
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Engineering

Protecting the Parameters of Floating-Point-Based
Convolutional Neural Networks Against Accidental and

Malicious Faults without Increasing Their Memory Footprint

Master's Thesis

Master's Degree in Computer and Network Engineering

AUTHOR: Silin, Andrei

Tutor: Saiz Adalid, Luis José

Cotutor: Andrés Martínez, David de

ACADEMIC YEAR: 2023/2024

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

2

Resumen
Las redes neuronales convolucionales (CNN) son, de hecho, el método estándar para

clasificación de imágenes en diversos dominios, incluyendo reconocimiento facial automático en
sistemas de protección de fronteras, conducción autónoma en vehículos, sanidad, etc. Desplegar
una CNN requiere encontrar un equilibrio entre objetivos contrapuestos, como productividad,
precisión y consumo de energía. En entornos críticos, asegurar un nivel aceptable de robustez
contra fallos es de vital importancia. Millones de parámetros, cargados desde memoria principal
a los buffers de los aceleradores de las CNN, son usados repetidamente en el proceso de
inferencia. Bit-flips accidentales o maliciosos en esos buffers pueden afectar negativamente a la
precisión de la red. Las soluciones tradicionales, basadas en redundancia, pueden aportar una
elevada cobertura de errores, pero con una elevada sobrecarga, en ocasiones inasumible,
especialmente en soluciones con recursos limitados.

Este trabajo propone una nueva metodología para localizar bits en los parámetros en
coma flotante de una CNN que no son necesarios (por ser irrelevantes o invariantes). Por una
parte, la representación en memoria de valores en coma flotante (frecuentemente usando el
estándar IEEE-754 de 32 bits) tiene una precisión muy elevada, innecesaria para el proceso de
inferencia de una CNN. Así pues, se puede utilizar la inyección de fallos para determinar los bits
que son irrelevantes para el proceso de inferencia (generalmente los bits menos significativos).
Por otra parte, la mayoría de los parámetros están incluidos en un pequeño rango de valores y,
por tanto, sus representaciones tienen exponentes similares. Analizando estos valores, es posible
encontrar bits invariantes (que tienen el mismo valor en todos los parámetros). Incluso se pueden
realizar ligeras modificaciones a determinados parámetros para incrementar el número de bits
invariantes.

Los bits invariantes y los irrelevantes no afectan al proceso de inferencia, así que se
pueden utilizar como bits de paridad para códigos correctores de errores. Es importante remarcar
que esta metodología mantiene la precisión de la CNN y su huella en memoria, y puede
desplegarse sin reentrenar la red. Se ha aplicado a diferentes CNN de PyTorch entrenadas
previamente para demostrar la validez y aplicabilidad general de la propuesta.

Palabras clave: Redes Neuronales Convolucionales, Confiabilidad, Inyección de
fallos, Coma flotante, Redundancia, Optimización a nivel de bits, Códigos de corrección de
errores.

3

Abstract
Convolutional Neural Networks (CNNs) are the de facto standard method for image

classification in various domains, including automatic face recognition in border-protection
systems, autonomous driving in vehicles, health care, etc. Deploying CNNs requires balancing
conflicting goals, like throughput, accuracy, and power consumption. In safety-critical
environments, ensuring acceptable levels of robustness against faults is also of utmost importance.
Millions of parameters, loaded from main memory into the internal buffers of CNN accelerators,
are repeatedly used in the inference process. Accidental and malicious bit-flips targeting these
buffers may negatively impact CNN's accuracy. Traditional redundancy-based solutions provide
high error coverage at the cost of high, and sometimes unaffordable, overheads, especially for
resource-constrained solutions.

This work proposes a novel methodology to locate bits in the floating-point (FP)
parameters of a CNN that are not necessary (irrelevant or invariant). On the one hand, the memory
representation of FP values (frequently 32-bit IEEE-754 standard) has a very high precision,
unnecessary for the CNN inference process. Thus, fault injection can be used to determine the
bits that are irrelevant to the inference process (usually the least significant bits). On the other
hand, most of the parameters are within a short range of values and, therefore, their
representations have similar exponents. By analyzing these values, it is possible to find invariant
bits, i.e. bits that have always the same value in all parameters. Even more, slight modifications
can be applied to selected parameters to increase the number of invariant bits.

Irrelevant and invariant bits do not affect the inference process, so they can be used as
parity bits for error correction codes (ECCs). It is important to note that this methodology
preserves the CNN accuracy and its memory footprint, and it can be deployed without retraining
the network. It has been applied to different PyTorch pre-trained CNNs to demonstrate the validity
and general applicability of the approach.

Keywords: Convolutional Neural Networks (CNN), Dependability, Fault Injection,
Floating Point, Redundancy, Bit-Level Optimization, Error Correcting Codes.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

4

Table of Contents

1. Introduction ... 6

1.1 Context and Motivation ... 6

1.2 Problem Statement ... 7

1.3 Proposed Solution .. 8

1.4 Objectives .. 9

1.5 Document Structure ... 10

2. Background and Related Work ... 12

2.1 Development of Convolutional Neural Networks (CNNs) .. 12

2.2 CNNs Utilizing Float32 and the Shift Toward Quantized Networks 12

2.3 Errors in CNNs: Causes, Effects, and Mitigation Techniques 13

2.3.1 Impact of Errors on CNNs ... 13

2.3.2 CNN Robustness and Fault Tolerance... 14

2.3.3 Error Mitigation Strategies in CNNs ... 14

2.4 Existing Research on Bit-Level Error Correction in CNNs 15

3. Methodology ... 16

3.1 Overview of Neural Networks and Parameter Roles ... 16

3.2 Representation of float32 According to IEEE 754 .. 19

3.3 Golden run ... 19

3.3.1 Main code blocks ... 20

3.3.2 Output example ... 23

3.3.3 Analysis of the Golden Run .. 23

3.4 Identification of Significant Bits .. 23

3.4.1 Algorithm Overview .. 24

3.4.2 Example Output ... 25

3.4.3 Analysis of Significant Bits ... 25

3.5 Analysis of the Sign Bit and Exponent Values .. 27

3.5.1 Preliminary Analysis of Bit Values ... 28

3.5.2 Example Output ... 28

3.5.3 Analysis of Invariants Bits .. 28

3.6 Analysis of Parameter Values Across Network Layers ... 31

3.6.1 Exponent Distribution Analysis .. 32

3.6.2 Parameter Categorization and Exponent Range Analysis 34

5

3.7 Rounding Experiments on Exponent Bits .. 36

3.7.1 Experimental Goal ... 36

3.7.2 Experimental Procedure .. 36

3.7.3 Key Observations: ... 38

3.8 Summary of Results and Final Analysis .. 40

3.8.1 Categories of values of bits. .. 40

3.8.2 Bits to Protect: ... 41

3.8.3 Final Result and Potential Application of Error-Correcting Codes (ECC): 41

3.8.4 Potential Application of Error-Correcting Codes (ECC): 42

3.9 Summary of the Methodology ... 43

4. Experiments and Results ... 45

4.1 Golden Run Results ... 45

4.2 Identification of Least Significant Bits (LSBs) ... 47

4.3 Analysis of Invariant Bits .. 48

4.4 Assessment of Parameter Magnitudes ... 49

4.5 Rounding and Bit-Fixing Analysis .. 50

4.6 Evaluation of Available Parity Bits and Data Bits for ECC 51

4.6.1 Analysis Summary: ... 51

4.6.2 Overview of Results: ... 52

4.6.3 Parity Bits and Protection Requirements: .. 53

5. Conclusions and future work ... 56

5.1 Key Contributions .. 56

5.2 Limitations ... 56

5.3 Future Work ... 57

5.4 Conclusion ... 58

6. References ... 59

7. Annexes ... 61

7.1 Model Wrapper .. 61

7.1.1 Model Wrapper for On-the-Fly Parameter Correction .. 61

7.1.2 Example of Parameter and Buffer Correction ... 62

7.1.3 Application of the Wrapper ... 62

7.1.4 Future Work on Wrapper Extensions .. 62

7.2 Assessment of Parameter Magnitudes ... 63

7.3 Rounding and Bit-Fixing Analysis .. 65

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

6

1. Introduction

This chapter provides an overview of the background and motivation for this thesis,
focusing on the challenges and solutions in ensuring the fault tolerance of Convolutional Neural
Networks (CNNs). It outlines the key issues related to computational and memory constraints in
CNNs, particularly in the context of deployment on resource-limited devices. The chapter also
discusses how quantization techniques help address these challenges but introduce new problems
related to network robustness and fault tolerance. The subsequent sections will delve into the
context and motivation behind this research, explore related work in the field, and present the
research objectives and contributions of this thesis.

1.1 Context and Motivation
In recent years, deep learning has become a cornerstone of various fields, from computer

vision to natural language processing, and Convolutional Neural Networks (CNNs) have played
a pivotal role in this success [1]. CNNs are particularly well-suited for tasks involving image
recognition, object detection, and other forms of visual data processing due to their ability to
automatically learn spatial hierarchies of features from input data [2]. However, as the complexity
and size of CNN models have increased, so too have their computational and memory
requirements, which presents significant challenges when deploying these models on resource-
constrained devices such as mobile phones, embedded systems, and edge devices [3].

To address these challenges, quantization techniques have been developed to reduce the
precision of the network's parameters, such as weights and activations, thereby decreasing the
model's memory footprint and computational cost [4]. For example, instead of using 32-bit
floating-point representations, parameters can be quantized to 16-bit or even 8-bit integers with
minimal loss in accuracy [5]. This reduction in precision not only lowers memory usage but also
enables faster inference and lower power consumption, making quantization a highly effective
approach for deploying CNNs in real-time and energy-efficient applications [6].

However, quantization introduces new challenges, particularly in terms of model
robustness and fault tolerance. In critical applications, where the reliability of neural networks is
paramount, even minor errors in model parameters can lead to significant degradation in
performance. This is especially true in quantized models, where the reduced precision means that
there is less redundancy to absorb errors, making the network more susceptible to faults [7]. For
instance, bit flips caused by cosmic rays or other sources of noise can have a disproportionate
impact on the performance of quantized CNNs compared to their full-precision counterparts.

The need for fault tolerance in neural networks has led to the exploration of various
techniques, such as error-correcting codes (ECC) and redundant computations [8]. However,
these methods typically require additional memory or computational resources, which can negate
the benefits gained from quantization. As a result, there is a growing interest in developing novel
approaches that can provide fault tolerance without significantly increasing the memory or
computational burden of the network. This thesis explores one such approach: leveraging the
"insignificant" bits within 32-bit floating-point parameters of CNNs for fault tolerance.

7

Recent research has shown that not all bits in a floating-point representation contribute
equally to the accuracy or performance of a CNN [9]. Some bits, particularly those representing
less significant decimal places, may have little to no impact on the model's overall performance
[10]. By identifying and repurposing these insignificant bits, it may be possible to embed parity
information directly into the model's parameters, thereby enabling fault detection and correction
without the need for additional memory. This approach has the potential to enhance the robustness
of quantized CNNs while preserving their memory efficiency, making it a promising avenue for
further investigation [11].

1.2 Problem Statement
As Convolutional Neural Networks (CNNs) continue to evolve and find applications in

increasingly critical and resource-constrained environments, ensuring their robustness and
reliability becomes a priority. CNNs are often implemented using 32-bit floating-point
representations for their parameters, not only because it provides a good balance between
precision and computational efficiency but also because FP32 is the standard floating-point
format used in most computers, with processors optimized to accelerate arithmetic operations in
this format. However, these networks remain vulnerable to errors that can arise from various
sources, such as hardware faults, environmental disturbances, or cosmic radiation. Such errors
can manifest as bit flips or other forms of data corruption in the model’s parameters, leading to
potentially severe degradation in network performance.

Traditional approaches to fault tolerance in neural networks typically involve the
introduction of redundancy, either in the form of additional parity bits or through error-correcting
codes (ECC). Parity bits can be used to detect and sometimes correct errors in the data, while
ECCs can provide more robust error correction capabilities. However, these techniques generally
require extra storage space to accommodate the additional information needed for error detection
and correction. In the context of CNNs with 32-bit floating-point parameters, this additional
storage can become significant, as the number of parameters may reach several millions,
counteracting efforts to optimize the network's memory usage.

The problem is particularly acute because the primary motivation for many CNN
applications is to maximize accuracy and performance while minimizing resource consumption.
For instance, in embedded systems or edge devices where memory is limited, increasing the
memory footprint to incorporate fault tolerance can undermine the efficiency gains achieved
through careful network design and parameter optimization. This creates a fundamental tension
between the need for robustness and the imperative to conserve memory resources.

Moreover, the precise nature of 32-bit floating-point representation adds another layer
of complexity to this problem. In a floating-point number, certain bits contribute more
significantly to the numerical value than others. Traditional fault tolerance methods do not
differentiate between these bits, treating all of them as equally important. This approach can be
overly conservative, leading to unnecessary memory overhead. Therefore, a more nuanced
method of protecting CNNs is required—one that recognizes and leverages the varying
significance of different bits within the 32-bit floating-point representation.

The key challenge, then, is to develop a methodology that allows for the protection of
CNNs against errors without the need for additional memory. This thesis proposes to explore

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

8

whether certain bits in the 32-bit floating-point representation—those that contribute minimally
to the overall accuracy of the network—can be repurposed for fault tolerance. The central research
question is: How can we identify these less significant bits and use them to embed error-detection
and correction information without increasing the overall memory footprint of the network?

By addressing this question, the thesis aims to contribute to the development of more
efficient and robust CNNs, suitable for deployment in memory-constrained environments where
reliability is critical. This approach, if successful, could provide a new pathway for balancing the
competing demands of memory efficiency and fault tolerance in modern deep learning
applications.

1.3 Proposed Solution
To address the challenge of protecting Convolutional Neural Networks (CNNs) that use

32-bit floating-point representations from faults without increasing their memory footprint, this
thesis proposes a novel approach that leverages the existing bits within the floating-point
parameters. Specifically, the solution involves identifying and utilizing the “insignificant” bits in
the mantissa—those that have minimal impact on the network’s accuracy—alongside an analysis
of the exponent bits, to embed fault-tolerance mechanisms directly within the network parameters.

Key Aspects of the Proposed Solution:

1. Utilization of Insignificant Bits in the Mantissa:

o Concept: In a 32-bit floating-point representation, the mantissa (or significand)
contains the most detailed part of the number. However, not all bits within the
mantissa are equally important for maintaining the accuracy of the CNN. The
idea is to identify those bits that, when altered, do not significantly affect the
network's accuracy. These insignificant bits can then be repurposed to store parity
information or other forms of error-correction data, effectively adding fault
tolerance without requiring additional memory.

2. Analysis and Adjustment of Exponent Bits:

o Concept: The exponent in a floating-point number determines the scale of the
value. This thesis proposes to analyze the sensitivity of the network to changes
in the exponent bits across different types of parameters, such as weights, biases,
running mean, and running variance. The goal is to identify invariant bits (pure
invariants) and less critical exponent values, which can be rounded with minimal
impact on precision. By doing so, it may be possible to modify the floating-point
representation in a way that reduces the impact on accuracy, thus freeing up space
within the existing bit structure for embedding fault-tolerance mechanisms.

3. Integration of Fault-Tolerance Mechanisms:

o Concept: Based on the analyses of the mantissa and exponent bits, the thesis will
develop a methodology to integrate fault-tolerance mechanisms directly into the
CNN’s parameters. This approach will aim to protect the network from common
types of errors, such as bit flips, without increasing the overall memory usage.

9

The fault-tolerance information will be strategically embedded in the
insignificant bits identified during the analysis phase.

Expected Benefits:

• Memory Efficiency: By embedding fault-tolerance mechanisms within the existing bits
of the 32-bit floating-point representation, the need for additional memory is eliminated,
preserving the compactness and efficiency of the CNN.

• Robustness: The proposed solution enhances the fault tolerance of CNN, making it more
resilient to errors without compromising on accuracy.

• Scalability: This approach is adaptable to various types of CNN architectures and can be
applied to different components of the network, such as weights and biases, making it a
versatile solution for a wide range of applications.

This thesis seeks to demonstrate that by carefully analyzing and repurposing certain bits
within the 32-bit floating-point parameters, it is possible to achieve a balance between robustness
and memory efficiency in CNNs, offering a practical solution for deployment in environments
where both reliability and resource constraints are critical.

1.4 Objectives
The primary objective of this thesis is to develop and validate a methodology for

enhancing the fault tolerance of Convolutional Neural Networks (CNNs) that utilize 32-bit
floating-point representations, without increasing their memory footprint. This will be achieved
through a detailed analysis of the bits within the floating-point representation, with a particular
focus on identifying and exploiting bits that have minimal impact on the network's accuracy. The
specific objectives of this research are as follows:

1. Analysis of Less Significant Bits in the Mantissa:

o Objective: To systematically identify the bits within the mantissa of 32-bit
floating-point numbers that are less significant, meaning that their alteration has
minimal impact on the accuracy of the CNN.

o Approach: This involves evaluating how changes to specific bits in the mantissa
affect the accuracy of the network. By analyzing the sensitivity of the CNN to
these changes, it will be possible to determine which bits can be safely modified
or repurposed for storing error-correction information. The focus will be on
identifying the least significant bits that, when altered, result in negligible
changes to the network’s outputs.

