantages:

• Improved responsiveness: By separating robot arm and gripper control into
independent threads, the system can handle concurrent tasks more efficiently.

• Flexibility: The XML-RPC interface allows for easy integration of different gripper
models and communication protocols.

• Modularity: The code structure promotes code reusability and maintainability.

C.2 Tracking Algorithms

Next, we delve into the core algorithms responsible for capturing and interpreting human
hand movements.

C.2.1 Hand Landmarks Detection

MediaPipe’s Hand Landmarker employs a deep neural network architecture specifically
tailored for hand detection and landmark localization. The model is trained on a massive
dataset of hand images, encompassing diverse hand poses, skin tones, lighting conditions,
and occlusions. This robust training regimen enables the model to generalize well to
real-world scenarios.

The network architecture likely incorporates a combination of convolutional layers for
feature extraction, followed by recurrent or attention-based layers for capturing spatial
and temporal dependencies. This design allows the model to effectively handle complex
hand shapes and dynamic movements.

The initial stage of hand detection involves a lightweight palm detection model that
scans the entire image for potential hand regions. This model is optimized for speed
and accuracy, ensuring efficient processing. Once a palm is detected, a bounding box is
generated around it to define the region of interest for the landmark detection stage.

To improve the accuracy of the hand localization, the system often employs a refine-
ment process. This involves iteratively adjusting the bounding box based on the detected
hand landmarks. By refining the bounding box, the subsequent landmark detection stage
can focus on a more precise region, leading to enhanced accuracy.

The core of the detection algorithm is the landmark localization model. This model
takes the cropped hand image as input and predicts the 21 key points’ coordinates. The
model is trained to accurately localize these points, even in challenging conditions such
as occlusion or low-light environments.
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To further improve the accuracy of the landmark positions, the system incorporates
refinement techniques. These techniques involve iterative refinement of the landmark
positions based on local image features or contextual information. Additionally, post-
processing steps, such as smoothing or filtering, are applied to reduce noise and improve
the overall landmark quality.

To achieve real-time performance, MediaPipe Hand Landmarker incorporates several
optimization strategies. These include model quantization, hardware acceleration, and ef-
ficient algorithm design. By optimizing the model for target platforms and using hardware
accelerators, the system process video frames at high frame rates.

C.2.2 Grip Gestures Recognition

From the detected hand and its estimated pose, a set of informative features is extracted.
These features encompass the relative positions of various key points, the hand’s overall
shape, and its orientation in the image or video frame. Feature extraction plays a critical
role in gesture recognition, as it condenses the hand’s characteristics into a compact
representation that is readily processed by the subsequent classification stage.

Figure 26: Classification output for the Training of 24 gestures related to grip recog-
nition. The Final-Stage Classification Model includes a greater amount of gestures
states which complicates its visual representation.

The extracted features are then fed into a machine learning model, specifically a Multi-
Layer Perceptron (MLP) in this case in particular. The MLP is tasked with classifying
the hand gesture based on the provided features. Through a training process on a curated
dataset of labeled hand gestures, the MLP learns to associate specific feature patterns
with corresponding hand gestures.

Upon processing the features through the MLP, the model generates an output that
signifies the recognized hand gesture. This output contains a class label corresponding to
a predefined gesture and a more nuanced representation of the hand pose.
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D Code Structure

This section delves into the code and program specifications defined for the configured
system, which comprises both object-oriented and procedural programming. In particu-
lar, the next subsections focus on the non-static classes structure for the Local (LCON)
and Remote (RTHN) Nodes, independently used in the four main programs of the haptic
teleoperation system: robot control.py, gripper control.py, tracking control.py and hap-
tic control.py. Each program interacts with their classes structure through one main ac-
cess point for simpler and quicker debugging and error detection, remarked with thicker
lines in the following UML Class Diagrams.

D.1 LCON Classes Description

The classes used in the programs robot control.py and gripper control.py are subdivided
into 2 subgroups focused in the robot trajectory management and the gripper movement
control respectively. This modular approach allows for further customizations and future
scalability and ease-of-configuration.

D.1.1 Robot Control

This subgroup of classes is responsible for the robot trajectory management. This involves
the robot controller properties specification for initialization and execution, the human
arm positions received from the Tracking Intelligence, the equivalent robot arm positions,
and the possible transmission of grip information to the Gripper Movement Control.

