
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

VISMAID: Visual Impairment Support through Multimodal
AI-driven Description

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

AUTHOR: Camas Nájera, Ramsés

Tutor: Casacuberta Nolla, Francisco

ACADEMIC YEAR: 2023/2024

Universitat Politècnica de València

Dept. of Computer Systems and Computation

Master’s Degree in Artificial Intelligence, Pattern Recognition

and Digital Imaging

VISMAID: Visual Impairment
Support through Multimodal

AI-driven Description

Master’s Thesis

Ramsés Alejandro Camas Nájera

Supervised by:

Dr. Casacuberta Nolla, Francisco

Academic Course 2023/2024

Acknowledgements

This work is not mine alone; it has been made possible by the support of many people
who helped make this dream a reality. First and foremost, I want to express my deepest
gratitude to my parents, Raúl Camas and Sugey Nájera, for supporting me from the
moment I wrote my first line of code and always encouraging me to try new things, even
when I was afraid. I also want to acknowledge my grandfather on my mother’s side, who
was the inspiration behind this work. As one of the visually impaired individuals whom
this project aims to help, he motivated me to persevere. This year, I faced the fear of
almost losing him to a stroke, while being nearly 10,000 km away. This project is my
way of supporting him despite the distance between us.

I could not have accomplished this without my girlfriend, Ada Chanona, who has
supported me in every project and adventure since 2020. Without her, it would have
been nearly impossible to cope with the loneliness of being in a new country for the first
time. Thanks to her, I have developed a more empathetic side that helped make this
work human-centered. I will always be grateful for everything she has done for me and
for helping me become a better person.

I am also deeply grateful to my aunt, Marisol Camas, who was instrumental in en-
abling me to pursue this master’s degree abroad; without her, I might still be in Mexico. I
extend my thanks to Dr. Francisco Casacuberta for his patience and support throughout
this project. Although our contact was not constant, he always did his best to help me
whenever needed. I would like to thank the Valencian Graduate School and Research Net-
work of Artificial Intelligence (valgrAI) for partially funding this project and supporting
me in completing my master’s degree.

I extend my heartfelt thanks to my dearest friends, who were devastated on the day I
left Mexico to pursue this degree: to Luis Hernández, for sharing the same broken sense
of humor, for being the best roommate during my last year of college, and for standing by
my side at every hackathon and programming competition; to Viviana Rojo, for always
sharing a laugh, even on the worst days, for always having something interesting to
discuss, and for never doubting me; and to Victor Rios, for helping me through all the
math subjects in college, without whom graduation would have been much harder, and
for all the times I kept him waiting.

Lastly, I want to acknowledge my younger brother, Kaleb Camas, who is just beginning
his college journey, to show him that it is possible to achieve your dreams, no matter
how far from home you may be. I also wish to thank my brothers by choice, José Nango
and Iván Rincón, for always being there, for decades of friendship, and for continually
encouraging me to improve and become better each day. This is just one more step
forward.

Thanks to all these people, I am where I am today. As Isaac Newton said, ”If I have
seen further, it is by standing upon the shoulders of giants.” This work is dedicated to
all of you.

1

Abstract

This thesis presents ”VISMAID” (Visual Impairment Support through Multimodal AI-
driven Description), a novel solution designed to assist individuals with visual impair-
ments. Leveraging state-of-the-art multimodal AI models, VISMAID integrates audio,
vision, and language processing capabilities to enable a user-friendly experience on mobile
devices. The system architecture employs a combination of Automatic Speech Recogni-
tion (ASR), Vision-Language Models (VLMs), and Text-to-Speech (TTS) technologies,
allowing users to interact with their surroundings through voice commands and receive
audio descriptions of visual content captured by their device’s camera.

The proposed solution addresses several technical challenges, such as optimizing model
performance for limited hardware, reducing latency, and managing energy consumption.
The implementation utilizes advanced techniques like Low-Rank Adaptation (LoRA) and
quantization methods to enhance model efficiency and adaptability on mobile platforms.
Evaluation results demonstrate that VISMAID achieves a balance between computa-
tional efficiency, accessibility, and real-time performance, supporting multiple use cases,
including Visual Question Answering (VQA) and Image Captioning.

Furthermore, the research emphasizes the importance of user-centered design, en-
suring the solution is intuitive and practical for real-world applications. Extensive user
testing and feedback loops were incorporated throughout the development process to re-
fine the functionality and usability of the system. The outcomes highlight the potential
for VISMAID to serve as a powerful tool in assisting visually impaired individuals, paving
the way for further innovations in AI-driven accessibility solutions.