2. Analysis of Exponent Bits:

o Objective: To investigate the role of the exponent bits in the floating-point
representation and determine the impact of fixing certain bits on the network's
accuracy. This analysis will be conducted across different components of the
CNN, including weights, biases, running mean, and running variance.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

10

o Approach: The study will involve selectively fixing or altering specific bits and
values in the exponent to assess how these changes influence the overall
performance of the network. This will help identify which exponent bits are
critical to maintaining accuracy and which can be altered with minimal impact.
The analysis will differentiate between the effects on various parameters
(weights, biases, running_mean, running_var) to understand how the significance
of bits may vary across different parts of the network.

3. Development of a Methodology for Fault Tolerance:

o Objective: To propose a methodology that utilizes the identified insignificant
bits for embedding fault-tolerant information, such as parity bits or other forms
of error detection and correction codes, without increasing the memory footprint.

o Approach: Based on the findings from the analysis of mantissa and exponent
bits, a systematic approach will be developed to incorporate fault-tolerance
mechanisms directly within the existing 32-bit floating-point representation. This
methodology will aim to maximize the use of available bits without
compromising the network's accuracy or memory efficiency.

4. Evaluation and Validation:

o Objective: To rigorously evaluate the proposed fault-tolerance methodology in
terms of its effectiveness in protecting CNNs against errors, while maintaining
their accuracy and efficiency.

o Approach: The evaluation will involve implementing the proposed method in
practical CNN models and conducting experiments to assess its impact on both
fault tolerance and network accuracy and performance. The results will be
compared to traditional fault-tolerance approaches to highlight the benefits and
potential trade-offs of the new method.

By achieving these objectives, the thesis aims to provide a novel approach to fault
tolerance in CNNs that preserves memory efficiency and could be particularly valuable for
deployment in resource-constrained environments. This research will contribute to the broader
understanding of how to balance the competing demands of accuracy, reliability, and memory
usage in deep learning applications.

1.5 Document Structure
The document is structured as follows:

• Chapter 2: Background and Related Work - This chapter provides an overview of CNN
quantization, fault tolerance in neural networks, and related work in the field.

• Chapter 3: Methodology - Here, we describe the proposed methodology for identifying
insignificant bits and embedding parity information.

• Chapter 4: Experiments and Results - This chapter presents the experiments conducted
to validate the proposed methodology and discusses the results.

11

• Chapter 5: Conclusion and Future Work - The final chapter summarizes the findings of
the thesis and suggests directions for future research.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

12

2. Background and Related Work

This chapter provides an overview of the development of Convolutional Neural
Networks (CNNs), their applications, and the evolution of techniques used to improve their
efficiency and robustness. We will explore key milestones in the progression of CNN
architectures, examine the impact of float32 representations and quantization techniques, and
discuss existing research on error correction methods and fault tolerance in CNNs.

2.1 Development of Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) have become a cornerstone in the field of deep

learning, particularly in areas such as image recognition, natural language processing, and various
other pattern recognition tasks. The origin of CNNs can be traced back to the work of LeCun et
al. (1998) [12] on the LeNet architecture, which was primarily designed for digit recognition
tasks. This architecture introduced the concept of convolutional layers combined with
subsampling (pooling) layers, enabling the network to extract hierarchical features from input
images.

Over the years, CNNs have evolved significantly, with major milestones including the
introduction of the AlexNet architecture by Krizhevsky et al. (2012) [1], which won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) and demonstrated the power of deep
convolutional networks for large-scale image classification. Subsequent architectures like
VGGNet, GoogLeNet, and ResNet further refined the depth and complexity of CNNs, introducing
new techniques such as very deep networks and residual connections that helped mitigate the
vanishing gradient problem.

These developments have led to CNNs becoming the de facto standard for many vision-
based tasks, and their performance has continued to improve with advances in hardware and
optimization techniques. However, the high computational and memory demands of CNNs,
particularly those using 32-bit floating-point (float32) representations, have driven research
towards more efficient implementations, including model compression and quantization. [13][2]

2.2 CNNs Utilizing Float32 and the Shift Toward Quantized
Networks

The widespread use of 32-bit floating-point representations in CNNs is largely due to
their balance between precision and computational efficiency. Float32 allows networks to capture
a wide dynamic range of values, which is crucial for training deep models with large datasets.
However, as CNNs have grown in size and complexity, the limitations of float32 in terms of
memory footprint and power consumption have become increasingly apparent.

To address these challenges, researchers have explored various quantization techniques
aimed at reducing the bit-width of CNN parameters, thereby lowering memory usage and
computational demands without significantly compromising model accuracy. Courbariaux, M.,
Bengio, Y., & David, J. P. (2015) [14] were among the pioneers in this area, introducing

13

BinaryConnect, which uses binary weights during the forward and backward passes of training
while retaining float32 for parameter updates. This approach was followed by more sophisticated
methods like Quantized Neural Networks (QNNs) [5], which reduce weights and activations to
lower bit-widths such as 8-bit integers.

Quantization has become a standard technique for deploying CNNs on resource-
constrained devices, such as mobile phones and embedded systems, where power efficiency and
low memory usage are critical. Despite the advantages of quantization, float32 representations
are still widely used, particularly in high-performance applications where accuracy is paramount,
necessitating continued research into optimizing float32 CNNs.

2.3 Errors in CNNs: Causes, Effects, and Mitigation Techniques
Errors in CNNs can arise from various sources, such as hardware faults, environmental

influences like cosmic radiation, and quantization effects. These errors can manifest as bit-flips,
leading to incorrect outputs or degraded performance. In safety-critical applications like
autonomous driving or medical diagnosis, fault tolerance is essential. Here, we expand on the
effects of these errors and the robustness of CNNs in handling them.

2.3.1 Impact of Errors on CNNs
Soft errors, often caused by high-energy particles, can significantly affect CNNs

deployed in safety-critical environments. For instance, as demonstrated in [15], soft errors in CNN
accelerators can lead to Silent Data Corruptions (SDCs). These errors propagate through the
network and may cause incorrect predictions, such as misclassifying a truck as a bird in
autonomous vehicle systems. The consequences of such misclassification can be catastrophic,
especially in time-sensitive applications like self-driving cars, where misinterpretation of critical
objects could lead to fatal accidents. As shown in the example in Figure 1, the truck is
misidentified as a bird and brakes may not be applied.

Figure 1. Example of SDC that could lead to collision in self-driving cars due to soft errors:
(left) Fault-free execution and (right) SDC.

The resilience of CNNs against errors depends on several factors: the network topology,
data types used, layer sensitivity, and the hardware implementation. Different layers in a network
exhibit varying sensitivities to errors. For instance, normalization layers can mitigate the impact

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

14

of errors by averaging faulty values with adjacent correct values, while fully connected layers,
due to their direct impact on output predictions, are more vulnerable to errors.

2.3.2 CNN Robustness and Fault Tolerance
Recent studies have explored different methods to improve the fault tolerance of CNNs.

One common approach is using Triple Modular Redundancy (TMR), which replicates hardware
components to detect and correct errors. However, such methods incur high overheads in terms
of energy and hardware costs, making them challenging for deployment in low-power, real-time
applications like autonomous systems.

Several more lightweight approaches have been proposed. Selective hardening
techniques focus on protecting the most vulnerable bits or components, thereby reducing the
overhead. For example, [16] highlights that selective latch hardening applied to the most sensitive
bits in a CNN accelerator can significantly reduce the failure rate with minimal area overhead.
Similarly, symptom-based detectors can be employed to identify abnormal behaviors in CNN
outputs, thereby detecting and correcting faults with high precision.

2.3.3 Error Mitigation Strategies in CNNs
To mitigate the effects of soft errors, CNNs can benefit from a combination of hardware

and software approaches:

1. Error Detection and Correction (EDAC): Parity bits and Hamming codes can be used
to protect critical data in CNNs, ensuring that any errors are detected and corrected before
they propagate. More advanced ECC codes, such as SEC-DED (Single Error
Correction-Double Error Detection), can further improve reliability by detecting
multiple-bit errors and correcting single-bit errors.

2. Quantization-Aware Training: As neural networks become quantized for efficiency,
maintaining precision becomes critical. Techniques like quantization-aware training can
ensure that models remain robust against the reduced precision and potential errors
introduced by quantization.

3. Data Type Optimization: According to [17], selecting data types with just enough
dynamic value range and precision can dramatically reduce error vulnerability. For
instance, floating-point representations with larger dynamic ranges are more prone to
error propagation than fixed-point alternatives.

The ongoing development of reliable CNN systems involves balancing performance,
energy efficiency, and fault tolerance. As mentioned in [18], future research could focus on
optimizing ECC techniques for CNN accelerators, combining them with selective hardening and
detector systems

One common approach to mitigating these errors is through the use of error detection
and correction codes, such as Hamming codes [19]. Hamming codes are capable of detecting and
correcting single-bit errors in binary data, making them a suitable choice for enhancing the
robustness of CNNs. In the context of neural networks, Hamming codes can be embedded into

15

the weights and biases of the network, providing a layer of protection against faults without
requiring significant changes to the network architecture.

2.4 Existing Research on Bit-Level Error Correction in CNNs
The identification of insignificant bits within the parameters of CNNs has garnered

increasing interest, as it presents opportunities for embedding error correction codes without
significantly impacting model performance. Research by Gupta, S., Agrawal, A., Gopalakrishnan,
K., & Narayanan, P. (2015) [9] demonstrated that reducing the precision of weights and
activations in CNNs can lead to certain bits becoming redundant. These redundant bits can then
be repurposed to store additional information, such as error correction codes, without increasing
the memory footprint. This approach not only minimizes memory usage but also enhances the
network's fault tolerance.

Another study by Zhang, D., Yang, J., Ye, D., & Shi, Y. (2018) [10] explored the use
of low-bit quantization in CNNs and found that even at reduced bit-widths, specific bits in the
network's parameters can be modified to embed error detection codes without significantly
degrading accuracy. This method is particularly beneficial for deploying neural networks in
resource-constrained environments, where both accuracy and reliability are critical.

In more recent work, Ruiz, J. C., de Andrés, D., Saiz-Adalid, L. J., & Gracia-Morán, J.
(2024) [8] introduced the concept of “Zero-Space In-Weight and In-Bias Protection for Floating-
Point-based CNNs.” This study proposed a novel method for embedding fault-tolerant
information directly into the floating-point representations used in CNNs. By analyzing the
sensitivity of different bits in the network's parameters, the authors identified bits that could be
utilized for error correction without compromising the network's accuracy or efficiency. This
approach is particularly valuable for maintaining the reliability of CNNs in environments where
memory resources are limited, and fault tolerance is essential.

Overall, the existing literature highlights a growing interest in enhancing the fault
tolerance of CNNs through bit-level modifications, particularly in float32 representations. These
studies provide a foundation for the development of new methodologies that leverage
insignificant bits for error correction, as proposed in this thesis.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

16

3. Methodology

This chapter outlines the methodology used in this thesis to enhance the fault tolerance
of Convolutional Neural Networks (CNNs) that utilize 32-bit floating-point (float32)
representations, without increasing their memory footprint. The approach involves analyzing the
significance of individual bits within the floating-point representation of various CNN parameters
and identifying opportunities to embed fault-tolerance mechanisms.

3.1 Overview of Neural Networks and Parameter Roles
Convolutional Neural Networks (CNNs) are composed of multiple layers, each with a

specific function, such as convolution, pooling, or fully connected operations. The key parameters
that drive the functionality of these layers include:

• Weights: These are the primary parameters learned during training, responsible
for capturing the features in the input data. Weights are applied to the input
during the forward pass to produce the feature maps.

• Biases: Biases are added to the output of the weighted sum in each neuron,
allowing the network to shift the activation function and better model the data.
They are also learned during the training process.

• Running Mean and Running Variance: In layers such as Batch
Normalization, the running mean and variance are used to normalize the output
of the previous layer. These parameters help the network maintain stability
during training by ensuring that the activations are well-scaled.

Figure 2 illustrates the interaction between various layers in a ShuffleNet Convolutional
Neural Network (CNN). The diagram shows how parameters such as weights and biases are
utilized in different stages of the network. Each layer in the network, represented by boxes,
interacts with others through forward and backward propagation. For instance, weights from the
convolutional layers (‘conv1.0.weight’, ‘stage2.0.branch2.0.weight’) undergo accumulation of
gradients during the backward pass, which is essential for the learning process. Operations like
‘ConvolutionBackward0’, ‘ReluBackward0’, and ‘NativeBatchNormBackward0’ depict how
gradients are propagated back through the network, adjusting the weights and biases to minimize
the loss function. This figure highlights the complexity of parameter interactions and the
importance of each component in the overall functionality of CNN.

17

Figure 2. The interaction between various layers in a ShuffleNet CNN

The number of layers and parameters in ShuffleNet is extensive, making the full
visualization complex and comprehensive. Figure 3 provides a complete diagram of these
interactions, demonstrating the intricate structure and the vast number of connections that exist
within the network.

The values of these parameters typically vary across different layers and functions
within the network. For example, weights might range widely depending on the features they
represent, while biases tend to have smaller magnitudes.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

18

Figure 3. The full visualization of a ShuffleNet CNN

19

3.2 Representation of float32 According to IEEE 754

The 32-bit floating-point representation, commonly referred to as float32, is defined by
the IEEE 754 standard [20]. Figure 4 shows the three main parts of the 32-bit floating-point
representation:

• Sign Bit (1 bit): Determines whether the number is positive (0) or negative (1).

• Exponent (8 bits): Represents the scale of the number by adjusting the position
of the decimal point. It uses a biased representation, meaning that the exponent
is stored as an unsigned integer with a bias (127 for float32) subtracted to obtain
the actual exponent value.

• Mantissa or Significand (23 bits): Contains the significant digits of the number.
In normalized form, the most significant bit (MSB) is implicitly 1 and not
stored, allowing for a 24-bit precision.

Figure 4. The 32-bit floating-point representation

Thus, the final value of the number is determined by the product of the sign, the power
of 2 defined by the exponent, and the value defined by the mantissa. The equation (1) allows for
efficient representation of both very large and very small numbers within 32 bits.

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = (−1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒−127 × (1 + 𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣) (1)

The exponent can be interpreted as a window indicating between which powers of two
the number is located, for example, between [1,2[or [2,4[, and the mantissa as an offset within
this window, dividing it into segments (see Figure 5).

Figure 5. Simplified 32-bit floating point representation.

3.3 Golden run
Python is the most widely used programming language for developing Convolutional

Neural Networks (CNNs) due to its extensive support for machine learning libraries and ease of
use. In this thesis, we work with Python along with its powerful libraries, particularly PyTorch
[21], which provides robust tools for building and deploying deep learning models. To explain
and validate our methodology, we utilize a pre-trained ShuffleNet model, sourced from the
PyTorch library.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent mantissa

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s window offset

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

20

As part of the analysis, we perform a "golden run" by evaluating the network on a test
set of 50,000 images. This large-scale test provides a baseline of the model's accuracy under
normal conditions, without any bit-level alterations or faults introduced. The results from this
golden run, including the network’s accuracy and prediction consistency, serve as a critical
reference point for comparing the impact of subsequent bit-level modifications and fault
injections.

3.3.1 Main code blocks
The code includes the following main blocks:

1. Imports and Settings:

The Code Fragment 1 imports the necessary libraries, including PyTorch, torchvision,
and PIL for image processing. It also imports custom settings such as the pre-trained CNN model,
input labels, and various paths for input and output files from the settings file.

from torchvision import transforms
from PIL import Image

import torch
import numpy as np
import sys
import os
import time

sys.path.append('../')
from settings import CNN_MODEL, MAX_IMAGES, INPUT_IMAGES_LABELS,
IMAGE_PREFIX, OUTPUT_DIR_GR, OUTPUT_GR

2. Print Configuration:

Configures the print settings for NumPy and PyTorch to ensure that large arrays can be
fully displayed, and floating-point numbers are printed with high precision, making debugging
and output analysis easier as shown at Code Fragment 2.

np.set_printoptions(threshold=1000000, suppress=True)
torch.set_printoptions(threshold=sys.maxsize, precision=16,
sci_mode=False)

Code Fragment 1

Code Fragment 2

21

3. Loading Labels:

Reads the image labels from a file and stores them in a list. Each label is extracted and
cleaned for use in evaluating the model's predictions (Code Fragment 3).

with open(INPUT_IMAGES_LABELS) as f:
 labels = [line.strip().split(";", 1)[1] for line in f.readlines()]

4. Model Initialization:

Loads the pre-trained CNN model specified in the settings and sets it to evaluation
mode. Evaluation mode ensures that certain layers like dropout and batch normalization behave
appropriately during inference, providing consistent results (see Code Fragment 4).

current_model = CNN_MODEL
CNN_MODEL =
models.shufflenet_v2_x2_0(weights='ShuffleNet_V2_X2_0_Weights.DEFAULT')

current_model.eval()

5. Image Transformation Pipeline:

 As shown in Code Fragment 5, the sequence of transformations applied to each input
image before it is fed into the model includes resizing, cropping, converting to a tensor, and
normalizing the pixel values to match the model's training conditions.

transform = transforms.Compose([
 transforms.Resize(256),
 transforms.CenterCrop(224),
 transforms.ToTensor(),
 transforms.Normalize(
 mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225]
)
])

6. Image Processing and Inference:

 The algorithm iterates over all images specified by MAX_IMAGES (50000), as shown
in Code Fragment 6. For each image:

• The image is loaded, converted to RGB, and transformed according to the pipeline
defined earlier.

