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Abstract For many distributed applications, data communication poses an
important bottleneck from the points of view of performance and energy con-
sumption. As more cores are integrated per node, in general the global per-
formance of the system increases yet eventually becomes limited by the in-
terconnection network. This is the case for distributed data-parallel training
of convolutional neural networks (CNNs), which usually proceeds on a cluster
with a small to moderate number of nodes.

In this paper, we analyze the performance of the Allreduce collective com-
munication primitive, a key to the efficient data-parallel distributed training of
CNNs. Our study targets the distinct realizations of this primitive in three high
performance instances of Message Passing Interface (MPI), namely MPICH,
OpenMPI, and IntelMPI, and employs a cluster equipped with state-of-the-
art processor and network technologies. In addition, we apply the insights
gained from the experimental analysis to the optimization of the TensorFlow
framework when running on top of Horovod. Our study reveals that a careful
selection of the most convenient MPI library and Allreduce (ARD) realiza-
tion accelerates the training throughput by a factor of 1.2× compared with
the default algorithm in the same MPI library, and up to 2.8× when com-
paring distinct MPI libraries in a number of relevant combinations of CNN
model+dataset.
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1 Introduction

Computationally demanding applications are frequently executed in large high
performance computing (HPC) facilities, in order to tackle their time com-
plexity via additional hardware resources. However, this type of acceleration
is often limited by non-negligible overheads introduced by data movement. For
many distributed algorithms, how and when the data are moved, between pro-
cesses running in different nodes over an interconnection network, determines
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the global performance [6]. Moreover, data movement is also a significant con-
tributor to energy consumption in current facilities [14]. For distributed train-
ing of convolutional neural networks (CNNs) [3,9], communication is a crucial
factor, with a potentially high impact on the performance of this process, when
conducted on a cluster of computers.

TensorFlow (TF)1 [1], and PyTorch2 [10] are nowadays the two most
widely-used distributed training frameworks for CNNs. When executed on a
cluster, they both exploit data parallelism by partitioning and distributing
the workload among the processes/cluster nodes across the batch dimension
(i.e., the training samples) [2]. As a result, at each iteration of the training
procedure, once the gradient of each layer is computed, all processes have to
combine (specifically, reduce via addition) their new model parameter values,
yielding the same initial state for the next training step [2].

MPI (Message Passing Interface) [15] is leveraged by distributed training
frameworks such as TF, TF+Horovod3 [13], and PyTorch as the underlying
communication layer. Among different communication primitives, the MPI
application programming interface (API) comprises the MPI Allreduce primitive
for the reduce+broadcast communication needed in distributed data-parallel
training of CNNs.

In this paper, we extend our previous work in [4] with a complete evaluation
of MPI Allreduce for three popular instances of MPI, analyzing the impact of
this primitive on the distributed training of CNNs, using a top-of-the-shelf
cluster with nodes connected via an EDR Infiniband interconnection network.
In addition, we complete this study by targeting a variety of scenarios including
four CNN models and two datasets with distinct batch sizes. In particular, our
work makes the following contributions:

– We identify the Allreduce (ARD) algorithms underlying the realizations of
MPI Allreduce in MPICH, OpenMPI, and IntelMPI.

– We demonstrate the performance gap between the theoretical communica-
tion throughput of these algorithms, and the real execution performance.
Moreover, we highlight some details that may cause the deviation.

– We perform a complete evaluation of the ARD algorithms on a small clus-
ter consisting of 8 nodes, equipped with Intel Xeon Gold 5120 processors
connected via a EDR high performance network.

– We illustrate the practical benefits of a careful selection of the commu-
nication library and ARD algorithm for the acceleration of distributed
data-parallel CNN training using TF+Horovod for the distributed CNN
scenarios.

In this paper, we overcome the limitations presented in our previous work
by re-visiting the MPI libraries using an state-of-the-art cluster. In [4], a mod-
ern technology was simulated by applying a scaling factor to the experimental
results in order to “accelerate” the computation power of the nodes so that the

1 https://www.tensorflow.org
2 https://pytorch.org
3 https://github.com/horovod/horovod
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balance between communication-computation was compensated. In this work,
we directly apply the ARD optimization without acting over the experimental
results.