Figure 27: Class diagram of the subgroup utilized for robot control procedures.
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As shown in Figure 27, the main class is called TrajectoryClient and is responsible for
the general trajectory management helped by instances of auxiliary classes Controller, Hu-
manArm and RobotArm. The first class manages all operations related to the ActionClient
Service that interacts with the selected Goal-based Cartesian Trajectory Controllers pro-
vided by the system. The other auxiliary classes are needed for processing input tracking
coordinates and output robot movement coordinates respectively, including the applica-
tion of customization options.

The class RobotArm depends on TrajectoryLimitator that controls the coordinates
limits for the robot movements. The default attribute values of this last class needs to be
modified when changing the robot arm model and subsequently its size and dimensions.

D.1.2 Gripper Control

This subgroup of classes is required for the gripper actions derivations. This includes the
gripper XML-RPC client specification and its synchronization with the PolyScope Thread,
the gripper levels received from the Tracking Intelligence and the grip characteristics
transmitted to the Haptic Enablers Conditioning.

Figure 28: Class diagram of the subgroup utilized for gripper control procedures.

Figure 28 depicts the general structure used for this program whose main class is
called GripClient and depends on auxiliary classes EventManager and Gripper. The
former class has the state information result of the gripper actions, such as if an object
has been gripped, or the objective width has changed. The latter class entails the device
core functionality characteristics that are modified in accordance to the tracking data.
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Similarly to the RobotArm class, the Gripper class depends on a limitator class which
needs to be modified in case the gripper model is changed.

D.2 RTHN Classes Description

The classes used in the programs tracking control.py and haptic control.py are subdivided
into 2 subgroups focused in the tracking intelligence and the haptic enablers condition-
ing respectively. This modular approach allows for further customizations and future
scalability and ease-of-configuration.

D.2.1 Tracking Control

This subgroup of classes is responsible for the human movement tracking and hand ges-
tures recognition. This involves the tracking algorithms specification for model configu-
ration, the hand landmarks visualization for user feedback, the system state for action
registries, and the pre-processed keypoints history for movement predictions.

Figure 29: Class diagram of the subgroup utilized for tracking control procedures.

As depicted in Figure 29, the main class for tracking control is HandTracker, which
encompass four auxiliary classes: History for preprocessing and gesture prediction, State
for system management similar to EventManager for Gripper Control, Visualization for
GUI implementation, and Tracking for hand detection logic definition. The latter class
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depends on Classifiers, either KeyPointClassifier or PointHistoryClassifier, required for
tracking both present and past recollection of hand landmarks. Note that this subgroup
of classes do not require any explicit limitator, as the video processing will always keep
the same coordinate ranges independent of the camera model or quality.

D.2.2 Haptic Control

This subgroup of classes is responsible for the conditioning of haptic enablers received from
the Tracking Intelligence and the Trajectory Management, intended to provide the Haptic
Feedback node with pre-analyzed characteristics (i.e. vibration intensity and duration)
and configurations (i.e. actuator/s to activate) for the tactile gloves.

Figure 30: Class diagram of the subgroup utilized for haptic control procedures.

Figure 30 shows the main class for haptic control called HapticClient, and its three aux-
iliary classes. HapticGlove contains the structure with the properties needed to manage
the haptic device, such as vibration intensity, fingers or amount of actuators to activate
and which hand is being utilized. GripperTwin is needed in order to facilitate keeping
track of the gripper state and characteristics while retaining a brief history of grip width
variations so to avoid false negatives in the object detection. Finally, HapticLimitator
provides the minimum and maximum limits for the interested parameters, which can be
modified using customization options or changing the code in case of switching models of
haptic gloves, or if it is demanded due to user sensitivity issues.
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E Helper Mappers and Procedures

This section presents an overview of the core mathematical models and algorithms em-
ployed to customize various aspects of the teleoperation system. These models encompass
the mapping of human inputs to robot outputs, the management of system delays, and
the generation of haptic feedback.

E.1 Models for Robot Trajectory

Four distinct mapping models are explored: linear mapping, focused linear mapping,
multi-focused linear mapping, and non-linear mapping. Each model employs varying
degrees of complexity and adaptability to approximate the desired relationship between
human hand coordinates tracked by a camera device, and the robot arm motion whose
coordinates are controlled by goal-based cartesian trajectory controllers.

Figure 31: Different models and mappers used for Robot Trajectory computations.