Code Fragment 3

Code Fragment 4

Code Fragment 5

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

22

• The transformed image is fed into the CNN to get the model's prediction.

• The predicted label is compared with the true label, and the result (including whether the
prediction was correct) is written to the output file.

for num_image in range(1, MAX_IMAGES+1):
 # Get image path
 image_path = IMAGE_PREFIX + format(str(num_image), "0>8") + ".JPEG"
 img = Image.open(image_path)
 img_rgb = img.convert("RGB")
 # Apply the required transformation
 img_t = transform(img_rgb)
 batch_t = torch.unsqueeze(img_t, 0)
 # Run the inference
 out = current_model(batch_t)
 # Get the selected category
 _, index = torch.max(out, 1)
 golden_run_output.write(f"{num_image};{index[0].item()};{labels[num_i
mage - 1]};{index[0].item() == labels[num_image - 1]}\n")

7. Timing and Output File Management:

These blocks handle the preparation and management of the output file where the results
of the golden run will be stored. The first part ensures that the output directory exists and creates
it if necessary. Then, the output file is opened in write mode, and a header row is written to the
file to structure the results (see Code Fragment 7).

Open the output file in write mode
if not os.path.exists(OUTPUT_DIR_GR):
 os.makedirs(OUTPUT_DIR_GR)
golden_run_output = open(OUTPUT_GR, 'w')

Start timestamp
start = time.time()

…

End timestamp
end = time.time()

Close the output file
golden_run_output.close()

print("Execution time: " + str(end - start) + " seconds")
print(f"Output file: {OUTPUT_GR}")

Code Fragment 6

Code Fragment 7

23

Additionally, a timer is started to track the total execution time of an experiment. Once
the entire process is completed, the timer is stopped, and the total execution time is printed to the
console along with the location of the output file.

3.3.2 Output example
The results of the network's accuracy with either unmodified or adjusted parameters are

summarized in the table The algorithm generates a CSV output that records the impact of each bit
modification on the CNN's accuracy. An example of this output is presented in Table 1 and
includes columns such as:

Table 1. An example of Golden Run output

IMGID PRED LABEL HIT
1 65 65 TRUE
2 795 970 FALSE
3 230 230 TRUE
4 809 809 TRUE

… … … …

Here, IMGID represents the image ID, PRED is the predicted class, LABEL is the actual
class label, and HIT indicates whether the prediction was correct or not.

3.3.3 Analysis of the Golden Run
The results from the golden run show that the ShuffleNet model achieved an accuracy

of 76.19% on the test set of 50,000 images (see Table 2). This means that the model correctly
predicted the labels for 76.19% of the images, while the remaining 23.81% were misclassified.

Table 2. The Golden Run prediction result

This accuracy serves as a baseline for the model's performance under normal conditions,
without any modifications or faults injected into the parameters.

3.4 Identification of Significant Bits
The mantissa in float32 provides the detailed precision of the number, but not all 23 bits

contribute equally to the represented value and, therefore, to the network's accuracy. The next
step is to identify the significant bits—those that, when altered, lead to noticeable changes in the
network’s output.

1. Bit-Level Sensitivity Analysis: For each layer’s parameters (weights, biases,
running means, and variances), we will systematically alter individual bits in the mantissa, starting
from the least significant bit (LSB) to the most significant bit (MSB), and observe the impact on
network accuracy.

TRUE FALSE TRUE FALSE
Golden Run 38,097 11,903 76.194% 23.806%

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

24

2. Threshold Determination: Establishing a threshold below which changes to bits
are considered insignificant, meaning they do not meaningfully degrade the network’s
performance. This threshold will be determined empirically based on the observed effects of bit
alterations during the sensitivity analysis.

3. Insignificant Bits Identification: Based on the sensitivity analysis, identify the
bits that can be altered or repurposed without substantially affecting network accuracy. These bits
will be candidates for storing fault-tolerance information.

In this section, we describe the algorithm developed to identify significant bits within
the 32-bit floating-point (float32) values used in CNN. The goal is to analyze how changes to
individual bits in the mantissa affect the network’s accuracy, thereby determining which bits are
critical for maintaining accuracy and which can be altered without significant impact. This
process is crucial for identifying potential bits that can be repurposed for fault-tolerance
mechanisms without increasing memory usage.

3.4.1 Algorithm Overview
The algorithm operates by systematically injecting faults into specific bits of the

mantissa across all parameters in the network (such as weights, biases, running means, and
variances) and then measuring the impact of these modifications on the network's output accuracy.
The key steps of the algorithm are as follows:

1. Setup and Initialization:

o The algorithm begins by setting up the environment, including loading the pre-
trained CNN model and preparing the input data. The model is set to evaluation
mode to ensure consistency in output during testing.

o A series of transformations is applied to the input images to prepare them for the
CNN, ensuring they are resized, cropped, and normalized according to the
model's requirements.

2. Fault Injection in Mantissa Bits:

o The algorithm iterates through each parameter tensor in the CNN. A tensor is a
multi-dimensional array, similar to a matrix, which holds numerical data, which
in this case represents the parameters (weights, biases, etc.) of the network. To
simplify the process of manipulating individual values, the data in each tensor is
flattened into a one-dimensional array.

o For each value in the tensor, the algorithm interprets the 32-bit float as an integer,
allowing direct manipulation of specific bits.

o The algorithm then modifies a specific bit in the mantissa. Depending on whether
the bit is originally set to 1 or 0, the algorithm either zeros out the less significant
bits that follow or sets them all to 1. This process is used to study the impact of
altering that particular bit and the subsequent less significant bits on the network's
accuracy, rather than injecting a fault.

25

3. Inference and Accuracy Measurement:

o After modifying the bits in the model’s parameters, the algorithm processes a set
of labeled images through the modified CNN. For each image, the output
prediction is compared to the ground truth label.

o The results, including the image ID, predicted class, actual label, and whether the
prediction was correct, are recorded in a CSV file for further analysis.

4. Iteration Across All Bits:

o This process is repeated for each of the 32 bits in the mantissa, starting from the
least significant bit (LSB) to the most significant bit (MSB). By iterating over all
possible bit positions, the algorithm identifies which bits, when altered, lead to
noticeable degradation in network accuracy.

5. Logging and Output:

o Throughout the process, detailed logs are maintained, capturing the status of each
run and the time taken to complete the analysis for each bit. The final results are
saved in a CSV file, providing a comprehensive view of the network's sensitivity
to changes in specific bits of the mantissa.

3.4.2 Example Output
The algorithm generates a CSV output that records the impact of each bit modification

on the CNN's performance. An example of this output is presented in Table 3 and includes the
same columns as a Golden run:

Table 3. An example of a modified CNN output

IMGID PRED LABEL HIT
1 65 65 TRUE
2 795 970 FALSE
3 230 230 TRUE
4 809 809 TRUE

… … … …

Here, IMGID represents the image ID, PRED is the predicted class, LABEL is the actual
class label, and HIT indicates whether the prediction was correct.

3.4.3 Analysis of Significant Bits
The results of the bit-level experiments are summarized in Table 4. The table shows the

number of correct predictions (TRUE) and incorrect predictions (FALSE) for each bit in the
mantissa after modifying that bit and all previous bits across all network parameters. Additionally,
the percentage of correct (TRUE %) and incorrect (FALSE %) predictions are provided to
highlight the impact of each bit modification on the network's accuracy.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

26

Table 4. The Result of Analysis of Significant Bits

Key Observations:

1. Bits 31 to 21 (Most Significant Bits):

o The network's accuracy is significantly affected when these bits are altered,
becoming so low that its inference results are useless.. The TRUE % remains at
a minimal 0.10%, while the FALSE % is consistently at 99.90%. This indicates
that these bits in the mantissa are highly significant for maintaining the accuracy
of the network. Any alteration in these bits leads to almost total degradation in
performance.

2. Bits 20 to 17:

o There is a slight improvement in accuracy as we move from bit 20 to bit 17. For
example, by bit 19, the TRUE % increases to 23.99%, indicating that some

BIT TRUE FALSE TRUE FALSE
bit_31 50 49950 0.10% 99.90% sign
bit_30 50 49950 0.10% 99.90%
bit_29 50 49950 0.10% 99.90%
bit_28 50 49950 0.10% 99.90%
bit_27 50 49950 0.10% 99.90%
bit_26 50 49950 0.10% 99.90%
bit_25 50 49950 0.10% 99.90%
bit_24 50 49950 0.10% 99.90%
bit_23 50 49950 0.10% 99.90%
bit_22 50 49950 0.10% 99.90%
bit_21 50 49950 0.10% 99.90%
bit_20 133 49867 0.27% 99.73%
bit_19 11995 38005 23.99% 76.01%
bit_18 26508 23492 53.02% 46.98%
bit_17 35803 14197 71.61% 28.39%
bit_16 37629 12371 75.26% 24.74%
bit_15 37909 12091 75.82% 24.18%
bit_14 38108 11892 76.22% 23.78%
bit_13 38106 11894 76.21% 23.79%
bit_12 38097 11903 76.19% 23.81%
bit_11 38103 11897 76.21% 23.79%
bit_10 38101 11899 76.20% 23.80%
bit_9 38093 11907 76.19% 23.81%
bit_8 38095 11905 76.19% 23.81%
bit_7 38097 11903 76.19% 23.81%
bit_6 38097 11903 76.19% 23.81%
bit_5 38097 11903 76.19% 23.81%
bit_4 38097 11903 76.19% 23.81%
bit_3 38098 11902 76.20% 23.80%
bit_2 38098 11902 76.20% 23.80%
bit_1 38097 11903 76.19% 23.81%
bit_0 38097 11903 76.19% 23.81%

exp

mantissa

27

resilience to errors begins to appear. However, the FALSE % remains dominant,
highlighting that these bits are still largely significant but less so than the bits
above them.

3. Bits 16 to 10:

o A noticeable shift occurs starting from bit 16, where the TRUE % jumps to over
75%. This trend continues down to bit 10, with the network maintaining a TRUE
% of approximately 76.19%. This suggests that bits 16 through 10 are less
critical, and the network can tolerate changes in these bits without substantial loss
of accuracy.

4. Bits 9 to 0 (Least Significant Bits):

o In the range from bit 9 down to bit 0, the network shows a steady TRUE % of
around 76.19% and a FALSE % of about 23.81%. These bits, particularly the
least significant ones (bit 0 to bit 9), have the least impact on the network's overall
accuracy, indicating that they are less significant. Alterations in these bits lead to
some incorrect predictions, but the majority of the network's predictions remain
accurate.

Conclusion:

The experiment demonstrates that the significance of mantissa bits in float32
representation diminishes as we move from the most significant bit (bit 31) to the least significant
bit (bit 0). The network's accuracy is highly sensitive to changes in the higher-order bits (bits 31
to 21), where even minor alterations lead to a drastic reduction in accuracy. However, starting
from bit 16, the network shows a much greater tolerance to bit alterations, with significant
resilience observed in bits 16 to 0.

3.5 Analysis of the Sign Bit and Exponent Values
The exponent in float32 determines the scale of the number and can have a significant

impact on the parameter values. However, like the mantissa, not all values in the exponent
contribute equally to the network’s accuracy.

1. Fixed Bit Analysis: Fix specific bits within the exponent and assess the impact
on the accuracy of the CNN. This will help identify which bits are critical for maintaining
numerical stability and which can be fixed without major consequences.

2. Component-Specific Analysis: Conduct this analysis separately for weights,
biases, running means, and running variances to determine if the significance of exponent bits
varies across these different components. For instance, running means and variances might
tolerate more aggressive bit modifications than weights or biases.

3. Impact Assessment: Evaluate how the alterations in exponent bits affect the
overall performance of the network and identify any trade-offs between accuracy and fault
tolerance.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

28

3.5.1 Preliminary Analysis of Bit Values
To begin the fixed bit analysis, we first conducted a thorough examination of the bit

values for each parameter across all layers of the Convolutional Neural Network (CNN). The
purpose of this analysis is to identify any bits in the 32-bit floating-point (float32) representation
of the parameters that consistently hold the same value (either 0 or 1) across the entire network.

To achieve this, we developed a custom script that systematically iterates through all
the parameters (such as weights, biases, running means, and variances) within the network. The
script converts each parameter value from its float32 representation to its corresponding 32-bit
integer format, allowing us to inspect and count the occurrences of 0s and 1s at each bit position.

The script accumulates these counts across all parameters, producing a detailed
distribution of 0s and 1s for every bit position from 0 (the least significant bit) to 31 (the most
significant bit). The results are then saved in a CSV file, providing a clear overview of which bits
may be invariant.

3.5.2 Example Output
The algorithm generates a CSV output that records the value of each bit. An example of

this output is presented in Table 5 and includes columns such as:

Table 5. The Result of Analysis of Bit Values

BIT #0 #1
0 3712086 3715626
1 3713645 3714067
2 3715036 3712676
3 3713481 3714231
4 3713519 3714193

… … …

In this file BIT represents the bit position (0 being the least significant bit and 31 the
most significant bit), #0 is the count of times that bit was 0 across all parameter values, #1 is the
count of times that bit was 1.

3.5.3 Analysis of Invariants Bits
The analysis of the bit-level distribution across all parameters in the network reveals

significant insights into the potential for fixed bit optimization in the CNN. Tables 6, 7 summarize
the count and percentage of 0s and 1s for each bit in the 32-bit floating-point representation,
segmented into the sign bit, exponent bits, and mantissa bits.

29

Table 6. The Result of Analysis of Bit Values (all tensors, weights)

all param 282 tensors 7427712 weight 113 tensors 7,376,138
BIT #0 #1 #0 #1

sign bit_31 3502522 3925190 47.15% 52.85% 3472343 3903795 47.08% 52.92%
bit_30 7412408 15304 99.79% 0.21% 7371121 5017 99.93% 0.07%
bit_29 15384 7412328 0.21% 99.79% 5025 7371113 0.07% 99.93%
bit_28 24204 7403508 0.33% 99.67% 13838 7362300 0.19% 99.81%
bit_27 28069 7399643 0.38% 99.62% 15357 7360781 0.21% 99.79%
bit_26 1425016 6002696 19.19% 80.81% 1406111 5970027 19.06% 80.94%
bit_25 5911097 1516615 79.58% 20.42% 5884520 1491618 79.78% 20.22%
bit_24 3619056 3808656 48.72% 51.28% 3595716 3780422 48.75% 51.25%
bit_23 3742675 3685037 50.39% 49.61% 3717564 3658574 50.40% 49.60%
bit_22 4342547 3085165 58.46% 41.54% 4312747 3063391 58.47% 41.53%
bit_21 4044562 3383150 54.45% 45.55% 4016451 3359687 54.45% 45.55%
bit_20 3878117 3549595 52.21% 47.79% 3851142 3524996 52.21% 47.79%
bit_19 3797640 3630072 51.13% 48.87% 3771289 3604849 51.13% 48.87%
bit_18 3754779 3672933 50.55% 49.45% 3728893 3647245 50.55% 49.45%
bit_17 3733555 3694157 50.27% 49.73% 3707791 3668347 50.27% 49.73%
bit_16 3723735 3703977 50.13% 49.87% 3698051 3678087 50.14% 49.86%
bit_15 3719163 3708549 50.07% 49.93% 3693305 3682833 50.07% 49.93%
bit_14 3717680 3710032 50.05% 49.95% 3691765 3684373 50.05% 49.95%
bit_13 3714230 3713482 50.01% 49.99% 3688544 3687594 50.01% 49.99%
bit_12 3714703 3713009 50.01% 49.99% 3688995 3687143 50.01% 49.99%
bit_11 3715662 3712050 50.02% 49.98% 3689881 3686257 50.02% 49.98%
bit_10 3715302 3712410 50.02% 49.98% 3689443 3686695 50.02% 49.98%
bit_9 3713186 3714526 49.99% 50.01% 3687280 3688858 49.99% 50.01%
bit_8 3715241 3712471 50.02% 49.98% 3689551 3686587 50.02% 49.98%
bit_7 3714074 3713638 50.00% 50.00% 3688062 3688076 50.00% 50.00%
bit_6 3714539 3713173 50.01% 49.99% 3688824 3687314 50.01% 49.99%
bit_5 3713336 3714376 49.99% 50.01% 3687374 3688764 49.99% 50.01%
bit_4 3713519 3714193 50.00% 50.00% 3687636 3688502 49.99% 50.01%
bit_3 3713481 3714231 49.99% 50.01% 3687546 3688592 49.99% 50.01%
bit_2 3715036 3712676 50.02% 49.98% 3689450 3686688 50.02% 49.98%
bit_1 3713645 3714067 50.00% 50.00% 3687907 3688231 50.00% 50.00%
bit_0 3712086 3715626 49.98% 50.02% 3686440 3689698 49.98% 50.02%

ex
po

ne
nt

m
an

tis
sa

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

30

Table 7. The Result of Analysis of Bit Values (biases, running means, running vars)