2

Contents

Acknowledgements 1

1 Introduction 8
1.1 Motivation . 8

2 Theoretical Framework 9
2.1 Basics . 9

2.1.1 Supervised Machine Learning . 9
2.1.2 Neural Networks . 10
2.1.3 Convolutional Neural Networks 11
2.1.4 Recurrent Neural Networks . 13
2.1.5 Transformers . 14

2.2 Multimodality . 19
2.3 Multimodal Deep Learning . 20

2.3.1 Encoding Sate . 21
2.3.2 Fusion Stage . 21
2.3.3 Classification . 21

2.4 Vision Language Models . 22
2.5 Visual Question Answering . 23
2.6 Quantization and Optimization . 24

2.6.1 Low-Rank Adaptation (LoRA) of Large Language Models 25
2.6.2 8-Bit Quantization in Optimizers 25
2.6.3 QLoRA: Efficient Fine-Tuning of Quantized LLMs 27

2.7 Mixture of Experts . 27
2.7.1 Mixture of Experts on Large Language Models 29

3 Vision Language Models 34
3.1 PaliGemma . 34

3.1.1 Model Components . 34
3.1.2 Input-Output Processing and Masking Strategy 35
3.1.3 Pretraining and Transfer Framework 35
3.1.4 Design Rationale and Key Features 36
3.1.5 Contrastive Vision Encoder . 36
3.1.6 Linear Connector . 37

3.2 LLaVA . 39
3.2.1 Overall Architecture . 39
3.2.2 Detailed Component Description 39
3.2.3 Training Procedure . 40

3

3.2.4 Output Format and Loss Function 40
3.2.5 Performance and Evaluation . 40

3.3 Phi-3 Vision . 41
3.3.1 Image Encoder: CLIP ViT-L/14 41
3.3.2 Transformer Decoder: Phi-3.5-Mini 42
3.3.3 Multimodal Integration Strategy 42
3.3.4 Training and Optimization . 42
3.3.5 Safety and Alignment Features 43

3.4 LLaVA-OneVision . 43
3.4.1 Core Concept of LLaVA-OneVision 43
3.4.2 Architecture of LLaVA-OneVision 44
3.4.3 Emerging Capabilities and Task Transfer 45
3.4.4 Training LLaVA-OneVision . 45

3.5 Challenges Building Multimodal Model Architectures 48
3.5.1 Data Gathering and Scarcity . 48
3.5.2 Representation . 48
3.5.3 Alignment . 49
3.5.4 Co-learning . 49
3.5.5 Translation . 49
3.5.6 Fusion . 50

4 Speech to Text models 51
4.1 Whisper: Overview and Functionality . 51

4.1.1 Model Architecture and Training: 52
4.1.2 Data and Preprocessing: . 52
4.1.3 Multilingual and Multitask Training: 52

4.2 Performance of Previous Work before Whisper 53
4.2.1 Wav2Vec 2.0 and Unsupervised Pre-training: 53
4.2.2 Comparison with Supervised Baselines: 53
4.2.3 Human Performance and Claims of Superhuman Accuracy: 54

4.3 Performance of Whisper . 54
4.3.1 Advancements Over Wav2Vec 2.0 and Unsupervised Pre-training . 54
4.3.2 Improved Robustness Compared to Supervised Baselines 54
4.3.3 Challenging the Claims of Superhuman Accuracy in Speech Recog-

nition . 54
4.3.4 Superior Performance in Translation Tasks 55

5 VISMAID 56
5.1 Problem Definition . 56
5.2 System Architecture . 56
5.3 Implementation . 57

5.3.1 Fine tuning . 58
5.3.2 Mobile Application . 58
5.3.3 Flutter for multi platform development 58

4

6 Evaluation and Results 60
6.1 PaliGemma . 60
6.2 LlaVa One Vision 0.5B . 61
6.3 Phi 3.5 Vision . 61
6.4 PaliGemma Quantizied Fine-tuned . 61
6.5 Phi 3.5 Vision MoE . 62
6.6 LlaVa One Vision 0.5B with Machine Translation 62
6.7 Evaluation Method . 63

6.7.1 Quantitative Scores for Each Model 63
6.7.2 Final Score Calculation . 64
6.7.3 Final Scores . 64

7 Conclusions and future work 66

8 Sustainable Development Goals 67

5

List of Figures

2.1 Example of the structure of a Feed Forward Neural Network. 10
2.2 Examples of a convolution with padding. 12
2.3 Visual Representation of a Convolutional Neural Networks 13
2.4 Example of an Encoder-Decoder Architecture 14
2.5 Attention Mechanism proposed by D. Bahdanau [5] 15
2.6 Visual Representation of the Transformer Architecture 18
2.7 Illustration of a base multimodal architecture. 21
2.8 Structure of a Vision Language Model 23
2.9 Examples from the VQA v2 dataset [17] 24
2.10 Architecture of a Mixture Density Network 28
2.11 GShard Architecture . 31
2.12 Switch Transformer Architecture . 32

3.1 PaliGemma Architecture . 37
3.2 LLaVa One Vision Architecture . 45

4.1 Whisper Architecture . 53

5.1 Proposed VISMAID Pipeline . 57

6

List of Tables

3.1 PaliGemma performance across various tasks 38

6.1 Quantitative Scores for Each Model Based on Evaluation Criteria 64
6.2 Final Scores for Each Model Based on Weighted Evaluation Criteria . . . 64

7

Chapter 1

Introduction

1.1 Motivation

As humans, we perceive our environment through our senses, we see, smell, hear, touch
and taste the thing around us to understand the world we live in. Humanity has adapted
their surroundings for the human senses, from the use of artificial lighting to overcome
the darkness to alarm systems on homes or even car horns. However, there are some
cases where a human being lost one of its senses, or start losing one of them periodically,
for those cases there are traditional alternatives, such as the Braille Alphabet, a tactile
writing system used by people who are visually impaired [41].
This work focus on being a support for people who have lost or is losing their sense of
vision through state of the art technology like vision language models.