The Linear Mapping implements a straightforward linear mapping between human
and robot arm coordinates. This model assumes a proportional relationship between
the two systems, with scaling factors applied to account for differences in workspace
dimensions and kinematic characteristics. While computationally efficient, often results
in a simplified and less intuitive motion mapping, leading to a reduced sense of control.

The Focused Linear Mapping introduces a more sophisticated approach by di-
viding the human arm workspace into focused regions. Within each region, a distinct
linear mapping is applied, allowing for greater flexibility and adaptability to non-linear
relationships between human and robot motion. This model aims to enhance the user’s
perception of system responsiveness and accuracy.

The Multi-Focused Linear Mapping extends the focused linear mapping concept
by incorporating multiple focused regions, further refining the mapping accuracy. This
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model offers increased adaptability to complex human arm movements and tries to ap-
proximate non-linear robot kinematics with simpler processing requirements.

Finally, the Non-Linear Mapping employs a parabolic transformation to capture
intricate relationships between human and robot arm motion. This model utilizes poly-
nomial functions to approximate the mapping, providing a higher degree of freedom for
capturing complex kinematic patterns. However, it requires careful parameter tuning and
computational resources to achieve optimal performance.

E.2 Models for Gripper Width

This subsection explores various techniques for mapping a desired gripper width (objective
width) based on a user-specified grip level (0-4). These models offer varying levels of
complexity and adaptability, catering to different requirements and gripper characteristics.

Figure 32: Different models and mappers used for Gripper Width computations.

The Linear Interpolation approach assumes a linear relationship between grip level
and objective width. This approach is computationally efficient but exhibits limitations
in accurately capturing non-linear variations in gripper requirements. Its simplicity makes
it suitable for applications where approximate width control is sufficient.

This Interval Detection approach divides the grip level range into intervals and
applies linear interpolation within each interval. By segmenting the mapping function, it
offers greater flexibility in accommodating non-linear relationships between grip level and
objective width. However, the accuracy of the model is dependent on the appropriate
selection of interval boundaries.

The Polynomial Regression approach employs a higher-order polynomial function
to approximate the mapping between grip level and objective width. This approach can
capture complex non-linear relationships, providing a more accurate representation of the
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desired width variation. However, it is susceptible to overfitting if the polynomial degree
is excessively high.

The Cubic Spline approach utilizes piecewise cubic polynomials to interpolate the
data points, resulting in a smooth and continuous function. This approach offers a balance
between flexibility and computational efficiency. Cubic splines can effectively capture
complex patterns in the data while maintaining smoothness and avoiding overfitting.

The Support Vector Machine (SVM) Regression approach employs a kernel-
based approach to map grip level to objective width. This model is particularly effective
in handling non-linear relationships and can achieve high accuracy. However, the com-
putational cost of training and applying the SVM model is generally higher compared to
the other methods.

E.3 Models for Gripper Force

Four primary models are explored: linear mapping, exponential decay, piecewise quadratic
mapping, and cubic spline interpolation. Each model offers distinct characteristics in
terms of force profile, computational efficiency, and adaptability to different scenarios.

Figure 33: Different models and mappers used for Gripper Force computations.

The Linear Mapping approach establishes a direct proportional relationship between
interaction duration and grip force. While computationally efficient, this model often
oversimplifies the complex dynamics of grip force generation. Its applicability is limited
to scenarios where a linear force profile is sufficient and precise force control is not critical.

The Exponential Decay approach introduces a more nuanced approach by simu-
lating a gradual decrease in grip force over time. This model can be used to mimic the
natural decay of human grip strength and is suitable for applications requiring a controlled
release of grasped objects. However, the decay rate parameter needs to be carefully tuned
to achieve the desired force profile.



E.4 Models for Delay Recovery 68

To address the limitations of previous models, the Piecewise Quadratic approach
divides the interaction duration into segments and applies quadratic functions within each
segment. This approach offers greater flexibility in shaping the force profile, allowing
for more complex force patterns. However, it requires careful determination of segment
boundaries and polynomial coefficients to achieve desired force characteristics.

Lastly, the Cubic Spline approach provides a smooth and continuous representation
of the grip force profile. By fitting cubic polynomials to the data points, this model
can capture intricate force variations while maintaining computational efficiency. Cu-
bic splines offer a balance between flexibility and smoothness, making them suitable for
applications requiring precise force control.

E.4 Models for Delay Recovery

This section outlines the various strategies employed to compensate for potential delays
in the teleoperation system. These models aim to synchronize robot movements with user
inputs, mitigating the negative impact of increased latency on the overall user experience.