Key Observations:

1. Sign Bit (Bit 31):

o The sign bit exhibits a relatively balanced distribution across different
parameter types in the network, but this balance varies depending on the type
of parameter. When considering all parameters together, approximately
47.15% of values are 0 and 52.85% are 1, indicating a substantial number of
both positive and negative values.

o However, this distribution is heavily influenced by the weights, which show a
similar balance with 47.08% of values being 0 and 52.92% being 1. In contrast,
other parameter types like biases and running means display a different
distribution: biases have 33.36% of values as 0 and 66.64% as 1, while running
means show 43.68% of values as 0 and 56.32% as 1. Notably, the running

bias 57tensors 17,858 mean 56tensors 16,858 var 56tensors 16,858
BIT #0 #1 #0 #1 #0 #1 #0 #1 #0 #1 #0 #1

sign bit_31 5958 11900 33.36% 66.64% 7363 9495 43.68% 56.32% 16858 0 100% 0.00%
bit_30 14573 3285 81.60% 18.40% 16138 720 95.73% 4.27% 10576 6282 62.74% 37.26%
bit_29 3285 14573 18.40% 81.60% 749 16109 4.44% 95.56% 6325 10533 37.52% 62.48%
bit_28 3285 14573 18.40% 81.60% 763 16095 4.53% 95.47% 6318 10540 37.48% 62.52%
bit_27 4576 13282 25.62% 74.38% 1816 15042 10.77% 89.23% 6320 10538 37.49% 62.51%
bit_26 7388 10470 41.37% 58.63% 5149 11709 30.54% 69.46% 6368 10490 37.77% 62.23%
bit_25 8979 8879 50.28% 49.72% 7718 9140 45.78% 54.22% 9880 6978 58.61% 41.39%
bit_24 7971 9887 44.64% 55.36% 7072 9786 41.95% 58.05% 8297 8561 49.22% 50.78%
bit_23 8268 9590 46.30% 53.70% 8347 8511 49.51% 50.49% 8496 8362 50.40% 49.60%
bit_22 9983 7875 55.90% 44.10% 9858 7000 58.48% 41.52% 9959 6899 59.08% 40.92%
bit_21 9649 8209 54.03% 45.97% 9194 7664 54.54% 45.46% 9268 7590 54.98% 45.02%
bit_20 9423 8435 52.77% 47.23% 8798 8060 52.19% 47.81% 8754 8104 51.93% 48.07%
bit_19 9173 8685 51.37% 48.63% 8604 8254 51.04% 48.96% 8574 8284 50.86% 49.14%
bit_18 8938 8920 50.05% 49.95% 8460 8398 50.18% 49.82% 8488 8370 50.35% 49.65%
bit_17 9013 8845 50.47% 49.53% 8363 8495 49.61% 50.39% 8388 8470 49.76% 50.24%
bit_16 8930 8928 50.01% 49.99% 8377 8481 49.69% 50.31% 8377 8481 49.69% 50.31%
bit_15 8980 8878 50.29% 49.71% 8423 8435 49.96% 50.04% 8455 8403 50.15% 49.85%
bit_14 8912 8946 49.90% 50.10% 8548 8310 50.71% 49.29% 8455 8403 50.15% 49.85%
bit_13 8857 9001 49.60% 50.40% 8332 8526 49.42% 50.58% 8497 8361 50.40% 49.60%
bit_12 8857 9001 49.60% 50.40% 8421 8437 49.95% 50.05% 8430 8428 50.01% 49.99%
bit_11 8929 8929 50.00% 50.00% 8374 8484 49.67% 50.33% 8478 8380 50.29% 49.71%
bit_10 8991 8867 50.35% 49.65% 8406 8452 49.86% 50.14% 8462 8396 50.20% 49.80%
bit_9 8989 8869 50.34% 49.66% 8492 8366 50.37% 49.63% 8425 8433 49.98% 50.02%
bit_8 8971 8887 50.24% 49.76% 8447 8411 50.11% 49.89% 8272 8586 49.07% 50.93%
bit_7 9006 8852 50.43% 49.57% 8495 8363 50.39% 49.61% 8511 8347 50.49% 49.51%
bit_6 8897 8961 49.82% 50.18% 8406 8452 49.86% 50.14% 8412 8446 49.90% 50.10%
bit_5 9064 8794 50.76% 49.24% 8404 8454 49.85% 50.15% 8494 8364 50.39% 49.61%
bit_4 9036 8822 50.60% 49.40% 8468 8390 50.23% 49.77% 8379 8479 49.70% 50.30%
bit_3 9030 8828 50.57% 49.43% 8349 8509 49.53% 50.47% 8556 8302 50.75% 49.25%
bit_2 8886 8972 49.76% 50.24% 8393 8465 49.79% 50.21% 8307 8551 49.28% 50.72%
bit_1 8928 8930 49.99% 50.01% 8414 8444 49.91% 50.09% 8396 8462 49.80% 50.20%
bit_0 8804 9054 49.30% 50.70% 8377 8481 49.69% 50.31% 8465 8393 50.21% 49.79%

ex
po

ne
nt

m
an

tis
sa

31

variances are entirely positive, with 100% of values being 0. These variations
suggest that while the sign bit is not invariant for weights, biases, or running
means, it could potentially be fixed for running variances without distorting
the parameter values.

2. Exponent Bits (Bits 30 to 23):

o Bits 30 and 29: These bits are highly invariant, with bit 30 being 0 in 99.79%
of cases and bit 29 being 1 in 99.79% of cases. This suggests that these bits
consistently take on the same value across most parameters, indicating a
potential opportunity to fix these bits without major impact on the network’s
performance.

o Bits 28 to 23: While there is some variation in these bits, certain bits like 28
(99.67% being 1) and 26 (79.58% being 1) show strong tendencies towards a
particular value. However, bits 25 and 24 show a more balanced distribution,
making them less likely candidates for fixing.

3. Mantissa Bits (Bits 22 to 0):

o Although the distribution of 0s and 1s in the mantissa bits is approximately
even, with most bits hovering around a 50/50 split, not all of these bits
significantly impact the network's accuracy. As noted earlier in the
“Identification of Significant Bits in the Mantissa” section [3.4], some of these
bits can be altered without substantially affecting the precision of the parameter
values. Therefore, fixing any of these bits would change the behavior of the
network. However, part of these bits is not relevant for that behavior, as stated
before.

Conclusion:

The analysis suggests that while the mantissa bits are highly variable and critical for
preserving precision, certain exponent bits, particularly bits 30 and 29, are highly invariant and
could potentially be fixed without significantly impacting the network's performance.

3.6 Analysis of Parameter Values Across Network Layers
To understand how the bits in float32 parameters contribute to the performance of a

CNN, we will perform a detailed analysis of the parameter values across different layers.

The analysis will involve the following steps:

1. Data Collection: Extracting the parameter values (weights, biases, running
means, and running variances) from each layer of ShuffleNet after training on a benchmark
dataset.

2. Statistical Analysis: Analyzing the distribution and range of these values to
understand their general characteristics. This includes examining the average magnitudes,
variances, and any outliers that may indicate special cases.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

32

3. Pattern Identification: Identifying any patterns or correlations in the parameter
values that might suggest certain bits in the mantissa or exponent are consistently less significant
or vary less than others.

3.6.1 Exponent Distribution Analysis
To facilitate the analysis of parameter values across different layers of the ShuffleNet

model, a custom script was developed. This script systematically iterates through all tensors in
each layer of the network, extracting relevant parameter values such as weights, biases, running
means, and running variances. The script processes these tensors and outputs the results in a
structured format, specifically as a CSV file, which allows for easy examination and further
analysis, represented in Table 8.

This structured data collection ensures that all relevant details about the network's
parameters are captured, providing a solid foundation for subsequent analyses, such as identifying
insignificant bits in the mantissa and analyzing the impact of exponent bits on the network's
performance.

Table 8. Distribution of parameter values in ShuffleNet CNN

Exponent Power
of '2' Value Range

Quantity

total weight bias running_
mean

running
_var

Total: 7,427,712 7,376,138 17,858 16,858 16,858
00000000 value less than 2-126 or 0 58 0 0 29 29
00000001 -126 -126 to -125 0 0 0 0 0
00000010 -125 -125 to -124 0 0 0 0 0

… … … … … … … …
01000001 -62 -62 to -61 11 11 0 0 0
01000010 -61 -61 to -60 24 24 0 0 0
01000011 -60 -60 to -59 49 49 0 0 0

… … … … … … … …
01101110 -17 -17 to -16 1,841 1,514 198 129 0
01101111 -16 -16 to -15 3,652 2,981 388 283 0
01110000 -15 -15 to -14 7,059 5,825 761 473 0
01110001 -14 -14 to -13 13,442 11,230 1,284 928 0
01110010 -13 -13 to -12 25,619 22,948 1,343 1,328 0
01110011 -12 -12 to -11 46,235 45,037 416 782 0
01110100 -11 -11 to -10 91,006 90,683 62 257 4
01110101 -10 -10 to -9 179,721 179,349 39 330 3
01110110 -9 -9 to -8 354,390 354,147 56 181 6
01110111 -8 -8 to -7 688,424 688,191 112 86 35
01111000 -7 -7 to -6 1,255,583 1,254,929 177 154 323
01111001 -6 -6 to -5 1,892,608 1,891,034 358 287 929
01111010 -5 -5 to -4 1,844,598 1,841,987 483 846 1,282
01111011 -4 -4 to -3 805,732 802,318 408 1,820 1,186
01111100 -3 -3 to -2 135,691 132,522 668 1,812 689
01111101 -2 -2 to -1 23,474 19,140 1,343 1,792 1,199

33

01111110 -1 -1 to 0 12,627 4,593 2,707 2,239 3,088
01111111 0 0 to 1 18,186 11,619 3,065 1,718 1,784
10000000 1 1 to 2 6,834 3,088 1,136 539 2,071
10000001 2 2 to 3 6,716 1,927 1,779 104 2,906
10000010 3 3 to 4 1,314 2 369 50 893
10000011 4 4 to 5 274 0 1 23 250
10000100 5 5 to 6 84 0 0 3 81
10000101 6 6 to 7 55 0 0 1 54
10000110 7 7 to 8 25 0 0 0 25
10000111 8 8 to 9 2 0 0 0 2
10001000 9 9 to 10 0 0 0 0 0

As part of the ongoing analysis of parameter values across the layers of the ShuffleNet
model, I conducted a detailed examination of the exponent values within the 32-bit floating-point
(float32) representation of all network parameters. This analysis aimed to categorize the
parameters based on the value of their exponent, which significantly influences the magnitude of
the floating-point numbers.

Key Findings:

• Total Parameters Analyzed: 7,427,712

• Exponent Categories:

1. Exponents Less Than 011110002:

 Number of parameters: 1,423,909 (19.17% of total)

 Characteristics: These parameters correspond to very small values,
typically close to zero.

 Important Consideration: We cannot simply fix the exponent bits in
this group without taking additional steps. If we were to fix the bits
directly, say at 011110002, and retain the original mantissa and sign bits,
it could drastically alter the parameter's magnitude. For instance, fixing
these bits at a value like 010011002 (which corresponds to 2-51) would
instead produce 011111002 (which corresponds to 2-3), a significant and
unintended increase in magnitude.

 Algorithm Adjustment: To address this, the algorithm assumes that not
only are the bits fixed, but all lower bits in the exponent are also zeroed
out. Essentially, we take all parameters with exponents below 011110002
and round them up to 011110002, while simultaneously setting all lower
bits of the exponent to zero. This approach ensures that the values are
rounded rather than increased, maintaining the intended small magnitude
of the parameters.

2. Exponents Greater Than or Equal to 011110002 and Less Than 100000002:

 Number of parameters: 5,988,499 (80.62% of total).

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

34

 Characteristics: This group represents the majority of the parameters,
which have moderate values that are well-distributed across the network.
These parameters are central to the network's operations, as they
typically encode the most critical information.

 Strategy: For this group, we explore fixing bits 26 to 30 in the exponent
to simplify the network's calculations while still preserving the core
functionality. The relative stability and concentration of values within
this range suggest that such modifications may be feasible without
substantial loss of precision or accuracy.

3. Exponents Greater Than 100000002:

 Number of parameters: 15,304 (0.21% of total).

 Characteristics: Parameters in this group have large magnitudes, which
could correspond to critical operations or features within the network.

 Approach: While these parameters are less common, they are potentially
more impactful when altered. Careful consideration must be given to any
modifications in this range to avoid unintended consequences on the
network's performance.

Hypothesis for Fixed Bit Analysis:

Given the distribution of exponent values, I hypothesize that we might be able to fix
certain exponent bits—specifically bits 26 to 30—without significantly impacting the network's
performance. The rationale is based on the observation that a considerable number of parameters
fall within the middle range of exponent values (011110002 to 100000002). Fixing these bits could
simplify the network's computations while maintaining accuracy.

3.6.2 Parameter Categorization and Exponent Range Analysis
To validate previous hypothesis, I developed a script that categorizes these parameters

further into weights, biases, running_mean, and running_var, and counts the occurrences of each
category within the defined exponent ranges. The goal is to understand how the network's
parameters are distributed across these categories, which will guide us in determining the potential
impact of fixing specific bits in the exponent. We can see the result of the distribution in Table 9.

Table 9. Distribution of parameter values in ShuffleNet CNN

 Total % WEIGHT BIAS MEAN VAR

… < 011110002 1,423,909 19.17% 1,412,979 5,364 5,470 96
011110002 <= … < 100000002 5,988,499 80.62% 5,958,142 9,209 10,668 10,480

100000002 <= … 15,304 0.21% 5,017 3,285 720 6,282
Total 7,427,712 7,376,138 17,858 16,858 16,858

To further refine the analysis, we can attempt to categorize the network layers based on
whether their parameters fall predominantly into the group with exponents less than or equal to

35

011111112, or greater than 011111112. This involves evaluating each of the network's parameter
sets (of which there might be 282, for instance) to determine whether they comply with the
“exponent ≤ 011111112” rule.

It is likely, based on previous observations from other networks we have studied, that
the vast majority of these parameter sets will fall into the group that complies with this rule.
Identifying layers where all parameters either do or do not meet this criterion is crucial because it
allows us to apply targeted bit-fixing strategies that are appropriate for the specific distribution of
values within each layer.

For example, layers where all parameters have exponents less than or equal to
011111112 might be candidates for applying bit-fixing strategies that would simplify
computations without affecting the overall performance. Conversely, layers with exponents
predominantly greater than 011111112 might require a different approach to maintain the
necessary precision and network functionality.

Table 10. Distribution of parameter values in ShuffleNet CNN

Total
all parameters in layer have an exponent:

mix
<100000002 >=100000002

of
layers # of param # of

layers # of param # of
layers # of param # of

layers # of param

weight 113 7,376,138 61 7,356,802 1 2,048 51 17,288
bias 57 17,858 22 6,880 1 2,048 34 8,930
running_mean 56 16,858 33 9,296 0 0 23 7,562
running_var 56 16,858 13 4,148 10 2,928 33 9,782

Total 282 7,427,712 129 7,377,126 12 7,024 141 43,562

Based on the analysis presented in Table 10, we observe that in nearly half of all layers
(129 + 12 layers), which account for 7,384,150 parameters (or 99.41% of the total), we can
potentially fix 5 bits (from 26 to 30) in the exponent. This presents a significant opportunity to
repurpose these bits for error-correction codes, thereby enhancing fault tolerance while preserving
memory efficiency.

Specifically:

• Layers where all parameters have exponents less than 100000002: In 129 layers,
comprising 7,377,126 parameters, fixing these bits is feasible as the exponents fall within
a manageable range. This allows us to maintain the precision required for accurate
network performance while simplifying the bit structure.

• Layers where all parameters have exponents greater than or equal to 100000002: In
12 layers, comprising 7,024 parameters in this particular network, fixing these bits is also
possible. Although these layers contain larger values, the controlled fixing of bits ensures
that the network's functionality remains intact. However, it is important to note that this
result is specific to this network and its training process. In other networks, the ability to
fix exponent bits will depend on the maximum exponent values present. If there are
exponent values greater than 100001112, rounding could significantly reduce the
represented value, potentially altering the inference process.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

36

Furthermore, when combined with the Least Significant Bits (LSBs) of the mantissa (in
the case of ShuffleNet, we identified 10 such LSBs), supplementing these with the 5 fixed bits
from the exponent allows us to create a more robust protection mechanism. This combination can
significantly improve the network's resilience against errors while maintaining overall
performance and memory efficiency.

As a potential area for further research, this bit-fixing strategy could be explored in the
context of quantized networks (using 16-bit or 8-bit precision). In such cases, focusing solely on
bit-fixing might yield similar benefits, providing robust fault tolerance in even more memory-
constrained environments.

3.7 Rounding Experiments on Exponent Bits
In this section, we outline the experiments designed to evaluate the impact of rounding

value of the exponent on the accuracy of the ShuffleNet model. Given our previous analysis, we
have determined that fixing bits 26-30 in the exponent should not affect the prediction accuracy
for parameters in Group 2 (with exponents between 011110002 and 100000002) and Group 3 (with
exponents greater than 100000002). This is because those bits do not alter the actual value of the
parameters in these groups (keeping in mind that other networks may need to do additional Group
3 research).

