
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

CreatAIlity: A collaborative storytelling framework for
fostering children's narrative creativity based on Large

Language Models.

Master's Thesis

Master's Degree in Software Systems Engineering and Technology

AUTHOR: Carvalho, Alexandre Dervazi

Tutor: Jaén Martínez, Francisco Javier

ACADEMIC YEAR: 2023/2024

UNIVERSIDAD POLITÉCNICA DE VALENCIA

MASTER’S THESIS

CreatAIlity: A collaborative storytelling
framework for fostering children’s
narrative creativity based on Large

Language Models

Author:
Alexandre Dervazi
CARVALHO

Supervisor:
Dr. Francisco Javier JAÉN

MARTÍNEZ

A thesis submitted in fulfillment of the requirements
for the degree of Master’s Degree in Software Systems Engineering and Technology

in the

Department of Computer Systems and Computation

September 9, 2024

https://www.upv.es
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
https://www.upv.es/entidades/DSIC/index-en.html

iii

UNIVERSIDAD POLITÉCNICA DE VALENCIA

Abstract

ETSINF - Higher Technical School of Computer Science

Department of Computer Systems and Computation

Master’s Degree in Software Systems Engineering and Technology

CreatAIlity: A collaborative storytelling framework for fostering children’s
narrative creativity based on Large Language Models

by Alexandre Dervazi CARVALHO

The development of the CreatAIlity framework represents a significant advance-
ment in the integration of artificial intelligence and educational technology, specifi-
cally designed to foster creativity in children through guided storytelling. This the-
sis explores the combination of Large Language Models (LLMs) and Finite State
Machines (FSMs) by leveraging important concepts of microtasks, prompt chain-
ing and incipits to create a tool that balances the spontaneity of AI-driven content
generation with the educational need for coherence and structure in narrative con-
struction. The modular and flexible design of CreatAIlity allows for experimentation
with other flow control techniques while also supports integration with diverse tech
stacks, making it adaptable to different educational contexts and applications. The
framework’s design and implementation were validated through a proof-of-concept
application namely StoryBuilder, evaluated using tools such as the System Usabil-
ity Scale (SUS), Game Experience Questionnaire (GEQ), and NASA Task Load Index
(NASA-TLX). The positive results from these evaluations affirm the framework’s
potential to innovate in educational practices by making learning more engaging
and interactive. This work not only introduces a novel approach to AI-driven story-
telling but also provides a foundation for future research in exploring new ways to
harness the capabilities of AI for educational and creative purposes.

HTTPS://WWW.UPV.ES
https://https://www.inf.upv.es/www/etsinf/es/
https://www.upv.es/entidades/DSIC/index-en.html

v

Acknowledgements
I would like to sincerely thank my family for their unwavering support and for
adapting to all the changes that came with this journey. Their belief in me has been
a pillar of strength throughout. I am especially grateful to my wife, Cris, and my
son, Theo, whose encouragement and patience have meant so much to me. Theo’s
enthusiasm for my work has been a constant source of motivation, reminding me to
always strive for my best. Children often impart the most profound lessons, if we
take the time to listen, and he has certainly done so for me.

I would also like to express my deep gratitude to my advisor, Profesor Dr. Francisco
Javier Jaén Martínez, for his constant guidance and mentorship. His valuable advice,
insightful suggestions, and constructive feedback have have been instrumental in
shaping this work. I feel incredibly lucky to have had the chance to learn from his
expertise, which has been a crucial part of both this work and my growth.

I also extend my special gratitude to all the professors and colleagues I had the plea-
sure of learning from during the master’s course. The opportunity to share in their
knowledge not only enriched my academic experience but also gifted me the joy of
discovering new things.

Lastly, I am truly thankful to André, Diogo, Fátima, Helena, Ivan, Karen, Marcos,
Nilton and Thiago for their help in reviewing and evaluating this work. Their
thoughtful insights and different perspectives have been vital in enriching this the-
sis, pushing it beyond what I could have achieved alone. The care with which they
engaged with my research speaks to their generosity and the value of collaborative
thinking.

All in all, I feel incredibly lucky.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Literature Review 7
2.1 Large Language Models (LLM) . 7
2.2 Microtasks and Prompt Chaining . 8
2.3 Human-AI Collaboration in Creative Writing and Incipits 9
2.4 Finite State Machines with Stack-Based Control 11

3 System Architecture and Design 13
3.1 Overview of CreatAIlity Architecture 13
3.2 Design of the CreatAIlity Framework for Storytelling 14

3.2.1 Integration with LLMs and Prompt Chaining 14
Microtasks and Prompt Chaining 14
Utilizing Incipits . 16
Prompt Chaining . 16
Modular and Flexible Design . 16

3.2.2 Resource-based State Management 16
Resource Definition . 16
State Transitions . 17

3.2.3 Stack-based Control Mechanism 17
State Stack . 17

3.3 Framework Modules Description and Specification 18
3.3.1 Core Library . 19

Input-Output Handling Module 19
LLM Handling Module . 24
State Machine Module . 24
Management Module . 29
AppConfig Module . 35
EventBroker Module . 36
Logging Module . 36

3.3.2 Application Development Facilities 37
State Update Handlers Module 37
WebSocket and Flask Bootstrapping Module 38
Tk Bootstrapping Module . 38
Tk Debug Window Bootstrapping Module 39

3.4 Future Work . 39
3.4.1 Enhanced Testing Strategies . 39

Unit Testing . 40

viii

Integration Testing . 40
Performance Testing . 40

3.4.2 Improved Error Handling and Fault Tolerance 40
Error Handling . 40
Fault Tolerance . 40

3.4.3 Scalability and Performance Optimization 40
Scalability Considerations . 41
Performance Optimization . 41

3.4.4 Security Enhancements . 41
Data Security . 41
Access Control . 41

3.4.5 Proof of Concept Considerations 41
3.5 Conclusion . 42

4 Implementation and Evaluation 43
4.1 Framework Implementation . 43

4.1.1 Technical Choices . 43
4.1.2 Challenges and Limitations . 44

Architecture . 44
Programming Language and Development Process 45
Large Language Model . 46

4.1.3 Code Metrics . 48
4.2 StoryBuilder PoC Application . 48

4.2.1 Application Overview . 48
4.2.2 Developer Responsibilities . 48

User Interface Development . 49
4.2.3 State/Resource and Behavior Design 49
4.2.4 Interfaces and Interaction . 52

Console . 52
Desktop . 52
Web . 56

4.3 Evaluation . 57
4.3.1 Methodology . 57
4.3.2 Evaluation Tools . 58

System Usability Scale (SUS) . 58
Game Experience Questionnaire (GEQ) 59
NASA Task Load Index (NASA-TLX) 59

4.4 Results and Discussion . 60
4.4.1 System Usability Scale (SUS) . 60

SUS Score Summary . 60
Interpretation of SUS Items . 60
Overall Interpretation . 61
Final Notes . 61

4.4.2 Game Experience Questionnaire (GEQ) 62
GEQ Dimensions Score Summary 63
Interpretation of GEQ Dimensions 63
Overall Interpretation . 64
Final Notes . 64

4.4.3 NASA Task Load Index (NASA-TLX) 65
NASA-TLX Score Summary . 66
Interpretation of NASA-TLX Dimensions 66

ix

Overall Interpretation . 67
Final Notes . 67

5 Conclusion 69
5.1 Summary of Achievements . 69
5.2 Contributions to the Field . 69
5.3 Future Research Directions . 70
5.4 Potential Impact . 70
5.5 Practical Applications . 71
5.6 Final Notes . 71

A CreatAIlity Framework and PoC Application Code Metrics 73
A.1 Raw Metrics . 73
A.2 Cyclomatic Complexity . 73
A.3 Maintainability Index . 75

B Evaluation Questionnaires 77
B.1 System Usability Scale (SUS) . 77
B.2 Game Experience Questionnaire (GEQ) 78
B.3 NASA Task Load Index (NASA-TLX) 78

Bibliography 81

xi

List of Figures

3.1 CreatAIlity i* model (Dependencies kept on Actors for clarity) 15
3.2 Core Modules and Abstractions . 18
3.3 Event Broker Module Connections . 18
3.4 Event Types, Messages and Responses 18
3.5 IO Input Module Class Diagram . 20
3.6 IO Input Module Events Class Diagram 21
3.7 IO Output Module Class Diagram . 22
3.8 IO Output Module Events Class Diagram 23
3.9 LLM Module Class Diagram . 25
3.10 LLM Module Events Class Diagram . 26
3.11 State Machine Module Class Diagram 27
3.12 State Machine Module Events Class Diagram 28
3.13 State Manager Coordinator, Subordinate Managers and Event Broker

Class Diagram . 30
3.14 State Manager Coordinator, Subordinate Managers and Event Broker

Events Class Diagram . 31

4.3 StoryBuilder Console Application . 52
4.1 State diagram for Storybuilder PoC . 53
4.2 Resource flow diagram for Storybuilder PoC 54
4.4 StoryBuilder Desktop (Tk) Application 55
4.5 StoryBuilder Desktop (Tk) Application Debug Window 56
4.6 StoryBuilder Web Application . 57
4.7 StoryBuilder Web Application Debug Modal 57
4.8 SUS Score Distribution . 62
4.9 SUS Response Proportion . 62
4.10 GEQ Score Radar . 65
4.11 GEQ Mean-Deviation Radar . 65
4.12 NASA-TLX Score Dimensions . 67

xiii

List of Tables

4.1 Summary of SUS Score and Standard Deviation 60
4.2 Associated Question Items and GEQ Dimensions Scores 63
4.3 Breakdown of Mean Scores and Standard Deviations for NASA-TLX

Dimensions . 66

A.1 Raw Metrics Summary . 73
A.2 Cyclomatic Complexity Reference Risk Levels (Lacchia, n.d.) 73
A.3 Cyclomatic Complexity Scores for Classes 74
A.4 Maintainability Index Reference Table (Lacchia, n.d.) 75
A.5 Maintainability Index Scores for CreatAIlity and PoC Applications . . 75

B.1 System Usability Scale Evaluation Statements 77
B.2 System Usability Scale Evaluation Answers 77
B.3 Game Experience Questionnaire Evaluation Statements 78
B.4 Game Experience Questionnaire Evaluation Answers 78
B.5 NASA Task Load Index Evaluation Questions 78
B.6 NASA Task Load Index Evaluation Answers 79

xv

To my wife, Cris, and my son, Theo. Your love, encouragement,
and unwavering belief in me have been my greatest sources of

strength and inspiration.
To my parents, who invested in their children and believed that

we could achieve even more than they did - your values and
love have shaped everything I am today.

1

Chapter 1

Introduction

The advent of large language models (LLMs) has revolutionized natural language
processing (NLP), enabling a wide range of applications from automated content
generation to advanced conversational agents (Lin, 2024). Among these, the poten-
tial for LLMs to enhance educational tools is particularly promising. The integra-
tion of LLMs and AI in education enhances the learning experience by providing
personalized and immediate feedback, supporting student-teacher interactions, and
facilitating communication. These tools can answer routine student queries, help in
understanding course material, and even provide support during online and hybrid
learning models. AI-powered educational tools can customize learning experiences
based on individual student needs, preferences, and abilities, thereby enhancing stu-
dent engagement, motivation, and the overall quality of learning (Kooli, 2023; Chen,
Chen, and Lin, 2020).

In the context of education and child development, storytelling is a critical compo-
nent of early childhood education as it fosters creativity, language development, and
cognitive skills (Nack and Gordon, 2016). While traditional storytelling methods are
effective, they could also be significantly enhanced through interactive and adap-
tive technologies (Lin, 2024). According to Sawyer, 2003 and Addone, Palmieri, and
Pellegrino, 2022, engaging in storytelling allows children to experiment with lan-
guage, expand their vocabulary, and develop narrative skills that are essential for
literacy. Additionally, storytelling stimulates imaginative thinking, enabling chil-
dren to create and explore new worlds, which enhances their cognitive flexibility
and problem-solving abilities. This process of creating and organizing stories helps
children understand and internalize the structure of narratives, promoting better
comprehension and communication skills.

Storytelling, particularly interactive storytelling, also plays a crucial role in the socio-
emotional development of children. Engaging in narrative creation and enactment
allows children to understand and express emotions, enhancing their social compe-
tence and emotional recognition. Tools like the Tales Toolkit provide a structured
yet flexible framework for children to explore various scenarios and emotions in
a safe environment. Studies have shown that such interactive storytelling activi-
ties significantly boost children’s school readiness, social competence, and overall
socio-emotional skills, which are essential for their academic success and personal
development (Jones Bartoli, 2018).

Interactive storytelling supports high-quality interactions between children and their
peers or adults, which is essential for developing social-emotional skills. These in-
teractions help children learn to express themselves, listen to others, and understand

2 Chapter 1. Introduction

different perspectives. Oral storytelling, in particular, has been shown to foster emo-
tional literacy and empathy by allowing children to identify with characters and sit-
uations, thereby gaining deeper insights into their own and others’ emotional states
(Hibbin, 2016). This process helps children build a stronger sense of identity and
emotional regulation, which are foundational for their future social and academic
endeavors. Technology-enhanced interactive storytelling further engages children,
providing immersive and interactive experiences that support their socio-emotional
development by facilitating emotion regulation and empathy in a practical, engag-
ing manner (Catala, Gijlers, and Visser, 2023).

The use of templates (incipits) in storytelling tools provides a methodical yet flexible
framework that can guide children through the process of narrative creation. Ac-
cording to Addone, Palmieri, and Pellegrino, 2022, templates serve as scaffolding
resources that support both educators and learners by providing a starting point for
story creation. This approach not only helps children who might struggle to start
a story but also encourages them to think creatively within a structured environ-
ment. The study highlighted that these incipits can significantly enhance children’s
engagement and creativity by offering initial prompts and allowing for individual
or collaborative story development.

However, leveraging LLMs for structured tasks such as story generation presents
unique challenges. One of the primary issues is the inherent non-determinism of
LLMs, which can lead to inconsistent and unpredictable outputs (Ouyang et al.,
2023; Lin, 2024). This unpredictability is problematic in any systematic scenario,
especially in educational contexts where coherence and structure are essential. In
educational storytelling, maintaining a coherent narrative is crucial for both engage-
ment and cognitive development. Inconsistent outputs can disrupt the flow of the
story, making it difficult for children to follow and engage with the narrative. Fur-
thermore, unpredictability can undermine the educational goals of storytelling, such
as teaching narrative structure, logical progression, and cause-and-effect relation-
ships.

Given the challenges posed by the non-deterministic nature of LLMs in structured
tasks like story generation, it becomes imperative to find methods that can harness
their creative potential while ensuring consistency and coherence. This necessity is
especially pronounced in educational contexts, where the primary goal is to foster
an organized and engaging learning environment. To start, integrating some control
technique which is able to ensure steps and how to transit between them can play
an important part in ensuring consistency. Finite state machines (FSMs) with LLMs
could offer a promising solution, providing a structured backbone for a framework
that guides the narrative flow while harnessing the generative power of LLMs (Liu
et al., 2024; Alagar and Periyasamy, 2011).

The FSM implementation discussed uses a requires/provides approach to dynami-
cally link states based on their dependencies and outputs. This method ensures that
each state is entered only when all its required resources are available, promoting a
coherent and logical progression through the storytelling process. By defining clear
dependencies and outputs, the FSM can handle the complexity of narrative creation
in a structured manner. This dynamic linking of states makes the approach highly
suitable for educational applications, as it provides a robust framework for guiding
users through the creation process while maintaining consistency and coherence in
the generated stories. This ensures that each part of the story builds logically on

Chapter 1. Introduction 3

the previous parts, enhancing the overall narrative flow and making it easier for
children to engage with and understand the story.

By leveraging FSMs, one can ensure that each part of the story adheres to a coherent
structure while allowing flexibility within each state. This approach helps main-
tain logical flow and consistency, addressing the non-determinism of LLMs by con-
straining their generative outputs within the predefined states and transitions of the
FSM. This structure supports children’s narrative creativity by providing a guided
yet flexible framework that adapts to their input and keeps the story development
on track (Sklyarov, 1999; Alagar and Periyasamy, 2011).

On another topic, the work of (Wu, Terry, and Cai, 2022) on AI Chains provides ad-
ditional insights into managing the non-determinism of LLMs through the concept
of chaining LLM prompts. Building on the foundational work of Cai, Iqbal, and
Teevan, 2016 in "Chain Reactions: The Impact of Order on Microtask Chains," which
examined how the order of microtasks affects performance and cognitive load, they
have demonstrated how breaking down complex tasks into smaller, manageable
sub-tasks and chaining the outputs together can improve transparency, controlla-
bility, and overall quality of LLM outputs.

In the context of this discussion, this notion of prompt chaining aligns well with
the integration of FSMs, specially when linking with incipits. FSMs can serve as
the structural backbone, ensuring coherence and logical progression in the narra-
tive, while the chaining of smaller, incipits-based prompts can handle the creative
and generative aspects of storytelling. By structuring the interaction as a series of
smaller, well-defined tasks, the guided story building process can guide the narra-
tive development in a controlled manner, enhancing the overall user experience and
ensuring the educational objectives are met.

Despite advancements in NLP and the capabilities of LLMs, a significant gap re-
mains in developing tools that effectively integrate these technologies for structured
educational tasks. The non-deterministic nature of LLMs often results in outputs
that lack coherence and consistency, making them less suitable for applications re-
quiring structured guidance, such as children’s storytelling (Renzi et al., 2023; Tao,
Wei, and Wang, 2008; Gmeiner and Yildirim, 2023). By leveraging FSMs and the
chaining approach, the aim would be to overcome these challenges, providing a re-
liable and engaging storytelling experience.

This work explores the development and validation of "CreatAIlity," a collaborative
storytelling framework designed to foster children’s narrative creativity. By combin-
ing FSMs with the dynamic chaining of microtasks states defined by an incipit and
LLMs, CreatAIlity aims to provide an engaging, interactive, and educational story-
telling tool that supports children in crafting coherent and imaginative narratives
(Renzi et al., 2023; Liu et al., 2024).

By combining FSMs with the principles of incipits and chaining LLM prompts, Cre-
atAIlity not only aims to create a coherent and structured storytelling framework
but also to enhance the transparency and controllability of AI-generated narratives,
thereby significantly improving the educational value and engagement of story-
telling tools for children.

It also addresses the following research problem: How can the integration of FSMs
with LLMs be utilized to create a collaborative storytelling framework that supports

4 Chapter 1. Introduction

children’s narrative creativity while ensuring coherence and consistency in the gen-
erated stories?

The primary objectives of this study are:

1. Design and Implement a Resource-based FSM Framework: Develop a Fi-
nite State Machine (FSM) framework that uses a resource-based approach with
stack-based control to manage the flow and structure of storytelling processes.

2. Integrate Large Language Models (LLMs): Incorporate the use of advanced
LLMs, specifically the Ollama Llama3 model, to generate creative content within
the storytelling framework.

3. Utilize Prompt Chaining and Microtasks: Implement the technique of chain-
ing LLM prompts and decomposing tasks into microtasks to enhance coher-
ence, manage complexity, and improve the quality of generated narratives.

4. Develop a Proof-of-Concept Application: Create a functional proof-of-concept
(PoC) application that demonstrates the practical implementation of the resource-
based FSM and its integration with LLMs for storytelling.

5. Evaluate System Performance and Usability: Assess the performance, usabil-
ity, and educational value of the PoC application through user testing and feed-
back, ensuring it meets the objectives of fostering creativity and supporting
narrative development in children.

6. Ensure Educational Alignment: Align the storytelling framework with edu-
cational goals, ensuring that the generated narratives support language devel-
opment, cognitive skills, and socio-emotional growth in children.

7. Document and Share Findings: Provide comprehensive documentation of the
development process, system architecture, and findings, including a detailed
description of the code and setup instructions, to facilitate replication and fur-
ther research.

8. Explore Modularity and Extensibility: Demonstrate the modularity and ex-
tensibility of the framework, showing how it can be adapted or extended to
accommodate new storytelling elements, educational goals, or technological
advancements.

This study contributes to the fields of NLP, educational technology, and interactive
storytelling in several ways:

• Novel Resource-based FSM Framework: Introduces a novel Resource-based
Finite State Machine (FSM) framework with stack-based control that effec-
tively manages the flow and structure of interactive storytelling processes.

• Integration of LLMs in Structured Frameworks: Demonstrates the integra-
tion of advanced Large Language Models (LLMs), specifically the Ollama Llama3
model, within a structured FSM framework to generate coherent and creative
narratives.

• Application of Prompt Chaining and Microtasks: Applies the technique of
chaining LLM prompts and decomposing tasks into microtasks, enhancing the
coherence and manageability of complex storytelling tasks.

Chapter 1. Introduction 5

• Development of a PoC Application: Provides a proof-of-concept (PoC) appli-
cation that showcases the practical implementation and benefits of the resource-
based FSM approach in interactive storytelling.

• Contribution to Educational Technology: Enhances the field of educational
technology by developing a tool that aligns storytelling with pedagogical ob-
jectives, supporting personalized and engaging learning experiences.

• Modularity and Extensibility: Highlights the modular and extensible nature
of the framework, showing its adaptability to various storytelling contexts,
educational goals, and future technological advancements.

• Comprehensive Documentation and Accessibility: Provides thorough docu-
mentation and open-source code, facilitating replication, further research, and
practical application by educators, developers, and researchers.

The remainder of this thesis is organized as follows:

• Chapter 2: Literature Review - This chapter reviews relevant literature on
LLMs, FSMs, microtask/prompt-chaining and interactive storytelling systems,
building the basis for the System Architecture and Design.

• Chapter 3: System Architecture and Design - This chapter provides an in-depth
look at the architecture and design of CreatAIlity, including the FSM design
and LLM-Prompt-Incipits integration.

• Chapter 4: Implementation and Evaluation - This chapter outlines the devel-
opment process of CreatAIlity, detailing the technical aspects, challenges en-
countered, and solutions implemented during the creation of the framework.
Also, it describes the methodology for evaluating CreatAIlity, including met-
rics, and analysis of the results.

• Chapter 5: Conclusions - This chapter summarizes the key findings, highlights
the achievements of the study, and provides future research directions.

• Appendices - The appendices include supplementary materials such as user
testing protocols, sample prompts and outputs, technical documentation, and
additional resources relevant to the study.

7

Chapter 2

Literature Review

2.1 Large Language Models (LLM)

Large language models (LLMs) have transformed natural language processing (NLP),
enabling applications like automated content generation and conversational agents.
Models like GPT-3 and GPT-4, pretrained on vast datasets, excel in tasks such as
translation, question answering, and creative writing. Their ability to generate co-
herent and contextually relevant text has opened up new possibilities in various do-
mains, including education and creative industries (Lin, 2024; Wu, Terry, and Cai,
2022).

LLMs have significant potential in enhancing educational tools, particularly in sto-
rytelling, a critical aspect of early childhood education that promotes creativity,
language development, and cognitive skills (Nack and Gordon, 2016). Traditional
storytelling methods can be augmented with interactive technologies powered by
LLMs, which generate engaging and contextually appropriate stories, adapting to
children’s interests and responses for a personalized learning experience. This capa-
bility has the potential to revolutionize educational content delivery, making it more
engaging and effective.

LLMs are also being showed valuable in collaborative creative work. Projects like
CoAuthor (Lee, Liang, and Yang, 2022) and Dramatron (Mirowski et al., 2023) demon-
strate how LLMs can assist human writers by generating initial drafts, providing
prompts, and co-writing long-form texts such as screenplays. These models help
overcome writer’s block and enhance the creative process by suggesting diverse nar-
rative directions, making them useful tools for authors, screenwriters, and content
creators.

On the other hand, these tools are not concerned with following a structured process.
When this is the case, the inherent non-determinism large language models exhibit
(Ouyang et al., 2023), must be taken into account. This non-determinism means they
can produce different outputs even when given the same input prompt.

Part of the stochastic nature of LLMs stems from their design to predict the probabil-
ity of the next word or token based on the context provided by preceding text. This
probabilistic approach is integral to their ability to generate human-like text but also
introduces randomness into the output by being influenced by probabilistic sam-
pling methods such as top-k sampling or nucleus sampling (Ouyang et al., 2023). In
practical terms, this means that running the same prompt through an LLM multiple
times can result in a variety of responses, each potentially differing in both content
and quality.

8 Chapter 2. Literature Review

But there is also a variability factor being introduced by hardware processes and
even by the model design (Riach, 2019; OpenAI Platform n.d.). As a result, identical
instructions can yield diverse and unpredictable responses, which poses significant
challenges in applications requiring consistency and reliability.

Empirical studies on LLMs, such as those conducted on ChatGPT for code gener-
ation tasks, have highlighted the extent of this non-determinism. For example, an
analysis of ChatGPT’s performance across multiple benchmarks revealed high de-
grees of non-determinism, with significant variations in the outputs generated from
identical prompts. The study found that setting the temperature parameter to zero,
which is commonly believed to reduce randomness, does not eliminate this effect en-
tirely. This underscores the challenge of achieving consistent behavior from LLMs:
even under controlled conditions, complete determinism is not achievable. (Ouyang
et al., 2023)

This non-determinism is clearly and particularly problematic in contexts where con-
sistent and reliable steps and outputs are crucial. For instance, in educational tools
aimed at storytelling, the inconsistency of LLM outputs can disrupt the narrative
building flow, making it difficult to maintain a coherent story building structure.
This unpredictability can confuse users, especially children, who rely on stable and
logical progression in educational content.

In the context of developing educational storytelling tools, such as "CreatAIlity",
which aim to foster children’s narrative creativity while ensuring coherence, under-
standing and managing the non-determinism of LLMs is crucial.

To mitigate the effects of non-determinism, literature shows some approaches such
as using smaller, more focused prompts have shown promise[CITE]. By narrowing
the scope of a prompt, the range of possible outputs can be constrained, leading to
more relevant and coherent output generation.

Additionally, implementing a hierarchical structure that guides the narrative build-
ing flow can help mitigate the unpredictability of LLM outputs, ensuring that the
process of coauthoring stories remain coherent and educationally valuable. This
structured approach has the potential to not only address the non-determinism but
also to enhance the user experience by providing a reliable and engaging storytelling
framework.

2.2 Microtasks and Prompt Chaining

Microtasking has been shown to significantly enhance productivity by breaking down
larger tasks into smaller, manageable units. This approach has been successfully ap-
plied in various domains, including humor generation and writing, where tasks are
decomposed into microtasks to streamline the creative process and manage cogni-
tive load (Teevan et al., 2016). The notion of chaining microtasks, as discussed by
Cai, Iqbal, and Teevan, 2016, emphasizes the impact of task order on efficiency and
continuity, further supporting the structured progression in complex workflows.

Cai, Iqbal, and Teevan, 2016 highlighted the importance of task ordering in mi-
crotask chains, demonstrating how the sequence and complexity of tasks influence
overall productivity and cognitive load. These findings underscore the relevance of
carefully structuring microtasks within FSM states to optimize the storytelling pro-
cess and maintain narrative coherence.