8

Chapter 2

Theoretical Framework

In this chapter, we introduce the concept of multimodality, Multimodal Machine Learning
and multimodal tasks. Some of the state of the art models known as Vision Language
Models, the complex task known as Visual Question Answering and how was defined, a
surface analysis on Text ot Speech and Speech to Text models, including state of the art
models such as Whisper [36], how this massive models can be adapted to work on limited
hardware by using quantization and how to extend the domain of a model through the
use of multiple experts.

2.1 Basics

Machine learning is a branch of computer science that concentrates on creating algorithms
based on sets of examples of a particular phenomenon. These examples may originate
from natural occurrences, be manually created by humans, or be produced by another
algorithm. [8]

As is defined by Tom Mitchell on his book ”Machine Learning”[28]:
A computer program is said to learn from experience E with respect to some class of

task T, and performance measure P, if its performance at task inT, as measured by P,
improves with experience E.

This means there are many kinds of machine learning systems, depending on the
nature of the tasks T, the nature of the performance measure P and the nature of the
experience E also known as training signal. [29]

2.1.1 Supervised Machine Learning

As described by Kevin P. Murphy in his book ”Probabilistic Machine Learning: An
Introduction”. [29]

The most common form of machine learning is supervised learning. In this method,
the objective or task T is to learn a function f that maps inputs x ∈ X to outputs
y ∈ Y . The inputs, also known as features, covariates, or predictors, are generally
represented as a vector of numbers with a fixed number of dimensions. These inputs could
be measurements like a person’s height and weight or the pixel values in an image. Here,
X = RD, where D represents the number of dimensions of the vector (i.e., the number
of input features). The output y is also referred to as the label, target, or response. The
learning experience E consists of a set of N input-output pairs, D = {(xn, yn)}Nn=1, which

9

is called the training set (where N is the sample size). The performance measure P is
determined by the type of output being predicted.

For classification problems, the output is a set of C unordered and mutually exclusive
label known as classes, while for regression task the output can be a real number and
even for other tasks the output can be a more complex structure, such as a vector, a
matrix, a tree or a graph. [8]

2.1.2 Neural Networks

Dense neural networks, also referred to as feedforward neural networks or multilayer per-
ceptrons (MLPs), are foundational models in the field of deep learning. The goal of a
feedforward network is to approximate a target function f ∗. For example, in a classifi-
cation problem, y = f ∗(x) denotes a function that maps an input x to its corresponding
class y. A feedforward network defines a function y = f(x; θ) and aims to learn the best
parameter values θ to closely approximate this function. These networks are called ”feed-
forward” because the information flows in a single direction—from the input x, through
the intermediate layers representing the computation of f , and ultimately to the output
y. Unlike other models, they lack feedback connections, meaning the outputs are not
looped back into the network [16].

Figure 2.1: Example of the structure of a Feed Forward Neural Network.

Feedforward networks are extremely important for machine learning practitioners and
are the foundation of many significant commercial applications. For example, convolu-
tional networks, which are specialized types of feedforward networks, are used for tasks
like recognizing objects in images. Additionally, feedforward networks serve as a con-
ceptual foundation for recurrent networks, which are crucial in many natural language
processing applications. The term ”network” is used because feedforward neural networks
are generally represented by combining many different functions. The model is associated
with a directed acyclic graph that illustrates how these functions are composed.

For instance, we might have three functions f (1), f (2), and f (3) connected in a sequence
to form f(x) = f (3)(f (2)(f (1)(x))). These chain-like structures are the most common

10

architecture used in neural networks. In this context, f (1) is known as the first layer of
the network, f (2) is the second layer, and so forth. The total number of layers in the chain
determines the depth of the model, which is where the term ”deep learning” originates.
The last layer of a feedforward network is referred to as the output layer. During training,
the objective is to make f(x) closely approximate f ∗(x).

The training data offers noisy, approximate samples of f ∗(x) evaluated at different
points. Each input x is paired with a label y ≈ f ∗(x). These training samples directly
specify what the output layer should produce for each input x; it should yield a value
that closely matches y. However, the training data does not provide explicit instructions
for the behavior of the intermediate layers. The learning algorithm must figure out how
to configure these hidden layers to produce the correct output. Since the desired output
for each hidden layer is not specified by the training data, these layers are referred to as
hidden layers.

These networks are called ”neural” due to their loose inspiration from neuroscience.
Each hidden layer within the network is generally represented by a vector, with the num-
ber of dimensions of these hidden layers defining the width of the model. Each element of
this vector can be thought of as analogous to a neuron. Rather than considering the layer
as a single function mapping one vector to another, it can also be viewed as a collection
of several units operating in parallel, where each unit represents a function that maps
a vector to a scalar. Each unit behaves like a neuron by receiving inputs from multiple
other units and computing its own activation level. The concept of multiple layers of
vector-based representations is motivated by neuroscience. Similarly, the choice of func-
tions f (i)(x) for computing these representations is loosely inspired by the functional roles
performed by biological neurons.