3.7.1 Experimental Goal
The primary goal of our experiments is to iteratively determine how rounding the

exponent values in Group 1 impacts the overall accuracy of the network. Instead of a single step,
we will conduct a series of experiments starting from “pure” invariants. For instance, if all weights
have exponents in the form “011xxxxx2”, we begin with 3 invariant bits without any rounding,
ensuring no loss in precision. The next step involves forcing all exponents into the form
“0111xxxx2”, where some rounding begins to occur. If the variation in accuracy remains within
acceptable limits, we consider these 4 bits as invariants and proceed to the next step, forcing
exponents to “01111xxx2”, and so on. This iterative process continues until we identify the
maximum number of bits that can be fixed without significantly compromising the network’s
ability to correctly classify images.

3.7.2 Experimental Procedure
1. Baseline Accuracy Measurement:

o Before any modifications, we will measure and record the baseline accuracy of
ShuffleNet on a standard test set. This provides a reference point to compare the
effects of our rounding technique.

2. Parameter Modification:

o We will iteratively modify the parameters in Group 1 by rounding their exponent
values progressively higher values, starting from 011000002 and moving towards
011110002. This adjustment will be applied to all relevant parameters across the
network's layers during each iteration (see Code Fragment 8).

37

exponents_list = [0b01100000, 0b01110000, 0b01111000, 0b01111100]

for new_exponent in exponents_list:
 …
 test_run(new_exponent)

def test_run(new_exponent):
 …
 current_model = deepcopy(CNN_MODEL)
 …
 for key in dict.keys():
…
 for i in range(len(flat)):
 # Get the float as an integer
 int_value = flat[i].view(torch.int)
 int_bits = np.frombuffer(int_value.numpy().tobytes(),
dtype=np.uint32)[0]
 # Current exponent and mantissa
 # 10000000000000000000000000000000 = 0x80000000
 sign_bit = (int_bits & 0x80000000) >> 31
 # 01111111100000000000000000000000 = 0x7F800000
 exponent = (int_bits & 0x7F800000) >> 23
 mantissa = int_bits & 0x007FFFFF

 # Check exponent:
 if exponent < new_exponent:
 new_exponent_bits = new_exponent
 mantissa = 0
 tensors_modified_exp += 1
 else:
 new_exponent_bits = exponent

 # Assembling a new value
 new_int_bits = (sign_bit << 31) | (new_exponent_bits << 23) |
mantissa
 new_int_value =
torch.tensor(np.frombuffer(np.uint32(new_int_bits).tobytes(),
dtype=np.int32)[0], dtype=torch.int32)

 # Convert back to float32
 flat[i] = new_int_value.view(torch.float32)

 # Reshape the flattened tensor
 dict[key] = flat.view(shape)
…

Code Fragment 8

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

38

3. Accuracy Evaluation:

o After applying the rounding modifications, we will re-evaluate the network's
accuracy using the same test set. The objective is to determine if there is any
significant drop in accuracy performance compared to the baseline.

4. Analysis of Results:

o The results will be analyzed to assess the impact of the iterative modifications.
Starting with smaller exponent values, we progressively rounded the exponent
values in Group 1 parameters to increasingly higher values, as shown in Table
11. If the accuracy remains within an acceptable range after each iteration, this
would validate our hypothesis that such modifications can be made without
adversely affecting the network's accuracy. Conversely, if there is a noticeable
drop in accuracy, this would suggest that even small changes in the exponent can
have a significant impact on the network's predictions.

Table 11. Comparison of network accuracy with modified parameters and Golden Run

run
bit

exponent
mask

total
tensors

modified
tensors

total
values

modified
values % TRUE FALSE TRUE FALSE

Golden
Run

 38,097 11,903 76.194% 23.806%

rounding
to 2-31 011000002

282

73

7,427,712

8,917 0.12% 38,097 11,903 76.194% 23.806%

rounding
to 2-15 011100002 132 18,013 0.24% 38,100 11,900 76.200% 23.800%

rounding
to 2-7 011110002 177 1,423,909 19.17% 38,009 11,991 76.018% 23.982%

rounding
to 2-3 011111002 206 7,222,430 97.24% 41 49,959 0.082% 99.918%

Table 11 summarizes the results of our iterative experiments comparing the baseline
(“Golden Run”) accuracy of the ShuffleNet model with the performance after modifying the
exponent values in Group 1 parameters. Each row in the table represents a different rounding
iteration, showing how the network's accuracy changes as the exponent values are rounded to
different fixed points, culminating in the final value of 011110002.

3.7.3 Key Observations:
• Golden Run:

o Baseline Accuracy: The network achieved a baseline accuracy of 76.194% on
the test set, with 38,097 correct predictions (TRUE) and 11,903 incorrect
predictions (FALSE).

• Rounding Experiment:

o Rounding to 011000002 (2-31)

39

 Modified Tensors and Values: Out of the 282 tensors in the network,
73 were modified, affecting a total of 8,918 values.

 Post-Modification Accuracy: The network's accuracy remained
unchanged at 76.194%, with 38,097 correct predictions and 11,903
incorrect predictions.

 Accuracy Impact: The minimal modification of only 8,917 values led
to no observable impact on the network's accuracy, indicating that
rounding to 011000002 has negligible effects.

o Rounding to 011100002 (2-15)

 Modified Tensors and Values: 132 tensors were modified, affecting a
total of 18,013 values.

 Post-Modification Accuracy: The network's accuracy remained
virtually unchanged at 76.200%, with 38,100 correct predictions and
11,900 incorrect predictions.

 Accuracy Impact: Despite modifying twice as many values as in the
previous experiment, the accuracy remained stable, suggesting that
rounding to 011100002 does not significantly impact the network's
performance.

o Rounding to 011110002 (2-7)

 Modified Tensors and Values: 177 tensors were modified, affecting a
total of 1,423,909 values.

 Post-Modification Accuracy: The network's accuracy showed a slight
decrease to 76.018%, with 38,009 correct predictions and 11,991
incorrect predictions.

 Accuracy Impact: Although the number of modified values increased
dramatically, the accuracy only decreased slightly by 0.176 pp,
indicating that rounding to 011110002 introduces minimal impact while
affecting a substantial portion of the network's parameters.

o Rounding to 011111002 (2-3)

 Modified Tensors and Values: Out of the 282 tensors, 206 were
modified, affecting a total of 7,222,430 values.

 Post-Modification Accuracy: The network's accuracy dropped
drastically to 0.082%, with only 41 correct predictions and 49,959
incorrect predictions.

 Accuracy Impact: The significant drop in accuracy demonstrates that
rounding to 011111002 severely compromises the network's
functionality, rendering it practically useless. This level of rounding

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

40

dramatically reduces the representational capacity of the parameters,
leading to substantial errors in inference.

The results of these experiments highlight the delicate balance between parameter
modification and network accuracy. Rounding the exponent values to 011000002, 011100002, and
011110002 results in minimal accuracy loss, even as the number of modified parameters increases
significantly. This suggests that moderate rounding strategies can be employed for memory
optimization without significantly compromising the network's performance.

However, the results also show that more aggressive rounding, such as to 011111002,
leads to a catastrophic drop in accuracy, indicating that there is a critical threshold beyond which
further modifications render the network ineffective. This finding underscores the importance of
careful consideration when implementing exponent bit-fixing strategies, as overly aggressive
modifications can severely degrade the network's performance.

Moving forward, this approach should be applied judiciously, with further research
needed to explore the optimal balance between rounding extent and network robustness across
different neural networks and application scenarios.

3.8 Summary of Results and Final Analysis
During the experiments, the exponent and mantissa bits in the ShuffleNet parameters

were identified and classified, leading to several categories. Figure 6 shows the results.

Figure 6. Classification of Exponent and Mantissa Bits

3.8.1 Categories of values of bits.
Less Significant Bits (LSBs):

In the mantissa, bits that have minimal impact on the network's accuracy were identified
(highlighted in blue on Figure 6, bits 0 through 14). These bits can be used to store parity bits, as
their alteration does not significantly affect the overall network performance. Moreover, the
prediction accuracy of this network increased by 0.022 pp, from 76.194% to 76.216%.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent mantissa

Less significant bits less significant bits
Invariant bits
(only running_vars)

0

Forced bits
(exponent values < 100000002)

0 1 1 1 1

Forced bits
(exponent values >= 100000002)

1 0 0 0 0

Bits to protect

41

Invariant Bits:

In the running variances parameters (the blue cell with value “0” on Figure 6), an
invariant bit was found that remains unchanged. This bit can be used to store any information, as
its value is independent of changes in other bits.

Forced Bits (Exponent Values):

• For exponents less than 100000002: Bits were identified (highlighted in blue cells) that
can be forcibly fixed at values “01111xxx2” (for exponents less than 100000002),
minimizing the impact on accuracy (the network's prediction accuracy decreased by only
0.176 pp, from 76.194% to 76.018%). These bits remain invariant after rounding and can
be used to store parity bits.

• For exponents greater than or equal to 100000002: Bits were identified that can be
forcibly fixed at values “10000xxx2” (for exponents ≥ 100000002). These bits can also be
used to store parity bits, as they remain invariant during rounding. However, it is crucial
to monitor the maximum exponent value that may occur in the tensors, as exceeding this
fixed range could lead to significant inaccuracies or loss of precision in the network's
predictions.

3.8.2 Bits to Protect:
The red cells on the diagram indicate bits that must be protected, as they directly affect

the accuracy of the network’s computations and predictions. These bits include:

• The sign bit (bit 31) in weights, biases and running means.

• 3 bits of the exponent.

• 7 bits of the mantissa.

3.8.3 Final Result and Potential Application of Error-Correcting Codes (ECC):
Next, we applied simultaneous modifications by altering the least significant bits

(LSBs) in the mantissa and fixing specific bits in the exponent. This combined approach aimed
to explore the cumulative impact of these adjustments on the network's accuracy while potentially
freeing up additional bits for fault-tolerant encoding. The results demonstrated that even with both
sets of modifications, the accuracy remained within an acceptable range, indicating the feasibility
of implementing such changes in tandem. The detailed results of this experiment are presented in
Table 12.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

42

Table 12. Impact of Combined Exponent Rounding and Mantissa Bit Alteration on Model Accuracy

As we can see from the results table, the accuracy decreased to 75.448%, showing a
slight drop of 0.746 pp compared to the baseline. This is a more significant decrease than when
the methods are applied separately. However, it still has a moderate impact on the model's
accuracy.

3.8.4 Potential Application of Error-Correcting Codes (ECC):
Based on the results obtained, we have 21 bits available for use as parity bits and 11

bits that need to be protected. To protect these bits, depending on the requirements, various types
of Error-Correcting Codes (ECC) can be employed:

• Hamming (15,11): If 11 data bits need to be protected (1 sign bit, 3 exponent bits, and 7
mantissa bits), a Hamming (15,11) code can be used. This code provides protection
against single-bit errors by using 4 additional parity bits. Given the available non-
significant and invariant bits, this code can be easily implemented.

• Hamming (21,16): In layers where invariants are absent and all 8 exponent bits, along
with the sign bit and 7 mantissa bits (a total of 16 data bits), need to be protected, a
Hamming (21,16) code can be utilized, which requires 5 parity bits. This code can also
be effectively implemented using the available bits.

• SEC-DED (Single Error Correction, Double Error Detection): This code extends the
Hamming code by adding an additional parity bit, allowing for the correction of single-
bit errors and the detection of double-bit errors. It provides a balance between complexity
and reliability, making it a robust choice for systems where double-error detection is
critical.

• BCH (Bose-Chaudhuri-Hocquenghem) Codes: BCH codes are more flexible and can
be configured to correct multiple errors. For example, a BCH (31,21) code can correct up
to two errors in a block of 31 bits. This makes BCH codes suitable for scenarios where
higher fault tolerance is required.

• SEC-SED (Single Error Correction, Single Error Detection): While less common,
SEC-SED codes can be used in specific applications where detection and correction of
single errors in different parts of the data are needed.

run
bit exponent

mask
TRUE FALSE TRUE FALSE

Golden Run 38,097 11,903 76.194% 23.806%
Rounding to 2-7 011110002 38,009 11,991 76.018% 23.982%
Altering 16 bits of mantiss - 37,629 12,371 75.258% 24.742%
Rounding to 2-7 and
altering 16 bits of
mantissa

011110002 37,116 12,884 74.232% 25.768%

43

The implementation of these codes and further experimentation can serve as the
foundation for future research. By exploring different ECC strategies, it is possible to find the
optimal balance between accuracy, complexity, and fault tolerance, paving the way for more
robust neural network models.

3.9 Summary of the Methodology
This section summarizes the systematic methodology developed to analyze and

optimize the performance of Convolutional Neural Networks (CNNs) by exploring the potential
for fixing specific bits within the floating-point parameters. This approach focuses on
understanding the impact of rounding exponent values and modifying bit representations on
network accuracy, with the goal of enhancing memory efficiency and incorporating fault tolerance
mechanisms. The methodology is structured into the following key steps:

1. Golden Run:

o The process begins with conducting a “Golden Run” for the target neural
network. This involves evaluating the network on a standard test set to establish
a baseline accuracy. The results from this baseline run provide a critical reference
point for assessing the impact of any subsequent modifications to the network's
parameters.

2. Identification of Least Significant Bits (LSBs):

o Next, we identify the Least Significant Bits (LSBs) within the mantissa that can
be considered less critical for the network's accuracy. This identification is done
separately for different types of parameters, including weights, biases,
running_mean, and running_var. The goal is to determine which bits in the
mantissa can potentially be fixed or modified without significantly affecting the
network's performance.

3. Identification of Invariant Bits:

Following the analysis of least significant bits and parameter magnitudes, we
identify the invariant bits across different parameters, such as weights, biases,
running means, and running variances. Invariant bits are those that remain
constant across various data values and do not affect the accuracy of the network.
By identifying these bits, we can determine which bits can be safely fixed or
utilized for storing additional information, such as parity bits for error correction.
This step is critical for networks where a significant portion of the parameters
contains invariant bits, enabling further optimization of memory and fault-
tolerance mechanisms.

4. Assessment of Parameter Magnitudes:

o The methodology then involves analyzing the magnitude of the parameter values,
specifically focusing on the exponent part of the floating-point representation.
This assessment is performed for each category of parameters—weights, biases,
running_mean, and running_var. The analysis helps to categorize the parameters

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

44

into groups based on their exponent values, which will inform the bit-fixing
strategy.

5. Rounding and Bit-Fixing Analysis for Group 1:

o Finally, assuming that the distribution of parameter magnitudes observed in
ShuffleNet is representative of other networks, we conduct an analysis focusing
on parameters with exponents in Group 1 (exponents less than 011110002). The
analysis involves rounding these small values to a standard exponent (e.g.,
011110002) and zeroing out the less significant bits in the exponent. This step
aims to assess how such rounding affects the network’s accuracy and whether it
can be applied as a general strategy across different CNN architectures.

6. Evaluation of Available Parity Bits and Data Bits for ECC:

The final step involves checking the number of available parity bits and the
number of required data bits. This step is crucial for determining the feasibility
of applying suitable Error-Correcting Codes (ECC), such as Hamming codes,
within the network. By evaluating the balance between available parity bits and
the bits that need protection, we can identify the most appropriate ECC strategy
to enhance the network's fault tolerance.

This step-by-step methodology provides a structured approach to optimizing CNNs by
selectively modifying their parameter representations. By systematically applying these steps, we
can explore the potential for memory savings and improved fault tolerance in a variety of neural
network models while maintaining acceptable levels of accuracy. This approach sets the stage for
further experiments on different CNN architectures to determine the generalizability and
effectiveness of the bit-fixing strategy.

45

4. Experiments and Results

In this section, we present the results of the experiments conducted to evaluate the
proposed methodology for optimizing Convolutional Neural Networks (CNNs) by modifying
specific bits within the floating-point parameters. The experiments were designed to explore the
impact of rounding exponent values and altering the least significant bits (LSBs) in the mantissa,
with the goal of assessing the effects on network accuracy and fault tolerance. By systematically
modifying the floating-point representations, we aim to determine whether the proposed bit-fixing
strategies can enhance the memory efficiency of CNNs while maintaining their robustness in
critical applications.

To ensure comprehensive analysis, the experiments were conducted across multiple
well-known CNN architectures, including GoogLeNet, InceptionV3, MobileNet V2, MobileNet
V3 (both Small and Large variants), ResNet50 (versions 1 and 2), and ShuffleNet V2 with a width
multiplier of 2.0. These networks represent a wide variety of model complexities and applications,
making them ideal candidates for evaluating the generality of the proposed methods. For each
network, we performed a baseline evaluation (“Golden Run”) to establish reference accuracy
levels, followed by incremental tests focusing on rounding and modifying floating-point
parameters. The results highlight the balance between precision loss and memory savings, as well
as the potential for integrating Error-Correcting Codes (ECC) to improve fault tolerance.