2.3. Human-AI Collaboration in Creative Writing and Incipits 9

Task decomposition is a crucial aspect of microproductivity, enabling individuals to
complete complex tasks through a series of smaller, well-defined steps. The struc-
tured approach of microtasking, ensures that each microtask contributes meaning-
fully to the overall task while maintaining coherence and consistency throughout
the whole process.

The HumorTools (Chilton, Landay, and Weld, 2016) system exemplifies the applica-
tion of microtasking in creative processes. By dividing humor writing into discrete
microtasks, such as identifying aspects, generating reactions, and creating associa-
tions, HumorTools provides a structured yet flexible framework that enhances cre-
ativity and productivity. The system’s dynamic workflow, inspired by design princi-
ples, allows tasks to be applied based on context and opportunity, which aligns with
the goals and aims of CreatAIlity.

Moreover, the concept of chaining multiple LLM prompts together, as explored in
the paper "AI Chains: Transparent and Controllable Human-AI Interaction by Chain-
ing Large Language Model Prompts" (Wu, Terry, and Cai, 2022), which explores in-
novative methods to improve human-AI collaboration using large language models
using these borrowed concepts. It addresses key challenges such as the lack of trans-
parency, controllability, and coherence in LLM outputs, especially for complex tasks,
discussing some similar issues faced in this work. As a result, this research aligns
closely with the objectives of the CreatAIlity framework:

• Chaining LLM Prompts: Introduces the concept of chaining multiple LLM
prompts together, where the output of one step becomes the input for the next.
This approach helps in breaking down complex tasks into manageable sub-
tasks, improving task outcomes by ensuring each sub-task is handled effec-
tively by the LLM.

• Transparency and Controllability: By visualizing the chain of prompts and al-
lowing users to modify and interact with each step, the system enhances trans-
parency and gives users greater control over the LLM’s outputs. This method
helps users understand how the AI arrives at its results, making the interaction
more predictable and user-friendly.

• Improved Collaboration: The chaining approach encourages a more collabora-
tive interaction between humans and AI, where users can iteratively refine and
improve the AI-generated content. This process fosters a sense of partnership
and shared authorship.

• Modular Design: The modular design of chaining LLM prompts allows for
flexible customization and adaptation of the AI to various sub-tasks, enhanc-
ing its applicability across different domains and tasks.

2.3 Human-AI Collaboration in Creative Writing and Incip-
its

Since the 1990s, storytelling has garnered significant interest within the Human-
Computer Interaction (HCI), Interaction Design and Children (IDC), and Artificial
Intelligence (AI) communities. Researchers have explored how interactivity can en-
hance engagement, enjoyment, and fun in storytelling, thereby fostering new av-
enues for children’s creativity. These efforts aim to amplify the educational benefits
of traditional storytelling methods by integrating interactive elements that make the

10 Chapter 2. Literature Review

experience more dynamic and engaging for young audiences (Garzotto, Paolini, and
Sabiescu, 2010).

The landscape of Human-AI collaboration in creative writing has significantly evolved
with the advent of large language models (LLMs) like GPT-3, GPT-4, and others.
These models have been used in various creative domains, including scriptwriting,
storytelling, and collaborative fiction. Projects such as CoAuthor and Dramatron il-
lustrate how LLMs can assist human writers by generating initial drafts, providing
prompts, and even co-writing long-form texts like screenplays and theatre scripts
(Lu et al., 2024; Mirowski et al., 2023; Lee, Liang, and Yang, 2022).

CoAuthor focuses on creating a dataset designed for human-AI collaborative writ-
ing, capturing interactions between writers and GPT-3 across various writing ses-
sions. The dataset helps in understanding the generative capabilities of LLMs, their
influence on human writing, and the collaborative dynamics between humans and
AI. Researchers found that LLMs could provide new ideas and enhance the creative
process, but also noted challenges in ownership and satisfaction among writers (Lee,
Liang, and Yang, 2022).

Dramatron, an interactive co-writing tool that uses hierarchical story generation
techniques to assist in writing scripts and screenplays. By using structured prompts
and generating text hierarchically, Dramatron helps maintain coherence over long
narratives, addressing one of the key limitations of flat text generation by LLMs.
The project involved industry professionals who provided feedback that helped re-
fine the tool, emphasizing the importance of domain-specific expertise in developing
such systems (Mirowski et al., 2023).

The integration of large language models (LLMs) into creative writing has opened
new possibilities for enhancing narrative construction and storytelling. One signif-
icant advancement in this area is the use of incipits (Addone, Palmieri, and Pelle-
grino, 2022), or story starters, which provide a structured yet flexible framework to
guide writers through the narrative creation process. Incipits serve as scaffolding re-
sources that support both educators and learners by offering initial prompts that can
spark creativity and guide the development of stories. This method has been shown
to significantly enhance children’s engagement and creativity by providing a clear
starting point while allowing for individual or collaborative story development.

LLMs have revolutionized creative writing by offering various capabilities such as
text summarization, paraphrasing, elaboration, dialogue generation, and story seed-
ing (Gmeiner and Yildirim, 2023). These capabilities can be utilized in conjunction
with incipits to create a robust framework for narrative development. For example,
an LLM can generate initial story ideas based on a given incipit, which children can
then expand and personalize. This collaborative process not only fosters creativity
but also supports language development and cognitive skills.

The combination of LLMs and incipits creates a collaborative framework that ensures
coherence and consistency in generated stories. This integration allows for a guided
storytelling process where each part of the story adheres to a coherent structure,
while still allowing for creative input from the children. This structured approach
helps maintain logical flow and supports children’s narrative creativity by provid-
ing a guided yet flexible framework that adapts to their input and keeps the story
development on track.

2.4. Finite State Machines with Stack-Based Control 11

Interactive storytelling tools, such as those described in the literature, support edu-
cators and learners in inventing and authoring stories. These tools provide digital
learning environments where children can start with default templates or teacher-
defined incipits and continue the story using a clear and concise interface. Such tools
often include features like image libraries and word clouds to inspire creativity and
help overcome writer’s block (Addone, Palmieri, and Pellegrino, 2022). Some of
these features can even be provided by the LLM, without the need for additional
material or input other than the user interaction and prompt design.

By leveraging the structured approach of incipits and the generative capabilities of
LLMs, storytelling tools can offer a structured yet flexible framework that supports
narrative creativity while ensuring coherence and consistency in the generated sto-
ries. The combination of digital tools and traditional storytelling methods offers
new opportunities for children to explore their creativity and develop their narra-
tive skills.

This approach not only enhances the educational value of storytelling tools but also
engages children in the creative writing process, fostering their language develop-
ment, cognitive skills, and socio-emotional growth. By integrating LLMs and incipits
into these tools, educators can provide a more engaging and effective storytelling ex-
perience that supports children’s overall development.

In conclusion, this approach provides a reliable and engaging storytelling experi-
ence that fosters creativity and supports educational objectives. By enhancing the
learning experience for children, these tools have the potential to help them prepare
for future academic and personal success.

2.4 Finite State Machines with Stack-Based Control

Finite State Machines (FSMs) are mathematical models of computation that are used
to design both computer programs and sequential logic circuits. They consist of a
finite number of states, transitions between these states, and actions, which are trig-
gered by inputs and events. FSMs are characterized by their ability to be in exactly
one of a finite number of states at any given time. The system transitions from one
state to another in response to external inputs, and the transitions are governed by a
set of defined rules.

The main characteristics of FSMs include their deterministic nature, where the next
state of the machine is determined by the current state and the input. This determin-
ism ensures predictability and consistency, which are crucial for applications requir-
ing structured and coherent outputs. FSMs can be visualized using state diagrams,
which provide a clear and intuitive representation of the states and transitions, mak-
ing it easier to design and debug complex systems (Alagar and Periyasamy, 2011;
Ehrlinger and Wöß, 2016) and also facilitate building user-friendly visual tools to
implement them.

FSMs are particularly suitable for managing part of the non-determinism inher-
ent in large language models (LLMs) in the context of structured processes, more
specifically collaborative story building. LLMs, while powerful in generating di-
verse and creative text, often produce outputs that lack coherence and consistency.
As noted before, this non-determinism can be problematic in educational contexts,
where structure and reliable content is essential (Liu et al., 2024). By integrating

12 Chapter 2. Literature Review

FSMs with LLMs, a structured framework can be established that guides the narra-
tive flow, ensuring that the story-building process remains coherent and follows a
logical sequence.

Hierarchical Finite State Machines enhance the traditional FSM by introducing a hi-
erarchical structure that organizes states into multiple levels of abstraction. Each
HFSM consists of high-level states, which can encapsulate lower-level sub-states,
enabling a top-down decomposition of complex control processes. This structure
supports modularity and reusability, allowing components to be independently de-
signed and debugged. HFSMs use a stack-based control mechanism, where the cur-
rent state is pushed onto a stack during state transitions, facilitating the management
of nested and recursive state calls. This approach ensures a seamless return to the
previous state after an interruption. Additionally, HFSMs are event-driven, trig-
gering state transitions based on specific events or conditions, which maintains the
logical flow and coherence of processes. Their ability to handle dynamic changes
and interruptions, coupled with their modular and reusable design, makes HFSMs
highly flexible and extensible for various applications (Sklyarov, 1999; Alagar and
Periyasamy, 2011).

Event-driven transitions ensure that state changes occur in response to relevant in-
puts, maintaining the logical flow of the process. In the context of storytelling, events
such as user choices, generated prompts, or predefined conditions trigger transitions
between different story phases and sub-states. This event-driven approach ensures
that the narrative progresses logically and coherently, supporting the user’s under-
standing and engagement. By providing a structured yet flexible framework, FSM
helps users develop their narrative creativity while adhering to educational objec-
tives.

However, HFSMs can introduce unnecessary complexities for certain applications,
such as educational storytelling, where a simpler and more streamlined approach
may be more effective. The hierarchical nature and extensive control mechanisms
of HFSMs, while beneficial for highly complex systems, can add layers of abstrac-
tion that may not be needed for guiding narrative development in a structured yet
flexible manner. Nonetheless, some concepts addressing FSM limitations can be bor-
rowed to improve FSMs for specific uses.

The modular and reusable design of the FSM enhances extensibility and flexibility.
Individual states and transitions can be designed as independent modules, facilitat-
ing their reuse in different contexts, tools, or processes. This modularity allows de-
velopers to easily extend or modify the framework to accommodate new elements or
goals. For example, new story phases or sub-states can be added without disrupting
the existing structure, ensuring that the tool remains adaptable to evolving needs.
This flexibility supports continuous improvement and customization, ensuring that
it remains an effective and engaging educational tool.

13

Chapter 3

System Architecture and Design

Building on the concepts and objectives outlined in the previous sections, this sec-
tion establishes the requirements, constraints, and definitions that guided the design
phase of CreatAIlity. Following this, a detailed modeling and description of the im-
plementation of its modules and components is provided.

3.1 Overview of CreatAIlity Architecture

The CreatAIlity framework integrates the structured control of Finite State Machines
(FSM) with the creative capabilities of Large Language Models (LLMs) to manage
narrative building. The FSM provides a backbone for the narrative structure, en-
suring logical progression and educational coherence, while LLMs generate creative
content. By chaining LLM prompts into microtasks, the system maintains coherence
and manages complexity, enhancing storytelling capabilities for children.

FSMs ensure the logical and educational flow of the narrative, adhering to prede-
fined goals and arcs. LLMs add creativity and variability, engaging children and
supporting their narrative creativity. This dual approach balances creativity with
structure, providing a coherent and educational storytelling experience (Alagar and
Periyasamy, 2011; Mishra et al., 2019; Yang and Tiddi, 2020).

In this architecture, information handling is crucial. Each state or step uses and pro-
vides information, creating a dependency chain. The Resource-Based FSM approach
defines states by the resources they need and provide, ensuring states execute only
when all required resources are available. This promotes a coherent progression
through the narrative.

A stack-based control mechanism manages state transitions, handling nested and re-
cursive state calls effectively. This ensures continuity, allowing the system to return
seamlessly to previous states after completing nested states. The system iteratively
searches for states that can provide the necessary resources, pushing states into the
execution stack until the final resource provider is reached.

Microtasks and prompt chaining break down the narrative generation process into
manageable tasks, ensuring focus and coherence. Each microtask, associated with a
state machine step, handles specific aspects of the story, such as setting descriptions,
character introductions, or plot developments. These tasks are linked in a chain,
where each task’s output serves as the input for the next task. This method ensures
that the narrative remains structured while allowing for creative input at each stage.

14 Chapter 3. System Architecture and Design

Incipits are materialized by both the initial prompting given by the application de-
signer for a state and the LLM suggestions during the chat, influenced by the given
prompt. This approach guides narrative creation, maintaining structure while al-
lowing creative input from both the LLM and the child. The final content is sum-
marized and extracted from outputs using techniques such as prompt instructions
and regexes. These outputs then become resources, stored in the state machine’s
memory and usable by other states.

In a nutshell, by combining a stack-controlled, resource-based FSM with prompt
chaining, the framework mitigates the unpredictability of LLM outputs by focusing
each task in a more atomic format. Each FSM state represents a story part, such
as the introduction, conflict, or resolution, with transitions triggered by resource
dependencies generated by user interactions and choices. These dependencies are
extracted and fed into subsequent states as needed. This structured approach en-
sures that the overall story remains coherent and aligned with educational objec-
tives, effectively integrating advanced NLP technologies into practical educational
tools (Ehrlinger and Wöß, 2016; Mishra et al., 2019).

3.2 Design of the CreatAIlity Framework for Storytelling

The conceptualization of CreatAIlity encompasses a wide array of modules and
functionalities. Central to the design of this framework are the concepts of prompt
chaining, microtasks, and incipits, which play a pivotal role in shaping the tool’s ar-
chitecture. These elements, along with their specific characteristics and goals, must
be carefully considered when designing the framework.

Additionally, modules that facilitate seamless user interaction, control and execu-
tion, application state persistence, resource management, and LLM integration are
fundamental to CreatAIlity’s core functionality. Furthermore, robust debugging
tools should be incorporated to provide developers with enhanced visibility and
control during application development. An i* (Pimentel et al., 2019) model illus-
trating these concepts is presented in 3.1.

3.2.1 Integration with LLMs and Prompt Chaining

To enhance creativity and manage LLM generative capabilities, the CreatAIlity frame-
work integrates prompt chaining and microtasking techniques into its design. These
approaches break down the narrative generation process into smaller, manageable
tasks, each handled by the LLM with focused prompts. This ensures coherent and
creative outputs while maintaining control over the narrative flow.

Microtasks and Prompt Chaining

Microtasking breaks down narrative generation into smaller tasks, each handling a
specific narrative element. These tasks are chained together, with each task’s output
serving as the input for the next task. This structured approach enhances coherence
and consistency in the storytelling process and aims to motivate application devel-
opers to break-down the process into smaller parts.

3.2. Design of the CreatAIlity Framework for Storytelling 15

U
se
r

S
to
ry
bu
ild
er

D
ev
el
op
er

C
re
at
A
Ili
ty

F
ra
m
ew
or
k

S
to
ry
bu
ild
er

A
pp

B
u

ild
 a

 s
to

ry

In
p

u
t

id
ea

s
Im

ag
in

at
io

n
an

d
 c

re
at

iv
it

y

In
te

ra
ct

 w
it

h
 t

h
e

S
to

ry
b

u
ild

er
 A

p
p

In
te

ra
ct

iv
e

U
I

co
m

p
o

n
en

ts

M
ak

e
d

ec
is

io
n

s

C
re

at
e

a
ch

ild
-f

o
cu

se
d

st
o

ry
te

lli
n

g
 a

p
p

U
ti

liz
e

C
re

at
A

Ili
ty

’s
ab

st
ra

ct
io

n
s

an
d

p
ro

ce
ss

es

E
n

su
re

cr
o

ss
-p

la
tf

o
rm

co
m

p
at

ib
ili

ty

U
I c

o
m

p
o

n
en

ts
fr

o
m

 C
re

at
A

Ili
ty

C
re

at
A

Ili
ty

 A
P

I

D
ef

in
e

th
e

st
o

ry
te

lli
n

g
p

ro
ce

ss

C
u

st
o

m
iz

e
U

I
fo

r
ch

ild
in

te
ra

ct
io

n

Ty
p

ic
al

S
to

ry
b

u
ild

in
g

S
te

p
s

P
ro

vi
d

e
m

u
lt

i-
p

la
tf

o
rm

U
I a

b
st

ra
ct

io
n

s
E

n
ab

le
 s

ta
te

p
er

si
st

en
ce

F
ac

ili
ta

te
 F

S
M

 (
F

in
it

e
S

ta
te

 M
ac

h
in

e)
m

an
ag

em
en

t

S
u

p
p

o
rt

 r
es

o
u

rc
e

m
an

ag
em

en
t

(r
eq

u
ir

ed
 a

n
d

p
ro

vi
d

ed
 b

y
st

at
es

)
In

te
g

ra
te

 L
L

M
 (

L
ar

g
e

L
an

g
u

ag
e

M
o

d
el

)
ca

p
ab

ili
ti

es

C
o

m
p

o
n

en
t

in
te

rc
o

m
m

u
n

ic
at

io
n

U
I

co
m

p
o

n
en

ts

F
S

M
 S

ta
te

Te
m

p
la

te
s

L
L

M
 A

P
I

en
d

p
o

in
ts

E
ve

n
t

b
ro

ke
r

in
te

rf
ac

e

R
es

o
u

rc
es

H
an

d
le

 s
ta

te
tr

an
si

ti
o

n
s

H
an

d
le

 r
es

o
u

rc
e

C
R

U
D

E
ve

n
t

B
ro

ke
ri

n
g

P
er

si
st

E
xe

cu
ti

o
n

S
ta

te

R
es

u
m

e
E

xe
cu

ti
o

n

P
ro

vi
d

e
A

P
I's

an
d

 F
ac

ili
ti

es

E
xe

cu
ti

o
n

S
ta

te

C
h

at
w

it
h

L
L

M
W

ri
te

 c
o

n
te

n
t

to
 o

u
tp

u
t

R
ea

d
 c

o
n

te
n

t
fr

o
m

 in
p

u
t

P
ro

d
u

ce
 a

co
n

te
n

t
fr

o
m

in
st

ru
ct

io
n

F
ac

ili
ta

te
 c

o
lla

b
o

ra
ti

ve
st

o
ry

 c
re

at
io

n
 w

it
h

 c
h

ild
re

n

C
h

ild
 in

p
u

t
L

L
M

-g
en

er
at

ed
co

n
te

n
t

S
to

ry
b

u
ild

in
g

S
ta

te
Te

m
p

la
te

G
u

id
e

ch
ild

th
ro

u
g

h
 s

to
ry

cr
ea

ti
o

n
 p

ro
ce

ss

E
xe

cu
te

 s
ta

te
 lo

g
ic

an
d

 r
es

o
u

rc
es

 b
as

ed
o

n
 c

h
ild

 in
p

u
t

U
I

C
o

m
p

o
n

en
ts

P
ro

vi
d

e
D

eb
u

g
F

ac
ili

ti
es

B
in

d
co

m
p

o
n

en
ts

 t
o

C
ri

ti
ca

l I
n

fo

E
xe

cu
ti

o
n

L
o

g
s

L
o

g
 E

xe
cu

ti
o

n

U
se

r
In

p
u

t

In
te

ra
ct

io
n

F
ee

d
b

ac
k

L
L

M
 C

al
ls

R
es

o
u

rc
e

M
an

ag
em

en
t

A
p

p
 S

ta
te

P
er

si
st

en
ce

A
P

Is

F
S

M
M

an
ag

em
en

t

L
o

ad
 A

p
p

S
ta

te

G
en

er
at

e
L

L
M

C
o

n
te

n
t

FI
G

U
R

E
3.

1:
C

re
at

A
Il

it
y

i*
m

od
el

(D
ep

en
de

nc
ie

s
ke

pt
on

A
ct

or
s

fo
r

cl
ar

it
y)

16 Chapter 3. System Architecture and Design

Utilizing Incipits

Incipits are the initial prompts that guide Large Language Models (LLMs) in gener-
ating relevant content. These prompts also serve as incipits during user interactions
with the LLM, helping to initiate and structure the conversation. Careful design of
these initial prompts is crucial to ensure that the LLM offers appropriate suggestions
throughout the dialogue. Additionally, it is possible to instruct the LLM to generate
explicit incipits based on user input or previously generated content. For example,
after the user defines a theme, the LLM could be directed to provide a partial starting
sentence to help the user begin their narrative.

Structured incipits play a key role in ensuring that each microtask remains focused,
aligning the generated content with the overall structure of the story. Moreover,
incipits can be used as suggestions provided by the LLM during the conversation to
facilitate storytelling, helping to maintain coherence and direction throughout the
narrative.

Prompt Chaining

Prompt chaining in the CreatAIlity framework enhances the storytelling process by
ensuring that each generated output logically and creatively builds upon the pre-
vious one. By breaking down the narrative into smaller, manageable microtasks,
each associated with specific prompts or incipits, the system can guide the LLM to
produce focused and coherent content at every step. The resource-based strategy
ensures that each step is supplied with all necessary resources for its prompting and
processing logic.

This approach minimizes the risk of off-topic or inconsistent outputs, as each prompt
is carefully designed to align with the overarching story structure. Prompt chaining
allows for dynamic adaptation and customization, making it easier to incorporate
user interactions and developments while maintaining a continuous and cohesive
narrative flow.

Modular and Flexible Design

The modular design of chaining LLM prompts enables flexible customization and
adaptation. Each FSM state can be linked to specific incipits and microtasks, stream-
lining complex storytelling workflows, ensuring relevant and coherent LLM out-
puts, and guiding the user to provide targeted inputs.

3.2.2 Resource-based State Management

The essence of the Resource-based FSM approach lies in defining states by the re-
sources they require and provide. These resources, whether content, flags, or any
data representable in memory, are essential for state execution and are produced as
outcomes of that execution. This method ensures logical and coherent narrative pro-
gression by allowing transitions between states only when the necessary resources
are available.

Resource Definition

In CreatAIlity’s FSM, resources can include content such as character introductions,
setting descriptions, plot resolutions, or completion flags for hierarchical grouping

3.2. Design of the CreatAIlity Framework for Storytelling 17

of states that contribute to a larger step. Larger logical steps can be grouped, such as
"Setting Description" and "Character Introduction," which can both be required by a
parent state "Introduction." This parent state binds them together and represents the
completion of a larger state. This setup facilitates dependency relations so that other
states can depend on the parent state instead of each individual child state.

By definition, each state specifies:

• Required Resources: Multiple prerequisites needed for state execution.

• Provided Resource: One Output generated by the state for subsequent states.

While it is possible to provide multiple resources, this goes against the atomicity
aimed for by using microtasks. Limiting the provided resource to one encourages
the application designer to focus on defining the smallest necessary part and com-
posing them effectively.

State Transitions

State transitions depend on the availability of required resources. When a state com-
pletes, it provides resources that are stored in a shared memory. The FSM then
checks if the next states can execute based on the available resources, ensuring a
structured narrative flow. This method guarantees that each state transition is logi-
cal and that the narrative progresses coherently.

It is up to the application developer to define and implement the best way to de-
termine when a state has been completed. Callbacks and events allow the client
application to access relevant information, process it, and signal that it has achieved
its goal. This mechanism can return actions such as dynamically stacking a new
state, as well as creating, updating, or even removing a given resource.

3.2.3 Stack-based Control Mechanism

To manage the desired sequential interactions derived by each state required and
provided resources, the Resource-based FSM employs a stack-based control mech-
anism. This approach handles nested and recursive state calls seamlessly, main-
taining storytelling continuity. By pushing states onto the stack and returning to
previous states after nested ones are completed, the system ensures a smooth and
coherent flow even during complex interactions.

State Stack

The state stack keeps track of states required by the current state (starting with
the initial state) for resource requirements that are not yet available, stacking their
providers and waiting for their completion. When a state execution starts, the FSM
checks if it has all the resources required for execution. If not, the current state is
pushed onto the stack, and the FSM searches for a state that can provide each miss-
ing requirement to become the new current state.

This process is repeated for each new resource dependency-derived tree from the
current state requirements, allowing the system to revert to previous states once their
requirements are met. After completing all necessary stacked states and iteratively
satisfying all requirements, the system resumes the previous state by popping it from

18 Chapter 3. System Architecture and Design

the stack. This mechanism ensures that the narrative flow remains continuous and
contextually accurate.

3.3 Framework Modules Description and Specification

Here the framework modules are described and specified. In figures 3.2, 3.3 and 3.4,
we have an overview of the main modules and their intercommunication.

l i b

a p p

l l m

s m

i o

in p u ts o u tp u ts

s tream in g

StateManager

DebugHandlerResourceManagerStateMachineControllerStatePersistenceManager

EventBroker

AppConfig

BaseLLMHandler

Actions

CREATE
UPDATE
DELETE

Resource ResourceAction

ResourceEncoder ResourceDecoder

StateConfigS tateStateMachine

InputHandlerInterface OutputHandlerInterface

OutputHandlerStreamingCallbackHandler

encodes decodes

m em ory

1

0 ..*

states1
0 ..*

has a

states

0 ..*

has a

FIGURE 3.2: Core Modules and Abstractions

l i b

a p p

s m l l m

i o

in p u ts o u tp u ts

s tream in g

EventBroker

StateMachine BaseLLMHandler InputHandlerInterface OutputHandlerInterface

OutputHandlerStreamingCallbackHandler

emits/subscribesemits/subscribes emits/subscribes emits/subscribes

emits/subscribes

FIGURE 3.3: Event Broker Module Connections

l i b

a p p

s m l l m

i o

in p u ts o u tp u ts

EventMessage EventType EventResponse

ResourceEventTypeResourceEventMessage StateMachineEventTypeStateMachineEventMessage ChatEventMessageLLMCallEventMessage ChatEventResponseChatEventType LLMCallEventType

InputHandlerEventMessage InputHandlerEventType OutputHandlerEventType OutputHandlerStreamingEventTypeOutputHandlerEventMessage OutputHandlerStreamingEventMessage

FIGURE 3.4: Event Types, Messages and Responses

3.3. Framework Modules Description and Specification 19

3.3.1 Core Library

Input-Output Handling Module

Motivation: Different interfaces (console, GUI, web) require specialized methods
for capturing user input and displaying outputs. Abstracting input and output han-
dling allows the application to remain agnostic of the input source, enhancing flex-
ibility and extensibility. This abstraction also facilitates adaptation to different use
cases, extending the system’s basic capabilities.

Input Components (Figs. 3.5 and 3.6)

• InputHandlerInterface: Abstract base class defining methods for handling in-
puts.

• ConsoleInputHandler: Handles input via the console.

• TkinterInputHandler: Handles input via a Tkinter GUI.