2.1.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized type of neural network architec-
ture designed to process data arranged in a grid-like structure [23]. Examples of such
data include time-series data, which can be viewed as a one-dimensional grid where sam-
ples are collected at uniform time intervals, and image data, which can be considered a
two-dimensional array of pixels. CNNs have achieved significant success across various
practical domains. The term ”convolutional neural network” originates from the use of
an operation called convolution, which is a specific kind of linear transformation. Funda-
mentally, CNNs are neural networks that apply convolution operations in place of general
matrix multiplication in at least one of their layers.

To recognize specific patterns in CNNs, a small regression model learns the parameters
of a matrix F with dimensions p×p, where p represents the size of a local patch. Each layer
in a CNN is made up of multiple convolutional filters, each with its own bias term, much
like a layer in a standard feedforward neural network (FFNN) is composed of numerous
neurons. Each filter in the first (leftmost) layer slides, or convolves, across the input
image from left to right and top to bottom, calculating the convolution at each location.

The parameters within the filter matrix F for every filter in each layer, along with the
bias b, are learned through gradient descent using backpropagation to minimize the loss
function based on the training data. A nonlinear activation function is then applied to
the sum of the convolution output and the bias term. The ReLU function is commonly
used in hidden layers, while the activation function for the output layer is determined by
the specific task requirements. Given that each layer l can contain multiple filters of size

11

l, the output from convolutional layer l comprises l matrices, one for each filter.
When a CNN contains consecutive convolutional layers, the following layer l + 1

interprets the output of the prior layer l as a set of l-dimensional image matrices, known
as a volume. Each filter in layer l+1 then performs convolutions over this entire volume.
The convolution of a patch within a volume is simply the sum of the convolutions of the
matching patches from each separate matrix within the volume.

Figure 2.2: Examples of a convolution with padding.

Two other key properties of convolution are stride and padding. The stride is the
step size of the sliding window that moves across the input. Padding is a technique used
to produce a larger output matrix by adding extra cells around the edges of the input
volume before applying the convolution. These additional cells, which typically contain
zeros, increase the size of the output. Alongside these properties, pooling is used as a
technique that, instead of applying a learnable filter to an input matrix or volume, uses
a fixed operator. The pooling layer takes the output from a convolution as its input and
produces an output volume with the same depth as the input. [8]

Convolutional networks have played a significant role in the development of deep
learning. They are a prime example of successfully applying insights from studying the
brain to machine learning tasks. Convolutional networks were among the first deep
learning models to achieve good performance, even before arbitrary deep models were
considered feasible. They were also among the first neural networks to be used for solving
important commercial applications and continue to be at the forefront of commercial uses
of deep learning today.

12

Figure 2.3: Visual Representation of a Convolutional Neural Networks

Convolutional networks were also among the earliest deep networks trained using back-
propagation. The reason for their success, while general backpropagation networks were
thought to have failed, is not entirely clear. One potential reason is that convolutional
networks are more computationally efficient than fully connected networks, allowing for
more extensive experimentation and refinement of their implementations and hyperpa-
rameters. Larger networks also appear to be simpler to train. With today’s hardware,
large fully connected networks achieve satisfactory performance on numerous tasks, even
when using datasets and activation functions that were common during the era when
fully connected networks were believed to be less effective. [16]

2.1.4 Recurrent Neural Networks

A recurrent neural network (RNN) maps input sequences to output sequences in a state-
dependent manner, where the output yt depends on both the input xt and the hidden
state ht, which updates as the sequence is processed. RNNs are suitable for tasks like
sequence generation, classification, and translation [29].

While convolutional neural networks (CNNs) are designed for grid-like data, such
as images, RNNs are optimized for sequences of values x(1), . . . , x(τ). RNNs can handle
much longer sequences than models not designed for sequential data and can also process
sequences of variable lengths.

Parameter sharing allows RNNs to generalize across sequences of different lengths,
avoiding the need for separate parameters at each time step, which would limit general-
ization to new sequence lengths and hinder learning from different positions in time. In
RNNs, each output depends on previous outputs, using the same update rule across all
steps, resulting in a deep computational graph [16].

RNNs can map input sequences to output sequences of varying lengths, useful in
applications like speech recognition, machine translation, and question answering, where
the input and output sequences often differ in length. The input to the RNN is referred

13

to as the ”context,” represented as a vector or vectors summarizing the input sequence
X = (x(1), . . . , x(nx)).

The encoder-decoder, or sequence-to-sequence, is a basic RNN architecture that han-
dles variable-length input and output sequences. It consists of: (1) an encoder RNN
that processes the input and generates the context C, usually from its final hidden
state, and (2) a decoder RNN that, based on this context, produces the output sequence
Y = (y(1), . . . , y(ny)). This model accommodates varying lengths for nx and ny, unlike
earlier architectures requiring nx = ny = τ . Both RNNs are jointly trained to maximize
the log probability logP (y(1), . . . , y(ny)|x(1), . . . , x(nx)) over all training pairs, using the
encoder’s final state hnx as the context for the decoder.