Although graphic processor units (GPUs) are commonly used for dis-
tributed training of CNNs, our experimental analysis is focused on “non-
accelerated” clusters. For this purpose, we spawn one MPI-rank per node
and exploit the inter-node parallelism via OpenMP threads. This approach
avoids the growth in the communication overhead that arises when increasing
the number of nodes, and allows to augment the batch size per process with-
out exceeding the memory capacity of the nodes. At this point, we emphasize
the interest of companies like Facebook to exploit idle workload cycles in their
HPC facilities, which leave a significant number of (general-purpose) multicore
CPUs to perform distributed training during off-peak periods [8].

The rest of the paper is organized as follows. In Section 2 we review some
previous works and compare them with the contributions presented in this
study. In Section 3 we re-visit the family of ARD algorithms, together with a
theoretical analysis of their arithmetic and communication costs. In addition,
we expose the difference in performance attained by the real execution of this
primitive in comparison with the theoretical models. In Section 4, we carry
out a complete experimental evaluation of the realization of these algorithms
in the three target MPI libraries. In Section 5 we extend our experimental
analysis to the distributed training of CNNs using TF+Horovod. In Section 6
we discuss other aspects that are not directly tackled in this paper. Finally,
in Section 7 we close the paper with a few concluding remarks and a sketch of
future research lines.

2 Related Work

The performance optimization of the MPI collectives has been a constant re-
search and development topic since the formulation of the standard and the
first prototype implementations. From the point of view of performance mod-
eling, the works in [5] and [12] tried to offer accurate cost models for different
collective communication primitives. While the former describes several al-
gorithmic implementations for the MPI collective primitives depending of the
message size, the latter goes beyond the theory and analyzes the library source
code.

From the software point of view, there exist other works that aim at improv-
ing the performance of MPI collectives. In [16], the authors evaluate distinct
algorithmic realizations of collective communications to estimate the best op-
tion depending on the number of nodes and the message size. This knowledge
is then applied to the selection module of the MPICH library. The authors
in [7] present a hierarchical approach for reduction-based collective primitives,
presenting notable performance improvements in small- and medium-size clus-
ters.
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Manual fine-tuning for collective communication via multilayer percep-
trons was also analyzed in [18], using earlier versions of OpenMPI (1.4) and
MPICH2. In [17], the same authors improve the performance of the reduction
collective by targeting the intra-node parallelization. Both works were applied
to the batch pattern training algorithm and also improve the performance by
reducing the number of collective communications (as Horovod does).

Our work does not aim to model the performance of the MPI algorithms.
Instead, our goal is to highlight the significant gap between theory and practice
for several well-known algorithms. In this sense, we align our efforts with
the work done in [17, 18], with state-of-the-art MPI library implementations
(as [18] suggests), and apply the insights gained from our study to evaluate
the performance of distributed CNN training using TF+Horovod.

3 Allreduce algorithms

3.1 A family of Allreduce algorithms

MPI is the de facto standard API for message-passing in distributed-memory
systems, yet the standard only specifies the functionality that must be covered
by the realization and the interface of the routines (primitives). Over the past
decades, a fair number of MPI libraries have been developed, following the
evolution of network technology and software, resulting in MPICH,4 Open-
MPI,5 IntelMPI,6 and MVAPICH7 as some of the most relevant instances of
the API.

There exist a variety of algorithms that can be used to implement an ARD
collective communication. Most MPI libraries aim to optimize performance by
selecting among these algorithmic variants at execution time, depending on
features such as the message size, the number of MPI ranks (processes), the
network topology, etc. The most popular algorithms for ARD include (see [5,
7, 16]):

1. RDB (Recursive doubling): Initially, the processes that are a distance 1
apart exchange (and reduce) their data. Next, those processes that are a
distance 2 apart do the same with the complete data they own after the
first exchange. This is repeated for the processes which are at distance 4
apart, then those at distance 8 apart,. . . till all the processes have received
all the data.

2. RSA (Rabenseifner’s algorithm): This option performs a Reduce-Scatter
followed by an Allgather exchange [16].

3. LIN (Linear): This basic scheme initially reduces the data into a root pro-
cess, using p − 1 point-to-point (P2P) messages, to then broadcast the
result from there, using p− 1 additional P2P messages.

4 https://www.mpich.org
5 https://www.open-mpi.org
6 https://software.intel.com/content/www/us/en/develop/tools/mpi-library.html
7 https://mvapich.cse.ohio-state.edu
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4. RNG (Ring): A pairwise-exchange algorithm [16] is used for the Reduce-
Scatter phase, and a ring algorithm is applied for the Allgather.