• WebSocketInputHandler: Handles input via WebSocket.

Output Components (Figs. 3.7 and 3.8):

• OutputHandlerInterface: Abstract base class defining methods for handling
outputs.

• ConsoleOutputHandler: Displays output in the console.

• TkinterOutputHandler: Displays output in a Tkinter GUI.

• WebSocketOutputHandler: Sends output to a web client via WebSocket.

• StackTkinterOutputHandler: Displays hierarchical or stacked information in
Tkinter.

• StackWebSocketOutputHandler: Displays hierarchical or stacked informa-
tion via WebSocket.

• OutputHandlerStreamingCallbackHandler: Handles streaming callbacks from
the LLM, updating its child (concrete implementation of the output handler)
in real-time.

Requirements:

• Modularity: Should encapsulate each input and output method in its own
class.

• Extensibility: Should allow new input and output methods to be added easily.

• Reusability: Should centralize common functionality to reduce code duplica-
tion.

• Consistency: Should ensure consistent output formatting and behavior across
different interfaces.

• Separation of Concerns: Should separate output logic from business logic.

• Customization: Should allow for customized behavior in different output han-
dlers.

Concerns:

20 Chapter 3. System Architecture and Design

lib

a
p

p

io

in
p

u
ts

E
ve

n
tB

ro
ke

r

In
p

u
tH

a
n

d
le

rIn
te

rfa
ce

_
lo

g
g

e
r: L

o
g

g
e

r
id

: s
tr

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r)

su
b

scrib
e

_
to

_
e

ve
n

ts(): vo
id

u
n

su
b

scrib
e

_
to

_
e

ve
n

ts(): vo
id

_
re

a
d

(u
se

r_
p

ro
m

p
t: str, cle

a
r_

a
fte

r_
in

p
u

t: b
o

o
l =

 F
a

lse
): str

_
p

re
_

fill(co
n

te
n

t: str): vo
id

_
kill(): vo

id
_

cle
a

r(): vo
id

_
o

n
_

p
re

fill(e
ve

n
t_

m
e

ssa
g

e
: In

p
u

tH
a

n
d

le
rE

ve
n

tM
e

ssa
g

e
): vo

id
_

o
n

_
cle

a
r(e

ve
n

t_
m

e
ssa

g
e

: In
p

u
tH

a
n

d
le

rE
ve

n
tM

e
ssa

g
e

): vo
id

_
o

n
_

kill(e
ve

n
t_

m
e

ssa
g

e
: In

p
u

tH
a

n
d

le
rE

ve
n

tM
e

ssa
g

e
): vo

id
_

o
n

_
re

a
d

(e
ve

n
t_

m
e

ssa
g

e
: In

p
u

tH
a

n
d

le
rE

ve
n

tM
e

ssa
g

e
): vo

id
_

n
o

tify_
cle

a
re

d
(): vo

id
_

n
o

tify_
kille

d
(): vo

id
_

n
o

tify_
re

a
d

(m
e

ssa
g

e
: str, cle

a
r_

a
fte

r_
in

p
u

t: b
o

o
l): vo

id

C
o

n
so

le
In

p
u

tH
a

n
d

le
r

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r)

_
re

a
d

(u
se

r_
p

ro
m

p
t: str, cle

a
r_

a
fte

r_
in

p
u

t: b
o

o
l =

 F
a

lse
): str

_
p

re
_

fill(c
o

n
te

n
t: s

tr): v
o

id
_

k
ill(): v

o
id

_
cle

a
r(): vo

id

T
kin

te
rIn

p
u

tH
a

n
d

le
r

_
ro

o
t: tk.T

k
_

in
p

u
t_

la
b

e
l: tk.L

a
b

e
l

_
in

p
u

t_
e

n
try

: tk
.E

n
try

 | tk
.T

e
x

t
_

p
ro

ce
ss_

b
u

tto
n

: tk.B
u

tto
n

_
cle

a
r_

a
fte

r_
in

p
u

t_
d

e
fa

u
lt: b

o
o

l
_

cle
a

r_
a

fte
r_

in
p

u
t: b

o
o

l
_

in
p

u
t_

va
lu

e
: O

p
tio

n
a

l[str]
_

in
p

u
t_

re
a

d
y: tk.S

trin
g

V
a

r

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r, ro

o
t: tk.T

k, in
p

u
t_

la
b

e
l: tk.L

a
b

e
l, in

p
u

t_
e

n
try: tk.E

n
try | tk.T

e
xt, p

ro
ce

ss_
b

u
tto

n
: tk.B

u
tto

n
, cle

a
r_

a
fte

r_
in

p
u

t: b
o

o
l =

 T
ru

e
)

_
re

a
d

(u
se

r_
p

ro
m

p
t: str, cle

a
r_

a
fte

r_
in

p
u

t: b
o

o
l =

 T
ru

e
): str

_
p

re
_

fill(c
o

n
te

n
t: s

tr): v
o

id
_

k
ill(): v

o
id

_
cle

a
r(): vo

id
_

o
n

_
su

b
m

it(e
ve

n
t: O

p
tio

n
a

l[tk.E
ve

n
t] =

 N
o

n
e

): str

W
e

b
S

o
cke

tIn
p

u
tH

a
n

d
le

r

_
so

cke
tio

: S
o

cke
tIO

_
u

se
r_

sid
: str

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r, so

cke
tio

: S
o

cke
tIO

, u
se

r_
sid

: str)
_

re
a

d
(u

se
r_

p
ro

m
p

t: str, cle
a

r_
a

fte
r_

in
p

u
t: b

o
o

l =
 F

a
lse

): str
_

p
re

_
fill(c

o
n

te
n

t: s
tr): v

o
id

_
k

ill(): v
o

id
_

cle
a

r(): vo
id

F
IG

U
R

E
3.5:IO

InputM
odule

C
lass

D
iagram

3.3. Framework Modules Description and Specification 21

li
b

a
p

p

io

in
p

u
ts

E
ve

n
tM

e
ss

a
g

e
E

ve
n

tT
yp

e

In
p

u
tH

a
n

d
le

rE
ve

n
tM

e
ss

a
g

e

id
:

s
tr

m
e

s
s

a
g

e
:

O
p

ti
o

n
a

l[
s

tr
]

cl
e

a
r_

a
ft

e
r_

in
p

u
t:

 O
p

tio
n

a
l[b

o
o

l]

_
_

in
it_

_
(i

d
:

st
r,

 m
e

ss
a

g
e

:
O

p
tio

n
a

l[s
tr

]
=

 N
o

n
e

,
cl

e
a

r_
a

ft
e

r_
in

p
u

t:
 O

p
tio

n
a

l[b
o

o
l]

=
 T

ru
e

)

In
p

u
tH

a
n

d
le

rE
ve

n
tT

yp
e

A
S

K
_R

E
A

D
R

E
A

D
P

R
E

F
IL

L
C

LE
A

R
C

LE
A

R
E

D
K

IL
L

K
IL

LE
D

FI
G

U
R

E
3.

6:
IO

In
pu

tM
od

ul
e

Ev
en

ts
C

la
ss

D
ia

gr
am

22 Chapter 3. System Architecture and Design

lib

a
p

p

io

o
u

tp
u

ts

s
tre

a
m

in
g

E
ve

n
tB

ro
ke

r

O
u

tp
u

tH
a

n
d

le
rIn

te
rfa

ce

_
lo

g
g

e
r: L

o
g

g
e

r
id

: s
tr

_
b

u
ffe

r: s
tr

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r)

su
b

scrib
e

_
to

_
e

ve
n

ts(): vo
id

u
n

su
b

scrib
e

_
to

_
e

ve
n

ts(): vo
id

_
w

rite
(m

e
s

s
a

g
e

s
: s

tr | L
is

t[s
tr], w

h
o

: O
p

tio
n

a
l[L

ite
ra

l["a
p

p
", "u

s
e

r"]] =
 N

o
n

e
, fin

is
h

e
d

: b
o

o
l =

 T
ru

e
): v

o
id

_
cle

a
r(): vo

id
_

o
n

_
w

rite
(e

ve
n

t_
m

e
ssa

g
e

: O
u

tp
u

tH
a

n
d

le
rE

ve
n

tM
e

ssa
g

e
): vo

id
_

o
n

_
cle

a
r(e

ve
n

t_
m

e
ssa

g
e

: O
u

tp
u

tH
a

n
d

le
rE

ve
n

tM
e

ssa
g

e
): vo

id
_

n
o

tify
_

w
ritte

n
(m

e
s

s
a

g
e

: s
tr, w

h
o

: O
p

tio
n

a
l[L

ite
ra

l["a
p

p
", "u

s
e

r"]] =
 N

o
n

e
, fin

is
h

e
d

: b
o

o
l =

 T
ru

e
): v

o
id

_
n

o
tify_

cle
a

re
d

(): vo
id

C
o

n
so

le
O

u
tp

u
tH

a
n

d
le

r

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r)

_
w

rite
(m

e
s

s
a

g
e

s
: s

tr | L
is

t[s
tr], w

h
o

: O
p

tio
n

a
l[L

ite
ra

l["a
p

p
", "u

s
e

r"]] =
 N

o
n

e
, fin

is
h

e
d

: b
o

o
l =

 T
ru

e
): v

o
id

_
cle

a
r(): vo

id

T
kin

te
rO

u
tp

u
tH

a
n

d
le

r

_
o

u
tp

u
t_

e
n

try
: tk

.E
n

try

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r, o

u
tp

u
t_

e
n

try: tk.E
n

try)
_

w
rite

(m
e

s
s

a
g

e
s

: s
tr | L

is
t[s

tr], w
h

o
: O

p
tio

n
a

l[L
ite

ra
l["a

p
p

", "u
s

e
r"]] =

 N
o

n
e

, fin
is

h
e

d
: b

o
o

l =
 T

ru
e

): v
o

id
_

cle
a

r(): vo
id

S
ta

ckT
kin

te
rO

u
tp

u
tH

a
n

d
le

r

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r, o

u
tp

u
t_

e
n

try: tk.E
n

try)
_

w
rite

(m
e

s
s

a
g

e
s

: L
is

t[s
tr], w

h
o

: O
p

tio
n

a
l[L

ite
ra

l["a
p

p
", "u

s
e

r"]] =
 N

o
n

e
, fin

is
h

e
d

: b
o

o
l =

 T
ru

e
): v

o
id

W
e

b
S

o
cke

tO
u

tp
u

tH
a

n
d

le
r

_
so

cke
tio

: A
n

y
_

u
se

r_
sid

: str

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r, so

cke
tio

, u
se

r_
sid

)
_

w
rite

(m
e

s
s

a
g

e
s

: s
tr | L

is
t[s

tr], w
h

o
: O

p
tio

n
a

l[L
ite

ra
l["a

p
p

", "u
s

e
r"]] =

 N
o

n
e

, fin
is

h
e

d
: b

o
o

l =
 T

ru
e

): v
o

id
_

cle
a

r(): vo
id

S
ta

ckW
e

b
S

o
cke

tO
u

tp
u

tH
a

n
d

le
r

_
_

in
it_

_
(id

: str, e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r, so

cke
tio

, u
se

r_
sid

: str)
_

w
rite

(m
e

s
s

a
g

e
s

: s
tr | L

is
t[s

tr], w
h

o
: O

p
tio

n
a

l[L
ite

ra
l["a

p
p

", "u
s

e
r"]] =

 N
o

n
e

, fin
is

h
e

d
: b

o
o

l =
 T

ru
e

): v
o

id

O
u

tp
u

tH
a

n
d

le
rS

tre
a

m
in

g
C

a
llb

a
ckH

a
n

d
le

r

_
lo

g
g

e
r: L

o
g

g
e

r
id

: s
tr

_
_

in
it_

_
(e

ve
n

t_
b

ro
ke

r: E
ve

n
tB

ro
ke

r, id
: str, o

u
tp

u
t_

h
a

n
d

le
r: O

u
tp

u
tH

a
n

d
le

rIn
te

rfa
ce

)
su

b
scrib

e
_

to
_

e
ve

n
ts()

u
n

su
b

scrib
e

_
to

_
e

ve
n

ts()
_

o
n

_
cle

a
r(e

ve
n

t_
m

e
ssa

g
e

: O
u

tp
u

tH
a

n
d

le
rE

ve
n

tM
e

ssa
g

e
)

_
o

n
_

llm
_

sta
rt(e

ve
n

t_
m

e
ssa

g
e

: O
u

tp
u

tH
a

n
d

le
rS

tre
a

m
in

g
E

ve
n

tM
e

ssa
g

e
)

_
o

n
_

llm
_

n
e

w
_

to
ke

n
(e

ve
n

t_
m

e
ssa

g
e

: O
u

tp
u

tH
a

n
d

le
rS

tre
a

m
in

g
E

ve
n

tM
e

ssa
g

e
)

_
o

n
_

llm
_

e
n

d
(e

ve
n

t_
m

e
ssa

g
e

: O
u

tp
u

tH
a

n
d

le
rS

tre
a

m
in

g
E

ve
n

tM
e

ssa
g

e
)

o
n

_
llm

_
sta

rt(se
ria

lize
d

, p
ro

m
p

ts, **kw
a

rg
s)

o
n

_
llm

_
n

e
w

_
to

ke
n

(to
ke

n
: str, **kw

a
rg

s)
o

n
_

llm
_

e
n

d
(re

sp
o

n
se

, **kw
a

rg
s)

F
IG

U
R

E
3.7:IO

O
utputM

odule
C

lass
D

iagram

3.3. Framework Modules Description and Specification 23

li
b

a
p

p

io

o
u

tp
u

ts

E
ve

n
tM

e
ss

a
g

e
E

ve
n

tT
yp

e

O
u

tp
u

tH
a

n
d

le
rE

ve
n

tT
yp

e

W
R

IT
E

W
R

IT
T

E
N

C
LE

A
R

C
LE

A
R

E
D

O
u

tp
u

tH
a

n
d

le
rS

tr
e

a
m

in
g

E
ve

n
tT

yp
e

S
T

A
R

T
N

E
W

_T
O

K
E

N
E

N
D

O
u

tp
u

tH
a

n
d

le
rE

ve
n

tM
e

ss
a

g
e

id
:

s
tr

m
e

ss
a

g
e

:
st

r
w

h
o

:
s

tr
fi

n
is

h
e

d
:

b
o

o
l

O
u

tp
u

tH
a

n
d

le
rS

tr
e

a
m

in
g

E
ve

n
tM

e
ss

a
g

e

id
:

s
tr

to
k

e
n

:
O

p
ti

o
n

a
l[

s
tr

]

_
_

in
it_

_
(i

d
:

st
r,

 t
o

ke
n

:
O

p
tio

n
a

l[s
tr

]
=

 N
o

n
e

)

FI
G

U
R

E
3.

8:
IO

O
ut

pu
tM

od
ul

e
Ev

en
ts

C
la

ss
D

ia
gr

am

24 Chapter 3. System Architecture and Design

• Complexity in Extending: Adding new input methods may require a deep
understanding of both the framework and the specific IO provider.

• Dependency on Specific Libraries: The implementations are tightly coupled
with libraries like Tkinter and Flask-SocketIO. Streaming output might need
adapters for different technology stacks.

LLM Handling Module

Motivation: Interacting with language models involves complex logic for sending
prompts and handling responses. Abstracting these interactions simplifies integra-
tion and allows for different LLMs to be used interchangeably within the application.

Components (Figs. 3.9 and 3.10):

• BaseLLMHandler: Abstract base class for handling interactions with a lan-
guage model.

• OllamaHandler: Manages interactions with the Ollama language model.

• TGIHandler: Manages interactions with the Text Generation Inference (TGI)
language server from Hugging Face.

Requirements:

• Abstraction: Should abstract LLM interactions into handlers to simplify appli-
cation logic.

• Extensibility: Should allow new LLMs to be integrated by implementing the
abstract base class.

• Real-time Updates: Should support real-time updates via streaming output
callback handlers.

Concerns:

• Complexity in Debugging: Debugging LLM interactions can be complex and
may require specialized tools or techniques.

• Resource Intensive: Interacting with LLMs requires significant computational
resources, which can be costly, especially in cloud environments.

State Machine Module

Motivation: Managing the flow of an application through different states is essen-
tial, particularly in interactive applications. State machines provide a structured
approach to handling state transitions and related logic.

Components (Figs. 3.11 and 3.12):

• StateMachine: Manages transitions between different states based on applica-
tion logic and LLM responses.

• StateConfig, State: Define the configuration and behavior of individual states.

• Resource: Represents individual pieces of data (resources) managed by the
state machine.

Requirements:

3.3. Framework Modules Description and Specification 25
li

b

ll
m

la
n

g
c

h
a

in

o
ll

a
m

a

h
u

g
g

in
g

fa
c

e

tg
i

B
a

se
L

L
M

H
a

n
d

le
r

_
lo

g
g

e
r:

 L
o

g
g

e
r

_
in

p
u

t_
h

a
n

d
le

r_
id

:
st

r
_

st
re

a
m

in
g

_
o

u
tp

u
t_

h
a

n
d

le
r:

 O
u

tp
u

tH
a

n
d

le
rS

tr
e

a
m

in
g

C
a

llb
a

ck
H

a
n

d
le

r
_

ch
a

t_
m

e
ss

a
g

e
s:

 L
is

t
_

_
p

ro
m

p
t_

o
u

tp
u

t_
h

a
n

d
le

r:
 O

p
tio

n
a

l[O
u

tp
u

tH
a

n
d

le
rI

n
te

rf
a

ce
]

_
_

in
it_

_
(e

ve
n

t_
b

ro
ke

r:
 E

ve
n

tB
ro

ke
r,

 in
p

u
t_

h
a

n
d

le
r_

id
:

st
r,

 s
tr

e
a

m
in

g
_

o
u

tp
u

t_
h

a
n

d
le

r:
 O

u
tp

u
tH

a
n

d
le

rS
tr

e
a

m
in

g
C

a
llb

a
ck

H
a

n
d

le
r)

cr
e

a
te

(c
ls

:
T

yp
e

[B
a

se
L

L
M

H
a

n
d

le
r]

,
e

ve
n

t_
b

ro
ke

r:
 E

ve
n

tB
ro

ke
r,

 in
p

u
t_

h
a

n
d

le
r_

id
:

st
r,

 s
tr

e
a

m
in

g
_

o
u

tp
u

t_
h

a
n

d
le

r:
 s

tr
)

:
B

a
se

L
L

M
H

a
n

d
le

r
b

in
d

_
d

e
b

u
g

_
o

u
tp

u
t_

h
a

n
d

le
r(

p
ro

m
p

t_
o

u
tp

u
t_

h
a

n
d

le
r:

 O
u

tp
u

tH
a

n
d

le
rI

n
te

rf
a

ce
):

 v
o

id
su

b
sc

ri
b

e
_

to
_

e
ve

n
ts

()
:

vo
id

u
n

su
b

sc
ri

b
e

_
to

_
e

ve
n

ts
()

:
vo

id
st

a
rt

_
ch

a
t(

in
iti

a
l_

p
ro

m
p

t:
 s

tr
,

su
m

m
a

ri
ze

_
p

ro
m

p
t:

 s
tr

 =
 N

o
n

e
)

:
A

n
y:

ch
a

t(
u

se
r_

p
ro

m
p

t:
 s

tr
 =

 N
o

n
e

,
cl

e
a

r_
a

ft
e

r_
in

p
u

t:
 b

o
o

l =
 T

ru
e

)
:

A
n

y
ca

ll_
llm

(p
ro

m
p

t:
 s

tr
,

m
e

ss
a

g
e

s:
 L

is
t[

B
a

se
M

e
ss

a
g

e
]

=
 N

o
n

e
)

:
st

r
_

o
n

_
in

p
u

t_
re

a
d

(e
ve

n
t_

m
e

ss
a

g
e

:
In

p
u

tH
a

n
d

le
rE

ve
n

tM
e

ss
a

g
e

):
 v

o
id

_
o

n
_

in
p

u
t_

ki
lle

d
(e

ve
n

t_
m

e
ss

a
g

e
:

In
p

u
tH

a
n

d
le

rE
ve

n
tM

e
ss

a
g

e
):

 v
o

id
_

lo
a

d
_

m
e

ss
a

g
e

s(
m

e
ss

a
g

e
s:

 L
is

t[
D

ic
t[

st
r,

 s
tr

]]
):

 v
o

id
_

p
ri

n
t_

p
ro

m
p

t_
to

_
o

u
tp

u
t(

p
ro

m
p

t)
:

vo
id

cl
e

a
r_

io
()

:
vo

id

E
ve

n
tB

ro
ke

r

O
lla

m
a

H
a

n
d

le
r

_
ch

a
t_

llm
:

C
h

a
tO

lla
m

a
_

llm
:

O
lla

m
a

st
a

rt
_

ch
a

t(
in

iti
a

l_
p

ro
m

p
t:

 s
tr

,
su

m
m

a
ri

ze
_

p
ro

m
p

t:
 s

tr
 =

 N
o

n
e

)
:

A
n

y:
ch

a
t(

u
se

r_
p

ro
m

p
t:

 s
tr

 =
 N

o
n

e
,

cl
e

a
r_

a
ft

e
r_

in
p

u
t:

 b
o

o
l =

 T
ru

e
)

:
A

n
y

ca
ll_

llm
(p

ro
m

p
t:

 s
tr

,
m

e
ss

a
g

e
s:

 L
is

t[
B

a
se

M
e

ss
a

g
e

]
=

 N
o

n
e

)
:

st
r

_
lo

a
d

_
m

e
ss

a
g

e
s(

m
e

ss
a

g
e

s:
 L

is
t[

D
ic

t[
st

r,
 s

tr
]]

):
 v

o
id

re
se

t(
)

:
N

o
n

e

T
G

IH
a

n
d

le
r

_
ch

a
t_

llm
:

In
fe

re
n

ce
C

lie
n

t
_

llm
:

In
fe

re
n

ce
C

lie
n

t

st
a

rt
_

ch
a

t(
in

iti
a

l_
p

ro
m

p
t:

 s
tr

,
su

m
m

a
ri

ze
_

p
ro

m
p

t:
 s

tr
 =

 N
o

n
e

)
:

A
n

y:
ch

a
t(

u
se

r_
p

ro
m

p
t:

 s
tr

 =
 N

o
n

e
,

cl
e

a
r_

a
ft

e
r_

in
p

u
t:

 b
o

o
l =

 T
ru

e
)

:
A

n
y

ca
ll_

llm
(p

ro
m

p
t:

 s
tr

,
m

e
ss

a
g

e
s:

 L
is

t[
B

a
se

M
e

ss
a

g
e

]
=

 N
o

n
e

)
:

st
r

_
lo

a
d

_
m

e
ss

a
g

e
s(

m
e

ss
a

g
e

s:
 L

is
t[

D
ic

t[
st

r,
 s

tr
]]

):
 v

o
id

_
h

a
n

d
le

_
ch

a
t_

co
m

p
le

tio
n

(m
e

ss
a

g
e

s:
 L

is
t[

D
ic

t[
st

r,
 s

tr
]]

)
_

h
a

n
d

le
_

llm
_

ca
ll(

p
ro

m
p

t,
 m

e
ss

a
g

e
s)

re
se

t(
)

:
N

o
n

e

FI
G

U
R

E
3.