Figure 2.4: Example of an Encoder-Decoder Architecture

The input can be supplied either as the initial state of the decoder RNN or connected
to its hidden units at each time step. There is no requirement for the encoder and
decoder to have hidden layers of the same size. However, a clear limitation of this
architecture arises when the context C, output by the encoder RNN, has a dimension
that is too small to adequately summarize a long sequence. This issue was observed by
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio [5] in the context of machine
translation. They proposed making C a variable-length sequence rather than a fixed-size
vector. Additionally, they introduced an attention mechanism that learns to associate
elements of the sequence C with elements of the output sequence.

2.1.5 Transformers

Attention Mechanism

Capturing all the semantic details of a very long sentence, such as one with 60 words,
using a fixed-size representation is quite challenging. This can be done by training a
sufficiently large RNN for a long enough period, but a more efficient approach is to first
read the entire sentence or paragraph to understand the context and main idea, and then
generate the translated words one at a time. In this process, the model focuses on different
parts of the input sentence to extract the necessary semantic details for producing each
subsequent output word. The attention mechanism is used to focus on specific parts of
the input sequence at each step.

An attention-based system can be thought of as consisting of three main components:

14

• A process that reads the raw input data (such as words in a source sentence) and
converts them into distributed representations, with each word position associated
with a feature vector.

• A list of feature vectors that store the output of this reader, which can be seen
as a memory containing a sequence of facts. This memory allows retrieval of
information in any order, without needing to access all elements.

• A process that uses the content of this memory to perform a task sequentially, with
the ability to pay attention on the content of one or several memory elements
at each time step, each with different weights. This component is responsible for
generating the translated sentence.

When words in a sentence written in one language are aligned with their corresponding
words in a translated sentence in another language, it becomes possible to relate their
corresponding word embeddings. [16]

Figure 2.5: Attention Mechanism proposed by D. Bahdanau [5]

The Transformer model, as introduced in ”Attention Is All You Need”[40], relies
entirely on the attention mechanism to compute representations of its input and output
without using recurrent or convolutional networks. The attention mechanism allows the
model to focus on different parts of the input sequence when predicting a particular
output, making it possible to capture long-range dependencies more effectively.

The Transformer model uses the attention mechanism to compute representations
of its input and output sequences, discarding the need for recurrent or convolutional
networks. The key components of the attention mechanism used in the Transformer are
self-attention and multi-head attention.

Self-Attention: Self-attention, also known as intra-attention, computes a represen-
tation of a sequence by relating different positions of the same sequence. Given a set of

15

queries Q, keys K, and values V , all of dimension dk, the self-attention function is defined
as:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

Each query vector is compared against all key vectors to calculate attention scores,
which are scaled by the square root of the dimensionality dk to avoid large gradients. The
softmax function normalizes these scores, which are used to compute a weighted sum of
the value vectors, producing the attention output.

Scaled Dot-Product Attention: The scaled dot-product attention involves:

• Calculating the dot products between the query and key vectors.

• Scaling the dot products by 1√
dk

.

• Applying the softmax function to obtain normalized weights.

• Multiplying these weights by the value vectors to produce the final attention output.

Multi-Head Attention: Multi-head attention enables the model to simultaneously
focus on information from different subspaces of representations. Rather than using a
single attention function, the Transformer linearly maps the queries, keys, and values
h times using distinct learned projections and then applies the attention mechanism in
parallel. The results from each of these heads are concatenated and subsequently passed
through a linear transformation to produce the final output:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

where each attention head is calculated as:

headi = Attention(QWQ
i , KW

K
i , V W

V
i)

In this context, WQ
i , WK

i , W V
i , and WO represent the learnable projection matrices.

Transformer Architecture Overview

The Transformer model consists of an encoder-decoder structure, similar to many neural
sequence transduction models. However, it departs from traditional designs by discarding
recurrence and convolution entirely, relying solely on attention mechanisms and position-
wise feed-forward networks.

• Encoder-Decoder Structure:

– Encoder: The encoder is composed of a stack of N = 6 identical layers. Each
layer has two main sub-layers:

∗ A multi-head self-attention mechanism.

∗ A position-wise fully connected feed-forward network.

Each sub-layer is surrounded by a residual connection followed by layer nor-
malization.

16

– Decoder: The decoder is also composed of a stack of N = 6 identical layers,
but with an additional sub-layer between the two main sub-layers. This third
sub-layer performs multi-head attention over the output of the encoder stack,
allowing the decoder to focus on relevant parts of the input sequence. The
self-attention sub-layer in the decoder is masked to ensure that the prediction
for each position depends only on the known outputs at preceding positions.

• Attention Mechanisms:

– Self-Attention: Allows the model to attend to all positions in the input
sequence to capture dependencies, regardless of their distance.

– Multi-Head Attention: Improves the model’s ability to capture different
types of relationships by projecting queries, keys, and values into multiple
subspaces and performing attention in parallel. This allows the model to
attend to different aspects of the input simultaneously.