5. SRG (Segmented ring): This is a segmented variant of RNG that divides the
messages into s segments.

3.2 Theoretical cost models for ARD

Let us consider an ARD primitive executed over n · p “data items”, evenly
distributed across a platform consisting of p nodes, with a single MPI rank or
process per node. Moreover, assume that the network links are characterized
by a latency α (in seconds) and a bandwidth β (in data items per second); and
assume also that the interconnection network supports simultaneous transfers
between all pairs of nodes at full link bandwidth. Finally, consider that each
node can operate at a rate of γ additions per second. With these premises,
Table 1 displays the theoretical costs of the ARD algorithms, divided into their
latency, bandwidth, and arithmetic components. (For simplicity, in the table
we assume that p is a power of 2.)

Id. Alg. Latency (×α) Bandwidth (×β−1) Arithmetic (×γ−1)

1 RDB log p n log p n log p

2 RSA 2 log p 2n p−1
p np−1

p

3 LIN 2(p− 1) 2n (p− 1) n (p− 1)

4 RNG 2(p− 1) 2n p−1
p np−1

p

5 SRG (2p+ s− 3) (p+ s− 2)n
s (p+ s− 2)n

s

+(p− 1)n
p

Table 1: Theoretical costs of common ARD algorithms.

3.3 Theoretical cost analysis for ARD

The formulae in Table 1 offer a straight-forward tool to expose the theoret-
ical properties and behaviour of the distinct ARD algorithms. To illustrate
this, consider a cluster characterized by the following parameters: α = 2 µs,
β = 11, 770 MB/s (that is, 11, 770 · 106 bytes/s),8 and γ = 8 · 109 (32-bit
floating point) operations per second or FP32 flops/s. (These values were ex-
perimentally determined for the cluster employed in the practical evaluation
in this paper; see section 4.) Furthermore, consider this cluster comprises p

8 For β we can transform data items/s into MB/s by simply taking into account the
storage requirements of data type. The same holds to transform the arithmetic rate γ from
arithmetic operations/s into bytes/s.
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Fig. 1: Estimation of cost given by the theoretical models for the ARD al-
gorithms. In the top-left plot, the number of nodes p = 50 (one MPI-rank
per node); in the top-right plot, the message size n = 16 · 220 bytes. In the
bottom-right plot, δ is a factor that multiplies the reference value γ = 8 · 109

FP32 flops/s. For SRG, s = 64.

nodes, and the vectors to be reduced consist of n FP32 numbers in each cluster
node. In Figure 1, we report the performance of the ARD algorithms, measured
in MiB/s, when fixing three of the following parameters: message dimension
n = 220 bytes, number of nodes p = 50, link bandwidth β = 11, 770 MiB/s,
and scaling factor δ = 1; while varying the remaining one.

In all the experiments in this paper, the throughput rates for the ARD
algorithms (in MiB/s) are computed by dividing the message size n (in bytes)
by the time required to complete the reduction. However, the actual number
of bytes that are transferred during an ARD is considerably larger than n;
see Table 1. On the one hand, this explains the lower performance of the
ARD collective compared with the theoretical P2P bandwidth. On the other
hand, compared with an evaluation based on the standard time metric, this
MiB/s rate sets an upper bound on the ARD performance, facilitating the
identification of the asymptotic throughput.

This first study exposes that, for these particular values of link laten-
cy/bandwidth, arithmetic rate, and number of nodes/processes, the best al-
gorithm largely depends on the message size. In addition, RSA and RNG show
higher scalability with the number of nodes. Also, these two variants report
significant gains when increasing the link bandwidth and the arithmetic ca-



8 Adrián Castelló et al.

pacity. Therefore, at least in theory, they are the best candidates to deliver
the highest performance in the distributed training of CNNs.

3.4 Experimental cost analysis for ARD

Although the theoretical costs of the ARD algorithms provide some useful
hints, Figure 2 demonstrates that there exist important deviations between
the theoretical behaviour and the real performance of the ARD algorithms
implemented in OpenMPI.9 (A similar observation holds for other MPI in-
stances.) This test demonstrates the need for a careful study of all the ARD
alternatives before selecting the most convenient realization.
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Fig. 2: Theoretical cost (lines labelled with the “-T” suffix) and real perfor-
mance of the ARD algorithms in OpenMPI using 7 and 8 MPI-ranks (one per
node) (left and right, respectively).