9:
LL

M
M

od
ul

e
C

la
ss

D
ia

gr
am

26 Chapter 3. System Architecture and Design

lib

a
p

p

llm

E
ve

n
tM

e
ssa

g
e

E
ve

n
tT

yp
e

E
ve

n
tR

e
sp

o
n

se

C
h

a
tE

ve
n

tM
e

ssa
g

e

llm
_

h
a

n
d

le
r: B

a
se

L
L

M
H

a
n

d
le

r
in

itia
l_

p
ro

m
p

t: s
tr

u
s

e
r_

in
p

u
t: O

p
tio

n
a

l[s
tr]

la
st_

re
sp

o
n

se
: O

p
tio

n
a

l[str]
m

e
ssa

g
e

s: L
ist[B

a
se

M
e

ssa
g

e
]

_
_

in
it_

_
(se

lf, in
itia

l_
p

ro
m

p
t: str, m

e
ssa

g
e

s: L
ist[B

a
se

M
e

ssa
g

e
],

u
se

r_
in

p
u

t: O
p

tio
n

a
l[str] =

 N
o

n
e

, la
st_

re
sp

o
n

se
: O

p
tio

n
a

l[str] =
 N

o
n

e
)

L
L

M
C

a
llE

ve
n

tM
e

ssa
g

e

llm
_

h
a

n
d

le
r: B

a
se

L
L

M
H

a
n

d
le

r
p

ro
m

p
t: s

tr
m

e
ssa

g
e

s: L
ist[B

a
se

M
e

ssa
g

e
]

re
s

p
o

n
s

e
: O

p
tio

n
a

l[s
tr]

_
_

in
it_

_
(llm

_
h

a
n

d
le

r: B
a

se
L

L
M

H
a

n
d

le
r, p

ro
m

p
t: str,

m
e

ssa
g

e
s: L

ist[B
a

se
M

e
ssa

g
e

], re
sp

o
n

se
: str =

 N
o

n
e

)

C
h

a
tE

ve
n

tR
e

sp
o

n
se

m
e

s
s

a
g

e
s

: L
is

t[D
ic

t[s
tr, s

tr]]

_
_

in
it_

_
(m

e
ssa

g
e

s: L
ist[D

ict[str, str]])

C
h

a
tE

ve
n

tT
yp

e

S
T

A
R

T
S

T
E

P
_S

T
A

R
T

S
T

E
P

_F
IN

IS
H

F
IN

IS
H

L
L

M
C

a
llE

ve
n

tT
yp

e

S
T

A
R

T
F

IN
IS

H

F
IG

U
R

E
3.10:LLM

M
odule

Events
C

lass
D

iagram

3.3. Framework Modules Description and Specification 27

li
b

a
p

p

ll
m

s
m

E
ve

n
tB

ro
ke

r

B
a

se
L

L
M

H
a

n
d

le
r

A
ct

io
n

s

C
R

E
A

T
E

U
P

D
A

T
E

D
E

LE
T

E

R
e

so
u

rc
e

A
ct

io
n

_
_

in
it_

_
(a

ct
io

n
:

A
ct

io
n

s,
 r

e
so

u
rc

e
:

R
e

so
u

rc
e

)
cr

e
a

te
(c

ls
,

*a
rg

s)
:

R
e

so
u

rc
e

A
ct

io
n

u
p

d
a

te
(c

ls
,

*a
rg

s)
:

R
e

so
u

rc
e

A
ct

io
n

d
e

le
te

(c
ls

,
*a

rg
s)

:
R

e
so

u
rc

e
A

ct
io

n

R
e

so
u

rc
e

R
e

so
u

rc
e

E
n

co
d

e
r

R
e

so
u

rc
e

D
e

co
d

e
r

S
ta

te
C

o
n

fig

n
a

m
e

:
s

tr
re

q
u

ir
e

s
:

L
is

t[
s

tr
]

p
ro

v
id

e
s

:
s

tr
p

ro
vi

d
e

s_
co

n
te

n
t_

h
o

ld
e

r:
 s

tr
u

p
d

a
te

_
h

a
n

d
le

r_
n

a
m

e
:

st
r

p
ro

m
p

t:
 D

ic
t[

s
tr

,
s

tr
]

u
s

e
r_

p
ro

m
p

t:
 D

ic
t[

s
tr

,
s

tr
]

a
d

d
it

io
n

a
l_

re
s

o
u

rc
e

s
:

D
ic

t[
s

tr
,

D
ic

t[
s

tr
,

s
tr

]]
cl

e
a

r_
a

ft
e

r_
in

p
u

t:
 b

o
o

l
p

re
_

fil
l_

re
so

u
rc

e
:

st
r

re
so

u
rc

e
_

va
lu

e
:

st
r

_
_

in
it_

_
(n

a
m

e
:

st
r,

 r
e

q
u

ir
e

s:
 L

is
t[

st
r]

,
p

ro
vi

d
e

s:
 s

tr
,

p
ro

vi
d

e
s_

co
n

te
n

t_
h

o
ld

e
r:

 s
tr

,
u

p
d

a
te

_
h

a
n

d
le

r_
n

a
m

e
:

st
r,

 p
ro

m
p

t:
 D

ic
t[

st
r,

 s
tr

],
u

se
r_

p
ro

m
p

t:
 D

ic
t[

st
r,

 s
tr

],
 a

d
d

iti
o

n
a

l_
re

so
u

rc
e

s:
 D

ic
t[

st
r,

 D
ic

t[
st

r,
 s

tr
]]

,
cl

e
a

r_
a

ft
e

r_
in

p
u

t:
 b

o
o

l,
p

re
_

fil
l_

re
so

u
rc

e
:

st
r,

 r
e

so
u

rc
e

_
va

lu
e

:
st

r)
g

e
t_

p
ro

m
p

t(
la

n
g

:
s

tr
):

 s
tr

g
e

t_
u

se
r_

p
ro

m
p

t(
la

n
g

:
st

r)
:

st
r

g
e

t_
a

d
d

it
io

n
a

l_
p

ro
m

p
t(

k
e

y
:

s
tr

,
la

n
g

:
s

tr
):

 s
tr

fr
o

m
_

d
ic

t(
n

a
m

e
:

st
r,

 s
ta

te
_

co
n

fig
:

D
ic

t,
 a

d
d

iti
o

n
a

l_
re

so
u

rc
e

s:
 D

ic
t[

st
r,

 D
ic

t[
st

r,
 s

tr
]]

):
 S

ta
te

C
o

n
fig

S
ta

te

n
a

m
e

:
s

tr
_

lo
g

g
e

r:
 L

o
g

g
e

r

_
_

in
it_

_
(n

a
m

e
:

st
r,

 s
ta

te
_

co
n

fig
:

S
ta

te
C

o
n

fig
)

cr
e

a
te

(c
ls

,
n

a
m

e
:

st
r,

 s
ta

te
_

co
n

fig
:

D
ic

t,
 *

*m
e

th
o

d
_

b
o

d
ie

s)
:

S
ta

te
e

n
te

r(
):

 v
o

id
e

x
it

()
:

v
o

id
u

p
d

a
te

(r
e

so
u

rc
e

s:
 L

is
t[

R
e

so
u

rc
e

],
 ll

m
_

h
a

n
d

le
r:

 B
a

se
L

L
M

H
a

n
d

le
r)

:
T

u
p

le
[O

p
tio

n
a

l[L
is

t[
R

e
so

u
rc

e
A

ct
io

n
]]

,
O

p
tio

n
a

l[S
ta

te
]]

re
su

m
e

()
:

vo
id

S
ta

te
M

a
ch

in
e

_
lo

g
g

e
r:

 L
o

g
g

e
r

_
ru

n
n

in
g

:
th

re
a

d
in

g
.E

ve
n

t
_

fin
is

h
:

th
re

a
d

in
g

.E
ve

n
t

_
p

o
ss

ib
le

_
st

a
te

s:
 L

is
t[

S
ta

te
]

_
in

iti
a

l_
st

a
te

:
S

ta
te

_
cu

rr
e

n
t_

st
a

te
:

S
ta

te
_

in
iti

a
l_

st
a

ck
:

L
is

t[
S

ta
te

]
_

in
iti

a
l_

m
e

m
o

ry
:

D
ic

t[
st

r,
 R

e
so

u
rc

e
]

_
m

e
m

o
ry

:
D

ic
t[

st
r,

 R
e

so
u

rc
e

]
_

st
a

ck
:

L
is

t[
S

ta
te

]
_

_
re

so
u

rc
e

s_
o

u
tp

u
t_

h
a

n
d

le
r:

 O
p

tio
n

a
l[O

u
tp

u
tH

a
n

d
le

rI
n

te
rf

a
ce

]
_

_
st

a
ck

_
o

u
tp

u
t_

h
a

n
d

le
r:

 O
p

tio
n

a
l[O

u
tp

u
tH

a
n

d
le

rI
n

te
rf

a
ce

]

_
_

in
it_

_
(i

n
iti

a
l_

st
a

te
:

st
r,

 p
o

ss
ib

le
_

st
a

te
s:

 L
is

t[
S

ta
te

],
 ll

m
_

h
a

n
d

le
r:

 B
a

se
L

L
M

H
a

n
d

le
r,

 in
iti

a
l_

st
a

ck
:

L
is

t[
S

ta
te

],
in

iti
a

l_
m

e
m

o
ry

:
D

ic
t[

st
r,

 R
e

so
u

rc
e

],
 e

ve
n

t_
b

ro
ke

r:
 E

ve
n

tB
ro

ke
r)

cr
e

a
te

(c
ls

:
T

yp
e

[S
ta

te
M

a
ch

in
e

],
 in

iti
a

l_
st

a
te

:
st

r,
 p

o
ss

ib
le

_
st

a
te

s:
 L

is
t[

S
ta

te
],

 ll
m

_
h

a
n

d
le

r:
 B

a
se

L
L

M
H

a
n

d
le

r,
in

iti
a

l_
st

a
ck

:
L

is
t[

S
ta

te
],

 in
iti

a
l_

m
e

m
o

ry
:

D
ic

t[
st

r,
 R

e
so

u
rc

e
],

 e
ve

n
t_

b
ro

ke
r:

 E
ve

n
tB

ro
ke

r)
 :

 S
ta

te
M

a
ch

in
e

su
b

sc
ri

b
e

_
to

_
e

ve
n

ts
()

:
vo

id
u

n
su

b
sc

ri
b

e
_

to
_

e
ve

n
ts

()
:

vo
id

b
in

d
_

d
e

b
u

g
_

h
a

n
d

le
rs

(p
ro

m
p

t_
o

u
tp

u
t_

h
a

n
d

le
r:

 O
u

tp
u

tH
a

n
d

le
rI

n
te

rf
a

ce
,

re
so

u
rc

e
s_

o
u

tp
u

t_
h

a
n

d
le

r:
 O

u
tp

u
tH

a
n

d
le

rI
n

te
rf

a
ce

,
st

a
ck

_
o

u
tp

u
t_

h
a

n
d

le
r:

 O
u

tp
u

tH
a

n
d

le
rI

n
te

rf
a

ce
):

 v
o

id
_

p
u

sh
_

st
a

te
(s

ta
te

:
S

ta
te

,
re

q
u

ir
e

m
e

n
t:

 b
o

o
l =

 F
a

ls
e

):
 v

o
id

_
p

o
p

_
st

a
te

()
:

vo
id

ru
n

()
:

v
o

id
_

u
p

d
a

te
()

:
v

o
id

_
p

ri
n

t_
re

so
u

rc
e

s_
to

_
o

u
tp

u
t(

):
 v

o
id

_
p

ri
n

t_
st

a
ck

_
to

_
o

u
tp

u
t(

):
 v

o
id

_
g

e
t_

st
a

te
_

a
s_

d
ic

t(
):

 d
ic

t
_

o
n

_
lo

a
d

_
fr

o
m

_
d

ic
t(

e
ve

n
t_

m
e

ss
a

g
e

:
S

ta
te

M
a

ch
in

e
L

o
a

d
M

e
ss

a
g

e
):

 v
o

id
_

o
n

_
st

a
rt

()
:

vo
id

_
o

n
_

u
n

p
a

u
se

()
:

vo
id

_
o

n
_

p
a

u
se

()
:

vo
id

_
o

n
_

st
o

p
()

:
vo

id
_

o
n

_
re

se
t(

):
 v

o
id

_
p

ro
ce

ss
_

st
a

te
_

re
q

u
ir

e
m

e
n

ts
()

:
b

o
o

l
_

p
ro

ce
ss

_
st

a
te

_
u

p
d

a
te

_
re

su
lt(

re
so

u
rc

e
_

a
ct

io
n

s:
 O

p
tio

n
a

l[L
is

t[
R

e
so

u
rc

e
A

ct
io

n
]]

,
st

a
te

:
O

p
tio

n
a

l[S
ta

te
])

:
vo

id

e
n

co
d

e
s

d
e

co
d

e
s

h
a

s
am
e

m
o

ry
1

0
..

*

s
ta

te
s

1

0
..

*

h
a

s
a

h
a

s
 a

n

FI
G

U
R

E
3.

11
:S

ta
te

M
ac

hi
ne

M
od

ul
e

C
la

ss
D

ia
gr

am

28 Chapter 3. System Architecture and Design

lib

a
p

p

s
m

E
ve

n
tM

e
ssa

g
e

E
ve

n
tT

yp
e

R
e

so
u

rce
E

ve
n

tT
yp

e

C
R

E
A

T
E

D
U

P
D

A
T

E
D

D
E

LE
T

E
D

R
e

so
u

rce
E

ve
n

tM
e

ssa
g

e

re
so

u
rce

: R
e

so
u

rce

_
_

in
it_

_
(re

so
u

rce
: R

e
so

u
rce

)

S
ta

te
M

a
ch

in
e

E
ve

n
tT

yp
e

L
O

A
D

S
T

A
R

T
P

A
U

S
E

U
N

P
A

U
S

E
S

T
O

P
R

E
S

E
T

S
T

A
R

T
E

D
P

A
U

S
E

D
U

N
P

A
U

S
E

D
S

T
O

P
P

E
D

R
E

S
E

T
T

E
D

U
P

D
A

T
E

_S
T

A
R

T
U

P
D

A
T

E
_S

T
E

P
_S

T
A

R
T

U
P

D
A

T
E

_S
T

E
P

_F
IN

IS
H

U
P

D
A

T
E

_F
IN

IS
H

S
ta

te
M

a
ch

in
e

E
ve

n
tM

e
ssa

g
e

c
u

rre
n

t_
s

ta
te

: S
ta

te
s

ta
te

_
d

ic
t: d

ic
t

_
_

in
it_

_
(cu

rre
n

t_
sta

te
: S

ta
te

, sm
_

sta
te

: d
ict)

F
IG

U
R

E
3.12:State

M
achine

M
odule

Events
C

lass
D

iagram

3.3. Framework Modules Description and Specification 29

• Structured Flow: Should provide a clear and structured method for managing
application flow.

• Scalability: Should support easy addition of new states and transitions.

• Debugging: Should provide explicit state transitions to facilitate debugging
and understanding of the application flow.

Concerns:

• Complexity: The state machine can become increasingly complex as the num-
ber of states and transitions grows.

• Scalability: Adding new states and transitions might introduce unintended
side effects.

• Performance: Managing state transitions and large state stacks can lead to
performance bottlenecks.

Management Module

Motivation: The Management module serves as the central hub for managing the
application’s state, coordinating various components, and handling interactions be-
tween the state machine, LLM handlers, and input/output handlers. Centralizing
these responsibilities ensures the application remains organized, modular, and ca-
pable of handling complex interactions.

Components (Figs. 3.13 and 3.14): Due to the critical role of these components, they
were also especified in greater detail.

• StateManager: The core class that coordinates the setup, event subscription,
and execution of the state machine and related handlers.

– Motivation: The StateManager class is pivotal in orchestrating the over-
all operation of the application’s state management system. It integrates
and configures key components such as the StateMachineController, De-
bugHandler, ResourceManager, and StatePersistenceManager, ensuring
they work in harmony to manage state transitions, resource allocation,
and event-driven interactions. By overseeing the initialization and coor-
dination of these modules, the StateManager ensures the application runs
smoothly, handling state transitions effectively, maintaining persistence,
and responding appropriately to user inputs.

– Requirements:

* Centralized Management: Should centralize the control of the appli-
cation’s state and the interaction between various components.

* Extensibility: Should accommodate the addition of new state ma-
chine classes, LLM handlers, and input/output handlers.

* Event-Driven Architecture: Should leverage an event-driven archi-
tecture to allow for decoupled communication between components,
enhancing modularity.

* Customization: Should support custom handlers and configurations
to allow for tailored application behavior.

30 Chapter 3. System Architecture and Design

lib

a
p

p

S
ta

te
M

a
n

a
g

e
r

_
lo

g
g

e
r : L

o
g

g
e

r
a

p
p

_
co

n
fig

 : A
p

p
C

o
n

fig
e

ve
n

t_
b

ro
ke

r : E
ve

n
tB

ro
ke

r
_

sta
te

_
m

a
ch

in
e

_
co

n
tro

lle
r : S

ta
te

M
a

ch
in

e
C

o
n

tro
lle

r
_

d
e

b
u

g
_

h
a

n
d

le
r : D

e
b

u
g

H
a

n
d

le
r

_
re

so
u

rce
_

m
a

n
a

g
e

r : R
e

so
u

rce
M

a
n

a
g

e
r

_
sta

te
_

p
e

rsiste
n

ce
_

m
a

n
a

g
e

r : S
ta

te
P

e
rsiste

n
ce

M
a

n
a

g
e

r
_

in
p

u
t_

h
a

n
d

le
r : In

p
u

tH
a

n
d

le
rIn

te
rfa

ce
_

sta
te

_
m

a
ch

in
e

_
cla

ss : T
yp

e
[S

ta
te

M
a

ch
in

e
]

_
llm

_
h

a
n

d
le

r_
cla

ss : T
yp

e
[B

a
se

L
L

M
H

a
n

d
le

r]
_

stre
a

m
in

g
_

o
u

tp
u

t_
h

a
n

d
le

r : O
u

tp
u

tH
a

n
d

le
rS

tre
a

m
in

g
C

a
llb

a
ckH

a
n

d
le

r
_

is_
se

tu
p

 : b
o

o
l

_
_

in
it_

_
(a

p
p

_
co

n
fig

: A
p

p
C

o
n

fig
, e

ve
n

t_
b

ro
ke

r: E
ve

n
tB

ro
ke

r)
se

tu
p

(in
p

u
t_

h
a

n
d

le
r: In

p
u

tH
a

n
d

le
rIn

te
rfa

ce
, sta

te
_

m
a

ch
in

e
_

cla
ss: T

yp
e

[S
ta

te
M

a
ch

in
e

],
llm

_
h

a
n

d
le

r_
cla

ss: T
yp

e
[B

a
se

L
L

M
H

a
n

d
le

r], stre
a

m
in

g
_

o
u

tp
u

t_
h

a
n

d
le

r: O
u

tp
u

tH
a

n
d

le
rS

tre
a

m
in

g
C

a
llb

a
ckH

a
n

d
le

r)
su

b
scrib

e
_

to
_

e
ve

n
ts()

u
n

su
b

scrib
e

_
to

_
e

ve
n

ts()
_

o
n

_
in

p
u

t_
re

a
d

(e
ve

n
t_

m
e

ssa
g

e
: In

p
u

tH
a

n
d

le
rE

ve
n

tM
e

ssa
g

e
)

s
ta

rt(e
x

e
c

u
tio

n
_

c
o

d
e

: s
tr =

 N
o

n
e

)
_

o
n

_
lo

a
d

e
d

(e
ve

n
t_

m
e

ssa
g

e
: S

ta
te

P
e

rsiste
n

ce
E

ve
n

tM
e

ssa
g

e
)

sta
rt_

a
n

d
_

jo
in

()
re

s
ta

rt()
s

to
p

()
p

a
u

se
()

u
n

p
a

u
se

()

A
p

p
C

o
n

fig

co
n

fig
_

p
a

th
 : str

in
itia

l_
la

n
g

u
a

g
e

 : str
h

a
n

d
le

rs : D
ict[str, C

a
lla

b
le

[[S
ta

te
, L

ist[R
e

so
u

rce
], B

a
se

L
L

M
H

a
n

d
le

r],
T

u
p

le
[O

p
tio

n
a

l[L
is

t[R
e

s
o

u
rc

e
A

c
tio

n
]], O

p
tio

n
a

l[S
ta

te
]]]]

c
o

n
fig

 : D
ic

t
n

a
m

e
 : s

tr
su

p
p

o
rte

d
_

la
n

g
u

a
g

e
s : L

ist[str]
in

itia
l_

s
ta

te
 : s

tr
in

s
tru

c
tio

n
s

 : D
ic

t
a

d
d

itio
n

a
l_

re
so

u
rce

s : D
ict

s
ta

te
s

 : D
ic

t[s
tr, S

ta
te

]

_
_

in
it_

_
(co

n
fig

_
p

a
th

: str, in
itia

l_
la

n
g

u
a

g
e

: str, h
a

n
d

le
rs: D

ict)
_

lo
a

d
_

co
n

fig
() : D

ict
_

in
itia

lize
_

sta
te

s() : D
ict[str, S

ta
te

]

E
ve

n
tB

ro
ke

r

_
lo

g
g

e
r : L

o
g

g
e

r
_

su
b

scrib
e

rs : D
ict[E

ve
n

tT
yp

e
, L

ist[C
a

lla
b

le
]]

_
_

in
it_

_
() : vo

id
su

b
scrib

e
(e

ve
n

t_
typ

e
: E

ve
n

tT
yp

e
, su

b
scrib

e
r: C

a
lla

b
le

[[O
p

tio
n

a
l[E

ve
n

tM
e

ssa
g

e
]], O

p
tio

n
a

l[E
ve

n
tR

e
sp

o
n

se
]]): vo

id
u

n
su

b
scrib

e
(e

ve
n

t_
typ

e
: E

ve
n

tT
yp

e
, su

b
scrib

e
r: C

a
lla

b
le

[[O
p

tio
n

a
l[E

ve
n

tM
e

ssa
g

e
]], O

p
tio

n
a

l[E
ve

n
tR

e
sp

o
n

se
]]): vo

id
n

o
tify(e

ve
n

t_
typ

e
: E

ve
n

tT
yp

e
, e

ve
n

t_
m

e
ssa

g
e

: E
ve

n
tM

e
ssa

g
e

 =
 N

o
n

e
) : O

p
tio

n
a

l[L
ist[E

ve
n

tR
e

sp
o

n
se

]]

S
ta

te
M

a
ch

in
e

C
o

n
tro

lle
r

_
lo

g
g

e
r : L

o
g

g
e

r
_

sm
_

sta
rte

d
 : b

o
o

l
_

llm
_

h
a

n
d

le
r : B

a
se

L
L

M
H

a
n

d
le

r

_
_

in
it_

_
(a

p
p

_
co

n
fig

: A
p

p
C

o
n

fig
, e

ve
n

t_
b

ro
ke

r: E
ve

n
tB

ro
ke

r, sta
te

_
m

a
ch

in
e

_
cla

ss: T
yp

e
[S

ta
te

M
a

ch
in

e
],

llm
_

h
a

n
d

le
r_

cla
ss: T

yp
e

[B
a

se
L

L
M

H
a

n
d

le
r], in

p
u

t_
h

a
n

d
le

r_
id

: str, stre
a

m
in

g
_

o
u

tp
u

t_
h

a
n

d
le

r: O
u

tp
u

tH
a

n
d

le
rS

tre
a

m
in

g
C

a
llb

a
ckH

a
n

d
le

r)
su

b
scrib

e
_

to
_

e
ve

n
ts()

u
n

su
b

scrib
e

_
to

_
e

ve
n

ts()
s

ta
rt(re

s
e

t: b
o

o
l =

 T
ru

e
)

s
to

p
()

p
a

u
se

()
u

n
p

a
u

se
()

re
s

e
t()

_
o

n
_

sm
_

sta
rte

d
(e

ve
n

t_
m

e
ssa

g
e

)
_

o
n

_
sm

_
sto

p
p

e
d

(e
ve

n
t_

m
e

ssa
g

e
)

_
o

n
_

sm
_

p
a

u
se

d
(e

ve
n

t_
m

e
ssa

g
e

)
_

o
n

_
sm

_
u

n
p

a
u

se
d

(e
ve

n
t_

m
e

ssa
g

e
)

_
o

n
_

sm
_

re
se

tte
d

(e
ve

n
t)

_
cre

a
te

_
sta

te
_

m
a

ch
in

e
(sta

te
_

m
a

ch
in

e
_

cla
ss: T

yp
e

[S
ta

te
M

a
ch

in
e

], in
itia

l_
sta

te
: str, p

o
ssib

le
_

sta
te

s: L
ist[S

ta
te

], llm
_

h
a

n
d

le
r: B

a
se

L
L

M
H

a
n

d
le

r,
in

itia
l_

sta
ck: L

ist[S
ta

te
], in

itia
l_

m
e

m
o

ry: D
ict[str, R

e
so

u
rce

], e
ve

n
t_

b
ro

ke
r: E

ve
n

tB
ro

ke
r) : S

ta
te

M
a

ch
in

e
_

cre
a

te
_

llm
_

h
a

n
d

le
r(e

ve
n

t_
b

ro
ke

r, llm
_

h
a

n
d

le
r_

cla
ss, in

p
u

t_
h

a
n

d
le

r_
id

, stre
a

m
in

g
_

o
u

tp
u

t_
h

a
n

d
le

r) : B
a

se
L

L
M

H
a

n
d

le
r

D
e

b
u

g
H

a
n

d
le

r

_
_

in
it_

_
(sta

te
_

m
a

ch
in

e
: S

ta
te

M
a

ch
in

e
)

b
in

d
_

d
e

b
u

g
_

o
u

tp
u

t_
h

a
n

d
le

rs(p
ro

m
p

t_
o

u
tp

u
t_

h
a

n
d

le
r: O

u
tp

u
tH

a
n

d
le

rIn
te

rfa
ce

,
re

so
u

rce
s_

o
u

tp
u

t_
h

a
n

d
le

r: O
u

tp
u

tH
a

n
d

le
rIn

te
rfa

ce
, sta

ck_
o

u
tp

u
t_

h
a

n
d

le
r: O

u
tp

u
tH

a
n

d
le

rIn
te

rfa
ce

)

R
e

so
u

rce
M

a
n

a
g

e
r

_
lo

g
g

e
r : L

o
g

g
e

r

_
_

in
it_

_
(e

ve
n

t_
b

ro
ke

r: E
ve

n
tB

ro
ke

r, sta
te

_
m

a
ch

in
e

: S
ta

te
M

a
ch

in
e

)
su

b
scrib

e
_

to
_

e
ve

n
ts()

u
n

su
b

scrib
e

_
to

_
e

ve
n

ts()
ch

e
ck_

fo
r_

re
so

u
rce

(re
so

u
rce

_
n

a
m

e
: str) : b

o
o

l
g

e
t_

re
so

u
rce

s() : L
ist[R

e
so

u
rce

]
g

e
t_

re
so

u
rce

(re
so

u
rce

_
n

a
m

e
: str) : R

e
so

u
rce

se
t_

re
so

u
rce

(re
so

u
rce

_
n

a
m

e
: str, re

so
u

rce
_

va
lu

e
: A

n
y) : vo

id
_

o
n

_
la

n
g

u
a

g
e

_
u

p
d

a
te

d
(e

ve
n

t_
m

e
ssa

g
e

: L
a

n
g

u
a

g
e

E
ve

n
tM

e
ssa

g
e

)

S
ta

te
P

e
rsiste

n
ce

M
a

n
a

g
e

r

_
lo

g
g

e
r : L

o
g

g
e

r
_

a
p

p
_

n
a

m
e

 : str
_

in
p

u
t_

h
a

n
d

le
r_

id
 : str

_
o

u
tp

u
t_

h
a

n
d

le
r_

id
 : str

_
file

_
n

a
m

e
 : str

_
g

lo
b

a
l_

sta
te

 : D
ict

_
im

p
o

rtin
g

 : b
o

o
l

_
_

in
it_

_
(a

p
p

_
n

a
m

e
: str, e

ve
n

t_
b

ro
ke

r: E
ve

n
tB

ro
ke

r,
in

p
u

t_
h

a
n

d
le

r_
id

: str, o
u

tp
u

t_
h

a
n

d
le

r_
id

: str)
su

b
scrib

e
_

to
_

e
ve

n
ts()

u
n

su
b

scrib
e

_
to

_
e

ve
n

ts()
_

o
n

_
lo

a
d

(e
ve

n
t_

m
e

ssa
g

e
: S

ta
te

P
e

rsiste
n

ce
E

ve
n

tM
e

ssa
g

e
)

_
o

n
_

sa
ve

(e
ve

n
t_

m
e

ssa
g

e
: S

ta
te

P
e

rsiste
n

ce
E

ve
n

tM
e

ssa
g

e
)

_
o

n
_

re
se

t()
se

t_
e

xe
cu

tio
n

_
co

d
e

(e
xe

cu
tio

n
_

co
d

e
: str)

g
e

t_
e

xe
cu

tio
n

_
co

d
e

() : str
se

t_
sm

_
sta

te
(sta

te
: D

ict)
g

e
t_

sta
te

_
in

fo
() : D

ict
se

t_
sta

te
_

in
fo

_
fo

r_
sta

te
_

ke
y(sta

te
_

n
a

m
e

: str, ke
y: str, va

lu
e

: A
n

y)
g

e
t_

sta
te

_
in

fo
_

fo
r_

sta
te

_
ke

y(sta
te

_
n

a
m

e
: str, ke

y: str) : A
n

y
se

t_
la

st_
in

p
u

t(la
st_

in
p

u
t: str)

_
se

t_
la

n
g

u
a

g
e

(e
ve

n
t_

m
e

ssa
g

e
: L

a
n

g
u

a
g

e
E

ve
n

tM
e

ssa
g

e
)

g
e

t_
sm

_
sta

te
() : D

ict
g

e
t_

cu
rre

n
t_

sta
te

_
n

a
m

e
() : str

g
e

t_
la

st_
in

p
u

t() : str
g

e
t_

la
n

g
u

a
g

e
() : str

_
g

e
n

e
ra

te
_

n
e

w
_

e
xe

cu
tio

n
() : D

ict
_

g
e

n
e

ra
te

_
n

e
w

_
sta

te
_

file
(e

xe
cu

tio
n

_
co

d
e

: str =
 N

o
n

e
)

_
g

e
n

e
ra

te
_

ra
n

d
o

m
_

h
a

sh
(le

n
g

th
: in

t) : str
_

o
n

_
sm

_
u

p
d

a
te

_
sta

rt(e
ve

n
t_

m
e

ssa
g

e
: S

ta
te

M
a

ch
in

e
U

p
d

a
te

M
e

ssa
g

e
)

_
o

n
_

sm
_

u
p

d
a

te
_

ste
p

_
sta

rt(e
ve

n
t_

m
e

ssa
g

e
: S

ta
te

M
a

ch
in

e
U

p
d

a
te

M
e

ssa
g

e
)

_
o

n
_

sm
_

u
p

d
a

te
_

ste
p

_
fin

ish
(e

ve
n

t_
m

e
ssa

g
e

: S
ta

te
M

a
ch

in
e

U
p

d
a

te
M

e
ssa

g
e

)
_

o
n

_
sm

_
u

p
d

a
te

_
fin

ish
()

_
o

n
_

ch
a

t_
sta

rt(e
ve

n
t_

m
e

ssa
g

e
: C

h
a

tE
ve

n
tM

e
ssa

g
e

) : C
h

a
tE

ve
n

tR
e

sp
o

n
se

_
o

n
_

o
u

tp
u

t_
w

ritte
n

(e
ve

n
t_

m
e

ssa
g

e
: O

u
tp

u
tH

a
n

d
le

rE
ve

n
tM

e
ssa

g
e

)
sa

ve
_

sta
te

_
to

_
file

(file
_

p
a

th
: str =

 N
o

n
e

)
lo

a
d

_
sta

te
_

fro
m

_
e

xe
cu

tio
n

_
co

d
e

(e
xe

cu
tio

n
_

co
d

e
: str)

lo
a

d
_

sta
te

_
fro

m
_

file
(file

_
p

a
th

: P
a

th
)

lo
a

d
_

sta
te

_
fro

m
_

d
ict(sta

te
_

d
ict: D

ict)

S
ta

te
M

a
ch

in
e

B
a

se
L

L
M

H
a

n
d

le
r

S
ta

te

S
ta

te
C

o
n

fig

0
..*

F
IG

U
R

E
3.13:State

M
anager

C
oordinator,Subordinate

M
anagers

and
EventBroker

C
lass

D
iagram

3.3. Framework Modules Description and Specification 31

li
b

a
p

p

E
ve

n
tM

e
ss

a
g

e
E

ve
n

tT
yp

e

L
a

n
g

u
a

g
e

E
ve

n
tT

yp
e

U
P

D
A

T
E

S
ta

te
P

e
rs

is
te

n
ce

E
ve

n
tT

yp
e

L
O

A
D

L
O

A
D

E
D

S
A

V
E

S
A

V
E

D

L
a

n
g

u
a

g
e

E
ve

n
tM

e
ss

a
g

e

la
n

g
u

a
g

e
 :

 s
tr

S
ta

te
P

e
rs

is
te

n
ce

E
ve

n
tM

e
ss

a
g

e

e
xe

cu
tio

n
_

co
d

e
 :

 s
tr

fi
le

_
p

a
th

 :
 s

tr

_
_

in
it_

_
(e

xe
cu

tio
n

_
co

d
e

:
st

r
=

 N
o

n
e

,
fil

e
_

p
a

th
:

st
r

=
 N

o
n

e
)

FI
G

U
R

E
3.