• Positional Encoding:

– Since the Transformer lacks any recurrence or convolution to handle sequential
data, it uses positional encodings to inject information about the relative or
absolute position of tokens in the sequence. These encodings are added to the
input embeddings and are based on sinusoidal functions, which help the model
learn positional relationships.

• Position-Wise Feed-Forward Networks:

– Each layer in both the encoder and decoder contains a fully connected feed-
forward network that is applied independently to each position. This con-
sists of two linear transformations with a ReLU activation in between. This
structure enables the model to transform attention outputs and introduces
non-linearity.

17

Figure 2.6: Visual Representation of the Transformer Architecture

Improvements Over Previous Models

The Transformer architecture brings several key improvements compared to previous
neural network models, particularly RNN-based models like LSTM (Long Short-Term
Memory) [19] and GRU (Gated Recurrent Unit) [9], as well as CNN-based models like
ConvS2S [15]:

• Parallelization: One of the major limitations of RNNs is their sequential nature,
which makes it difficult to parallelize training across long sequences. Each step in
an RNN depends on the completion of the previous step, which slows down train-
ing. The Transformer, by contrast, allows for complete parallelization within a
sequence, as all the tokens are processed simultaneously through the self-attention
mechanism. This leads to significant speed-ups in training, allowing the Trans-
former to be trained more efficiently on modern hardware like GPUs.

• Long-Range Dependencies: RNNs struggle with long-range dependencies due
to the vanishing gradient problem, where information from earlier time steps is
lost as it moves through many layers. Although LSTM and GRU models mitigate
this issue, they still face limitations with very long sequences. The Transformer’s
self-attention mechanism, however, allows it to directly attend to any position in
the input sequence, regardless of its distance from the target position. This enables
the model to capture long-range dependencies more effectively and improves the
quality of representations for tasks such as translation and text generation.

• Computational Efficiency: CNN-based models like ConvS2S reduce sequential
computation, but they still suffer from the increased complexity of modeling long-

18

range dependencies. In contrast, the Transformer’s attention mechanism has a
constant path length between input and output positions, making it more efficient in
handling long dependencies. While the computational complexity of self-attention
is O(n2), it is still more efficient than the O(n) complexity of recurrent layers when
the sequence length n is smaller than the representation dimension d, which is often
the case in many practical scenarios.

• Better Performance on Benchmarks: The Transformer has achieved state-of-
the-art results on several benchmark tasks. For example, in machine translation
tasks, the Transformer model significantly outperforms RNN-based models, includ-
ing Google’s Neural Machine Translation (GNMT) system, and convolutional mod-
els like ByteNet and ConvS2S, both in terms of quality (measured by BLEU scores)
and computational cost. For instance, the Transformer achieved a BLEU score of
28.4 on the WMT 2014 English-to-German translation task, outperforming all pre-
viously reported models, including ensembles, while requiring less training time.

• Flexibility and Generalization: The Transformer architecture generalizes well
to other tasks beyond machine translation. It has shown competitive performance
in tasks like constituency parsing and can be adapted to modalities other than
text, such as image and audio processing. Its ability to handle variable-length
sequences, capture complex dependencies, and process information in parallel makes
it a versatile model for a wide range of applications.

2.2 Multimodality

As said before, humans experience the world multiple modalities, when we speak about
modality refers to the manner in which something occurs or is perceived. A problem
is considered multimodal when it involves data in multiple different modalities. For
Artificial Intelligence to advance in comprehending the world, it must be capable of
interpreting these diverse multimodal signals collectively.[6]

We talk about Multimodal Machine Learning where the information receiver and
processor is a Machine Learning system, this field seeks to develop models that can handle
and connect information from various modalities. This is a dynamic and rapidly growing
field that spans multiple disciplines and holds immense potential. This field presents
unique challenges for computational researchers due to the diverse nature of the data
involved. Learning from multiple modalities allows for the identification of connections
between different types of data and enables a deeper understanding of natural phenomena.

But this definition of multimodality can be discussed, some literature define modality
being task related instead of information related.[32] In the Multimodal Machine Learning
field, it is widely recognized that vision constitutes one modality and language represents
another, usually presented in the form of text. [21] However, humans can hear the speech,
which the information that it transfers is language. In the same sense, language can be
transmitted through touch with the use of Braille or vision by reading something. This
means language can be represented using many modalities of data, with this definition
the modalities are human-centered, however Letitia Parcalabescu (Parcalabescu et al.,
2021) [32] suggests that the definition of multimodality in Multimodal Machine Learning
should be tied to the specific task the Machine Learning system is designed to solve. The
task itself dictates which information is relevant and how that information can be most

19

efficiently represented. In contrast, the human-centered definitions attempt to define
multimodality without considering specific tasks, instead focusing on categories such as
human experience, media types, forms of representation, and data encodings. So, we use
the following definition for multimodality:

A machine learning task is multimodal when inputs or outputs are represented dif-
ferently or are composed of distinct types of atomic units of information [32].