Several aspects can be highlighted from the analysis of the plots in Figure 2:

– RSA (chosen as the baseline or default option by almost all MPI libraries)
is rarely the best option for messages of size larger than 32 MiB;

– the most appropriate algorithm varies depending on the numbers of pro-
cesses; and

– RNG and SRG are clearly the best options for large messages, of size greater
than 225 bytes.

The following reasons explain some of the deviations between theory and
practice:

– The theoretical models assume that the bandwidth link works at full through-
put independently of the message size.

– The theoretical models do not take into account software/hardware limita-
tions (e.g., number and size of buffers in the underlying implementation).

9 The cluster that was used for this experiment will be presented later, in section 4.
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– In theory, the models assume a perfect overlap between communications
inside a process (thus, e.g., the cost of IRecv+Send is estimated as that of
a Send); however, the practice may differ from that perfect implementation.

Let us analyze in more detail the last factor. For that purpose, consider the
results in Figure 3, where the line labeled as “THEO” shows the theoretical
cost of the algorithm; the line “REAL” is the actual performance offered by
the implementation; and the lines labeled as “OVLP” and “NOVL” respectively
correspond to the theoretical costs if either the internal communications can be
fully overlapped or there is no overlap. For the RSA algorithm, in the left-hand
side plot of the figure, we observe that OVLP (where all the communication is
overlapped) is the best case for messages of up to 224 bytes. Beyond that size,
any of the approximations yield a higher transfer rate than the theoretical
cost. It is also notable the poor performance attained by the implementation,
which only outperforms the non-overlapping code for messages of size larger
than 220 bytes. For RNG, in the right-hand side plot, THEO lies in between
the rates offered by OVLP and NOVL, and REAL is closer to NOVL. This
implies that, although the implementation aims to overlap most computation
and communication, this is not possible.
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Fig. 3: Theoretic and real performance of the ARD algorithms on OpenMPI
for RSA and RNG (left and right, respectively) using 8 MPI-ranks (one per
node).

This initial evaluation exposes the importance of analyzing in detail the
performance of the distinct ARD algorithms, prior to utilizing a particular
instance from an application that heavily depends on this type of collective
communication, as is the case of distributed CNN training.

We close this section by noting that a deeper study of the factors that
underlie this theory-vs-real performance deviation is out of scope for this work.
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4 Experimental Selection of MPI Allreduce in MPI libraries

In this section we evaluate the ARD algorithms that are implemented in the
three MPI libraries targeted in this work: MPICH 3.3.1, OpenMPI 4.1, and
IntelMPI 2020. For the ARD primitives, these instances of the API instantiate
the algorithms listed in Table 2.

Id. Alg. MPICH OpenMPI IntelMPI

1 RDB 3 3 3

2 RSA 3 3 3

3 LIN – 3 –

4 RNG – 3∗ 3

5 SRG – 3∗ –

Table 2: ARD algorithms in MPICH, OpenMPI, and IntelMPI. The asterisk
in the RNG-based algorithms indicates that, although OpenMPI classifies two
of its variants as “ring” algorithms, the actual implementation corresponds to
a different communication scheme.

4.1 Characterization of the cluster

The experiments in this work were conducted on the Altec cluster, a platform
consisting of 8 nodes, equipped each with two Intel Xeon Gold 5120 CPU
processors (14 cores, running with a nominal frequency of 2.20 GHz), and
connected via an Infiniband EDR network. A single MPI rank (process) was
mapped per node in all cases, and we repeated the experiments using 7 and 8
nodes. The first cluster configuration was selected because some of the ARD
algorithms largely benefit from the number of MPI ranks being an integer
power of two. However, this is not always possible or convenient when running
an application, such as a distributed deep learning framework, on a real cluster
facility.

In order to report the actual performance of the network links and, at the
same time, expose some of the reasons for the deviation of the algorithm costs
discussed in the previous section, we performed a simple ping-pong bench-
mark. The left-hand side plot in Figure 4 offers the results from this P2P
characterization test using OpenMPI, showing that the Infiniband EDR net-
work delivers a sustained link bandwidth β ≈ 11.7 GB/s when the message
size is larger than 4 MiB (that is, 4 ·220 bytes). This ping-pong test also offered
an estimated link latency of α ≈ 2 µs. Similar values were obtained when the
ping-pong test was run on top of the other two MPI libraries. Here, the drop
in link bandwidth for messages of size larger than 32 MiB is caused by the
internal implementation of the MPI libraries, in aspects such as buffering. In
order to approximate γ, we used a straightforward code that performed the
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summation of two long vectors with FP32 numbers (similar to the STREAM
benchmark10).