14
:S

ta
te

M
an

ag
er

C
oo

rd
in

at
or

,S
ub

or
di

na
te

M
an

ag
er

s
an

d
Ev

en
tB

ro
ke

r
Ev

en
ts

C
la

ss
D

ia
gr

am

32 Chapter 3. System Architecture and Design

– Concerns:

* Setup Complexity: Properly configuring the StateManager requires
understanding various components and their interactions.

* Tight Coupling with Event Broker: The StateManager’s dependence
on the EventBroker could limit flexibility if the event-handling mech-
anism needs to change.

* Dependency on Correct Event Subscription: The StateManager re-
lies on correct event subscription for its operation; missing or incor-
rect subscriptions could lead to malfunction.

• StateMachineController: Manages the state machine’s lifecycle, including tran-
sitions and event handling.

– Motivation: The StateMachineController class orchestrates the initializa-
tion, management, and lifecycle of the application’s state machine. This
class ensures that the state machine operates smoothly, interacting with
language model handlers, input handlers, and output handlers to manage
the application’s state transitions. It is essential for controlling the flow of
the application, responding to events, and ensuring that state transitions
are executed correctly.

– Requirements:

* Centralized Control: Should centralize the management of the state
machine to ensure that all related operations are handled consistently.

* Modularity: Should abstract the creation and management of the
state machine and its components to promote modularity and ease
of maintenance.

* Event-Driven Architecture: Should leverage an event-driven archi-
tecture, subscribing to and handling relevant state machine events, to
allow for responsive and flexible state management.

* Scalability: Should allow for easy scaling by supporting different
state machines, language model handlers, and input/output han-
dlers.

* Flexibility: Should support both starting from scratch or resuming
from a paused state, providing flexibility in managing the application
flow.

– Concerns:

* Dependency on Event Flow: The effectiveness of the StateMachineCon-
troller is tightly coupled with the correct flow of events; any disrup-
tions or errors in event handling can impact state transitions.

* Complexity in Setup: Setting up the controller requires a deep un-
derstanding of the components involved, including the state machine,
LLM handlers, and event broker.

* Error Propagation: Errors in one part of the state machine or its com-
ponents (e.g., LLM handler) can propagate through the controller, po-
tentially causing disruptions in the entire application’s flow.

3.3. Framework Modules Description and Specification 33

• ResourceManager: Manages application resources, ensuring efficient access,
updates, and maintenance.

– Motivation: The ResourceManager class is designed to manage the re-
sources within the application’s state machine. Resources are critical pieces
of data that the state machine uses during its operations. By centralizing
the management of these resources, the ResourceManager ensures that
the state machine can efficiently access, update, and maintain the neces-
sary data, especially when handling language updates or other dynamic
changes in the application state.

– Requirements:

* Centralized Resource Management: Should provide a centralized
interface for accessing and updating resources, ensuring consistency
and reducing the potential for errors.

* Event-Driven Updates: Should subscribe to relevant events, such as
language updates, to dynamically adjust resources and ensure the
state machine has the most up-to-date information.

* Ease of Access: Should offer straightforward methods for checking
the existence of resources, retrieving them, and updating them, sim-
plifying interaction with the state machine’s memory.

* Integration with StateMachine: Should be tightly integrated with
the state machine, allowing seamless management of resources in re-
sponse to state transitions and other state machine activities.

* Customizable Resource Handling: Should allow for dynamic setting
of resources to provide a flexible and adaptable approach to manag-
ing application data.

– Concerns:

* Tight Coupling with StateMachine: The ResourceManager is tightly
coupled with the state machine’s memory structure, which could limit
its flexibility or make it challenging to reuse in different contexts.

* Dependency on Correct Event Flow: The effectiveness of the Re-
sourceManager relies on the correct and timely flow of events; any
disruption could lead to outdated or incorrect resource states.

• StatePersistenceManager: Handles saving and loading the application’s state,
ensuring continuity across sessions.

– Motivation: The StatePersistenceManager class is designed to handle the
saving and loading of application state. This functionality is crucial for
ensuring continuity in applications that involve complex state manage-
ment, as it allows the application to resume from a saved state after in-
terruptions or across sessions. The class integrates with various event-
driven components, ensuring that state changes are captured and per-
sisted effectively.

– Requirements:

* Continuity: Should allow the application to save its current state and
later resume from where it left off, ensuring continuity.

34 Chapter 3. System Architecture and Design

* Event-Driven Persistence: Should subscribe to various events to en-
sure that changes in state are captured and persisted in real-time.

* Modularity: Should be modular and integrate smoothly with other
components via the event broker, promoting a clean separation of
concerns.

* Language Handling: Should manage and update language settings
dynamically, ensuring that the correct language is maintained across
sessions.

* Flexibility: Should support saving and loading state either through
execution codes or file paths, providing flexibility in how state per-
sistence is managed.

– Concerns:

* Complexity in Error Handling: The process of saving and loading
states, especially during complex state transitions, can be prone to
errors that require robust handling mechanisms to avoid content cor-
ruption and application interruptions.

* Dependency on Correct Event Flow: The effectiveness of the State-
PersistenceManager is highly dependent on the correct flow and han-
dling of events; missing events can lead to incomplete state persis-
tence.

• DebugHandler: Provides debugging support by monitoring the state machine’s
activities.

– Motivation: The DebugHandler module is designed to facilitate the de-
bugging of the application’s state machine by binding specific output
handlers to key aspects of the state machine’s operations. By allowing
developers to observe the prompt, resources, and stack during execution,
this module enhances the ability to trace and understand the flow of the
application, making it easier to identify and resolve issues.

– Requirements:

* Enhanced Debugging Capabilities: Should bind specific output han-
dlers to the state machine’s prompt, resources, and stack to provide
detailed insights into the state machine’s operations, aiding in the de-
bugging process.

* Modularity: Should be modular and easily integrated or removed
from the application, depending on the debugging needs.

* Flexibility in Output Handling: Should use output handler inter-
faces to allow for flexible routing of debugging information, whether
it be to a console, GUI, or other logging mechanisms.

* Improved Traceability: Should provide detailed output of the state
machine’s internal workings to help developers trace the execution
flow and pinpoint where issues may arise.

* Ease of Integration: Should be quickly set up by binding it to the
state machine without needing extensive changes to the existing ap-
plication architecture.

3.3. Framework Modules Description and Specification 35

– Concerns:

* Limited Scope: The DebugHandler is focused on the state machine’s
prompt, resources, and stack. If other aspects of the application need
debugging, additional mechanisms may be required.

* Manual Binding Required: The output handlers need to be manu-
ally bound to the DebugHandler, which might be an additional step
for developers and could be prone to oversight if not set up correctly.

AppConfig Module

Motivation: The AppConfig module is responsible for loading and managing the
configuration settings of the application. It centralizes the application’s configura-
tion data, including supported languages, state definitions, and handler mappings,
providing a structured and consistent approach to initializing and managing the ap-
plication’s states and behaviors.

Components (Figs. 3.13 and 3.14):

• AppConfig: The main class that loads the configuration from a YAML file,
initializes application states, and stores various configuration settings such as
the application’s name, supported languages, and instructions.

Requirements:

• Centralized Configuration: Should centralize all application configuration set-
tings to make it easier to manage and modify the application’s behavior.

• Modularity: Should allow for modular definition of states and behaviors, en-
abling easy updates and extensions.

• Flexibility: Should allow custom handlers to be defined and associated with
states, providing a flexible approach to defining application behavior.

• Consistency: Should ensure that the application’s states and configurations
are consistently initialized and managed.

• Ease of Use: Should load configurations from a YAML file to simplify the pro-
cess of defining and updating application settings.

Concerns:

• Dependency on YAML Structure: The application relies on the correct struc-
ture of the YAML configuration file; errors in the YAML file can lead to initial-
ization failures.

• Complexity in State Initialization: Initializing states and their associated han-
dlers can be complex, particularly for large applications with many states.

• Limited Dynamic Configuration: Changes to the configuration typically re-
quire editing the YAML file and restarting the application, limiting dynamic
configuration capabilities.

• Scalability Concerns: As the number of states and configurations grows, man-
aging and understanding the configuration file can become cumbersome.

36 Chapter 3. System Architecture and Design

EventBroker Module

Motivation: In applications that involve multiple components interacting with each
other, managing events and communication between these components is crucial.
The EventBroker module abstracts the event handling mechanism, allowing for de-
coupled communication between various parts of the application. This ensures that
components can respond to events without needing to be directly aware of the other
components that triggered them, enhancing modularity and flexibility.

Components (Figs. 3.13 and 3.14):

• EventType: An enumeration that defines the different types of events that can
occur within the application.

• EventMessage: An abstract base class representing the messages or data pay-
loads that accompany events.

• EventResponse: An abstract base class representing responses that can be re-
turned by subscribers when an event is processed.

• EventBroker: The core component that manages subscriptions and notifies
subscribers when events occur. It handles the subscription, unsubscription,
and notification processes.

Requirements:

• Decoupled Communication: Should promote loose coupling by ensuring com-
ponents do not need to be aware of each other.

• Scalability: Should allow new event types and subscribers to be added with-
out modifying existing components.

• Modularity: Should encapsulate the event handling logic within the Event-
Broker to make the system more modular.

• Flexibility: Should allow the system to easily adapt to new requirements by
adding or removing subscribers dynamically.

Concerns:

• Complexity in Debugging: Tracing the flow of events can be challenging, es-
pecially when multiple subscribers are involved.

• Performance Overhead: Managing subscriptions and notifying subscribers
can introduce performance overhead, particularly with a large number of events
and subscribers.

• Potential for Unhandled Events: If no subscribers are registered for a particu-
lar event, the event might go unhandled, leading to potential issues and hard
to find issues.

• Error Handling: Errors in subscriber methods can disrupt the notification pro-
cess, requiring careful error handling mechanisms.

Logging Module

Motivation: Logging is crucial for debugging, monitoring, and maintaining an ap-
plication. Configurable logging allows for different logging levels and outputs, de-
pending on the environment and needs.

3.3. Framework Modules Description and Specification 37

Components (Figs. 3.13 and 3.14):

• Logging Setup: Configures logging for the application, including file and con-
sole logging.

Requirements:

• Debugging: Should provide detailed logs to help identify issues and under-
stand the application’s behavior.

• Monitoring: Should provide insights into the application’s performance and
usage through logs.

• Configurability: Should allow logging to be configured for different environ-
ments.

Concerns:

• Performance Impact: Extensive logging can impact performance.

• Log Management: Managing log files, especially in long-running applications,
can be challenging.

3.3.2 Application Development Facilities

State Update Handlers Module

Motivation: Each state may require specific logic to update its state based on user
input and LLM responses. Modular update handlers encapsulate this logic, keep-
ing the state machine clean and manageable. These handlers can be referenced in
StateConfig’s YAML file to bind during system initialization.

Components:

• Update Handlers: Defines various functions for updating states based on user
input and LLM responses. These are bound to a state upon configuration.

The State Machine will call the state’s update handler with the following parameters
and expects the following return values:

FUNCTION update_handler(state, resources, llm_handler)
INPUT:

state - The current state object
resources - A list of resources relevant to the current state
llm_handler - The language model handler responsible for generating outputs

OUTPUT:
A tuple containing:
- A list of ResourceAction objects (optional)
- A state to dynamically push into the stack (optional)

BEGIN
// Application Developer Code

END

This setup allows the update handler to access the state it is bound to, as well as the
State Machine’s resources and capabilities through llm_handler.

Requirements:

• Encapsulation: Should encapsulate state-specific logic in dedicated handlers.

38 Chapter 3. System Architecture and Design

• Reusability: Should allow handlers to be reused across different states or ap-
plications.

• Maintainability: Should decouple state logic from the state machine to sim-
plify maintenance.

Concerns:

• Complexity: Handling complex logic within state update handlers can make
the code harder to read and maintain.

WebSocket and Flask Bootstrapping Module

Motivation: Real-time interaction with web clients requires WebSocket integration.
Flask provides a robust framework for building web applications, and SocketIO
adds real-time WebSocket capabilities.

Components:

• BaseAppNamespace: Defines the WebSocket namespace for Flask-SocketIO
integration.

Requirements:

• Real-time Communication: Should enable real-time interaction with web clients.

• Integration: Should combine Flask and SocketIO to handle web requests and
real-time communication.

• Customization: Should allow for custom JSON serialization/deserialization.

Concerns:

• Scalability Issues: WebSocket connections can be resource-intensive.

• Tight Coupling: Integration with Flask and SocketIO means switching frame-
works would require significant changes.

• Complexity in Real-time Handling: Handling real-time data and synchro-
nization can be complex.

Tk Bootstrapping Module

Motivation: Creating a consistent and interactive user interface in Tkinter requires
reusable components. Abstracting UI components ensures a consistent look and feel
across the application.

Components:

• UIComponents: Abstract base class for creating the main UI components in
Tkinter.

• VertUIComponents: Implementation of UIComponents for a vertical layout.

• HorizUIComponents: Implementation of UIComponents for a horizontal lay-
out.

Requirements:

• Consistency: Should ensure a consistent user interface across different parts
of the application.

3.4. Future Work 39

• Reusability: Should provide common UI components that can be reused, re-
ducing code duplication.

• Modularity: Should be modular, making each component easier to manage
and extend.

Concerns:

• Limited Flexibility: Customizing the UI components beyond the provided
base classes may be difficult.

• Dependency on Tkinter: Tightly coupled with Tkinter, limiting flexibility to
switch to other UI frameworks.

• Performance: Tkinter may not be the most performant UI library.

Tk Debug Window Bootstrapping Module

Motivation: Developers need tools to monitor and debug the application state in
real-time. A dedicated debug window provides insights into the internal workings
of the application.

Components:

• DebugWindow: Creates a separate window in Tkinter to display debugging
information.

Requirements:

• Real-time Monitoring: Should allow developers to monitor the application
state in real-time.

• State Management: Should provide tools to export and import the application
state.

• Separation of Concerns: Should ensure that debugging tools are separated
from the main application logic.

Concerns:

• Limited to Tkinter: The debug window is tightly coupled with Tkinter.

3.4 Future Work

While the CreatAIlity framework serves as a robust proof of concept for integrating
Finite State Machines (FSMs) with Large Language Models (LLMs) to foster chil-
dren’s narrative creativity, several areas warrant further research and development
to enhance the system’s functionality, scalability, and reliability.

3.4.1 Enhanced Testing Strategies

As this work primarily serves as a proof of concept, the focus has been on validat-
ing core functionalities. However, to ensure the system’s reliability in production
environments, more comprehensive testing is required:

40 Chapter 3. System Architecture and Design

Unit Testing

Future work should expand the scope of unit tests to ensure that:

• All individual components and modules are rigorously tested in isolation.

• Potential issues are identified and resolved early, particularly in critical mod-
ules like the StateMachineController and ResourceManager.

Integration Testing

Although basic integration testing has been conducted, future efforts should include:

• Extensive tests covering the full range of interactions between modules, in-
cluding LLMs, state transitions, and resource management.

• Validation of complex state dependencies and interactions to ensure seamless
operation.

Performance Testing

As the framework scales to handle more complex scenarios, future work should
focus on:

• Stress testing the system under heavy loads to ensure it can handle multiple
simultaneous interactions and large state machines.

• Optimizing performance to minimize latency and overhead in state manage-
ment and LLM interactions.

3.4.2 Improved Error Handling and Fault Tolerance

The current implementation includes basic error handling mechanisms, but future
work should focus on enhancing these aspects:

Error Handling

To ensure system stability, future developments should include:

• Comprehensive error handling strategies that manage unexpected failures grace-
fully.

• Mechanisms to capture, log, and respond to errors in real-time, maintaining
stability under adverse conditions.

Fault Tolerance

To enhance reliability, future iterations of the framework should incorporate:

• Fault tolerance features such as redundancy and failover mechanisms.

• Strategies that allow the system to continue operating smoothly despite com-
ponent failures.

3.4.3 Scalability and Performance Optimization

The current implementation serves as a proof of concept, but future work should
explore:

3.4. Future Work 41

Scalability Considerations

To manage larger workloads, future work should include:

• Strategies to enhance the scalability of the framework, such as optimizing state
management algorithms and exploring distributed state machines.

• Leveraging cloud-based solutions for handling increased complexity and user
interactions.

Performance Optimization

For improved performance, future efforts should focus on:

• Refining resource management techniques to reduce overhead.

• Optimizing LLM interaction processes to minimize latency.

3.4.4 Security Enhancements

While overall security is primarily managed by the application leveraging the Cre-
atAIlity framework, it is important to recognize that the framework itself may persist
potentially sensitive content and user interactions. In this context, it is crucial that
the framework provides robust support for the following security measures:

Data Security

Future work should prioritize:

• Integration of data security measures, such as encryption for data in transit
and at rest.

• Ensuring that sensitive user data or educational content is protected.

Access Control

To secure system access, future work should implement:

• Robust access control mechanisms to ensure that only authorized users can
interact with specific parts of the system.

• Strategies to manage user permissions and roles effectively.

3.4.5 Proof of Concept Considerations

It is important to acknowledge that the current version of CreatAIlity serves as a
proof of concept, aimed at demonstrating the feasibility of integrating FSMs with
LLMs for interactive storytelling while leveraging important concepts which aim to
improve its efficiency and overall results. Therefore, certain aspects such as com-
prehensive testing, advanced error handling, fault tolerance, and security were not
the primary focus of this study. However, these elements should be considered
paramount for any future work that seeks to transition the framework from a con-
ceptual prototype to a fully-fledged educational tool.

42 Chapter 3. System Architecture and Design

In conclusion, while the CreatAIlity framework has demonstrated its core concepts,
the areas outlined above represent relevant paths for future exploration. Address-
ing these aspects will ensure greater reliability, scalability, and security, making Cre-
atAIlity a more robust and versatile tool for fostering narrative creativity in children.

3.5 Conclusion

In this chapter, the architecture and design of the CreatAIlity framework have been
detailed, an innovative approach that integrates Finite State Machines (FSMs) with
Large Language Models (LLMs) while making prompt chaining, microtasks and in-
cipits central to application design to foster children’s narrative creativity. The mod-
ular design of the framework, combined with a stack-based control mechanism and
resource-based state management, provides a structured yet flexible foundation for
interactive storytelling. Each component, from the StateMachineController to the
ResourceManager, has been carefully crafted to support the seamless management
of narrative flow, resource handling, and state transitions.

The integration of prompt chaining and microtasking techniques further enhances
the system’s ability to manage LLM outputs, ensuring that the generated narratives
are coherent and aligned with educational objectives. By breaking down the sto-
rytelling process into smaller, manageable tasks, CreatAIlity facilitates a controlled
interaction between the FSM and LLMs, allowing for dynamic and engaging content
creation.

While the current implementation serves as a robust proof of concept, the Future
Work section has highlighted several areas that require further exploration to transi-
tion CreatAIlity from a conceptual prototype to a fully-fledged educational tool. Key
areas for improvement include the expansion of unit and integration testing, the en-
hancement of error handling and fault tolerance mechanisms, and the optimization
of scalability and performance. Additionally, future work should prioritize the in-
tegration of comprehensive security measures to ensure data protection and access
control in real-world educational environments.

Another important consideration in the design process is to minimize dependency
on specific technologies, including the State Machine module. While the State Ma-
chine is central to the framework, alternative approaches, such as Behavior Trees,
can also serve as the core engine. Behavior Trees provide an efficient method for cre-
ating complex, modular, and reactive systems, and have been successfully applied
in various fields, including video games and robotics as presented by Colledanchise
and Ögren, 2018. This flexibility allows for the exploration of different strategies
without being constrained by a single technological choice.

Overall, here the groundwork for a versatile and extensible framework that can
adapt to various storytelling contexts and educational goals has been laid. The pro-
posed future enhancements would not only improve the system’s robustness and
reliability but also pave the way for its broader application in educational and po-
tentially other technologies. As the CreatAIlity framework continues to evolve, it
holds the potential to significantly impact the way narrative creativity is fostered in
children, providing them with a powerful tool for exploring and developing their
storytelling skills.

43

Chapter 4

Implementation and Evaluation

Following the design and modeling of the framework, this section delves into the
technical choices and decisions made throughout the development process, along-
side the challenges and limitations encountered during implementation, testing, and
evaluation. Additionally, a comprehensive overview of the StoryBuilder PoC appli-
cation is provided, highlighting its functionalities and setting the stage for its subse-
quent evaluation and the discussion of results.

4.1 Framework Implementation

4.1.1 Technical Choices

The technical choices during the framework’s implementation were driven by the
need to balance flexibility, performance, and ease of development. Python was se-
lected as the primary programming language due to its extensive library ecosystem,
which offers robust support for machine learning, natural language processing, and
rapid prototyping. Its dynamic typing and simplicity enabled quick iteration during
development, crucial for exploring various design alternatives and integrating ad-
vanced features like large language models (LLMs). Despite Python’s known limita-
tions in runtime performance and type safety, its advantages in development speed
and accessibility made it the ideal choice for this proof of concept.

While Python emerged as the best option, other languages were considered. Java,
known for its strong type system and enterprise-level reliability, was ultimately set
aside due to its limited integration with LLM libraries. TypeScript, popular in web
development for its strong typing, was also considered but deemed less suitable due
to its historically less stable ecosystem for the specific objectives of this framework.
Ultimately, Python’s mature ecosystem and strong community support tipped the
balance in its favor.

Python’s simplicity and comprehensive ecosystem were key to enabling rapid proto-
typing, a necessity for this proof of concept. The language’s design reduces the need
for boilerplate code, significantly speeding up development. While Python’s inter-
preted nature could pose challenges in larger projects, this factor did not impact this
project, where the primary performance bottlenecks were API calls and LLM pro-
cessing times, not Python’s execution speed. Therefore, Python’s performance was
sufficient to meet the project’s requirements.

For the user interface, Python’s Tkinter library was chosen for its simplicity and ease
of integration, despite being somewhat outdated. This choice facilitated the rapid
development of a functional prototype, adequate for the proof of concept phase.

44 Chapter 4. Implementation and Evaluation

For web integration, Flask and SocketIO were selected for their lightweight, flexible
nature, enabling seamless communication between the application and web compo-
nents.

The architecture was designed for versatility, managing dynamic transitions and
adapting to different states within the application. However, the decision to priori-
tize a structured, deterministic process flow introduced constraints, such as linearity
and challenges with state update handler reusability. These choices aimed to ensure
a predictable, controlled execution environment, essential for maintaining system
reliability. The balance between flexibility and structure was carefully considered,
with the architecture leaning towards a more deterministic approach to minimize
complexity and errors in state transitions.

The selection of Llama3 models for the storytelling tasks was driven by their strong
performance, availability, and seamless integration with the Python-based frame-
work. To accommodate different needs, Llama3 8B and Llama3 70B were primarily
chosen for testing and evaluation. These models were integrated using LangChain
and deployed via tools like Ollama and Hugging Face’s TGI server, demonstrating
the framework’s capacity to support a wide range of connectors with minimal inte-
gration effort. Additionally, the framework’s flexible interface ensures compatibility
with various LLM providers, allowing users to select the models best suited to their
specific requirements.

In summary, the technical choices made during the framework’s development bal-
anced practicality and performance, leveraging Python’s strengths in rapid devel-
opment and LLM integration. While certain limitations were acknowledged, these
choices were appropriate for the project’s scope and objectives, providing a solid
foundation for the framework’s implementation and evaluation.

4.1.2 Challenges and Limitations

Architecture

The proposed architecture is designed to offer significant versatility, even in its abil-
ity to manage dynamic transitions and adapt to various states within a process.
However, despite these strengths, several challenges and limitations must be ac-
knowledged, which may impact its broader applicability.