4.1 Golden Run Results
The Golden Run provides the baseline accuracy for each neural network model, serving

as the reference point for evaluating subsequent bit-modification experiments. Table 13 presents
the results of the Golden Run, showing the number of correct and incorrect predictions for each
CNN model, along with the corresponding accuracy percentages.

Table 13. Golden Run Results for Each CNN

To further analyze the performance of the networks, Table 14 compares the accuracy
of each CNN model with the number of parameters (weights and biases only). This provides
insight into the relationship between model complexity (measured by the number of parameters)
and prediction accuracy.

CNN TRUE FALSE TRUE FALSE
GoogLeNet 34,886 15,114 69.772% 30.228%
InceptionV3 34,761 15,239 69.522% 30.478%
MobileNet V2 36,003 13,997 72.006% 27.994%
MobileNet V3 Small 33,834 16,166 67.668% 32.332%
MobileNet V3 Large 37,657 12,343 75.314% 24.686%
ResNet50V1 38,073 11,927 76.146% 23.854%
ResNet50V2 40,427 9,573 80.854% 19.146%
ShuffleNetV2_2.0 38,097 11,903 76.194% 23.806%

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

46

Table 14. Comparison of Network Accuracy and Parameter Counts

Figure 7 illustrates the relationship between the accuracy of each CNN and the number
of parameters. As shown, ResNet50V2 achieves high accuracy with a relatively large number of
parameters, while smaller networks like MobileNet V3 Small have lower accuracy but fewer
parameters. Notably, InceptionV3, despite having a significant number of parameters, does not
outperform networks with fewer parameters such as ResNet50V2.

Figure 7. Ratio of CNN Accuracy to Number of Parameters

Although larger models like ResNet50V2 tend to have higher accuracy due to a greater
number of parameters, this is not always the case. For example, InceptionV3, despite having one
of the highest parameter counts, does not achieve better accuracy than models like
ShuffleNetV2_2.0, which has fewer parameters. This suggests that increasing the number of
parameters alone does not necessarily guarantee improved performance.

However, the primary goal of this study is not to optimize parameter efficiency but to
establish the baseline accuracy (Golden Run) for each model. These results serve as a reference
point for evaluating the impact of bit modifications and fault tolerance techniques in subsequent
experiments.

CNN Number of Parameters Accuracy
GoogLeNet 6,624,904 69.772%
InceptionV3 27,161,264 69.522%
MobileNet V2 3,504,872 72.006%
MobileNet V3 Small 2,542,856 67.668%
MobileNet V3 Large 5,483,032 75.314%
ResNet50V1 25,557,032 76.146%
ResNet50V2 25,557,032 80.854%
ShuffleNetV2_2.0 7,393,996 76.194%

47

4.2 Identification of Least Significant Bits (LSBs)
As part of our methodology, we identify the Least Significant Bits (LSBs) within the

mantissa that can be considered less critical for the network's accuracy. This identification is
carried out separately for different types of parameters, including weights, biases, running means,
and running variances. The goal is to determine which bits in the mantissa can potentially be fixed
or modified without significantly affecting the network's overall performance.

Table 15 presents the accuracy of each network as we progressively alter bits from 0-
12 to 0-22. Networks exhibit different behavior, but one common trend is that at a certain point,
the accuracy begins to sharply decline.

Table 15. Network Accuracy When Altering Least Significant Bits (LSBs) in the Mantissa

Next, Table 16 shows the deviation in percentage points from the Golden Run. The
networks are color-coded to highlight the threshold at which we will focus our further
experiments. This threshold is the maximum number of bits that can be altered without a
significant loss of accuracy.

Table 16. Deviation in Accuracy from Golden Run (Percentage Points)

Altered bits GoogLeNet InceptionV3
MobileNet

V2
MobileNet

V3 Small
MobileNet

V3 Large
ResNet50V1 ResNet50V2

ShuffleNet
V2_2.0

bit_22 0.104% 0.102% 0.112% 0.088% 0.110% 0.110% 0.098% 0.100%
bit_21 0.110% 0.086% 0.098% 0.092% 0.136% 0.160% 0.100% 0.100%
bit_20 0.166% 0.130% 0.124% 0.108% 0.126% 23.164% 3.146% 0.266%
bit_19 15.620% 4.436% 0.836% 0.218% 0.624% 70.436% 58.824% 23.990%
bit_18 54.468% 44.430% 34.014% 15.032% 37.038% 74.788% 75.760% 53.016%
bit_17 67.200% 64.506% 64.538% 56.546% 71.080% 75.812% 80.124% 71.606%
bit_16 69.264% 68.330% 70.610% 63.206% 74.384% 75.946% 80.558% 75.258%
bit_15 69.686% 69.066% 71.844% 65.498% 74.920% 76.112% 80.804% 75.818%
bit_14 69.782% 69.346% 71.874% 67.270% 75.304% 76.086% 80.810% 76.216%
bit_13 69.790% 69.450% 72.014% 67.582% 75.354% 76.108% 80.796% 76.212%
bit_12 69.782% 69.468% 71.982% 67.598% 75.312% 76.150% 80.830% 76.194%
Golden Run 69.772% 69.522% 72.006% 67.668% 75.314% 76.146% 80.854% 76.194%

Altered bits GoogLeNet InceptionV3
MobileNet

V2
MobileNet

V3 Small
MobileNet

V3 Large
ResNet50V1 ResNet50V2

ShuffleNet
V2_2.0

bit_22 -69.668 pp -69.420 pp -71.894 pp -67.580 pp -75.204 pp -76.036 pp -80.756 pp -76.094 pp
bit_21 -69.662 pp -69.436 pp -71.908 pp -67.576 pp -75.178 pp -75.986 pp -80.754 pp -76.094 pp
bit_20 -69.606 pp -69.392 pp -71.882 pp -67.560 pp -75.188 pp -52.982 pp -77.708 pp -75.928 pp
bit_19 -54.152 pp -65.086 pp -71.170 pp -67.450 pp -74.690 pp -5.710 pp -22.030 pp -52.204 pp
bit_18 -15.304 pp -25.092 pp -37.992 pp -52.636 pp -38.276 pp -1.358 pp -5.094 pp -23.178 pp
bit_17 -2.572 pp -5.016 pp -7.468 pp -11.122 pp -4.234 pp -0.334 pp -0.730 pp -4.588 pp
bit_16 -0.508 pp -1.192 pp -1.396 pp -4.462 pp -0.930 pp -0.200 pp -0.296 pp -0.936 pp
bit_15 -0.086 pp -0.456 pp -0.162 pp -2.170 pp -0.394 pp -0.034 pp -0.050 pp -0.376 pp
bit_14 0.010 pp -0.176 pp -0.132 pp -0.398 pp -0.010 pp -0.060 pp -0.044 pp 0.022 pp
bit_13 0.018 pp -0.072 pp 0.008 pp -0.086 pp 0.040 pp -0.038 pp -0.058 pp 0.018 pp
bit_12 0.010 pp -0.054 pp -0.024 pp -0.070 pp -0.002 pp 0.004 pp -0.024 pp 0.000 pp
Golden Run 69.772% 69.522% 72.006% 67.668% 75.314% 76.146% 80.854% 76.194%

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

48

Further Research

As seen in the tables, different networks exhibit varying levels of resilience when
altering the least significant bits. However, one consistent observation is that beyond a certain
point, accuracy sharply decreases. For further experiments, we will focus on the thresholds
highlighted in the second table, selecting the maximum number of bits that can be modified while
maintaining an acceptable level of accuracy. This step is one part of our broader experiment to
optimize network performance by leveraging LSBs and invariant bits.

4.3 Analysis of Invariant Bits
According to our methodology, we conducted an analysis of invariant bits across

various CNN architectures. Invariant bits are those that remain unchanged across different
parameter values and can potentially be used for error-correcting codes (ECC) or optimization
techniques without significantly affecting the network's performance. The results presented in
Table 17 show the number of invariant bits identified in different parameter types (weights,
biases, running means, and running variances) across several CNN architectures.

Table 17. Distribution of Invariant Bits Across Various CNN Architectures and Parameter Types

• High percentage of invariant bits: Architectures such as GoogLeNet, InceptionV3, and
ResNet50V1 have a significant portion of parameters with invariant bits. For instance,
GoogLeNet has 3 invariant bits (bits 28, 29, 30) in its weights and 1 invariant bit (bit 31)
in its running variances, covering 99.766% of its parameters. Similarly, InceptionV3 and
ResNet50V1 demonstrate a high number of invariant bits across both weights and biases,
affecting 99.859% and 99.896% of their parameters, respectively. This makes these
networks prime candidates for further exploration of techniques that leverage invariant
bits, such as error-correcting codes or bit-fixing strategies, to potentially improve fault
tolerance or memory efficiency.

• Low percentage of invariant bits: On the other hand, networks like MobileNet V2,
MobileNet V3 Small, MobileNet V3 Large, and ShuffleNetV2_2.0 show a much lower
percentage of parameters with invariant bits, ranging from 0.104% to 0.482%. These
networks only exhibit a single invariant bit in their running variances (bit 31), and the
overall number of parameters with invariant bits is much smaller compared to the
previous group. These architectures may not benefit as much from techniques focused on

Invariant bits (number of bits and their numbers)

weights biases
running
means

runnings
variance

GoogLeNet 3 bits: 28, 29, 30 1 bit: 31 6,623,904 99.766%
InceptionV3 2 bits: 29, 30 1 bit: 31 27,159,264 99.859%
MobileNet V2 1 bit: 31 17,056 0.482%
MobileNet V3 Small 1 bit: 31 6,056 0.237%
MobileNet V3 Large 1 bit: 31 12,200 0.222%
ResNet50V1 2 bits: 29, 30 3 bits: 28, 29, 30 1 bit: 31 25,583,592 99.896%
ResNet50V2 1 bit: 31 26,560 0.104%
ShuffleNetV2_2.0 1 bit: 31 16,858 0.227%

CNN
Number of

parameters with
invariant bits

% of total

49

invariant bits, as the potential impact on accuracy may be more pronounced with fewer
invariant bits available for modification.

Further Research

For networks like GoogLeNet, InceptionV3, and ResNet50V1, where the majority of
parameters exhibit invariant bits, additional experiments can be conducted to study how fixing
these bits might affect the overall accuracy of the network. By systematically fixing these
invariant bits, we can explore the trade-off between fault tolerance, memory optimization, and
network accuracy. Such experiments would help determine whether these networks can maintain
their high accuracy while benefiting from techniques that exploit their abundant invariant bits.

For networks with fewer invariant bits, such as MobileNet V2 or ShuffleNetV2_2.0,
different strategies might be needed, focusing more on selective parameter optimization or
exploring the effects of fixing smaller subsets of bits.

4.4 Assessment of Parameter Magnitudes
As part of our methodology, we conducted an analysis of parameter magnitudes,

focusing specifically on the exponent part of the floating-point representation. This assessment
was carried out across various parameter categories—weights, biases, running means, and
running variances. The goal of this step is to classify parameters based on their exponent values,
which will inform our bit-fixing strategy.

Detailed results for each network are provided in Section 7: Annexes. Here, we present
a summary of the key findings aimed at analyzing the maximum exponent values. The outcome
of this analysis is to determine how many bits in the exponent can be safely fixed without
significantly impacting the network’s performance.

Table 18 summarizes the results. For each architecture, the maximum exponent value
and the number of bits that can be “freely” fixed are shown.

Table 18. Analysis of maximum exponent value

Key Observations:

• Maximum Number of Bits to Fix: Networks like GoogLeNet, InceptionV3, and
ResNet50V1 have the highest potential for bit-fixing, allowing up to 6 bits in the

CNN Max exponent value Bits "free" to fix
GoogLeNet 100000112 6
InceptionV3 100000112 6
MobileNet V2 100001102 5
MobileNet V3 Small 100001012 5
MobileNet V3 Large 100010002 4
ResNet50V1 100000102 6
ResNet50V2 100001112 5
ShuffleNetV2_2.0 100001112 5

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

50

exponent to be fixed. This provides significant room for optimization and fault-tolerance
improvements.

• Moderate Fixing Potential: Networks such as MobileNet V2, MobileNet V3 Small,
ResNet50V2, and ShuffleNetV2_2.0 allow for fixing 5 bits. While this is slightly lower
than the previous networks, it still offers opportunities for optimization.

• Lower Fixing Potential: MobileNet V3 Large has a maximum exponent value of
100010002, allowing only 4 bits to be fixed. This network offers less flexibility in terms
of bit-fixing, requiring a more cautious approach when modifying exponent bits.

Thus, analyzing the maximum exponent values allows us to identify the number of bits
that can be safely fixed in each architecture. This provides opportunities for further application of
optimization techniques and error correction based on fixing invariant bits and less significant
exponent bits.

4.5 Rounding and Bit-Fixing Analysis
In this stage of our methodology, we focus on parameters with exponents in Group 1

(exponents less than 011110002). The goal is to evaluate how rounding these small exponent
values to a standard exponent (such as 011110002) and zeroing out the less significant bits in the
exponent impacts the overall accuracy of the network. This analysis will help determine if this
rounding and bit-fixing approach can be applied as a general strategy across various CNN
architectures. Detailed results for each network are provided in Section 7: Annexes.

Table 19 presents the absolute accuracy of the modified networks, where the exponent
bits have been adjusted by rounding to different values. For comparison, the accuracy of the
original network without any modifications (Golden Run) is also provided. The rounding is
performed to exponents 011000002, 011100002, 011110002, and 011111002.

Table 19. Network Accuracy after Rounding Exponents

Table 20 highlights the deviation in accuracy (in percentage points) from the Golden
Run for each network after applying the rounding of exponents. Green cells indicate the rounding
strategy that will be used in further experiments, as it provides the maximum number of bits that
can be modified while keeping the accuracy within acceptable limits.

rounding to…
011000002 011100002 011110002 011111002

GoogLeNet 69.772% 69.772% 69.772% 68.980% 0.100%
InceptionV3 69.522% 69.522% 69.522% 65.060% 0.096%
MobileNet V2 72.006% 72.006% 72.006% 70.254% 0.106%
MobileNet V3 Small 67.668% 67.668% 67.670% 60.664% 0.104%
MobileNet V3 Large 75.314% 75.314% 75.314% 55.304% 0.108%
ResNet50V1 76.146% 76.146% 76.146% 0.250% 0.090%
ResNet50V2 80.854% 80.854% 80.854% 76.780% 0.096%
ShuffleNetV2_2.0 76.194% 76.194% 76.200% 76.018% 0.082%

CNN Golden Run

51

Table 20. Difference in Accuracy (Percentage Points) from Golden Run

Key Observations:

• Rounding to 011000002 has no impact on the performance of any of the networks, as
their accuracy remains identical to the Golden Run for all architectures. This suggests
that this level of rounding is safe to apply without degrading the network's predictive
capabilities.

• Rounding to 011111002 is catastrophic for all networks, leading to drastic accuracy
reductions across the board. In most cases, the networks become unusable with near-zero
accuracy, making this level of rounding impractical for further experiments.

Given these results, we will focus our subsequent experiments on the intermediate
rounding values of 011100002 and 011110002, which offer a balance between modifying the
exponent bits and maintaining acceptable levels of accuracy.

Additionally, the number of modified parameters resulting from these rounding
strategies is detailed in Section 7. This section provides a comprehensive breakdown of how many
parameters are affected in each network and helps inform our next steps in the experimental
process.

4.6 Evaluation of Available Parity Bits and Data Bits for ECC
In this section, we analyze the results obtained from the previous stages to assess how

many parity bits are available for each network, and how many data bits need to be protected.
This analysis is crucial for determining the potential effectiveness of Error-Correcting Codes
(ECC) within the architecture and identifying the most suitable ECC schemes for each network.

4.6.1 Analysis Summary:
• 4.2 Identification of Least Significant Bits (LSBs): This step identified the least

significant bits in the mantissa of each network, which are less critical for maintaining
the accuracy of the network. These bits can be repurposed to store parity information for
ECC, as their modification does not significantly impact network accuracy.

rounding to…
011000002 011100002 011110002 011111002

GoogLeNet 69.772% 0 pp 0 pp -0.792 pp -69.672 pp
InceptionV3 69.522% 0 pp 0 pp -4.462 pp -69.426 pp
MobileNet V2 72.006% 0 pp 0 pp -1.752 pp -71.900 pp
MobileNet V3 Small 67.668% 0 pp 0.002 pp -7.004 pp -67.564 pp
MobileNet V3 Large 75.314% 0 pp 0 pp -20.010 pp -75.206 pp
ResNet50V1 76.146% 0 pp 0 pp -75.896 pp -76.056 pp
ResNet50V2 80.854% 0 pp 0 pp -4.074 pp -80.758 pp
ShuffleNetV2_2.0 76.194% 0 pp 0.006 pp -0.176 pp -76.112 pp

CNN Golden Run

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

52

• 4.4 Assessment of Parameter Magnitudes: In this stage, we assessed the constraints
imposed by the maximum exponent values across different networks. By analyzing the
exponent values, we determined how many bits in the exponent can be safely fixed
without affecting the accuracy, such as rounding exponents to 0b1000xxx or 0b100xxxx.
These fixed bits can also be utilized for storing parity bits, further enhancing the fault-
tolerance of the network.