The right-hand side plot in Figure 4 demonstrates that the network can
sustain the P2P bandwidth when up to 4 pairs of nodes run the ping-pong
test (and, therefore, exchange messages) simultaneously. This is a fundamental
assumption of the theoretical models presented in subsection 3.2.

4.2 Individual evaluation

When the user provides no specific indication, the MPICH, OpenMPI, and
IntelMPI libraries choose the ARD algorithm that is employed at runtime,
depending only on the message size and number of processes. This selection
can be quite simple (e.g., taking into account the theoretical cost,) or rather
evolved (e.g., made via test-and-error approaches resulting in a long list of
if-else statements).

In this subsection, we evaluate the ARD algorithms available in the three
target MPI libraries. For MPICH, this includes only two of the algorithms
listed in Table 2 (ids. 1, 2); OpenMPI implements all the algorithms; and
IntelMPI comprises three of the ARD algorithms in the table (ids. 1, 2, 4)
plus the following 9 additional variants (numbered with ids. 6–14 next):

6. Shumilin’s ring (SHR),
7. Reduce+Broadcast (R+B),
8. Topology-aware Reduce+Broadcast (TA-R+B),
9. Binomial Gather+Scatter (BGS),

10. Topology-aware binominal Gather+Scatter (TA-BGS),
11. Knomial (KNO) ,
12. Topology-aware SHM-based flat (TA-SHM BF),

10 https://www.cs.virginia.edu/stream/
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13. Topology-aware SHM-based Knomial (TA-SHM KNO), and
14. Topology-aware SHM-based Knary (TA-SHM KNA).

Several of these variants correspond to segmented algorithms, for which
IntelMPI sets the segmentation parameter to s = 64. Furthermore, the SRG

algorithm in OpenMPI employs a non-segmented ring for messages of up to
8 MiB and, from that point, selects s to set the segment size to 1 MiB.

The ARD algorithm can be selected via environment variables for MPICH
or, alternatively, via command arguments passed to mpirun in the case of
OpenMPI and IntelMPI. Without an explicit indication from the user, the
library follows its internal selection mechanism. In our plots, this default se-
lection is labeled as “AUTO”.

Figure 5 reports the results from this individual evaluation of the MPI
libraries leading to the following observations:

– MPICH: AUTO selects RDB, which turns to be a suboptimal option as it
delivers a much lower performance for messages larger than 215 bytes (32
KiB) for both 7 and 8 nodes.

– OpenMPI: AUTO selects the RSA algorithm in both scenarios, which cor-
responds to the best for some message sizes. However, it is suboptimal
compared with SRG or RNG for message sizes larger than 225 bytes and 8
nodes. These two algorithms are also the best choice for message sizes from
217 to 219 and 7 nodes.

– IntelMPI: For 8 nodes, AUTO makes a fairly good selection, except for
message sizes larger than 225, where this should be changed to RNG. For
7 nodes, RNG delivers the best performance while, unfortunately, AUTO

adopts RSA.

As a short summary from this study, we conclude that, for this particular
cluster configurations, MPICH misses the optimal configuration for medium
and large message sizes, independently of the number of nodes; OpenMPI fails
in selecting RSA for RNG or SRG for the largest messages; and IntelMPI offers a
mixed optimization level: good for 8 nodes but rather suboptimal for 7 nodes.

4.3 Global comparison

In this final part, we illustrate the performance differences comparing the
AUTO and the BEST algorithm, for the three target MPI instances. For this
experiment, BEST corresponds to the best option for each message size and
number of processes.

Figure 6 displays the results of this global evaluation, offering two main
conclusions:

– There are large gaps between the performance of BEST and AUTO for
MPICH when p = 7, 8, as well as IntelMPI and OpenMPI when p = 7.
The differences are significantly narrower for OpenMPI and IntelMPI when
p = 8. This exposes an appealing opportunity to improve the performance
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Fig. 5: Evaluation of the ARD algorithms in MPICH (top), OpenMPI (middle)
and IntelMPI (bottom) using 7 and 8 MPI-ranks (one per node) of the Altec
cluster (left and right, respectively).

of MPI Allreduce for IntelMPI and OpenMPI when utilizing 7 nodes, and for
MPICH when using 8 nodes.