One of the key strengths of the architecture is its ability to facilitate deterministic
transitions. However, optional states can be seamlessly integrated into the execution
sequence by any state, and these states can, in turn, return new states to be added to
the process, along with optional resources. This flexibility allows for a more adapt-
able process flow. However, this dynamic approach can sometimes diverge from
the intended use of the architecture, particularly by reducing the reusability of state
update handlers. These handlers were initially designed to be highly reusable com-
ponents, but the introduction of dynamic transitions can complicate this reusability
and may limit the system’s ability to support truly dynamic state changes. Although
the architecture primarily aims to produce a structured, deterministic process flow,
the ability to integrate dynamic transitions remains a valuable feature for enhancing
system adaptability.

A significant limitation of the architecture is its inherent linearity. The framework is
structured to follow a sequential process where each state must be completed before
transitioning to the next. Even with the inclusion of dynamic states, the framework

4.1. Framework Implementation 45

does not easily accommodate the skipping of states or transitioning to later states
without completing the required preceding ones. This linear progression, while de-
liberate in design to ensure a controlled and predictable process flow, imposes a
hard limit on the framework’s use in contexts that require non-linear or conditional
transitions. For example, in complex workflows or user-driven applications, the in-
ability to jump between states based on real-time inputs or changing conditions can
restrict the flexibility of the system, making it less suitable for certain use cases that
demand more fluid and responsive state management.

Another critical challenge is the binding of state update handlers to the states they
manage. These handlers are defined separately in the code, which can reduce vis-
ibility and make it harder for developers to track and manage them, especially as
the project scales. When the expected behavior of a state changes, not only must
a new update handler be implemented, but it must also be correctly bound in the
configuration file and loaded as a valid handler. This process, while manageable in
smaller projects, can become cumbersome in larger teams or projects with multiple
developers. The weak binding between the state, its configuration, and the handler
implementation increases the risk of errors and necessitates additional oversight.
This issue underscores the importance of maintaining thorough documentation and
implementing robust testing procedures to ensure consistency and prevent potential
problems as the project evolves.

The linearity limitation, in particular, warrants further exploration. While it ensures
a structured and deterministic process, it may not be suitable for applications requir-
ing more flexible workflows. To address this, future iterations of the architecture
could explore the integration of conditional state transitions or a more advanced
state machine that allows for non-linear progression. Such enhancements would
enable the architecture to better support complex and dynamic workflows, thereby
expanding its applicability across a broader range of use cases.

In summary, while the proposed architecture offers a flexible and structured ap-
proach to managing state transitions, it also introduces challenges related to dy-
namic transitioning, linearity, and the binding of state update handlers. Addressing
these limitations through future development would be crucial for expanding the
architecture’s usability in more complex and diverse applications.

Programming Language and Development Process

The implementation of the framework is relatively straightforward. For this proof of
concept, Python was selected due to its extensive library ecosystem, cross-platform
compatibility, and robust community support, particularly in both academia and
industry. Python’s ease of use and rapid prototyping capabilities make it particu-
larly well-suited for research-oriented projects where flexibility and speed are crit-
ical. Additionally, Python’s integration with modern machine learning and large
language model (LLM) libraries is unparalleled, making it an ideal choice for this
project, which relies heavily on such technologies.

The flexibility and ease of use that Python offers come with certain challenges. The
dynamic typing feature, while convenient for rapid development, presented signifi-
cant difficulties when scaling the project to a larger and more complex architecture.
Commonly, dynamically typed languages are criticized for making it harder to catch
type-related errors early in the development process (Tratt, 2009; baeldung, 2021).
In this project, type-related errors required extensive debugging and tracing, often

46 Chapter 4. Implementation and Evaluation

surfacing late in the development cycle. However, enforcing a consistent typed sig-
nature across functions helped detect errors during debugging and, combined with
IntelliSense, helped avoid many potential mistakes. This approach, while not fool-
proof, significantly mitigated the challenges posed by dynamic typing in regard to
this characteristic.

Looking ahead, there is potential for further refining the framework by enforcing
stricter type checking in Python. Utilizing tools such as mypy for static type check-
ing could help mitigate some of the challenges experienced with dynamic typing,
potentially reducing development time and increasing code stability. Moreover, in-
tegrating components written in statically typed languages, or even considering a
full migration for performance-critical parts, could expand the framework’s user
base and applicability.

The overall experience of using Python for this project was smooth and pleasur-
able. All desired and necessary code patterns were successfully implemented, meet-
ing both the functional and non-functional requirements of the framework. While
Python might not be the best choice for extremely processing-intensive applications,
it was certainly sufficientd - and indeed, quite effectived - for this project’s needs.
For more demanding computational tasks, other languages might be more suitable,
but Python’s ease of use and rapid development capabilities made it a strong candi-
date and ultimately the right choice for this proof of concept.

Large Language Model

This thesis explores the utilization and evaluation of untrained large language mod-
els (LLMs) within the context of storytelling, specifically through the framework
developed in this research. The primary objective is to assess the capabilities of
existing LLMs in generating creative narratives, rather than focusing on training a
model specifically for this purpose. There are two main reasons for this approach.
First, training a model from scratch or fine-tuning an existing one is prohibitively ex-
pensive, both in terms of computational resources and time, which falls outside the
scope of this work. Second, the rapid pace at which general-purpose LLMs are be-
ing released and improved by large organizations with substantial resources makes
it more practical to leverage these pre-trained models. These models are widely ac-
cessible through subscription services or self-deployment, enabling integration into
frameworks like CreatAIlity without incurring additional training costs. For users
requiring more specific functionality, fine-tuning or further training of models is an
option, but not a necessity for the framework’s intended use.

Llama3 8B was chosen as it represented the latest freely available advancement in
LLMs at the time of development and is lightweight enough to run locally and serve
as a test platform. Integration was facilitated using LangChain’s framework, which
connected to the model via the Ollama tool, allowing for local deployment and us-
age. Llama3 8B performed adequately for the storytelling tasks, but certain limita-
tions were observed. The model was less prolific in its output and more sensitive
to prompt variations, necessitating significant effort to craft prompts that consis-
tently generated the desired results. This was particularly challenging when tasks
involved analyzing user input for intent detection, where the model’s sensitivity to
prompt phrasing often led to inconsistent outputs.

Llama3 70B was selected primarily for a small-scale evaluation conducted with par-
ticipants, which will be detailed in the subsequent section. This model was chosen

4.1. Framework Implementation 47

for its robustness in generating rich outputs and its reduced sensitivity to prompt
variations and was readily available for this work usage. The model was deployed
on private infrastructure using connectors for Hugging Face’s TGI (Text Generation
Inference) server. Due to memory limitations on this infrastructure, the model was
quantized to 4 bytes, allowing it to load within the available GPU VRAM. While
quantization did impact the model’s speed and output quality, reducing the richness
of the text generated, it was still sufficient to meet the requirements of the evalua-
tion. The trade-off between resource efficiency and output quality was considered
acceptable for the purposes of this study.

One of the primary challenges encountered in using LLMs for this framework was
the input token limit. For the larger model, the available infrastructure for this proof
of concept supported up to 2,000 input tokens. Initially, it was anticipated that this
would be sufficient for the smaller, more focused microtasks planned. However,
during the evaluation, it became apparent that users took longer than expected to
create their stories at each step. This was interpreted as a good outcome, considering
the application was indeed stimulating their creativity and engaging them in the
task. But this led to a situation where the token limit, which needed to account for
the prompt, context (mainly resources from previous steps), and User-AI dialogue,
became a significant constraint.

While several strategies exist to mitigate the token limit issue, such as moving win-
dow, partial summarization, and others, none of these solutions are perfect. The
resource limitations inherent in the use of LLMs will always present challenges, par-
ticularly in creative tasks like storytelling, where the richness and continuity of the
narrative are crucial. This limitation was not only a theoretical concern but also
manifested during testing. To address this, a partial summarization approach was
implemented when the token count approached the limit. This strategy provided
users with additional space for creativity and helped prevent interruptions due to
errors during the story creation process. While this solution enhanced the user ex-
perience and mitigated the issue during testing, it is not a perfect solution. For a
final product, a more robust approach, such as increasing infrastructure capacity to
allow for a higher token limit or implementing more sophisticated summarization
techniques, would be necessary to ensure seamless operation and avoid errors.

It is important to note that the limitations and challenges highlighted here are partic-
ularly relevant to the storytelling use case, which is inherently demanding in terms
of continuity and content volume. However, the framework developed in this re-
search is versatile and can support various structured processes. In some use cases,
such as more focused, less content-heavy tasks, the constraints observed may be less
significant or even irrelevant. This adaptability underscores the framework’s po-
tential for broader applications beyond storytelling, where the specific requirements
and limitations of LLMs may differ.

Beyond the specific limitations discussed, other potential challenges associated with
using LLMs in this context include the possibility of model biases affecting the narra-
tive, difficulties in maintaining coherence over long interactions, and the challenges
inherent in evaluating creative outputs. These issues, while not the primary focus of
this work, are important considerations for future research and development in this
area.

48 Chapter 4. Implementation and Evaluation

Future iterations of this work could explore alternative approaches to further en-
hance the storytelling capabilities of LLMs. For instance, fine-tuning LLMs on storytelling-
specific datasets could improve their ability to generate coherent and contextually
appropriate narratives. Additionally, hybrid models that combine LLMs with other
AI techniques, such as reinforcement learning or narrative planning algorithms,
could offer a way to overcome some of the limitations observed in this study.

In conclusion, the selection and use of Llama3 models in this framework demon-
strate the viability of leveraging existing LLMs for creative tasks like storytelling.
While certain constraints, such as input token limits and sensitivity to prompting,
pose challenges, these can be managed with careful design and implementation
strategies. The work conducted in this thesis highlights the potential of LLMs in
creative applications, while also underscoring the need for ongoing refinement and
adaptation to fully realize their capabilities.

4.1.3 Code Metrics

A thorough code metrics can be found in Appendix B.

4.2 StoryBuilder PoC Application

The primary objective of this proof-of-concept application is to demonstrate and val-
idate the underlying architecture using the CreatAIlity framework, while simultane-
ously achieving the necessary flexibility required to create a structured and adapt-
able process for a simple story-building application. This application serves as a
practical example to showcase how the framework can be utilized to build interac-
tive, state-driven workflows that guide users through a predefined set of steps.

4.2.1 Application Overview

The application is meticulously designed to enhance user interaction with the work-
flow by providing essential functionalities such as starting a new execution, restart-
ing an existing one, saving the current state, and resuming the process in subsequent
sessions. The user is seamlessly guided through a series of predefined steps, cul-
minating in a final stage where the execution is considered complete. This process
ensures that users can engage with the application in a structured and intuitive man-
ner, while also benefiting from the ability to pause and continue their work at their
convenience.

4.2.2 Developer Responsibilities

When developing an application using the CreatAIlity framework, the primary re-
sponsibility of the developer lies in defining the key components of the application’s
logic. This includes:

• State Definitions: Developers must clearly define the various states that the
application can occupy. Each state represents a specific point in the workflow,
with its own set of rules and conditions that dictate the user’s interaction and
progression.

• Resource Definition/Management: Proper definition and management of re-
sources is essential for the seamless functioning of the application. Resources

4.2. StoryBuilder PoC Application 49

may include data, control booleans or any other memory-representable asset
required and produced by the application states during their execution.

• Incipits/Prompts: These are the initial triggers or prompts that bootstrap the
state, providing the user with the necessary context or actions to engage with
the application. Effective prompts are crucial for guiding the user through the
workflow in an intuitive manner.

• State Completion Mechanism: A key aspect of the framework is the state
completion mechanism, which determines when a state is finished and the ap-
plication can transition to the next state. Developers leverage the framework’s
infrastructure to implement these completion mechanics, ensuring that each
state concludes only when its specific criteria are met.

• Update Handlers: Developers are also responsible for implementing and bind-
ing update handlers for each state. These handlers are essential for managing
state changes, responding to user inputs, and ensuring that the application be-
haves as expected during its execution. It is the main processing point for the
state logic and the state completion mechanism execution.

User Interface Development

Beyond the core logic, the other significant portion of the development effort is ded-
icated to creating the user interface (UI). The UI serves as the primary medium
through which users interact with the application, whether it be graphical, text-
based, or another form of interface. The developer’s tasks in this area include:

• Designing Interaction Elements: Developers must design and implement the
interaction elements that users will engage with. These elements could range
from buttons, text inputs and outputs, dropdowns and menus to more com-
plex actions such as exporting the final story, depending on the application’s
requirements.

• Interface Stack Binding: The interaction elements must be properly bound
to the interface stack, ensuring that user actions are correctly interpreted and
processed by the application.

• Utilizing Framework Controls: The developer must make effective use of the
framework’s control functions or event publishing mechanisms to manage the
application’s execution flow and feature set. This includes responding to user
events, triggering state transitions, and invoking specific functionalities within
the framework.

4.2.3 State/Resource and Behavior Design

By modeling the states and expected behaviors, and leveraging the application’s
capabilities and underlying engine, three front-ends were developed for different
environments: Console, Desktop (using Tk), and Web. Through the application fa-
cilities provided by the framework, little effort apart from tailoring the interfaces to
the specific rendering technology were needed. All core code and configuration was
reused and integrated through specialized input/output handlers seamlessly.

50 Chapter 4. Implementation and Evaluation

The workflow, based on the CreatAIlity framework, encompasses the following states
and resources for this specific use case as can be seen in figures 4.1 and 4.2. This se-
quence ensures that each state builds on the resources provided by the previous
states, maintaining a coherent and logical narrative structure.

The configuration and setup of State and Resources are done by the config.yaml file
and an update handlers python script containing methods as defined in section 3.3.2.

The yaml file follows this structure:

app:
name: "Application Name"
supported_languages:

- "Language Code 1"
- "Language Code 2"

initial_state: "initial_state_name"
instructions:

language_code_1: "Instruction text in language 1"
language_code_2: "Instruction text in language 2"

states:
state_name:

requires:
- "required_resource_1"
- "required_resource_2"

provides: "provided_resource"
provides_content_holder:

language_code_1: "Content holder label in language 1"
language_code_2: "Content holder label in language 2"

update_handler_name: "handler_function_name"
user_prompt:

language_code_1: "User prompt in language 1"
language_code_2: "User prompt in language 2"

prompt:
language_code_1: "Prompt text in language 1"
language_code_2: "Prompt text in language 2"

clear_after_input: true/false
pre_fill_resource: resource_name/null
resource_value: value/null

additional_resources:
resource_name:

language_code_1: "Resource text in language 1"
language_code_2: "Resource text in language 2"

• app:

– name: The name of the application. This is a string value that typically
represents the title or identifier of the application.

– supported_languages: A list of language codes (e.g., "en_US", "es_ES")
that the application supports. Each language code corresponds to the
localization of instructions, prompts, and other textual content within the
application.

4.2. StoryBuilder PoC Application 51

– initial_state: The initial state of the application when it starts. This is
typically the first state that the application enters when executed.

– instructions: A set of instructions for users, localized by language. The
keys are language codes, and the values are the instructional text pro-
vided to the user in each respective language.

• states:

– Each item under states represents a distinct state in the application work-
flow. States define the flow of the application, specifying what is required,
what is provided, and how the application interacts with the user during
that state.

– state_name: The unique identifier for a state in the workflow. This name
is used to reference and manage the state within the application.

– requires: A list of resources or conditions that must be satisfied before the
state can be entered. These are typically other states or inputs required to
proceed.

– provides: The resource or outcome provided upon completing the state.
This could be a piece of data or an updated status that is passed to subse-
quent states.

– provides_content_holder: A mapping of language codes to labels or de-
scriptions for the content provided by this state. This helps in localizing
what is provided by the state in different languages.

– update_handler_name: The name of the handler function that manages
updates or changes within this state. This function controls the logic of
how the state transitions or processes user input.

– user_prompt: Localized prompts presented to the user to guide interac-
tion within the state. The keys are language codes, and the values are the
prompts in each respective language.

– prompt: A detailed text that defines what the application prompts the
user to do, localized by language. This often includes placeholders for
dynamic content like user inputs.

– clear_after_input: A boolean value indicating whether the input should
be cleared after the user provides it. If true, the input is cleared, preparing
the state for new input.

– pre_fill_resource: Specifies a resource to be pre-filled in this state, if ap-
plicable. This could be null if no pre-filling is needed.

– resource_value: The value associated with the resource after the state is
completed. This could be dynamic content or null if not applicable.

• additional_resources:

– This section defines additional resources that are used across the applica-
tion, such as prompts or instructions not directly tied to a specific state.

– resource_name: The identifier for the additional resource. This name is
used to reference the resource within the application.

52 Chapter 4. Implementation and Evaluation

– language_code_1, language_code_2, etc.: Localized versions of the re-
source text. The keys are language codes, and the values are the corre-
sponding text in those languages.

4.2.4 Interfaces and Interaction

Console

The console application represents the most basic implementation of the frame-
work, providing a streamlined set of functionalities due to the inherent constraints
of console-based interaction. While it is certainly possible to extend these capabili-
ties and overcome the limitations through innovative approaches, a straightforward
input/output interaction was chosen to effectively demonstrate the framework’s
adaptability within this environment.

Despite its simplicity, the console application delivers a robust experience by facili-
tating real-time interaction through output streaming of generated text. This design
ensures that users receive immediate feedback, enhancing the overall usability of the
application. Although the console interface may offer a more limited range of fea-
tures compared to more sophisticated interfaces, it still provides an enjoyable and
efficient experience in scenarios where simplicity and directness are required.

FIGURE 4.3: StoryBuilder Console Application

Desktop

For this version of the application, Tkinter was selected as the desktop GUI renderer,
primarily due to its native integration with Python. However, the framework is de-
signed with flexibility in mind, allowing other graphical frameworks to be easily in-
tegrated by extending and implementing the necessary logic within the framework’s
interfaces.

This GUI version offers enhanced flexibility and a broader range of features, includ-
ing debugging, exporting, and restarting, thanks to its significantly higher interac-
tivity compared to console-based applications. These features were incorporated to

4.2. StoryBuilder PoC Application 53

M
o

d
ify

 S
to

ry

re
q

u
ir

e
s

:
b

u
ild

_
s

to
ry

:
te

x
t

p
ro

vi
d

e
s:

 -
--

B
u

ild
 S

to
ry

re
q

u
ir

e
s:

 c
o

n
cl

u
si

o
n

:
b

o
le

a
n

p
ro

v
id

e
s

:
b

u
ild

_
s

to
ry

:
te

x
t

C
o

n
cl

u
si

o
n

re
q

u
ir

e
s

:
d

e
v

e
lo

p
m

e
n

t:
 b

o
le

a
n

,
c

o
n

fl
ic

t_
re

s
o

lu
ti

o
n

:
te

x
t,

 e
n

d
in

g
:

te
x

t
p

ro
vi

d
e

s:
 c

o
n

cl
u

si
o

n
:

b
o

o
le

a
n

C
o

n
fli

ct
 R

e
so

lu
tio

n

re
q

u
ir

e
s:

 N
o

n
e

p
ro

v
id

e
s

:
c

o
n

fl
ic

t_
re

s
o

lu
ti

o
n

:
te

x
t

E
n

d
in

g

re
q

u
ir

e
s

:
c

o
n

fl
ic

t_
re

s
o

lu
ti

o
n

:
te

x
t

p
ro

v
id

e
s

:
e

n
d

in
g

:
te

x
t

D
e

ve
lo

p
m

e
n

t

re
q

u
ir

e
s

:
in

tr
o

d
u

c
ti

o
n

,
c

o
n

fl
ic

t_
in

tr
o

d
u

c
ti

o
n

,
p

lo
t_

tw
is

t:
 t

e
x

t
p

ro
vi

d
e

s:
 b

u
ild

_
st

o
ry

C
o

n
fl

ic
t

In
tr

o
d

u
c

ti
o

n

re
q

u
ir

e
s:

 N
o

n
e

p
ro

v
id

e
s

:
c

o
n

fl
ic

t_
in

tr
o

d
u

c
ti

o
n

:
te

x
t

P
lo

t
T

w
is

t

re
q

u
ir

e
s

:
c

o
n

fl
ic

t_
in

tr
o

d
u

c
ti

o
n

:
te

x
t

p
ro

v
id

e
s

:
p

lo
t_

tw
is

t:
 t

e
x

t

In
tr

o
d

u
c

ti
o

n

re
q

u
ir

e
s:

 c
h

ild
_

in
tr

o
:

b
o

o
le

a
n

,
se

tt
in

g
_

d
e

sc
ri

p
tio

n
:

te
xt

,
ch

a
ra

ct
e

r_
in

tr
o

d
u

ct
io

n
:

te
xt

p
ro

v
id

e
s

:
in

tr
o

d
u

c
ti

o
n

:
b

o
o

le
a

n

S
e

tt
in

g
 D

e
s

c
ri

p
ti

o
n

re
q

u
ir

e
s:

 N
o

n
e

p
ro

v
id

e
s

:
s

e
tt

in
g

_
d

e
s

c
ri

p
ti

o
n

:
te

x
t

C
h

a
ra

c
te

r
In

tr
o

d
u

c
ti

o
n

re
q

u
ir

e
s

:
s

e
tt

in
g

_
d

e
s

c
ri

p
ti

o
n

:
te

x
t

p
ro

v
id

e
s

:
c

h
a

ra
c

te
r_

in
tr

o
d

u
c

ti
o

n
:

te
x

t

C
h

ild
 I

n
tr

o
d

u
c

ti
o

n

re
q

u
ir

e
s:

 c
h

ild
_

n
a

m
e

:
te

xt
,

ch
ild

_
a

g
e

:
n

u
m

b
e

r
p

ro
v

id
e

s
:

in
tr

o
d

u
c

ti
o

n
:

b
o

o
le

a
n

C
h

ild
 N

a
m

e

re
q

u
ir

e
s:

 N
o

n
e

p
ro

vi
d

e
s:

 c
h

ild
_

n
a

m
e

:
te

xt

C
h

ild
 A

g
e

re
q

u
ir

e
s:

 c
h

ild
_

n
a

m
e

:
te

xt
p

ro
vi

d
e

s:
 c

h
ild

_
a

g
e

:
n

u
m

b
e

r

b
u

ild
_

st
o

ry

co
n

cl
u

si
o

n

d
e

v
e

lo
p

m
e

n
t

in
tr

o
d

u
c

ti
o

n

c
h

ild
_

in
tr

o

ch
ild

_
n

a
m

e

ch
ild

_
n

a
m

e
,

ch
ild

_
a

g
e

s
e

tt
in

g
_

d
e

s
c

ri
p

ti
o

n

se
tt

in
g

_
d

e
sc

ri
p

tio
n

,
ch

a
ra

ct
e

r_
in

tr
o

d
u

ct
io

n

c
o

n
fl

ic
t_

in
tr

o
d

u
c

ti
o

n

c
o

n
fl

ic
t_

in
tr

o
d

u
c

ti
o

n
,

p
lo

t_
tw

is
t

c
o

n
fl

ic
t_

re
s

o
lu

ti
o

n

co
n

fli
ct

_
re

so
lu

tio
n

,
e

n
d

in
g

FI
G

U
R

E
4.

1:
St

at
e

di
ag

ra
m

fo
r

St
or

yb
ui

ld
er

Po
C

54 Chapter 4. Implementation and Evaluation

m
o

d
ify_

sto
ry_

sta
te

m
o

d
ify_

sto
ry_

sta
te

b
u

ild
_

sto
ry_

sta
te

b
u

ild
_

sto
ry_

sta
te

co
n

clu
sio

n
_

sta
te

co
n

clu
sio

n
_

sta
te

d
e

ve
lo

p
m

e
n

t_
sta

te

d
e

ve
lo

p
m

e
n

t_
sta

te

in
tro

d
u

c
tio

n
_

s
ta

te

in
tro

d
u

c
tio

n
_

s
ta

te

ch
ild

_
in

tro
_

sta
te

ch
ild

_
in

tro
_

sta
te

ch
ild

_
n

a
m

e
_

sta
te

ch
ild

_
n

a
m

e
_

sta
te

ch
ild

_
a

g
e

_
sta

te

ch
ild

_
a

g
e

_
sta

te

se
ttin

g
_

d
e

scrip
tio

n
_

sta
te

se
ttin

g
_

d
e

scrip
tio

n
_

sta
te

ch
a

ra
cte

r_
in

tro
d

u
ctio

n
_

sta
te

ch
a

ra
cte

r_
in

tro
d

u
ctio

n
_

sta
te

co
n

flict_
in

tro
d

u
ctio

n
_

sta
te

co
n

flict_
in

tro
d

u
ctio

n
_

sta
te

p
lo

t_
tw

is
t_

s
ta

te

p
lo

t_
tw

is
t_

s
ta

te

co
n

flict_
re

so
lu

tio
n

_
sta

te

co
n

flict_
re

so
lu

tio
n

_
sta

te

e
n

d
in

g
_

sta
te

e
n

d
in

g
_

sta
te

ch
ild

_
n

a
m

e
_

sta
te

ch
ild

_
n

a
m

e
_

sta
te

ch
ild

_
a

g
e

_
sta

te

c
h

ild
_

in
tro

,
ch

ild
_

n
a

m
e

_
sta

te
,

ch
ild

_
a

g
e

_
sta

te

ch
ild

_
n

a
m

e
_

sta
te

, ch
ild

_
a

g
e

_
sta

te

s
e

ttin
g

_
d

e
s

c
rip

tio
n

ch
ild

_
n

a
m

e
_

sta
te

, ch
ild

_
a

g
e

_
sta

te
, se

ttin
g

_
d

e
scrip

tio
n

c
h

a
ra

c
te

r_
in

tro
d

u
c

tio
n

ch
ild

_
n

a
m

e
_

sta
te

, ch
ild

_
a

g
e

_
sta

te
, se

ttin
g

_
d

e
scrip

tio
n

, ch
a

ra
cte

r_
in

tro
d

u
ctio

n

c
o

n
flic

t_
in

tro
d

u
c

tio
n

ch
ild

_
n

a
m

e
_

sta
te

, ch
ild

_
a

g
e

_
sta

te
, se

ttin
g

_
d

e
scrip

tio
n

, ch
a

ra
cte

r_
in

tro
d

u
ctio

n
, co

n
flict_

in
tro

d
u

ctio
n

p
lo

t_
tw

is
t

ch
ild

_
n

a
m

e
_

sta
te

, ch
ild

_
a

g
e

_
sta

te
, se

ttin
g

_
d

e
scrip

tio
n

, ch
a

ra
cte

r_
in

tro
d

u
ctio

n
, co

n
flict_

in
tro

d
u

ctio
n

, p
lo

t_
tw

ist

c
o

n
flic

t_
re

s
o

lu
tio

n

ch
ild

_
n

a
m

e
_

sta
te

, ch
ild

_
a

g
e

_
sta

te
, se

ttin
g

_
d

e
scrip

tio
n

, ch
a

ra
cte

r_
in

tro
d

u
ctio

n
, co

n
flict_

in
tro

d
u

ctio
n

, p
lo

t_
tw

ist, co
n

flict_
re

so
lu

tio
n

e
n

d
in

g

ch
ild

_
n

a
m

e
_

sta
te

, ch
ild

_
a

g
e

_
sta

te
,

se
ttin

g
_

d
e

scrip
tio

n
, ch

a
ra

cte
r_

in
tro

d
u

ctio
n

,
c

o
n

flic
t_

in
tro

d
u

c
tio

n
, p

lo
t_

tw
is

t,
co

n
flict_

re
so

lu
tio

n
, e

n
d

in
g

b
u

ild
_

sto
ry

b
u

ild
_

sto
ry

F
IG

U
R

E
4.2:R

esource
flow

diagram
for

Storybuilder
PoC

4.2. StoryBuilder PoC Application 55

demonstrate the framework’s adaptability and extensibility, showcasing its capabil-
ity to function effectively in local environments with native support. This implemen-
tation highlights how the framework can be expanded to leverage the full potential
of desktop applications, providing a rich and interactive user experience.