Figure 34: Different models and mappers used for Delay Counter computations.

The Duration-Focused Model calculates the robot’s motion time based solely on
the desired human movement duration. This approach ensures synchronization between
human and robot actions but leads to suboptimal performance in scenarios with varying
distances or environmental conditions. Its simplicity makes it suitable for applications
with predictable and consistent operating conditions.

The Distance-Focused Model incorporates additional factors such as distance be-
tween start and end positions, maximum velocity, and acceleration to estimate the robot’s
motion time. By considering these parameters, this model offers a more accurate predic-
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tion of the required delay. Furthermore, it incorporates environmental conditions and
network latency to enhance adaptability and robustness.

The Predictive Adaptive Model introduces a more sophisticated approach by esti-
mating motion time based on movement type, environmental factors, and network condi-
tions. This model employs predictive techniques to anticipate potential delays and adjust
the robot’s motion accordingly. While computationally more intensive, this approach has
the potential to significantly improve system responsiveness and user experience.

Focusing on the gripper, the Constant Counter Model establishes a direct relation-
ship between the desired width change and the required motion time. This model assumes
a constant gripper velocity and disregards external factors such as force or environmental
conditions. Its simplicity makes it computationally efficient but results in suboptimal
performance in dynamic scenarios.

Finally, the Mixed Counter Model introduces a more complex approach by con-
sidering both width change and initial grip force to estimate the motion time. This
model offers greater flexibility in adapting to varying gripping conditions. Additionally, it
incorporates environmental and network factors to enhance robustness and adaptability.

E.5 Models for Haptic Intensity

This section outlines various basic and advanced models for mapping input parameters
(width and force) to haptic intensity. Each model offers distinct characteristics in terms of
computational complexity, accuracy, and adaptability to different application scenarios.

The Linear Interpolation model establishes a direct linear relationship between
input parameters (width and force) and haptic intensity. While computationally efficient,
it often falls short in capturing the nuanced complexities of human perception and leads
to suboptimal haptic feedback.

The Weighted Interpolation Model introduces weighting factors to balance the
contributions of width and force to the final haptic intensity. By adjusting the weights,
it is possible to prioritize either width or force-based cues, providing greater flexibility in
tailoring the haptic feedback to specific applications. However, the choice of appropriate
weights remains empirical and requires fine-tuning.

The Biased Interpolation Model extends the weighted interpolation approach by
incorporating non-linear transformations and dynamic weight adjustments. By apply-
ing exponential scaling and threshold-based weight modifications, this model can better
capture the perceptual non-linearities of human haptic perception. However, it requires
careful parameter tuning and introduces additional computational overhead.

The Bivariate Interpolation Model leverages grid-based interpolation techniques to
create a smooth mapping surface between width, force, and haptic intensity. By generat-
ing a grid of precomputed values and interpolating within this space, this approach can
capture complex relationships between the input parameters and output intensity. How-
ever, the computational cost and memory requirements of this model is higher compared
to simpler methods.

The Cubic Bezier Interpolation Model utilizes a cubic Bezier curve to define the
mapping function between input parameters and haptic intensity. By carefully selecting
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Figure 35: Different models and mappers used for Haptic Intensity computations.

control points, it is possible to create smooth and customizable haptic feedback profiles.
However, the effectiveness of this model depends on the appropriate choice of control
points, which requires iterative refinement.

The Piecewise Interpolation Model divides the input space into segments and ap-
plies linear interpolation within each segment. By allowing for different slopes and inter-
cepts in each segment, this approach can capture non-linear relationships between input
parameters and haptic intensity. However, careful selection of segment boundaries is
crucial to achieve accurate mapping.

The Force-Focused Interpolation Model prioritizes force as the primary determi-
nant of haptic intensity, with width playing a secondary role. By applying non-linear
transformations and weightings to the force input, this model can emphasize force-related
cues in the haptic feedback. However, it limits the ability to convey information related
to object size or shape through haptic variations.

The Adaptive Interpolation Model incorporates elements of previous models, such
as piecewise interpolation, non-linear transformations, and dynamic weight adjustments,
to create a more adaptive and flexible mapping function. By combining these techniques,
it is possible to achieve a higher degree of customization and responsiveness to changing
input conditions. However, the complexity of this model requires careful implementation
and parameter tuning.
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