– For p = 8, MPICH-AUTO is optimal for small messages (up to 217 bytes)
but fails for other cases. IntelMPI-RNG delivers a high MiB/s rate for p = 7,
and for the larger message sizes with p = 8. However, this algorithm is not
selected as AUTO. OpenMPI-RNG /-SRG performs best for message sizes up
to 219; from 225 bytes when p = 7; and from 225 bytes with p = 8. Again,
AUTO adopts the RSA algorithm, being suboptimal on these message sizes
window.
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Fig. 6: Comparison of the AUTO and BEST ARD algorithms in MPICH, Open-
MPI, and IntelMPI using 7 and 8 MPI-ranks (one per node) of the Altec
cluster (left and right, respectively). The labels in the BEST lines indicate the
id of the ARD algorithm that offers the best performance for that particular
library and message size.

5 Impact of ARD in Distributed DNN Training

In this section, we analyze the gains that can be attained via a careful selection
of the ARD algorithms on the distributed data-parallel training of CNNs. To
this end, we employ Google’s TF framework 2.3.0 for deep learning, running
on top of Horovod 0.19, which provides a workload distribution tool that
scales TF to run on a multi-node cluster. In addition, we consider 4 different
CNN models —namely AlexNet, ResNet50, ResNet110, and VGG11— and
two well-known datasets: ImageNet and Cifar10. The following configurations
are selected for the evaluation:

– AlexNet+ImageNet. This is a classic CNN model characterized by a re-
duced number of convolutions followed by three dense layers.

– ResNet50+ImageNet. This benchmark from MLPerf [11] is composed of
a series of residual blocks combining convolutions, batch normalization
layers, and ReLU functions.

– ResNet110+Cifar10. This combination explores the behavior of a large
DNN model with a “small” dataset (compared with ImageNet).

– VGG11+ImageNet. This model is computationally very intensive, which
paves the road to analyzing a type of scenario where communications play
a less significant role.

Figure 7 represents the communication requirements for four configurations
in terms of message sizes and number number of messages of each size. These
data demonstrate the need to steer our experimental evaluation to cover a
range of message sizes that expands from 1 KiB to 1 GiB.
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5.1 Hiding the communication cost with Horovod

Horovod relies on MPI for the data exchanges and therefore utilizes the un-
derlying ARD algorithms to realize the reduce+broadcast exchanges that are
necessary during the distributed data-parallel training of CNN models. In ad-
dition, Horovod overlaps communication and arithmetic via an auxiliary com-
munication thread as follows: Consider Figure 8, which illustrates the data
dependencies appearing during a single forward pass (FP) and backward pass
(GC for Gradient computation and WU for Weight update) for a DNN con-
sisting of L layers. In Horovod, the use of the communication thread overlaps
the global reduction ARl, for a certain layer l, with the computations corre-
sponding to GCl−1, GCl−2,. . . , GC1. Furthermore, Horovod decides whether
to aggregate the data corresponding to several consecutive layers into a single
ARD communication operation of a larger dimension.

5.2 Evaluation in Altec

As an initial experiment, Figure 9 displays the performance, in terms of images
per second, attained by AUTO and BEST in the three target libraries. This sim-
ple test exposes the distinct behaviour of the different DNN model+dataset
cases and, at the same time, clearly indicates that there is not a single opti-
mal choice. The results also demonstrate the need to optimize for each con-
figuration: Due to the reduced model (in terms of model parameters and lay-
ers), AlexNet+ImageNet presents a communication-bound scenario. VGG11+-
ImageNet is at the opposite extreme, corresponding to a compute-bound case.
ResNet50+ImageNet and ResNet110+Cifar10 lie in between, becoming compute-
bound as the batch size b is increased.
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Figure 10 reports the benefits of enforcing a specific selection of BEST in-
stead of AUTO from within the MPI Allreduce primitive in MPICH, OpenMPI,
and IntelMPI, for the training of the selected DNN models and datasets via
TF+Horovod, using 8 nodes of Altec cluster with a batch size b comprising
16, 32, and 64 images. For a complete comparison, the BEST algorithm is com-
pared with the AUTO for each individual library (e.g., OpenMPI-BEST against
OpenMPI-AUTO) in the left-hand column of plots, and taking the IntelMPI-
AUTO algorithm as the baseline in the right-hand column of plots.