FIGURE 4.4: StoryBuilder Desktop (Tk) Application

56 Chapter 4. Implementation and Evaluation

FIGURE 4.5: StoryBuilder Desktop (Tk) Application Debug Window

Web

The web is the dominant platform in today’s technological landscape, making the
web-based version of the application the most feature-rich and the preferred choice
for evaluation. Its inherent advantage of being easily distributed and accessible from
anywhere in the world made it ideal for this purpose. Considerable effort was in-
vested in ensuring the interface is visually appealing and intuitive, allowing it to
effectively showcase the framework’s potential during user testing.

In this implementation, simplicity was key. The objective was not to create a state-
of-the-art application with advanced frontend frameworks or an extensive feature
set. Instead, the focus was on developing a straightforward, yet highly effective and
functional web application. The goal was to deliver a clean and user-friendly inter-
face that meets the needs of the evaluation while remaining accessible and easy to
use. This approach ensures that the core strengths of the framework are highlighted
without unnecessary complexity.

4.3. Evaluation 57

FIGURE 4.6: StoryBuilder Web Application

FIGURE 4.7: StoryBuilder Web Application Debug Modal

4.3 Evaluation

4.3.1 Methodology

To evaluate the effectiveness and user experience of the StoryBuilder Proof of Con-
cept (PoC) application, a targeted small-scale experiment was conducted with eight
adult participants ranging in age from 30 to 70 years. The decision to focus exclu-
sively on adults was carefully considered, as it allowed the study to circumvent the
significant ethical and logistical complexities involved in experimenting with chil-
dren. Conducting research with minors typically demands extensive ethical reviews,
parental consent, and specialized protocols, all of which would have introduced sub-
stantial delays and resource demands beyond the scope of this exploratory study.

58 Chapter 4. Implementation and Evaluation

By selecting adult participants, the research team was able to streamline the recruit-
ment process and proceed with fewer regulatory constraints, facilitating a more effi-
cient and manageable study. The adult demographic was also considered appropri-
ate for this initial phase of testing, as it provided a broad range of perspectives while
still maintaining a manageable scope. This approach was deemed adequate for con-
ducting a preliminary evaluation of the application’s overall quality, performance,
and user experience. The insights gained from this initial study are expected to pro-
vide valuable feedback on the application’s usability and effectiveness, serving as a
foundation for further development and refinement.

Furthermore, the findings from this evaluation will guide subsequent iterations of
the application, ensuring that future versions better meet the needs and expectations
of a diverse user base. This iterative process of evaluation and refinement is crucial
for the eventual goal of optimizing the application for broader deployment.

4.3.2 Evaluation Tools

To ensure a thorough and multi-dimensional assessment of the StoryBuilder Proof
of Concept (PoC) application, a carefully selected set of evaluation tools was em-
ployed. These tools were chosen based on their ability to capture different aspects
of user experience, usability, and workload, providing a comprehensive overview
of how the application performs from the perspective of its users. The evaluation
tools included the System Usability Scale (SUS), the Game Experience Questionnaire
(GEQ), and the NASA Task Load Index (NASA-TLX). Each of these instruments is
well-established in their respective domains, offering reliable and valid measures
that contribute valuable insights into the application’s effectiveness and overall user
experience.

The System Usability Scale (SUS) (Brooke, 1996; Lewis, 2018) was utilized to gauge
the ease of use and general usability of the application, providing a quick yet robust
metric that highlights potential usability issues. Meanwhile, the Game Experience
Questionnaire (GEQ) (Poels, Kort, and IJsselsteijn, 2007) was employed to delve into
the more subjective and experiential aspects of user interaction, particularly focus-
ing on engagement, immersion, and emotional responses during the use of the ap-
plication. Finally, the NASA Task Load Index (NASA-TLX) (Hart, 2006; Hart and
Staveland, 1988) was included to assess the perceived workload associated with us-
ing the application, offering insights into the cognitive and physical demands placed
on users.

Together, these tools offer a well-rounded evaluation framework, enabling a nu-
anced understanding of how the StoryBuilder PoC application performs across dif-
ferent dimensions of user experience. The following subsections detail the specifics
of each tool, including their purpose, methodology, and the insights they provide.

System Usability Scale (SUS)

The System Usability Scale (SUS) is a simple, yet effective tool for measuring the us-
ability of a system. Created by John Brooke in 1986, SUS is a ten-item questionnaire
that users fill out after interacting with a system, whether it be software, hardware,
or a website. Each item is scored on a Likert scale from 1 (strongly disagree) to 5
(strongly agree), with the overall score ranging from 0 to 100 after a specific calcula-
tion process.

4.3. Evaluation 59

SUS is valued for its reliability and versatility across various industries and types
of systems. It provides a quick assessment of a system’s usability by capturing the
users’ perceived ease of use, satisfaction, and efficiency. The resulting score offers a
clear indication of the system’s usability, helping developers identify areas for im-
provement. Although SUS provides a high-level view, it is often used in conjunction
with other methods to gain a more detailed understanding of usability issues.

The SUS statements, answered by the use of a likert scale as shown in B.1 in tables
B.1 and B.2.

Game Experience Questionnaire (GEQ)

The Game Experience Questionnaire (GEQ) is a comprehensive instrument designed
to measure various aspects of a player’s experience in digital games. The GEQ is
structured into multiple components, each focusing on different facets of the gaming
experience, including immersion, flow, competence, tension, challenge, and positive
and negative affect. The core module of GEQ captures the general experience during
gameplay, while additional modules, such as the Social Presence Module and Post-
Game Module, assess specific dimensions like social interaction and the after-effects
of gameplay.

GEQ is widely used in game research and development to assess how players inter-
act with and perceive a game. By analyzing responses, developers and researchers
can gain valuable insights into how different game elements contribute to the overall
experience. This information can then be used to fine-tune game design, ensuring
that the final product meets the desired engagement and satisfaction levels for the
target audience.

In this evaluation, the core module of GEQ was used, which consists in the following
statements and answered in a likert scale as shown in B.2 in tables B.3 and B.4.

NASA Task Load Index (NASA-TLX)

The NASA Task Load Index (NASA-TLX) is a widely recognized tool used to assess
perceived workload in various tasks. Developed by NASA, this multi-dimensional
rating procedure evaluates a user’s subjective experience of workload across six di-
mensions: Mental Demand, Physical Demand, Temporal Demand, Performance, Ef-
fort, and Frustration. Each dimension is rated on a scale from low to high, and the
overall workload score is calculated by combining these ratings.

The purpose of NASA-TLX is to capture the cognitive and physical demands placed
on users during task execution, offering insights into the overall burden experi-
enced. The tool is especially valuable in complex systems where understanding the
workload is crucial for optimizing performance and minimizing errors. By quanti-
fying these aspects, NASA-TLX helps in identifying areas where interventions can
be made to improve user experience and system efficiency.

The NASA-TLX questions, answered by the use of an adapted likert scale as shown
in B.3 in tables B.5 and B.6.

60 Chapter 4. Implementation and Evaluation

4.4 Results and Discussion

4.4.1 System Usability Scale (SUS)

The System Usability Scale (SUS) results provided offer insights into the usability
of the system based on user feedback. The SUS scores are calculated based on a
series of questions answered on a 5-point Likert scale, with responses ranging from
"Strongly Disagree" (1) to "Strongly Agree" (5). Below is a detailed analysis of the
results:

SUS Score Summary

A graphical representation can be found in Fig. 4.8.

Metric Value
Mean SUS Score 91.25
Standard Deviation 8.45

TABLE 4.1: Summary of SUS Score and Standard Deviation

Interpretation of SUS Items

A breakdown of the distribution of answers can be seen in Fig. 4.9.

1. "I think that I would like to use this system frequently.": The majority of
users agreed or strongly agreed that they would like to use the system fre-
quently, which is a strong indicator of user satisfaction and perceived useful-
ness. The presence of neutral responses suggests that while most users are
enthusiastic, a couple of users may not see frequent use as essential.

2. "I found the system unnecessarily complex.": All users disagreed with the
statement, indicating that the system is generally perceived as straightforward
and easy to use. This aligns with the high overall SUS score and suggests that
complexity is not a barrier to usability.

3. "I thought the system was easy to use.": All users found the system easy to
use, with the majority strongly agreeing. This further supports the high usabil-
ity reflected in the overall SUS score, showing that the system’s interface and
interactions are intuitive.

4. "I think that I would need the support of a technical person to be able to
use this system.": The strong disagreement with this statement indicates that
users felt confident in their ability to use the system without needing addi-
tional technical support. This suggests that the system is user-friendly and
accessible, even for those who may not be technically inclined.

5. "I found the various functions in this system were well integrated.": Users
generally found that the system’s functions were well integrated, which con-
tributes to its overall usability. A well-integrated system ensures a seamless
user experience and efficient task completion.

6. "I thought there was too much inconsistency in this system.": The strong
disagreement with this statement suggests that users found the system to be
consistent in its design and operation. Consistency is a key factor in usability,
as it helps users predict how the system will behave.

4.4. Results and Discussion 61

7. "I would imagine that most people would learn to use this system very
quickly.": Nearly all users strongly agreed that others would quickly learn
to use the system, indicating that the system has a low learning curve. This
is crucial for ensuring that new users can become proficient without extensive
training.

8. "I found the system very cumbersome to use.": All users disagreed with this
statement, indicating that they did not find the system cumbersome. This fur-
ther emphasizes the ease of use and efficiency of the system’s design.

9. "I felt very confident using the system.": All users felt confident using the
system, with an even split between agreement and strong agreement. Confi-
dence in using the system is a crucial indicator of good usability, as it reflects
the users’ comfort and trust in the system’s capabilities.

10. "I needed to learn a lot of things before I could get going with this system.":
The strong disagreement here indicates that the system is perceived as easy
to start using without requiring significant learning or prior knowledge. This
suggests that the system is well-designed for quick onboarding and accessibil-
ity.

Overall Interpretation

• High Usability: The SUS score of 91.25, with a low standard deviation, indi-
cates that users overwhelmingly find the system highly usable. This is further
corroborated by the individual item responses, where users consistently rated
the system positively.

• Positive User Experience: The majority of users found the system easy to use,
well-integrated, and not cumbersome or complex. This suggests that the sys-
tem is well-designed with user experience in mind.

• Consistency and Integration: Users found the system to be consistent and its
functions well integrated, which are important factors contributing to a seam-
less user experience.

Final Notes

The simple yet effective approach to the user interface and usability has proven to
be successful. Although the application’s straightforward nature lends itself to this
type of design, it has been well received by the evaluation subjects, indicating its
suitability for a younger audience. These results indicate that the system is well-
received by users and provides a strong foundation for further development and
refinement for more targeted groups.

62 Chapter 4. Implementation and Evaluation

65

70

75

80

85

90

95

100
SU

S
Sc

or
e

SUS Score Distribution with Mean and Standard Deviation
Mean: 91.25
Mean + 1 SD: 99.70
Mean - 1 SD: 82.80

FIGURE 4.8: SUS Score Distribution

0 1 2 3 4 5 6 7 8
Proportion of Responses

I think that I would like to use this system frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this system.

Qu
es

tio
ns

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

FIGURE 4.9: SUS Response Proportion

4.4.2 Game Experience Questionnaire (GEQ)

Based on the provided Game Experience Questionnaire (GEQ) data and the asso-
ciated categories from the core module, the results can be analyzed in relation to
the specific components of the core GEQ. The core module assesses game experi-
ence across seven components: Competence, Sensory and Imaginative Immersion,
Flow, Tension/Annoyance, Challenge, Negative Affect, and Positive Affect.

4.4. Results and Discussion 63

GEQ Dimensions Score Summary

An overlay of dimensions for all users can be found in Fig. 4.10, while the mean and
standard deviations are shown in 4.11.

GEQ Dimension Mean Scores Standard Deviation
Competence 3.1 0.7
Sensory and Imaginative Immersion 3.3 0.7
Flow 2.8 0.7
Tension/Annoyance 0.1 0.4
Challenge 0.7 0.6
Negative Affect 0.3 0.2
Positive Affect 3.7 0.3

TABLE 4.2: Associated Question Items and GEQ Dimensions Scores

Interpretation of GEQ Dimensions

1. Competence: The competence scores indicate a moderate sense of skill and
effectiveness while using the application. Users generally felt capable, with
the mean user scores varying from 2.2 to 4.0. Higher scores reflect a strong
sense of mastery, while the lower scores suggest that some users may have
struggled with certain aspects of the interaction.

2. Sensory and Imaginative Immersion: Immersion scores reveal that most users
experienced a moderate to high level of engagement with the application’s sen-
sory and imaginative aspects. Scores closer to 4.0 suggest that the application
was effective in drawing users into its world, making them feel absorbed in
the experience. However, the lower scores indicate that some users were less
engaged, possibly due to less captivating content or design elements that did
not fully resonate with them.

3. Flow: The flow scores suggest that users’ experiences of being fully absorbed
in the application varied. Some users reported strong flow (score of 4.0), in-
dicating that they were deeply concentrated and lost track of time, which is
ideal for creating an engaging experience. Conversely, lower scores (around
2.0) suggest that not all users reached this state, possibly due to interruptions
in application usage or mechanics that hindered seamless engagement.

4. Tension/Annoyance: The very low tension/annoyance scores (mostly 0.0) sug-
gest that the application was not frustrating for most users. A score of 1.0
indicates minimal tension or annoyance, reflecting a generally positive experi-
ence without significant moments of irritation or stress. This suggests that the
application is well-balanced in terms of difficulty and did not create negative
emotional responses associated with frustration.

5. Challenge: The challenge scores are relatively low, with a maximum of 1.4.
This indicates that users found the application to be only mildly challenging,
if at all. Although the application was designed for small children (8-12 years
old), it may also suggest that the application lacks depth or difficulty to fully
engage more experienced users. The low challenge might be a factor in the
mixed flow scores, as less challenging applications can fail to create the optimal
level of difficulty required to sustain flow.

64 Chapter 4. Implementation and Evaluation

6. Negative Affect: The low negative affect scores indicate that users did not ex-
perience significant negative emotions, such as boredom or irritation, while
playing the application. A score of 0.5 is minimal, reflecting only slight nega-
tive feelings, which could be due to brief moments of disengagement or dissat-
isfaction but were not pervasive throughout the application usage experience.

7. Positive Affect: Positive affect scores are consistently high, ranging from 3.2
to 4.0. This suggests that users generally enjoyed the application and felt posi-
tive emotions such as happiness, contentment, and satisfaction. High positive
affect is a strong indicator of the application’s success in creating an enjoyable
experience.

Overall Interpretation

The GEQ core module results provide a comprehensive overview of how users ex-
perienced the application across key dimensions:

• Moderate Competence: Users generally felt moderately competent, indicating
that the application offered an appropriate level of challenge for most, though
some users might benefit from further difficulty adjustments.

• Low Challenge: The relatively low challenge scores suggest that the applica-
tion may be too easy for some users, potentially limiting its ability to sustain
long-term engagement for more experienced people. One must take into ac-
count this PoC was designed for small children so a low challenge is to be
expected to be reported by adults.

• Varied Immersion and Flow: While many users felt immersed and experi-
enced flow, there was notable variability. This suggests that the application
successfully engaged some users deeply but might need improvements to en-
sure a more consistent experience across all users.

• Low Tension and Negative Affect: The application effectively avoided caus-
ing negative emotions or frustration, which is a positive outcome. This con-
tributes to the overall enjoyment and positive affect reported by users.

• High Positive Affect: The consistently high positive affect scores confirm that
the application was enjoyable and left users with a generally positive experi-
ence.

Final Notes

Conducting an appropriate evaluation with the targeted age group is essential to
accurately assess the GEQ, particularly in terms of competence, challenge and flow,
which should be carefully tailored to the intended audience. Future research could
explore enhancing immersion by incorporating additional elements such as graphi-
cal or audio resources, thereby providing a more comprehensive sensory experience.

4.4. Results and Discussion 65

Competence

Sensory and Imaginative Immersion

Flow

Tension/Annoyance

Challenge

Negative Affect

Positive Affect

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

User 1
User 2
User 3
User 4
User 5
User 6
User 7
User 8

FIGURE 4.10: GEQ Score Radar

Competence

Sensory and Imaginative Immersion

Flow

Tension/Annoyance

Challenge

Negative Affect

Positive Affect

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Mean
Mean + 1 SD
Mean - 1 SD

FIGURE 4.11: GEQ Mean-Deviation Radar

4.4.3 NASA Task Load Index (NASA-TLX)

The NASA Task Load Index (NASA-TLX) results provide a multidimensional as-
sessment of perceived workload, normalized to a 0-100 scale. The data includes six

66 Chapter 4. Implementation and Evaluation

dimensions: Mental Demand, Physical Demand, Temporal Demand, Performance,
Effort, and Frustration.

NASA-TLX Score Summary

A graphical representation can be found in Fig. 4.12.

Category Mean Standard Deviation
Mental Demand 50.0 26.7
Physical Demand 9.4 18.6
Temporal Demand 21.9 16.0
Performance 84.4 12.9
Effort 21.9 16.0
Frustration 0.0 0.0

TABLE 4.3: Breakdown of Mean Scores and Standard Deviations for
NASA-TLX Dimensions

Interpretation of NASA-TLX Dimensions

1. Mental Demand: The moderate mean score of 50.0 suggests that the tasks
required a considerable amount of mental effort. The relatively high standard
deviation (26.7) indicates variability in how different participants perceived
the mental demand, with some finding it more demanding than others.

2. Physical Demand: The low mean score of 9.4 indicates that the tasks were per-
ceived as requiring minimal physical effort. The standard deviation of 18.6,
while somewhat high relative to the mean, suggests that most participants
found the physical demand to be low, though a few may have perceived it
slightly differently.

3. Temporal Demand: With a mean score of 21.9, the tasks were generally not
perceived as highly rushed or time-pressured. The standard deviation of 16.0
indicates some variation among participants, with most perceiving the tempo-
ral demand as low to moderate.

4. Performance: The high mean score of 84.4 reflects that participants felt they
were highly successful in accomplishing the tasks. The relatively low standard
deviation of 12.9 suggests that most participants had a consistent perception
of their performance, with generally high satisfaction.

5. Effort: The low mean score of 21.9 indicates that participants generally did not
have to exert significant effort to achieve their performance levels. The stan-
dard deviation of 16.0 shows that this perception was fairly consistent across
participants.

6. Frustration: A mean score of 0.0, with no variation (standard deviation of 0.0),
suggests that the tasks did not induce any feelings of frustration, insecurity, or
stress among participants. This is a strong indicator of a positive user experi-
ence.

4.4. Results and Discussion 67

Overall Interpretation

The NASA-TLX results indicate that the tasks were generally well-received by par-
ticipants, with low levels of perceived workload across most dimensions. Mental
demand was moderate, suggesting that the tasks required some cognitive effort, and
physical and temporal demands were low as to be expected. Performance was rated
highly, indicating that participants felt successful in their tasks, and frustration was
non-existent, which is a very positive outcome.

Final Notes

The low physical and temporal demands indicate that tasks were appropriately de-
signed to minimize physical strain and time pressure, making them suitable for a
younger demographic. However, while the mental demand was moderate as to
be expected, further adjustments to streamline task complexity could reduce cogni-
tive load, enhancing overall performance and satisfaction depending on the target
group. The high performance scores and absence of frustration highlight the ef-
fectiveness of the current task design. Future iterations should focus on maintaining
these strengths to ensure continued user satisfaction and to accommodate the unique
needs of children, who may be more sensitive to excessive cognitive or physical de-
mands.

Men
tal

 Dem
an

d -
 How

 m
en

tal
ly d

em
an

din
g w

as
the

 ta
sk?

Ph
ysi

cal
 Dem

an
d -

 How
 ph

ysi
cal

ly d
em

an
din

g w
as

the
 ta

sk?

Tem
po

ral
 Dem

an
d -

 How
 hu

rrie
d o

r ru
she

d w
as

the
 pa

ce
of

the
 ta

sk?

Per
for

man
ce

- H
ow

 su
cce

ssf
ul

were
 yo

u i
n a

cco
mplis

hin
g w

ha
t y

ou
 were

 as
ked

 to
 do

?

Eff
ort

 - H
ow

 ha
rd

did
 yo

u h
av

e t
o w

ork
 to

 ac
com

plis
h y

ou
r le

ve
l o

f p
erf

orm
an

ce?

Fru
str

ati
on

 - H
ow

 in
sec

ure
, d

isc
ou

rag
ed

, ir
rita

ted
, st

res
sed

, a
nd

 an
no

ye
d w

ere
 yo

u?

0

20

40

60

80

100

Sc
or

e

NASA-TLX Dimensions

FIGURE 4.12: NASA-TLX Score Dimensions

69

Chapter 5

Conclusion

The development of the CreatAIlity framework marks a significant advancement in
the integration of artificial intelligence with educational technology, specifically de-
signed to foster creativity in children through guided storytelling. By leveraging key
concepts and combining the generative power of Large Language Models (LLMs)
with the structured control of Finite State Machines (FSMs), CreatAIlity effectively
balances the spontaneity of AI-driven content generation with the educational need
for coherence and structure in narrative construction. Its modular and flexible de-
sign not only allows for experimentation with alternative flow control technologies,
such as Behavior Trees or other State Machine approaches, but also facilitates inte-
gration with diverse tech stacks for interacting with various language models. Addi-
tionally, the framework is designed to be easily extendable, enabling straightforward
integration with other media producers, such as audio or image generators, further
enhancing its versatility and potential in educational applications.

5.1 Summary of Achievements

This work has successfully achieved several key objectives. Primarily, it has demon-
strated the feasibility and effectiveness of integrating LLMs with FSMs to create a
tool that is both creatively engaging and pedagogically sound. While targeted eval-
uation is necessary to fully validate the pedagogical outcomes, the framework has
shown that various approaches can be tailored to meet different educational goals,
as evidenced by the validation of this use case. The framework empowers children
to engage in narrative creation within a scaffolded environment, allowing them to
explore their imagination while receiving guidance to ensure their stories are coher-
ent and meaningful. The use of incipits and prompt chaining has proven particularly
effective in maintaining narrative flow, offering a balanced combination of flexibility
and control in the storytelling process.

Moreover, the framework’s design emphasizes modularity and extensibility, making
it adaptable to various educational contexts and capable of being expanded with
additional features as needed. This flexibility ensures that CreatAIlity can be easily
integrated into different curricula and used with diverse age groups, enhancing its
utility as an educational tool.

5.2 Contributions to the Field

CreatAIlity also contributes to the fields of educational technology and natural lan-
guage processing. By bridging the gap between the creative potential of AI and the

70 Chapter 5. Conclusion

structured requirements of educational storytelling, this framework sets a new stan-
dard for how AI can be used to support learning and creativity in children. It also
provides a practical example of how LLMs can be harnessed in a controlled manner,
addressing the common challenge of non-determinism in AI outputs.

The comprehensive evaluation of CreatAIlity, utilizing tools such as the System Us-
ability Scale (SUS), Game Experience Questionnaire (GEQ), and NASA Task Load
Index (NASA-TLX), has yielded valuable insights into the framework’s usability,
effectiveness, and overall user experience. The positive outcomes from these as-
sessments affirm the framework’s potential to innovate in educational practices by
making learning more engaging and interactive. These encouraging results motivate
further studies and explorations in this area, highlighting the framework’s promise
in enhancing educational methodologies.

5.3 Future Research Directions

While this thesis has laid a foundation, there are several avenues for future research
that could further enhance the framework. One area of interest is the refinement
of techniques for managing the non-deterministic nature of LLMs. Future work
could explore different models or fine-tuning strategies to improve consistency in
narrative outputs, ensuring that the stories generated are not only creative but also
aligned with educational goals.

Additionally, the scalability of CreatAIlity could be further investigated. While the
current design supports modularity, understanding how the framework performs
under varying conditions - such as different user loads or more complex narratives
- could lead to improvements in performance and efficiency. This might involve
optimizing the underlying algorithms or exploring cloud-based solutions to support
larger-scale deployments.

Another promising direction is the exploration of broader applications for the frame-
work. Beyond educational settings, CreatAIlity could be adapted for use in en-
tertainment, therapy, or even corporate training environments where guided sto-
rytelling could play a role in skill development or team-building exercises.

5.4 Potential Impact

The impact of CreatAIlity on educational practices could be profound. By providing
a tool that enhances creativity while ensuring educational value, this framework
has the potential to improve, or event transform, how narrative skills are taught and
nurtured in children. Its adaptability means that it can be tailored to various learning
environments, making it a versatile addition to educational technology.

Furthermore, CreatAIlity’s approach to combining AI with structured learning could
inspire new methodologies in both AI development and education. As AI continues
to evolve, frameworks like CreatAIlity could pave the way for more sophisticated
educational tools that leverage the strengths of AI while mitigating its limitations.

5.5. Practical Applications 71

5.5 Practical Applications

In addition to its educational potential, CreatAIlity could find applications in other
fields where guided storytelling is valuable. For instance, in therapeutic settings, sto-
rytelling is often used as a means of expression and processing emotions. CreatAIlity
could be adapted to help individuals create narratives that explore their feelings in
a controlled and supportive environment. Similarly, in the entertainment industry,
the framework could be used to develop interactive storytelling experiences that are
both engaging and structured, offering users a unique blend of creativity and narra-
tive coherence.

5.6 Final Notes

In conclusion, the CreatAIlity framework represents a significant step forward in
integrating artificial intelligence with educational technology, offering a novel ap-
proach to fostering creativity in children through guided storytelling. Beyond its
technical design and implementation, the framework’s modularity, flexibility, and
extensibility are intended to allow adaptation across a wide range of educational
contexts and to be expanded for broader applications, while also serving as a plat-
form for exploring new frontiers in this field.