2.3 Multimodal Deep Learning

As its name suggests, Multimodal Deep Learning focus on the fusion and analysis of data
from multiple modalities, such as text, images, video, audio, and sensor data. Thus, in
order to create a more complete and much complex representation of the data, all of this
using multiple deep neural networks, each designed to specialize in processing a specific
modality and then merge the output using different fusion techiniques to form a combined
representation of the data[33]

The main objective of Multimodal Deep Learning is to develop a shared representation
space that effectively captures complementary information from various modalities. This
unified representation can be utilized for a range of tasks, including image captioning,
speech recognition, and vision question answering.

Some fusion techiniques in Multimodal Deep Learning are: early fusion, late fusion,
or hybrid fusion. Early fusion involves combining raw data from different modalities into
a single input vector and feeding it directly into the network. Late fusion, in contrast,
trains separate networks for each modality and integrates their outputs at a later stage.
Hybrid fusion incorporates aspects of both early and late fusion, creating a model that
is more adaptable and flexible.

Multimodal deep learning models generally consist of several unimodal neural net-
works, each designed to handle a specific input modality independently. For example, an
audiovisual model might include one network for processing audio data and another for
visual data. This separate handling of each type of input is referred to as encoding.

After each modality has been encoded separately, the information extracted from each
one needs to be combined or fused. This fusion can be achieved using various techniques,
ranging from simple concatenation to more sophisticated attention mechanisms. Effective
fusion of multimodal data is crucial for the success of these models. Finally, a ”decision”
network receives the fused information and is trained to perform the specific task.

Typically, multimodal architectures consist of three main components:

• Unimodal encoders that process and encode each individual modality, usually
one encoder for each type of input.

• A fusion network that integrates the features obtained from each modality during
the encoding phase.

• A classifier that takes the fused information and makes predictions based on it.

20

Figure 2.7: Illustration of a base multimodal architecture.

2.3.1 Encoding Sate

The encoder extracts features from input data across different modalities, such as images,
audio, and text, and transforms them into a shared representation for further processing.
Each modality has its own encoder that converts input data into feature vectors, which
are then combined into a unified representation. This can be done through concatenation
or attention mechanisms to emphasize the most relevant information. The encoder’s main
goal is to capture the underlying patterns and relationships within the multimodal data,
enabling the model to make accurate predictions or generate outputs.

2.3.2 Fusion Stage

The fusion module integrates information from different modalities, such as text, images,
and audio, into a single representation suitable for tasks like classification, regression, or
generation. The structure of the fusion module can vary based on the architecture and
task requirements.

One method involves using a weighted sum of the features from each modality, with
the weights learned during training. Another method is to concatenate the features and
use a neural network to form a combined representation. Attention mechanisms can also
be applied to determine which modality should be prioritized at each step.

The primary objective of the fusion module is to combine complementary information
from multiple modalities to create a stronger and more informative representation, which
enhances performance in tasks such as video analysis, where both visual and audio data
are important.

2.3.3 Classification

The classification module uses the combined representation created by the fusion module
to make a prediction or decision. Its design and approach can vary based on the specific
task and data being processed.

Typically, the classification module is a neural network that processes the joint rep-
resentation through one or more fully connected layers to arrive at the final prediction.
These layers may include non-linear activation functions, dropout, and other techniques
to enhance generalization and prevent overfitting.

21

The output of the classification module is task-specific. For example, in multimodal
sentiment analysis, it might produce a binary output indicating whether the input is
positive or negative. In multimodal image captioning, the output could be a descriptive
sentence of the image content.

The classification module is usually trained using supervised learning, where the
model’s parameters are optimized based on input data and their corresponding labels,
often using gradient-based methods like stochastic gradient descent.

The classification module is essential in multimodal deep learning, using the fused
representation to make accurate predictions or decisions.

2.4 Vision Language Models

Vision Language Models are a subset of Large Language Models which can learn simul-
taneously from images and texts to tackle many tasks, from visual question answering to
image captioning. This familiy of models belong to the sub field of Multimodal Machine
Learning known as Multimodal Deep Learning.

Vision-language models are generally defined as multimodal models designed to learn
from both images and text. These generative models take inputs in the form of images and
text and produce text-based outputs. Large vision-language models excel at generalizing
across a wide range of tasks without specific training, demonstrating strong zero-shot
capabilities. This means they can perform tasks they were not explicitly trained for by
leveraging their understanding of both visual and textual data. [31]

These models are versatile and can handle various types of images, such as documents,
web pages, and more. Their use cases include conversing about images, recognizing
images based on instructions, answering questions about visual content, understanding
documents, creating image captions, and other related tasks. Additionally, some vision-
language models can also understand and interpret spatial relationships within an image.

There are several methods for pretraining a vision-language model, with the key being
to unify the image and text representations and use them as input for a text decoder
to generate outputs. Typically, the most popular models include an image encoder,
an embedding projector (often a dense neural network) to align the image and text
representations, and a text decoder, arranged in this sequence. Different models adopt
different approaches to training.