The first observation from this experiment is the need to carefully selecting
the best option from within all the ARD possibilities (including both algorithm
and library) for a concrete scenario before executing the CNN training: the
benefits of a careful choice of the optimal algorithm within a particular li-
brary may render a performance boost of up to 40% in IntelMPI and MPICH,
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Fig. 8: Data dependencies in the training. The colored boxes correspond to
the computational stages: FP, GC and WU; the circles denote ARD exchanges
AR; and the arrows indicate dependencies. The colored dashed lines mark
operations which can be overlapped.
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and up to 11% with OpenMPI. In general, the gains narrow as the train-
ing becomes more compute-bound (in particular, when increasing the batch
size) and the impact of the communication decreases. Note, however, that
there are limits to the dimension of the batch; see subsection 5.3. Overall,
OpenMPI outperforms its counterparts for almost all possible scenarios. As
an exception to this general rule, IntelMPI is the best choice for a few cases, in
particular, ResNet50+ImageNet and VGG11+ImageNet with b = 16, 64, and
VGG11+ImageNet with b = 32.
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5.3 Limitations of the analysis

The insights gained from the experimental evaluation in this section can vary
depending on two factors with an impact on the computation-communication
balance, namely the batch size and the interconnection network. We next
discuss these in detail:

– Although the arithmetic cost grows linearly with the batch size b, for a
distributed data-parallel scheme the communication cost is largely inde-
pendent of b (but grows with p). Therefore, for a cluster with a fixed
number of nodes, the practical contribution of the communication over-
head to the total training cost can be reduced by increasing the batch size.
Unfortunately, there is a fundamental limit to the largest batch size that
can be used in neural network training and, already for modest batch sizes,
there appears a significant decline in the convergence rate of the training
process. This issue can be tacked to a certain point, via the integration of
very sophisticated, case-specific algorithmic techniques; see, e.g., [19].

– The Top500 list11 from November 2020 comprises 25 systems connected
via Infiniband HDR and 61 with Infiniband EDR. These two interconnec-
tion networks from Mellanox respectively present link speeds of 50 Gbps,
and 25 Gbps per lane. If we compare this performance evolution (2× per
interconnection generation) and the year gap between them (4 years), it is
clear that it is much slower than the evolution in terms of computational
power of CPUs/GPUs. Therefore, if the growth of both elements follows
the same trend, the optimization (via the selection of the best algorithm
or via the implementation of new communication patterns) is crucial for
future applications.

6 Discussion

In this paper, we highlight the importance of the selection of MPI commu-
nication library as well as, the appropriated algorithm implementation of the
MPI Allreduce communication collective in order to accelerate distributed CNN
training. We focus on general-purpose clusters (CPU only) because they still
represent an important niche of computing resources which can be dedicated
to the distributed CNN training. Although the experiments are done in a rel-
ative “small” cluster, the results expose how the appropriate choice of the
software stack benefits performances. These analyses should be performed by
all hardware-software combinations with the aim of achieving the best perfor-
mances in all cases.

Although this study does not include clusters accelerated with GPUs, it
is convenient to comment on the significant performance difference between
CPUs and GPUs. Table 3 compares the throughput (in terms of images per
second) when using OpenMPI and NVIDIA NCCL. The CPU rows show the

11 https://www.top500.org
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results when using the AUTO and the BEST algorithm with a batch size of 64
images. The rows labeled as GPU (AUTO) and (NCCL) employ either the CUDA-
aware OpenMPI 4.1 library or the NCCL communication library developed by
NVIDIA, in both cases using a batch size of 256.

AlexNet ResNet50 ResNet110 VGG11
Hardware ImageNet ImageNet Cifar10 ImageNet

CPU (AUTO) 330 27 196 58
CPU (BEST) 337 31 197 64
GPU (AUTO) 10,156 3,054 20,786 3,657
GPU (NCCL) 26,928 3,092 21,059 3,846

Table 3: Performance comparison in terms of images per second of 8 CPUs
against 8 GPUs using OpenMPI 4.1 and NCCL.