As AI, particularly Generative AI, remains in its early stages, with their power evi-
dent but their potential applications still being explored, CreatAIlity makes a mean-
ingful advance in this direction. Ultimately, it aspires to contribute more than just a
tool - it serves as an exploratory venture into discovering new and effective ways to
harness the capabilities of AI for educational and creative purposes.

73

Appendix A

CreatAIlity Framework and PoC
Application Code Metrics

A.1 Raw Metrics

Metric Value
Total Lines of Code (LOC) 3551
Logical Lines of Code (LLOC) 2095
Source Lines of Code (SLOC) 2751
Comments 101
Single-line Comments 84
Multi-line Comments 0
Blank Lines 716
Comment Stats
(Comments per LOC) 3%
(Comments per SLOC) 4%
(Comments + Multi-line Comments per LOC) 3%

TABLE A.1: Raw Metrics Summary

A.2 Cyclomatic Complexity

Score Range Rank Risk and Description
1 - 5 A Low risk - simple block
6 - 10 B Low risk - well-structured and stable block
11 - 20 C Moderate risk - slightly complex block
21 - 30 D More than moderate risk - more complex block
31 - 40 E High risk - complex block, alarming

41+ F Very high risk - error-prone, unstable block

TABLE A.2: Cyclomatic Complexity Reference Risk Levels (Lacchia,
n.d.)

74 Appendix A. CreatAIlity Framework and PoC Application Code Metrics

Class Cyclomatic Complexity
OutputHandlerStreamingEventMessage A (2)
OutputHandlerStreamingCallbackHandler A (2)
OutputHandlerStreamingEventType A (1)
TkinterInputHandler A (3)
InputHandlerEventMessage A (2)
InputHandlerInterface A (2)
ConsoleInputHandler A (2)
WebSocketInputHandler A (2)
InputHandlerEventType A (1)
StackTkinterOutputHandler A (5)
ConsoleOutputHandler A (4)
TkinterOutputHandler A (4)
WebSocketOutputHandler A (4)
StackWebSocketOutputHandler A (4)
OutputHandlerEventMessage A (2)
OutputHandlerInterface A (2)
OutputHandlerEventType A (1)
LLMCallEventMessage A (2)
ChatEventMessage A (2)
ChatEventResponse A (2)
BaseLLMHandler A (2)
LLMCallEventType A (1)
ChatEventType A (1)
TGIHandler A (4)
OllamaHandler A (4)
EventBroker A (5)
EventType A (1)
EventMessage A (1)
EventResponse A (1)
StateManager A (2)
AppConfig A (3)
StateMachineController A (2)
StatePersistenceEventMessage A (4)
StatePersistenceManager A (2)
ResourceManager A (2)
DebugHandler A (2)
BaseAppNamespace A (2)
AppCustomJsonWrapper A (3)
Resource A (4)
ResourceEncoder A (3)
ResourceDecoder A (3)
ResourceAction A (3)
ResourceEventMessage A (2)
ResourceEventType A (1)
StateMachine A (3)
StateMachineEventMessage A (2)
StateMachineEventType A (1)
StateConfig A (2)
State A (2)

TABLE A.3: Cyclomatic Complexity Scores for Classes

A.3. Maintainability Index 75

A.3 Maintainability Index

MI Score Rank Maintainability
100 - 20 A Very high
19 - 10 B Medium

9 - 0 C Extremely low

TABLE A.4: Maintainability Index Reference Table (Lacchia, n.d.)

File Maintainability Index
lib/io/streaming_outputs.py A (60.26)
lib/io/inputs.py A (48.37)
lib/io/outputs.py A (39.13)
lib/log/app_logging.py A (72.53)
lib/llm/llm_handler.py A (48.48)
lib/llm/huggingface/tgi.py A (45.89)
lib/llm/langchain/ollama.py A (48.50)
lib/app/event_broker.py A (49.26)
lib/app/state_manager.py A (61.27)
lib/app/app_config.py A (73.00)
lib/app/manager/state_machine_controller.py A (60.34)
lib/app/manager/state_persistence_manager.py A (38.20)
lib/app/manager/resource_manager.py A (74.02)
lib/app/manager/debug_handler.py A (100.00)
lib/app/flask_socketio_app/base_app_namespace.py A (53.97)
lib/app/flask_socketio_app/flask_io_json_wrapper.py A (67.02)
lib/sm/resource.py A (40.88)
lib/sm/state_machine.py A (32.84)
lib/sm/state.py A (100.00)
app/story_builder/websocket/story_builder_websocket.py A (67.03)
app/story_builder/console/story_builder_console_ui.py A (69.45)
app/story_builder/resources/update_handlers.py A (61.43)
app/story_builder/tk/story_builder_tk_gui.py A (63.29)
app/tk/ui/ui_components.py A (52.03)
app/tk/ui/debug_window.py A (100.00)
app/utils/helpers.py A (63.52)

TABLE A.5: Maintainability Index Scores for CreatAIlity and PoC Ap-
plications

77

Appendix B

Evaluation Questionnaires

B.1 System Usability Scale (SUS)

No. Statement
1 I think that I would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.
4 I think that I would need the support of a technical person to be able to use this system.
5 I found the various functions in this system were well integrated.
6 I thought there was too much inconsistency in this system.
7 I would imagine that most people would learn to use this system very quickly.
8 I found the system very cumbersome to use.
9 I felt very confident using the system.
10 I needed to learn a lot of things before I could get going with this system.

TABLE B.1: System Usability Scale Evaluation Statements

Value Answers
1 Strongly agree
2 Agree
3 Neutral
4 Disagree
5 Strongly disagree

TABLE B.2: System Usability Scale Evaluation Answers

78 Appendix B. Evaluation Questionnaires

B.2 Game Experience Questionnaire (GEQ)

No. Statement No. Statement
1 I felt content 18 I felt imaginative
2 I felt skilful 19 I felt that I could explore things
3 I was interested in the game’s story 20 I enjoyed it
4 I thought it was fun 21 I was fast at reaching the game’s targets
5 I was fully occupied with the game 22 I felt annoyed
6 I felt happy 23 I felt pressured
7 It gave me a bad mood 24 I felt irritable
8 I thought about other things 25 I lost track of time
9 I found it tiresome 26 I felt challenged
10 I felt competent 27 I found it impressive
11 I thought it was hard 28 I was deeply concentrated in the game
12 It was aesthetically pleasing 29 I felt frustrated
13 I forgot everything around me 30 It felt like a rich experience
14 I felt good 31 I lost connection with the outside world
15 I was good at it 32 I felt time pressure
16 I felt bored 33 I had to put a lot of effort into it
17 I felt successful

TABLE B.3: Game Experience Questionnaire Evaluation Statements

Value Answers
1 not at all
2 slightly
3 moderately
4 fairly
5 extremely

TABLE B.4: Game Experience Questionnaire Evaluation Answers

B.3 NASA Task Load Index (NASA-TLX)

No. Question
1 Mental Demand - How mentally demanding was the task?
2 Physical Demand - How physically demanding was the task?
3 Temporal Demand - How hurried or rushed was the pace of the task?
4 Performance - How successful were you in accomplishing what you were asked to do?
5 Effort - How hard did you have to work to accomplish your level of performance?
6 Frustration - How insecure, discouraged, irritated, stressed, and annoyed were you?

TABLE B.5: NASA Task Load Index Evaluation Questions

B.3. NASA Task Load Index (NASA-TLX) 79

Value Answers
1 Very Low
2
3
4
5 Very High

TABLE B.6: NASA Task Load Index Evaluation Answers

81

Bibliography

Addone, Agnese, Giuseppina Palmieri, and Maria Angela Pellegrino (2022). “Engag-
ing Children in Digital Storytelling”. en. In: Methodologies and Intelligent Systems for
Technology Enhanced Learning, 11th International Conference. Ed. by Fernando De la
Prieta et al. Cham: Springer International Publishing, pp. 261–270. ISBN: 978-3-
030-86618-1. DOI: 10.1007/978-3-030-86618-1_26.

Alagar, V.S. and K. Periyasamy (2011). Specification of Software Systems. en. Texts
in Computer Science. London: Springer London. ISBN: 978-0-85729-276-6 978-0-
85729-277-3. DOI: 10.1007/978-0-85729-277-3. URL: http://link.springer.
com/10.1007/978-0-85729-277-3 (visited on 06/24/2024).

baeldung (Oct. 2021). Statically Typed vs Dynamically Typed Languages | Baeldung on
Computer Science. en-US. URL: https://www.baeldung.com/cs/statically-vs-
dynamically-typed-languages (visited on 09/01/2024).

Brooke, john (1996). “SUS: A ’Quick and Dirty’ Usability Scale”. In: Usability Evalua-
tion In Industry. Num Pages: 6. CRC Press. ISBN: 978-0-429-15701-1.

Cai, Carrie J., Shamsi T. Iqbal, and Jaime Teevan (May 2016). “Chain Reactions: The
Impact of Order on Microtask Chains”. en. In: Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems. San Jose California USA: ACM,
pp. 3143–3154. ISBN: 978-1-4503-3362-7. DOI: 10.1145/2858036.2858237. URL:
https://dl.acm.org/doi/10.1145/2858036.2858237 (visited on 06/24/2024).

Catala, Alejandro, Hannie Gijlers, and Iris Visser (Apr. 2023). “Guidance in story-
telling tables supports emotional development in kindergartners”. en. In: Multi-
media Tools and Applications 82.9, pp. 12907–12937. ISSN: 1380-7501, 1573-7721. DOI:
10.1007/s11042-022-14049-7. URL: https://link.springer.com/10.1007/
s11042-022-14049-7 (visited on 07/10/2024).

Chen, Lijia, Pingping Chen, and Zhijian Lin (2020). “Artificial Intelligence in Edu-
cation: A Review”. In: IEEE Access 8. Conference Name: IEEE Access, pp. 75264–
75278. ISSN: 2169-3536. DOI: 10. 1109/ACCESS.2020.2988510. URL: https ://
ieeexplore.ieee.org/document/9069875 (visited on 07/09/2024).

Chilton, Lydia B, James A Landay, and Daniel S Weld (2016). “HumorTools: A Mi-
crotask Workflow for Writing News Satire”. en. In: El Paso, Texas: ACM.

Colledanchise, Michele and Petter Ögren (July 2018). Behavior Trees in Robotics and AI:
An Introduction. arXiv:1709.00084 [cs]. DOI: 10.1201/9780429489105. URL: http:
//arxiv.org/abs/1709.00084 (visited on 09/01/2024).

Ehrlinger, Lisa and Wolfram Wöß (2016). “Towards a Definition of Knowledge Graphs”.
en. In: SEMANTiCS (Posters, Demos, SuCCESS) 48.1-4, p. 2.

Garzotto, Franca, Paolo Paolini, and Amalia Sabiescu (June 2010). “Interactive sto-
rytelling for children”. en. In: Proceedings of the 9th International Conference on Inter-
action Design and Children. Barcelona Spain: ACM, pp. 356–359. ISBN: 978-1-60558-
951-0. DOI: 10.1145/1810543.1810613. URL: https://dl.acm.org/doi/10.1145/
1810543.1810613 (visited on 07/02/2024).

Gmeiner, Frederic and Nur Yildirim (2023). “Dimensions for Designing LLM-based
Writing Support”. en. In: In2Writing Workshop at CHI.

https://doi.org/10.1007/978-3-030-86618-1_26
https://doi.org/10.1007/978-0-85729-277-3
http://link.springer.com/10.1007/978-0-85729-277-3
http://link.springer.com/10.1007/978-0-85729-277-3
https://www.baeldung.com/cs/statically-vs-dynamically-typed-languages
https://www.baeldung.com/cs/statically-vs-dynamically-typed-languages
https://doi.org/10.1145/2858036.2858237
https://dl.acm.org/doi/10.1145/2858036.2858237
https://doi.org/10.1007/s11042-022-14049-7
https://link.springer.com/10.1007/s11042-022-14049-7
https://link.springer.com/10.1007/s11042-022-14049-7
https://doi.org/10.1109/ACCESS.2020.2988510
https://ieeexplore.ieee.org/document/9069875
https://ieeexplore.ieee.org/document/9069875
https://doi.org/10.1201/9780429489105
http://arxiv.org/abs/1709.00084
http://arxiv.org/abs/1709.00084
https://doi.org/10.1145/1810543.1810613
https://dl.acm.org/doi/10.1145/1810543.1810613
https://dl.acm.org/doi/10.1145/1810543.1810613

82 Bibliography

Hart, Sandra G. (Oct. 2006). “Nasa-Task Load Index (NASA-TLX); 20 Years Later”.
en. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50.9.
Publisher: SAGE Publications Inc, pp. 904–908. ISSN: 1071-1813. DOI: 10.1177/
154193120605000909. URL: https://doi.org/10.1177/154193120605000909
(visited on 09/01/2024).

Hart, Sandra G. and Lowell E. Staveland (1988). “Development of NASA-TLX (Task
Load Index): Results of Empirical and Theoretical Research”. en. In: Advances in
Psychology. Vol. 52. Elsevier, pp. 139–183. ISBN: 978-0-444-70388-0. DOI: 10.1016/
S0166-4115(08)62386-9. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0166411508623869 (visited on 09/01/2024).

Hibbin, Rebecca (Oct. 2016). “The psychosocial benefits of oral storytelling in school:
developing identity and empathy through narrative”. en. In: Pastoral Care in Edu-
cation 34.4, pp. 218–231. ISSN: 0264-3944, 1468-0122. DOI: 10.1080/02643944.2016.
1225315. URL: https://www.tandfonline.com/doi/full/10.1080/02643944.
2016.1225315 (visited on 07/10/2024).

Jones Bartoli, Alice (Nov. 2018). Using storytelling to promote literacy, communication
and socio-emotional development in the early years. eng. Report. Num Pages: 21. Tales
Toolkit. URL: https://research.gold.ac.uk/id/eprint/24937/ (visited on
07/10/2024).

Kooli, Chokri (Jan. 2023). “Chatbots in Education and Research: A Critical Examina-
tion of Ethical Implications and Solutions”. en. In: Sustainability 15.7. Number: 7
Publisher: Multidisciplinary Digital Publishing Institute, p. 5614. ISSN: 2071-1050.
DOI: 10.3390/su15075614. URL: https://www.mdpi.com/2071-1050/15/7/5614
(visited on 07/09/2024).

Lacchia, Michele (n.d.). Welcome to Radon’s documentation! — Radon 4.1.0 documenta-
tion. URL: https://radon.readthedocs.io/en/latest/ (visited on 09/01/2024).

Lee, Mina, Percy Liang, and Qian Yang (Apr. 2022). “CoAuthor: Designing a Human-
AI Collaborative Writing Dataset for Exploring Language Model Capabilities”. en.
In: CHI Conference on Human Factors in Computing Systems. arXiv:2201.06796 [cs],
pp. 1–19. DOI: 10.1145/3491102.3502030. URL: http://arxiv.org/abs/2201.
06796 (visited on 06/24/2024).

Lewis, James (Mar. 2018). “The System Usability Scale: Past, Present, and Future”.
In: International Journal of Human-Computer Interaction, pp. 1–14. DOI: 10.1080/
10447318.2018.1455307.

Lin, Zhicheng (Mar. 2024). “How to write effective prompts for large language mod-
els”. en. In: Nature Human Behaviour 8.4, pp. 611–615. ISSN: 2397-3374. DOI: 10.
1038/s41562-024-01847-2. URL: https://www.nature.com/articles/s41562-
024-01847-2 (visited on 07/02/2024).

Liu, Tongliang et al., eds. (2024). AI 2023: Advances in Artificial Intelligence: 36th Aus-
tralasian Joint Conference on Artificial Intelligence, AI 2023, Brisbane, QLD, Australia,
November 28–December 1, 2023, Proceedings, Part II. en. Vol. 14472. Lecture Notes in
Computer Science. Singapore: Springer Nature Singapore. ISBN: 978-981-9983-90-
2 978-981-9983-91-9. DOI: 10.1007/978-981-99-8391-9. URL: https://link.
springer.com/10.1007/978-981-99-8391-9 (visited on 06/24/2024).

Lu, Zhuoran et al. (May 2024). Corporate Communication Companion (CCC): An LLM-
empowered Writing Assistant for Workplace Social Media. en. arXiv:2405.04656 [cs].
URL: http://arxiv.org/abs/2405.04656 (visited on 06/24/2024).

Mirowski, Piotr et al. (Apr. 2023). “Co-Writing Screenplays and Theatre Scripts with
Language Models: Evaluation by Industry Professionals”. en. In: Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. Hamburg Germany:

https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://linkinghub.elsevier.com/retrieve/pii/S0166411508623869
https://linkinghub.elsevier.com/retrieve/pii/S0166411508623869
https://doi.org/10.1080/02643944.2016.1225315
https://doi.org/10.1080/02643944.2016.1225315
https://www.tandfonline.com/doi/full/10.1080/02643944.2016.1225315
https://www.tandfonline.com/doi/full/10.1080/02643944.2016.1225315
https://research.gold.ac.uk/id/eprint/24937/
https://doi.org/10.3390/su15075614
https://www.mdpi.com/2071-1050/15/7/5614
https://radon.readthedocs.io/en/latest/
https://doi.org/10.1145/3491102.3502030
http://arxiv.org/abs/2201.06796
http://arxiv.org/abs/2201.06796
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1038/s41562-024-01847-2
https://doi.org/10.1038/s41562-024-01847-2
https://www.nature.com/articles/s41562-024-01847-2
https://www.nature.com/articles/s41562-024-01847-2
https://doi.org/10.1007/978-981-99-8391-9
https://link.springer.com/10.1007/978-981-99-8391-9
https://link.springer.com/10.1007/978-981-99-8391-9
http://arxiv.org/abs/2405.04656

Bibliography 83

ACM, pp. 1–34. ISBN: 978-1-4503-9421-5. DOI: 10.1145/3544548.3581225. URL:
https://dl.acm.org/doi/10.1145/3544548.3581225 (visited on 06/24/2024).

Mishra, Abhijit et al. (2019). “Storytelling from Structured Data and Knowledge
Graphs : An NLG Perspective”. en. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Tutorial Abstracts. Florence, Italy: As-
sociation for Computational Linguistics, pp. 43–48. DOI: 10.18653/v1/P19-4009.
URL: https://www.aclweb.org/anthology/P19-4009 (visited on 06/24/2024).

Nack, Frank and Andrew S. Gordon, eds. (2016). Interactive Storytelling: 9th Inter-
national Conference on Interactive Digital Storytelling, ICIDS 2016, Los Angeles, CA,
USA, November 15–18, 2016, Proceedings. en. Vol. 10045. Lecture Notes in Computer
Science. Cham: Springer International Publishing. ISBN: 978-3-319-48278-1 978-3-
319-48279-8. DOI: 10.1007/978-3-319-48279-8. URL: https://link.springer.
com/10.1007/978-3-319-48279-8 (visited on 06/24/2024).

OpenAI Platform (n.d.). en. URL: https://platform.openai.com/docs/guides/
text-generation/reproducible-outputs (visited on 07/09/2024).

Ouyang, Shuyin et al. (Aug. 2023). LLM is Like a Box of Chocolates: the Non-determinism
of ChatGPT in Code Generation. en. arXiv:2308.02828 [cs]. URL: http://arxiv.org/
abs/2308.02828 (visited on 06/24/2024).

Pimentel, João et al. (2019). “Creating Modelling Tools for i* Language Extensions.”
In: 12th International iStar Workshop. URL: http : / / ceur - ws . org / Vol - 2490 /
paper16.pdf.

Poels, K., Y.A.W. de Kort, and W.A. IJsselsteijn (2007). D3.3 : Game Experience Ques-
tionnaire: development of a self-report measure to assess the psychological impact of digital
games. Eindhoven: Technische Universiteit Eindhoven.

Renzi, Gianluigi et al. (Aug. 2023). “A storytelling framework based on multimedia
knowledge graph using linked open data and deep neural networks”. en. In: Mul-
timedia Tools and Applications 82.20, pp. 31625–31639. ISSN: 1380-7501, 1573-7721.
DOI: 10.1007/s11042-023-14398-x. URL: https://link.springer.com/10.
1007/s11042-023-14398-x (visited on 06/24/2024).

Riach, Duncan (2019). “Determinism in Deep Learning (S9911)”. en. In: GTC 2019.
Sawyer, R. Keith, ed. (2003). Creativity and development. en. Counterpoints. New York:

Oxford University Press. ISBN: 978-0-19-514899-2 978-0-19-514900-5.
Sklyarov, V. (June 1999). “Hierarchical finite-state machines and their use for digital

control”. en. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7.2,
pp. 222–228. ISSN: 1063-8210, 1557-9999. DOI: 10.1109/92.766749. URL: http:
//ieeexplore.ieee.org/document/766749/ (visited on 06/28/2024).

Tao, Yong, Hongxing Wei, and Tianmiao Wang (2008). “A Speech Interaction System
Based on Finite State Machine for Service Robot”. en. In: 2008 International Confer-
ence on Computer Science and Software Engineering. Wuhan, China: IEEE, pp. 1111–
1114. ISBN: 978-0-7695-3336-0. DOI: 10 . 1109 / CSSE . 2008 . 627. URL: http : / /
ieeexplore.ieee.org/document/4721947/ (visited on 06/24/2024).

Teevan, Jaime et al. (May 2016). “Productivity Decomposed: Getting Big Things
Done with Little Microtasks”. en. In: Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems. San Jose California USA: ACM,
pp. 3500–3507. ISBN: 978-1-4503-4082-3. DOI: 10.1145/2851581.2856480. URL:
https://dl.acm.org/doi/10.1145/2851581.2856480 (visited on 06/24/2024).

Tratt, Laurence (Jan. 2009). “Chapter 5 Dynamically Typed Languages”. In: Advances
in Computers. Vol. 77. Elsevier, pp. 149–184. DOI: 10.1016/S0065-2458(09)01205-
4. URL: https://www.sciencedirect.com/science/article/pii/S0065245809012054
(visited on 09/01/2024).

https://doi.org/10.1145/3544548.3581225
https://dl.acm.org/doi/10.1145/3544548.3581225
https://doi.org/10.18653/v1/P19-4009
https://www.aclweb.org/anthology/P19-4009
https://doi.org/10.1007/978-3-319-48279-8
https://link.springer.com/10.1007/978-3-319-48279-8
https://link.springer.com/10.1007/978-3-319-48279-8
https://platform.openai.com/docs/guides/text-generation/reproducible-outputs
https://platform.openai.com/docs/guides/text-generation/reproducible-outputs
http://arxiv.org/abs/2308.02828
http://arxiv.org/abs/2308.02828
http://ceur-ws.org/Vol-2490/paper16.pdf
http://ceur-ws.org/Vol-2490/paper16.pdf
https://doi.org/10.1007/s11042-023-14398-x
https://link.springer.com/10.1007/s11042-023-14398-x
https://link.springer.com/10.1007/s11042-023-14398-x
https://doi.org/10.1109/92.766749
http://ieeexplore.ieee.org/document/766749/
http://ieeexplore.ieee.org/document/766749/
https://doi.org/10.1109/CSSE.2008.627
http://ieeexplore.ieee.org/document/4721947/
http://ieeexplore.ieee.org/document/4721947/
https://doi.org/10.1145/2851581.2856480
https://dl.acm.org/doi/10.1145/2851581.2856480
https://doi.org/10.1016/S0065-2458(09)01205-4
https://doi.org/10.1016/S0065-2458(09)01205-4
https://www.sciencedirect.com/science/article/pii/S0065245809012054

84 Bibliography

Wu, Tongshuang, Michael Terry, and Carrie J. Cai (Mar. 2022). AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model Prompts.
arXiv:2110.01691 [cs]. DOI: 10.48550/arXiv.2110.01691. URL: http://arxiv.
org/abs/2110.01691 (visited on 06/24/2024).

Yang, Xinran and Ilaria Tiddi (2020). “Creative Storytelling with Language Models
and Knowledge Graphs”. en. In.

https://doi.org/10.48550/arXiv.2110.01691
http://arxiv.org/abs/2110.01691
http://arxiv.org/abs/2110.01691

	Abstract
	Acknowledgements
	Introduction
	Literature Review
	Large Language Models (LLM)
	Microtasks and Prompt Chaining
	Human-AI Collaboration in Creative Writing and Incipits
	Finite State Machines with Stack-Based Control

	System Architecture and Design
	Overview of CreatAIlity Architecture
	Design of the CreatAIlity Framework for Storytelling
	Integration with LLMs and Prompt Chaining
	Microtasks and Prompt Chaining
	Utilizing Incipits
	Prompt Chaining
	Modular and Flexible Design

	Resource-based State Management
	Resource Definition
	State Transitions

	Stack-based Control Mechanism
	State Stack

	Framework Modules Description and Specification
	Core Library
	Input-Output Handling Module
	LLM Handling Module
	State Machine Module
	Management Module
	AppConfig Module
	EventBroker Module
	Logging Module

	Application Development Facilities
	State Update Handlers Module
	WebSocket and Flask Bootstrapping Module
	Tk Bootstrapping Module
	Tk Debug Window Bootstrapping Module

	Future Work
	Enhanced Testing Strategies
	Unit Testing
	Integration Testing
	Performance Testing

	Improved Error Handling and Fault Tolerance
	Error Handling
	Fault Tolerance

	Scalability and Performance Optimization
	Scalability Considerations
	Performance Optimization

	Security Enhancements
	Data Security
	Access Control

	Proof of Concept Considerations

	Conclusion

	Implementation and Evaluation
	Framework Implementation
	Technical Choices
	Challenges and Limitations
	Architecture
	Programming Language and Development Process
	Large Language Model

	Code Metrics

	StoryBuilder PoC Application
	Application Overview
	Developer Responsibilities
	User Interface Development

	State/Resource and Behavior Design
	Interfaces and Interaction
	Console
	Desktop
	Web

	Evaluation
	Methodology
	Evaluation Tools
	System Usability Scale (SUS)
	Game Experience Questionnaire (GEQ)
	NASA Task Load Index (NASA-TLX)

	Results and Discussion
	System Usability Scale (SUS)
	SUS Score Summary
	Interpretation of SUS Items
	Overall Interpretation
	Final Notes

	Game Experience Questionnaire (GEQ)
	GEQ Dimensions Score Summary
	Interpretation of GEQ Dimensions
	Overall Interpretation
	Final Notes

	NASA Task Load Index (NASA-TLX)
	NASA-TLX Score Summary
	Interpretation of NASA-TLX Dimensions
	Overall Interpretation
	Final Notes

	Conclusion
	Summary of Achievements
	Contributions to the Field
	Future Research Directions
	Potential Impact
	Practical Applications
	Final Notes

	CreatAIlity Framework and PoC Application Code Metrics
	Raw Metrics
	Cyclomatic Complexity
	Maintainability Index

	Evaluation Questionnaires
	System Usability Scale (SUS)
	Game Experience Questionnaire (GEQ)
	NASA Task Load Index (NASA-TLX)

	Bibliography