• 4.5 Rounding and Bit-Fixing Analysis: This section evaluated the effect of modifying
small exponent values, focusing on minimizing the impact of rounding on accuracy. By
zeroing out the less significant bits in the exponent, we were able to identify which bits
can be fixed across each network without causing performance degradation.

4.6.2 Overview of Results:
Figure 8 below provides a comprehensive overview of the available parity bits and the

bits that must be protected for each network.

Figure 8. The overview of the available parity bits and the bits that must be protected

Table 21 summarizes the number of parity bits available and the number of data bits
that need to be protected for each network. The parity bits are calculated based on the
identification of less significant mantissa bits and fixed exponent bits. The bits to protect include
critical bits from the mantissa, exponent, and sign bit that are essential for the network’s
functionality.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent mantissa

forced bits less significant bits
GoogLeNet
InceptionV3
MobileNet V2
MobileNet V3 Small
MobileNet V3 Large
ResNet50V1
ResNet50V2
ShuffleNetV2_2.0

- bits to ptotect - potencial parity bits

CNN

53

Table 21. The number of parity bits available and the number of data bits that need to be protected

4.6.3 Parity Bits and Protection Requirements:
In this section, we analyze how the accuracy of each network changes when applying

the scenarios we developed for identifying parity bits and bits to protect. The focus is on
evaluating the impact of rounding exponent bits and altering mantissa bits, as well as the
cumulative effect of combining these approaches (the “complex experiment”). This analysis helps
us understand the trade-offs involved in optimizing network robustness while minimizing the loss
of accuracy.

Table 22 compares the accuracy results for several networks before and after applying
different bit modification strategies, including rounding the exponent and altering the mantissa.
The Golden Run accuracy serves as the baseline for comparison.

Table 22. The accuracy results after applying different bit modification strategies

Key Observations:

• GoogLeNet, Inception V3, and ShuffleNet V2_2.0 show the most significant accuracy
loss during the Complex Experiment, with deviations of -1.224 pp, -1.194 pp, and -
1.962 pp, respectively. These networks are more sensitive to the combined modification

CNN Potencial parity bits Bits to protect
GoogLeNet 22 10
InceptionV3 20 12
MobileNet V2 20 12
MobileNet V3 Small 18 14
MobileNet V3 Large 21 11
ResNet50V1 22 10
ResNet50V2 22 10
ShuffleNetV2_2.0 22 10

CNN GoogLeNet
Inception

V3
MobileNet

V2
MobileNet

V3 Small
MobileNet

V3 Large
ResNet50

V1
ResNet50

V2
ShuffleNet

V2_2.0
Golden Run 69.772% 69.522% 72.006% 67.668% 75.314% 76.146% 80.854% 76.194%
Rounding the
exponent

to 2-7 68.980% 76.018%

to 2-15 69.522% 72.006% 67.670% 75.314% 76.146% 80.854%
Deviation -0.792 pp 0.000 pp 0.000 pp 0.002 pp 0.000 pp 0.000 pp 0.000 pp -0.176 pp
Altering the
mantissa

14 bits 67.270%
15 bits 71.874%
16 bits 69.264% 68.330% 74.384% 75.258%
17 bits 75.812% 80.124%

Deviation -0.508 pp -1.192 pp -0.132 pp -0.398 pp -0.930 pp -0.334 pp -0.730 pp -0.936 pp
Complex
experiment

68.548% 68.328% 71.840% 67.270% 74.386% 75.814% 80.124% 74.232%

Deviation -1.224 pp -1.194 pp -0.166 pp -0.398 pp -0.928 pp -0.332 pp -0.730 pp -1.962 pp

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

54

of both the exponent and mantissa, suggesting that a more cautious approach may be
required when applying both strategies simultaneously.

• ResNet50 V2 and MobileNet V3 Large also experience considerable drops in accuracy
during the Complex Experiment with deviations of -0.730 pp and -0.928 pp. This
indicates that altering both the exponent and mantissa in these networks can lead to non-
negligible degradation in performance, highlighting the need for more selective bit
modification.

• MobileNet V2, ResNet50 V1, and MobileNet V3 Small handle the combined approach
better, with relatively small deviations in accuracy. MobileNet V2 sees a deviation of
only -0.166 pp, and ResNet50 V1 experiences a drop of -0.332 pp, and MobileNet V3
Small has -0.398 pp deviation, suggesting that these architectures are more resilient to
the simultaneous rounding of the exponent and alteration of mantissa bits. This makes
them suitable candidates for optimization using the combined strategy.

Conclusion:

The analysis suggests that while the mantissa bits are highly variable and critical for

This analysis demonstrates that there are enough available parity bits in all neural
networks to implement simple error-correcting codes (ECC), such as Hamming codes, to protect
critical data bits. The number of bits to protect varies between 10 and 14, depending on the
network architecture. Based on these findings, we can propose specific ECC schemes for each
network, ensuring optimal protection without unnecessary overhead.

• For networks that need to protect 10 bits (e.g., GoogLeNet, ResNet50V1, ResNet50V2,
and ShuffleNetV2_2.0), a Hamming (14,10) code can be used, which requires 4 parity
bits to protect 10 data bits. Given that these networks have 22 available parity bits, this
approach is efficient and ensures robust error correction against single-bit errors.

• For networks that need to protect 11 bits, such as those with slightly higher protection
needs (MobileNet V3 Large), the Hamming (15,11) code is a perfect fit, offering
protection with 4 parity bits. Again, networks with 22 available parity bits can implement
this code without any issues.

• For networks where 12 bits need protection (e.g., InceptionV3 and MobileNet V2), the
Hamming (17,12) code can be used, which requires 5 parity bits. These networks
typically have 20 available parity bits, so there is sufficient capacity to apply this code,
ensuring efficient error correction without compromising memory usage.

• In cases where 14 bits need protection, such as MobileNet V3 Small, the Hamming
(19,14) code, which requires 5 parity bits, can be applied. With 18 available parity bits,
this network has just enough capacity to accommodate this code, providing fault tolerance
while minimizing performance loss.

Additionally, for enhanced error detection and correction, SEC-DED (Single Error
Correction, Double Error Detection) codes can be applied. Depending on the number of bits to
protect, the following SEC-DED codes may be suitable:

55

• For 10 bits: SEC-DED (15,10).

• For 11 bits: SEC-DED (16,11).

• For 12 bits: SEC-DED (18,12).

• For 14 bits: SEC-DED (20,14).

These codes add an extra parity bit to enhance error detection and correction
capabilities, providing protection against single-bit errors and detecting double-bit errors.

In summary, the number of parity bits available in each network allows for the tailored
selection of ECC schemes, ensuring efficient and reliable error correction. By applying codes like
Hamming or SEC-DED, specifically adjusted for each network's bit protection requirements, we
can achieve robust fault tolerance while minimizing any impact on performance and maintaining
memory efficiency.

While some networks experienced significant accuracy loss during the Complex
Experiment – which involved both rounding exponents and modifying mantissa bits – several
architectures demonstrated resilience. This suggests that combining these bit-modification
strategies is still viable in specific cases. For networks more sensitive to these changes, further
refinement of bit-fixing strategies, along with carefully chosen ECC schemes, could reduce
accuracy loss, enabling the use of fewer parity bits without sacrificing performance.

 Overall, ECC strategies can be applied effectively across all neural networks. Simple
error-correcting codes (such as Hamming) can be generally implemented across most
architectures, offering a balance between fault tolerance and minimal impact on inference time
and energy consumption. However, the real challenge lies in developing and applying more
complex ECC schemes to protect CNNs from multiple faults, such as double bit-flips or burst
errors affecting 3 or 4 bits.

The choice between simpler or more complex ECC schemes depends largely on the
trade-offs required by the specific application. Simpler codes, while providing less protection,
execute faster and consume less energy, making them ideal for real-time or energy-efficient
applications. On the other hand, as error coverage increases, more advanced ECC schemes (like
SEC-DED or burst-error correction codes) introduce higher computational overhead, which
increases inference time and energy consumption but offers stronger error protection, making
these codes more suitable for critical applications where reliability is paramount.

Ultimately, finding the right balance between error coverage, inference performance,
and energy consumption is key to selecting the most appropriate ECC strategy for each neural
network architecture.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

56

5. Conclusions and future work

This thesis has explored a methodology for improving the memory efficiency and fault
tolerance of Convolutional Neural Networks (CNNs) by modifying specific bits within the
floating-point representations of their parameters. The approach focused on analyzing the impact
of rounding exponent values and altering least significant bits (LSBs) in the mantissa, with the
goal of maintaining network accuracy while freeing up bits for potential error correction codes
(ECC).

The Golden Run results established the baseline accuracy of various CNN architectures,
showing that networks such as ResNet50V2 achieve higher accuracy due to their increased
parameter count, while smaller models like MobileNet V3 Small exhibit lower accuracy but
greater efficiency. This analysis confirmed that network complexity, in terms of parameter count,
does not always directly translate into better performance, underscoring the importance of
architecture design in CNNs.

5.1 Key Contributions
1. Bit-Level Analysis: This work introduced a detailed analysis of the significance

of individual bits in the mantissa and exponent of floating-point representations across different
CNN layers (weights, biases, running_mean, running_var). The identification of non-critical bits
for network accuracy offers the potential to optimize memory usage without compromising
performance.

2. Rounding and Bit-Fixing Techniques: The study developed a strategy to round
smaller exponent values and modify LSBs, which showed minimal impact on network accuracy
during the Golden Run. This technique opens up the possibility of using freed-up bits for
embedding parity information, paving the way for more memory-efficient CNN deployments.

3. Foundation for Error-Correcting Codes (ECC): By evaluating available parity
bits and the number of data bits to be protected, this research laid the groundwork for applying
suitable ECCs, such as Hamming codes, to enhance the fault tolerance of CNNs. This is
particularly relevant for applications in safety-critical environments, where even minor errors can
lead to significant consequences.

5.2 Limitations
Despite these advancements, there are several limitations to this research. First, the

experiments conducted in this work were limited to specific CNN architectures and focused on a
fixed set of modifications. The generality of the proposed techniques across a broader range of
models, including more complex architectures or models trained on different datasets, has yet to
be fully explored.

For example, transformer-based architectures like Vision Transformers (ViT), which
are gaining popularity in computer vision tasks, rely on a fundamentally different structure than
CNNs, using attention mechanisms instead of convolutions. The bit-fixing strategies applied to

57

floating-point parameters in CNNs might not translate directly to transformer models, which
process information in a more distributed manner across multiple heads [22].

Similarly, recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM)
networks, commonly used in sequence-based tasks like speech recognition or time-series
forecasting, maintain state information across time steps. Modifying the floating-point parameters
in these architectures could have a different impact, as errors may propagate across time, leading
to accumulated inaccuracies [23].

Additionally, the datasets used in this research were focused on ImageNet, which is a
large, diverse dataset used for image classification tasks. However, applying these techniques to
CNNs trained on more specialized datasets, such as medical imaging data (e.g., chest X-rays or
MRI scans) [24] or autonomous driving datasets (e.g., KITTI or Waymo) [25], may yield different
results. Networks trained on such datasets often require higher precision due to the critical nature
of their applications, making them potentially more sensitive to bit modifications and errors.

Furthermore, the focus was primarily on the mantissa and exponent bits in floating-point
numbers. Future studies could investigate the impact of modifying other aspects of floating-point
representations or explore additional layers in greater depth, such as recurrent layers or attention
mechanisms.

5.3 Future Work
The findings of this research open several promising directions for future investigation:

1. Extending the Analysis to More Networks: Future experiments should evaluate
the proposed methodology across a wider variety of CNN architectures and training datasets. By
doing so, the robustness and applicability of the bit-fixing strategies can be more comprehensively
understood.

2. Advanced Error-Correction Techniques: In addition to Hamming codes, more
sophisticated ECC techniques such as BCH codes or Reed-Solomon codes could be explored to
handle multi-bit errors. These techniques may be particularly beneficial for high-reliability
applications, where single-bit correction methods might not be sufficient.

3. Optimization of Quantization Strategies: As neural networks increasingly rely
on quantization for efficiency, future research could investigate the combination of bit-fixing
techniques with quantization-aware training. This approach could ensure that networks remain
resilient to quantization errors while still benefiting from the memory and computational savings
offered by reduced precision.

4. Deployment in Real-World Systems: Finally, the practical implementation of
the proposed bit-modification and ECC strategies in hardware accelerators or embedded systems
represents a valuable avenue for future work. By integrating these methods into real-world
applications, their impact on both performance and fault tolerance can be thoroughly assessed
under realistic deployment conditions.

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

58

5.4 Conclusion
In summary, this research has demonstrated that strategic modifications to the bit-level

representation of floating-point parameters in CNNs can provide meaningful memory
optimizations and enable the use of error-correction mechanisms. These findings have
implications for the design of more efficient and robust neural networks, especially in
environments where fault tolerance is critical. While the current work provides a strong
foundation, further exploration into more advanced ECC methods, broader model applicability,
and real-world deployment will be essential for maximizing the potential of this approach.

59

6. References

1. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. Advances in Neural Information Processing
Systems, 25, 1097-1105.

2. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 770-778.

3. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436-444.

4. Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-
2329.

5. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016).
Quantized neural networks: Training neural networks with low precision weights
and activations. Journal of Machine Learning Research, 18, 6869-6898.

6. Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding.
International Conference on Learning Representations (ICLR).

7. Syed, R. T., Ulbricht, M., Piotrowski, K., & Krstic, M. (2021, September). Fault
resilience analysis of quantized deep neural networks. In 2021 IEEE 32nd
International Conference on Microelectronics (MIEL) (pp. 275-279). IEEE.

8. Ruiz, J. C., de Andrés, D., Saiz-Adalid, L. J., & Gracia-Morán, J. (2024). Zero-
space in-weight and in-bias protection for floating-point-based CNNs. 2024 19th
European Dependable Computing Conference (EDCC).

9. Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015). Deep learning
with limited numerical precision. International Conference on Machine Learning,
1737-1746.

10. Zhang, D., Yang, J., Ye, D., & Shi, Y. (2018). Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. European Conference on
Computer Vision (ECCV), 365-382.

11. Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights and
connections for efficient neural networks. Advances in Neural Information
Processing Systems, 28, 1135-1143.

12. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

13. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

14. Courbariaux, M., Bengio, Y., & David, J. P. (2015). BinaryConnect: Training deep
neural networks with binary weights during propagations. Advances in Neural
Information Processing Systems, 28, 3123-3131.

15. Ibrahim, Younis, et al. "Soft errors in DNN accelerators: A comprehensive
review." Microelectronics Reliability 115 (2020): 113969.

16. Li, Guanpeng, et al. "Understanding error propagation in deep learning neural
network (DNN) accelerators and applications." Proceedings of the International

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

60

Conference for High Performance Computing, Networking, Storage and Analysis.
2017.

17. Mittal, Sparsh. "A survey on modeling and improving reliability of DNN
algorithms and accelerators." Journal of Systems Architecture 104 (2020): 101689.

18. Shafique, Muhammad, et al. "Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead." IEEE Design & Test 37.2 (2020): 30-57.

19. Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell
System Technical Journal, 29(2), 147-160.

20. “IEEE Standard for Floating-Point Arithmetic,” in IEEE Std 754-2019 (Revision of
IEEE 754-2008) , vol., no., pp.1-84, 22 July 2019, doi:
10.1109/IEEESTD.2019.8766229.

21. “Pytorch”. An optimized tensor library for deep learning using GPUs and CPUs.
Available: https://pytorch.org.

22. Dosovitskiy, Alexey. "An image is worth 16x16 words: Transformers for image
recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

23. Hochreiter, S. "Long Short-term Memory." Neural Computation MIT-Press (1997).
24. Litjens, Geert, et al. "A survey on deep learning in medical image

analysis." Medical image analysis 42 (2017): 60-88.
25. Geiger, Andreas, et al. "Vision meets robotics: The kitti dataset." The International

Journal of Robotics Research 32.11 (2013): 1231-1237.

https://pytorch.org/

61

7. Annexes

7.1 Model Wrapper
All experiments with bit-level modifications conducted in this thesis followed the fault-

injection method. This method involves deliberately modifying specific parameters of the neural
network—such as weights, biases, and running statistics—before evaluating the impact of these
changes on the network’s performance. The purpose of these modifications was to simulate
potential errors (e.g., soft errors or bit flips) and study the network's resilience or vulnerability
under such conditions.

While fault-injection serves as a useful tool for testing the robustness of CNNs, it does
not reflect how error-correcting codes (ECC) would be applied in real-world systems. In
practical applications, the goal is to intercept and correct errors without directly modifying the
network's parameters. Instead, the system would intervene at the point where the neural network
accesses a parameter, dynamically correcting its value based on integrated ECC bits, such as
Hamming codes or other error-correcting mechanisms.

7.1.1 Model Wrapper for On-the-Fly Parameter Correction
To simulate this real-world scenario, a custom model wrapper was developed. The

wrapper intercepts calls to the neural network's parameters during inference and replaces the
accessed parameter values with corrected versions, without modifying the original parameters
stored in memory. This allows for dynamic error correction based on predefined correction rules,
similar to how ECC would function in hardware.