The adoption of GPU accelerators roughly increases the performance by
a factor that ranges between 30× and 106×, though increases come with a
considerable acquisition cost and power consumption footprint.

7 Conclusions and Future Work

We have conducted a complete experimental analysis of all the realizations of
the ARD collective communication primitive in three popular MPI libraries:
MPICH, OpenMPI, and IntelMPI using a cluster equipped with the state-
of-the-art processor and network technologies. This study yields a number of
relevant insights:

– There is a significant gap between the theoretical cost models for the ARD
algorithms and their practical implementation in current MPI libraries. We
have highlighted a few aspects that negatively affect the accuracy of the
theoretical models.

– For some combinations of message size/number of nodes, the three MPI
libraries make a poor selection of the best ARD algorithm, offering ample
space for optimization.

– In general, all three libraries automatically select the RSA algorithm for
ARD (the best algorithm, in theory), instead of the ring-based algorithms
which the experiments show is a better option in a relevant variety of cases.

– When the number of processes participating in the communication is not
an integer power-of-two, the overall communication throughput drops sig-
nificantly, except for the ring-based solutions, which are independent of
this feature.

– As the arithmetic capacity of the cluster nodes raises, the interconnec-
tion network poses a performance bottleneck. For distributed data-parallel
training of CNNs, this can be tackled via either integrating a faster com-
puter network or augmenting the batch size. However, it is surely beneficial
to optimize the communication layer by choosing the best MPI library (in
case this is possible) and/or select the appropriate ARD algorithm.
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– Overall, when this last type of optimization is applied to distributed CNN
training, the performance improvement is up to 20% compared with the
automatic selection done in the same MPI instance, and up to 280% if we
compare the distinct MPI libraries.
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Ort́ı, and José Duato. Evaluation of mpi allreduce for distributed training of convolu-
tional neural networks. In 2021 29th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pages 109–116, 2021.

5. Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. Collective
communication: Theory, practice, and experience. Concurrency & Computation: Prac-
tice & Experience, 19(13):1749–1783, Sept. 2007.

6. Jim Demmel. Communication avoiding algorithms. In Proceedings of the 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis, SCC
’12, page 1942–2000, USA, 2012. IEEE Computer Society.

7. Khalid Hasanov and Alexey Lastovetsky. Hierarchical redesign of classic MPI reduction
algorithms. J. Supercomputing, 73(2):713–725, Feb. 2017.

8. K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong,
and X. Wang. Applied machine learning at Facebook: A datacenter infrastructure
perspective. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 620–629, 2018.

9. Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. Data
movement is all you need: A case study on optimizing transformers, 2020.

10. Nikhil Ketkar. Introduction to pytorch. In Deep learning with python, pages 195–208.
Springer, 2017.



Impact of the MPI Allreduce in Distributed Training of CNNs 21

11. Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius,
David A. Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David
Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim M. Hazelwood, Andrew Hock,
Xinyuan Huang, Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao,
Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pente-
cost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie Xu,
Cliff Young, and Matei Zaharia. Mlperf training benchmark. CoRR, abs/1910.01500,
2019.

12. Emin Nuriyev and Alexey Lastovetsky. A new model-based approach to performance
comparison of mpi collective algorithms. In Victor Malyshkin, editor, Parallel Comput-
ing Technologies, pages 11–25, Cham, 2021. Springer International Publishing.

13. Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning
in TensorFlow, 2018. arXiv:1802.05799.

14. J. Shalf. HPC Interconnects at the End of Moore’s Law. In 2019 Optical Fiber Com-
munications Conference and Exhibition (OFC), pages 1–3, 2019.

15. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-
garra. MPI: The Complete Reference. The MIT Press, 1996.

16. Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective
communication operations in MPICH. Int. J. High Performance Computing & Appl.,
19(1):49–66, Feb. 2005.

17. Volodymyr Turchenko, George Bosilca, Aurelien Bouteiller, and Jack Dongarra. Efficient
parallelization of batch pattern training algorithm on many-core and cluster architec-
tures. In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS), volume 2, pages 692–698. IEEE, 2013.

18. Volodymyr Turchenko, Lucio Grandinetti, George Bosilca, and Jack J Dongarra. Im-
provement of parallelization efficiency of batch pattern bp training algorithm using open
mpi. Procedia Computer Science, 1(1):525–533, 2010.

19. Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for Ima-
geNet training, 2017. arXiv:1708.03888.