Code fragment 9 demonstrates the implementation of the model wrapper.

model wrapper
class ModelWrapper(torch.nn.Module):
 def __init__(self, model, parameter_corrections, buffer_corrections):
 super(ModelWrapper, self).__init__()
 self.model = model
 # Dictionary of corrected values for parameters and buffers
 self.parameter_corrections = parameter_corrections
 self.buffer_corrections = buffer_corrections

 def forward(self, x):
 # Apply parameter corrections before forward pass
 for name, param in self.model.named_parameters():
 if name in self.parameter_corrections:
 # Replace parameter value with corrected value
 param.data.copy_(self.parameter_corrections[name])

 # Apply buffer corrections (e.g., running_mean, running_var)
 for name, buffer in self.model.named_buffers():

Code Fragment 9

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

62

 if name in self.buffer_corrections:
 buffer.data.copy_(self.buffer_corrections[name])

 # Forward pass with corrected parameters
 return self.model(x)

7.1.2 Example of Parameter and Buffer Correction
To demonstrate the functionality, Code fragment 9 is an example of how the wrapper

can be applied. The parameter_corrections and buffer_corrections dictionaries contain the
corrected values for specific parameters and buffers, based on the identified bit modifications.

Example of creating corrected parameters
parameter_corrections = {
 'stage2.0.branch1.0.weight': torch.tensor([...]),
 'stage2.1.branch2.1.bias': torch.tensor([...]),
 # Add more parameters as necessary
}

buffer_corrections = {
 'conv1.1.running_mean': torch.tensor([...]),
 'conv1.1.running_var': torch.tensor([...]),
 # Add more buffers as necessary
}

Obtain the base model (e.g., ResNet, MobileNet, etc.)
current_model = CNN_MODEL

Wrap the model with the correction wrapper
wrapped_model = ModelWrapper(current_model, parameter_corrections,
buffer_corrections)

7.1.3 Application of the Wrapper
This model wrapper allows us to simulate the application of error-correcting codes

without directly modifying the original neural network parameters. During inference, any
parameter or buffer accessed by the network will be dynamically replaced by its corrected version.
This approach can be extended to handle a wide range of parameter corrections, making it a
flexible tool for testing fault tolerance mechanisms in deep learning models.

7.1.4 Future Work on Wrapper Extensions
This model wrapper can be further expanded to incorporate more sophisticated error-

correction mechanisms, such as detecting multiple-bit errors or implementing real-time parity
checks, as would be required in highly fault-tolerant environments. Additionally, integrating this
method with hardware accelerators or embedded systems could provide insights into the real-
world applicability of error-correction techniques in neural networks.

63

7.2 Assessment of Parameter Magnitudes
Tables 23-30 present the detailed analysis referenced in Section 4.4, focusing on the

distribution of exponent values across different layers and parameters for each neural network
architecture. This includes a breakdown of the maximum and minimum exponent values observed
in weights, biases, running means, and running variances.

This analysis is crucial for understanding the magnitude of parameter values and
identifying which bits can be safely modified or fixed without significantly impacting the
network's performance. The results serve as the foundation for applying bit-fixing strategies that
aim to improve fault tolerance and memory optimization.

Table 23. Detailed Distribution of Exponent Values Across Parameters for GoogLeNet

Table 24. Detailed Distribution of Exponent Values Across Parameters for InceptionV3

Table 25. Detailed Distribution of Exponent Values Across Parameters for MobileNet V2

GoogLeNet
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 0 0 0 0 0
0b01100000 <= … < 0b01110000 5,506 5,505 0 1 0
0b01110000 <= … < 0b01111000 1,342,459 1,342,233 154 72 0
0b01111000 <= … < 0b01111100 5,169,789 5,165,789 1,633 1,459 908
0b01111100 <= … < 0b10000000 120,971 103,097 6,382 5,419 6,073

0b10000000 <= … 739 0 111 329 299
Total 6,639,464 6,616,624 8,280 7,280 7,280

InceptionV3
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 321 319 0 0 2
0b01100000 <= … < 0b01110000 41,753 32,801 1 8,951 0
0b01110000 <= … < 0b01111000 9,681,678 7,574,020 90 2,107,457 111
0b01111000 <= … < 0b01111100 17,358,242 13,475,129 1,888 3,875,262 5,963
0b01111100 <= … < 0b10000000 114,990 59,845 16,011 26,443 12,691

0b10000000 <= … 504 6 122 191 185
Total 27,197,488 21,142,120 18,112 6,018,304 18,952

MobileNet V2
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 1,516 1,476 0 21 19
0b01100000 <= … < 0b01110000 8,576 1,965 1,052 5,556 3
0b01110000 <= … < 0b01111000 433,685 429,569 633 3,060 423
0b01111000 <= … < 0b01111100 2,842,137 2,831,250 1,957 3,677 5,253
0b01111100 <= … < 0b10000000 237,854 219,617 11,348 4,266 2,623

0b10000000 <= … 15,216 2,939 3,066 476 8,735
Total 3,538,984 3,486,816 18,056 17,056 17,056

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

64

Table 26. Detailed Distribution of Exponent Values Across Parameters for MobileNet V3 Small

Table 27. Detailed Distribution of Exponent Values Across Parameters for MobileNet V3 Large

Table 28. Detailed Distribution of Exponent Values Across Parameters for ResNet50V1

MobileNet V3 Small
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 982 897 7 39 39
0b01100000 <= … < 0b01110000 14,887 11,233 653 3,000 1
0b01110000 <= … < 0b01111000 158,025 156,923 240 397 465
0b01111000 <= … < 0b01111100 1,773,013 1,766,537 3,224 1,325 1,927
0b01111100 <= … < 0b10000000 605,644 595,589 6,722 1,212 2,121

0b10000000 <= … 2,417 709 122 83 1,503
Total 2,554,968 2,531,888 10,968 6,056 6,056

MobileNet V3 Large
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 1,114 1,098 15 1 0
0b01100000 <= … < 0b01110000 13,282 6,621 1,222 5,439 0
0b01110000 <= … < 0b01111000 595,474 592,106 550 915 1,903
0b01111000 <= … < 0b01111100 4,464,249 4,452,158 6,788 2,649 2,654
0b01111100 <= … < 0b10000000 422,070 408,780 9,167 2,824 1,299

0b10000000 <= … 11,243 2,709 1,818 372 6,344
Total 5,507,432 5,463,472 19,560 12,200 12,200

ResNet50V1
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 826 639 0 1 186
0b01100000 <= … < 0b01110000 122,536 122,015 191 227 103
0b01110000 <= … < 0b01111000 11,114,351 11,087,372 2,442 6,650 17,887
0b01111000 <= … < 0b01111100 14,316,910 14,271,026 21,167 17,344 7,373
0b01111100 <= … < 0b10000000 55,505 48,420 3,760 2,337 988

0b10000000 <= … 24 0 0 1 23
Total 25,610,152 25,529,472 27,560 26,560 26,560

65

Table 29. Detailed Distribution of Exponent Values Across Parameters for ResNet50V2

Table 30. Detailed Distribution of Exponent Values Across Parameters for ShuffleNetV2_2.0

7.3 Rounding and Bit-Fixing Analysis
Tables 31-38 present a detailed analysis of how the modification of exponent bits

affects the total number of parameters, accuracy, and the number of true and false predictions for
each CNN (see Section 4.5). The analysis is focused on different rounding levels, starting from
the least significant exponents (e.g., 2-31) to the most significant (e.g., 2-3). Each table outlines the
following:

• Total tensors: The total number of tensors in the network.

• Modified tensors: The number of tensors that were modified as a result of rounding the
exponent values.

• Total values: The total number of parameter values in the network.

• Modified values: The number of parameter values that were altered due to the rounding.

• %: The percentage of modified values relative to the total.

• Accuracy: The number of correct (TRUE) and incorrect (FALSE) predictions, along with
the corresponding accuracy percentages for each rounding level.

This detailed breakdown provides insight into how different exponent bit modifications
affect the network’s performance, as well as the extent of modification applied to the parameters.
Each network is analyzed separately to observe how the architecture responds to rounding
strategies.

ResNet50V2
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 1,273 1,273 0 0 0
0b01100000 <= … < 0b01110000 30,992 30,959 0 14 19
0b01110000 <= … < 0b01111000 7,091,300 7,090,655 387 215 43
0b01111000 <= … < 0b01111100 18,244,841 18,236,009 2,656 3,245 2,931
0b01111100 <= … < 0b10000000 212,949 160,647 14,531 21,036 16,735

0b10000000 <= … 28,797 9,929 9,986 2,050 6,832
Total 25,610,152 25,529,472 27,560 26,560 26,560

ShuffleNetV2_2.0
Value Total number WEIGHT BIAS MEAN VAR

… < 0b01100000 8,917 8,829 0 43 45
0b01100000 <= … < 0b01110000 9,096 6,740 1,291 1,062 3
0b01110000 <= … < 0b01111000 1,405,896 1,397,410 4,073 4,365 48
0b01111000 <= … < 0b01111100 5,798,521 5,790,268 1,426 3,107 3,720
0b01111100 <= … < 0b10000000 189,978 167,874 7,783 7,561 6,760

0b10000000 <= … 15,304 5,017 3,285 720 6,282
Total 7,427,712 7,376,138 17,858 16,858 16,858

Protecting FP-based CNNs Against Faults without Increasing Their Memory Footprint

66

Table 31. Effect of Exponent Bit Rounding on GoogLeNet Accuracy

Table 32. Effect of Exponent Bit Rounding on InceptionV3 Accuracy

Table 33. Effect of Exponent Bit Rounding on MobileNet V2 Accuracy

Table 34. Effect of Exponent Bit Rounding on MobileNet V3 Small Accuracy

Table 35. Effect of Exponent Bit Rounding on MobileNet V3 Large Accuracy

GoogLeNet
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 34,886 15,114 69.772% 30.228%
rounding to 2^-31 0b01100000 0 0 0.00% 34,886 15,114 69.772% 30.228%
rounding to 2^-15 0b01110000 58 5,506 0.08% 34,886 15,114 69.772% 30.228%
rounding to 2^-7 0b01111000 107 1,347,965 20.30% 34,490 15,510 68.980% 31.020%
rounding to 2^-3 0b01111100 166 6,517,754 98.17% 50 49,950 0.100% 99.900%

6,639,464287

InceptionV3
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 34,761 15,239 69.522% 30.478%
rounding to 2^-31 0b01100000 4 321 0.00% 34,761 15,239 69.522% 30.478%
rounding to 2^-15 0b01110000 103 42,074 0.15% 34,761 15,239 69.522% 30.478%
rounding to 2^-7 0b01111000 152 443,777 1.63% 32,530 17,470 65.060% 34.940%
rounding to 2^-3 0b01111100 178 3,285,914 12.08% 48 49,952 0.096% 99.904%

484 27,197,488

MobileNet V2
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 36,003 13,997 72.006% 27.994%
rounding to 2^-31 0b01100000 43 1,516 0.04% 36,003 13,997 72.006% 27.994%
rounding to 2^-15 0b01110000 102 10,092 0.29% 36,003 13,997 72.006% 27.994%
rounding to 2^-7 0b01111000 152 443,777 12.54% 35,127 14,873 70.254% 29.746%
rounding to 2^-3 0b01111100 178 3,285,914 92.85% 53 49,947 0.106% 99.894%

3,538,984262

MobileNet V3 Small
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 33,834 16,166 67.668% 32.332%
rounding to 2^-31 0b01100000 25 982 0.04% 33,834 16,166 67.668% 32.332%
rounding to 2^-15 0b01110000 84 15,869 0.62% 33,835 16,165 67.670% 32.330%
rounding to 2^-7 0b01111000 146 173,894 6.81% 30,332 19,668 60.664% 39.336%
rounding to 2^-3 0b01111100 173 1,946,907 76.20% 52 49,948 0.104% 99.896%

2,554,968210

MobileNet V3 Large
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 37,657 12,343 75.314% 24.686%
rounding to 2^-31 0b01100000 10 1,114 0.02% 37,657 12,343 75.314% 24.686%
rounding to 2^-15 0b01110000 85 14,396 0.26% 37,657 12,343 75.314% 24.686%
rounding to 2^-7 0b01111000 161 609,870 11.07% 27,652 22,348 55.304% 44.696%
rounding to 2^-3 0b01111100 202 5,074,119 92.13% 54 49,946 0.108% 99.892%

266 5,507,432

67

Table 36. Effect of Exponent Bit Rounding on ResNet50V1 Accuracy

Table 37. Effect of Exponent Bit Rounding on ResNet50V2 Accuracy

Table 38. Effect of Exponent Bit Rounding on ShuffleNetV2_2.0 Accuracy

ResNet50V1
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 38,073 11,927 76.146% 23.854%
rounding to 2^-31 0b01100000 33 826 0.00% 38,073 11,927 76.146% 23.854%
rounding to 2^-15 0b01110000 123 123,362 0.48% 38,073 11,927 76.146% 23.854%
rounding to 2^-7 0b01111000 214 11,237,713 43.88% 125 49,875 0.250% 99.750%
rounding to 2^-3 0b01111100 259 25,554,623 99.78% 45 49,955 0.090% 99.910%

25,610,152267

ResNet50V2
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 40,427 9,573 80.854% 19.146%
rounding to 2^-31 0b01100000 8 1,273 0.00% 40,427 9,573 80.854% 19.146%
rounding to 2^-15 0b01110000 66 32,265 0.13% 40,427 9,573 80.854% 19.146%
rounding to 2^-7 0b01111000 144 7,123,565 27.82% 38,390 11,610 76.780% 23.220%
rounding to 2^-3 0b01111100 192 25,368,406 99.06% 48 49,952 0.096% 99.904%

25,610,152267

ShuffleNetV2_2.0
bit exponent

mask
total

tensors
modified
tensors

total
values

modified
values

% TRUE FALSE TRUE FALSE

GR 38,097 11,903 76.194% 23.806%
rounding to 2^-31 0b01100000 73 8,917 0.12% 38,097 11,903 76.194% 23.806%
rounding to 2^-15 0b01110000 132 18,013 0.24% 38,100 11,900 76.200% 23.800%
rounding to 2^-7 0b01111000 177 1,423,909 19.17% 38,009 11,991 76.018% 23.982%
rounding to 2^-3 0b01111100 206 7,222,430 97.24% 41 49,959 0.082% 99.918%

7,427,712282

	1. Introduction
	1.1 Context and Motivation
	1.2 Problem Statement
	1.3 Proposed Solution
	1.4 Objectives
	1.5 Document Structure

	2. Background and Related Work
	2.1 Development of Convolutional Neural Networks (CNNs)
	2.2 CNNs Utilizing Float32 and the Shift Toward Quantized Networks
	2.3 Errors in CNNs: Causes, Effects, and Mitigation Techniques
	2.3.1 Impact of Errors on CNNs
	2.3.2 CNN Robustness and Fault Tolerance
	2.3.3 Error Mitigation Strategies in CNNs

	2.4 Existing Research on Bit-Level Error Correction in CNNs

	3. Methodology
	3.1 Overview of Neural Networks and Parameter Roles
	3.2 Representation of float32 According to IEEE 754
	3.3 Golden run
	3.3.1 Main code blocks
	3.3.2 Output example
	3.3.3 Analysis of the Golden Run

	3.4 Identification of Significant Bits
	3.4.1 Algorithm Overview
	3.4.2 Example Output
	3.4.3 Analysis of Significant Bits

	3.5 Analysis of the Sign Bit and Exponent Values
	3.5.1 Preliminary Analysis of Bit Values
	3.5.2 Example Output
	3.5.3 Analysis of Invariants Bits

	3.6 Analysis of Parameter Values Across Network Layers
	3.6.1 Exponent Distribution Analysis
	3.6.2 Parameter Categorization and Exponent Range Analysis

	3.7 Rounding Experiments on Exponent Bits
	3.7.1 Experimental Goal
	3.7.2 Experimental Procedure
	3.7.3 Key Observations:

	3.8 Summary of Results and Final Analysis
	3.8.1 Categories of values of bits.
	3.8.2 Bits to Protect:
	3.8.3 Final Result and Potential Application of Error-Correcting Codes (ECC):
	3.8.4 Potential Application of Error-Correcting Codes (ECC):

	3.9 Summary of the Methodology

	4. Experiments and Results
	4.1 Golden Run Results
	4.2 Identification of Least Significant Bits (LSBs)
	4.3 Analysis of Invariant Bits
	4.4 Assessment of Parameter Magnitudes
	4.5 Rounding and Bit-Fixing Analysis
	4.6 Evaluation of Available Parity Bits and Data Bits for ECC
	4.6.1 Analysis Summary:
	4.6.2 Overview of Results:
	4.6.3 Parity Bits and Protection Requirements:

	5. Conclusions and future work
	5.1 Key Contributions
	5.2 Limitations
	5.3 Future Work
	5.4 Conclusion

	6. References
	7. Annexes
	7.1 Model Wrapper
	7.1.1 Model Wrapper for On-the-Fly Parameter Correction
	7.1.2 Example of Parameter and Buffer Correction
	7.1.3 Application of the Wrapper
	7.1.4 Future Work on Wrapper Extensions

	7.2 Assessment of Parameter Magnitudes
	7.3 Rounding and Bit-Fixing Analysis