For example, the LLaVA model uses a CLIP image encoder, a multimodal projector,
and a Vicuna text decoder. The researchers utilized a dataset containing images and
captions, leveraging GPT-4 to create questions associated with those captions and images.
The image encoder and text decoder were kept unchanged, while only the multimodal
projector was trained to align the visual and textual features. This was achieved by
inputting images and the generated questions into the model and then comparing its
output to the actual captions. Once the projector was pre-trained, the image encoder
remained frozen, and the text decoder was unfrozen. The projector and decoder were
then trained jointly. This pre-training and fine-tuning method is the most widely used
strategy for developing vision-language models.

22

Figure 2.8: Structure of a Vision Language Model

2.5 Visual Question Answering

Visual Question Answering (VQA) is a task in the field of artificial intelligence that
combines computer vision and natural language processing to answer questions about
the content of an image. The VQA task requires an AI system to take as input an image
and a free-form, open-ended, natural-language question related to that image and then
produce an accurate, natural-language answer.

The questions in VQA are designed to be diverse and cover a wide range of topics,
selectively targeting different areas of an image, including its background details and
underlying context. They may require various levels of understanding and reasoning
about the visual content, such as recognizing objects, identifying activities, understanding
spatial relationships, and using common-sense knowledge. [3]

VQA is distinguished by its open-ended nature. Unlike tasks that generate generic
image captions, VQA requires specific answers to specific questions. This specificity
demands a detailed understanding of the visual content and the capability to integrate
multiple types of knowledge, including fine-grained recognition (e.g., identifying the kind
of cheese on a pizza), object detection (e.g., counting the number of bikes), activity
recognition (e.g., determining whether a person is crying), and knowledge base reasoning
(e.g., inferring whether a pizza is vegetarian).

The task is highly relevant for practical applications, such as assisting visually im-
paired users by providing detailed descriptions of images in response to their specific
questions. VQA systems could also be useful in intelligence analysis, where specific in-
formation from visual data needs to be extracted quickly and accurately.

VQA presents a range of challenges that make it an ”AI-complete” task, meaning it
encompasses multiple aspects of intelligence, including vision, language understanding,
and reasoning. For instance, to answer a question like ”What is just under the tree?”
a VQA system must not only recognize the objects in the image but also understand
their spatial arrangement relative to the tree. Similarly, for a question such as ”Does

23

this person have 20/20 vision?” the system must apply common-sense reasoning and
potentially use external knowledge to infer an answer.

An important feature of VQA is its amenability to automatic evaluation. Many VQA
answers are concise, consisting of just a few words or even a single word (e.g., ”yes” or
”no”), which makes it straightforward to measure accuracy by comparing the system’s
output to a set of ground truth answers provided by humans.

Figure 2.9: Examples from the VQA v2 dataset [17]

To support research in this area, a large dataset has been developed, which includes
approximately 0.25 million images, 0.76 million questions, and 10 million answers. This
dataset enables the development and benchmarking of various VQA algorithms and mod-
els. The dataset includes both open-ended and multiple-choice questions, which further
facilitates the evaluation of VQA systems.

Overall, VQA serves as a compelling challenge for AI researchers, requiring advance-
ments in visual understanding, natural language processing, and reasoning, with the
ultimate goal of creating systems that can interact with and interpret visual data in a
way that is comparable to human understanding.

2.6 Quantization and Optimization

Many applications in natural language processing, and increasingly in computer vision,
rely on modifying a large-scale, pre-trained language model to handle various downstream
tasks. This modification is generally accomplished through fine-tuning, which involves
updating all the parameters of the pre-trained model. A major limitation of fine-tuning
is that the modified model maintains the same parameter count as the original model
[20]. Quantization comprises a collection of techniques aimed at reducing the precision
of model weights, thereby decreasing the model’s size and accelerating training in deep
learning models. [30] Some quantization and optimization techniques are LoRa, 8-bit

24

Quantization and QLoRa that can quantize Transformer based models and are great for
Large Language Models and Vision Language Models

2.6.1 Low-Rank Adaptation (LoRA) of Large Language Models

Low-Rank Adaptation (LoRA) is an approach aimed at efficiently adapting large pre-
trained language models to different downstream tasks while minimizing computational
and memory expenses. LoRA accomplishes this by keeping the weights of the pre-trained
model fixed and incorporating trainable low-rank decomposition matrices into particular
layers of the model, such as the Transformer layers.

How LoRA Works

Freezing Pre-trained Weights: During adaptation, LoRA keeps the original weights of
the pre-trained model frozen, avoiding the need to compute gradients for all parameters.
This saves memory and computational resources.

Low-Rank Decomposition: LoRA introduces trainable low-rank matrices A ∈
Rr×d and B ∈ Rd×r into the dense layers, where d is the dimension of the original weight
matrices, and r is the chosen rank (typically much smaller than d).

Reparameterization of Weights: The change in the weight matrix ∆W during
adaptation is expressed as:

∆W = B × A

Thus, the updated weight matrix becomes:

W = W0 + ∆W = W0 +B × A

Here, W0 is the original weight matrix, which remains fixed, and only A and B are
optimized during training.

Training Efficiency: LoRA reduces the number of trainable parameters significantly,
allowing efficient fine-tuning with a fraction of the original model’s parameters. For
example, in models like GPT-3, it can achieve comparable performance with just 0.01%
of the original trainable parameters.

No Inference Latency: After training, the matrices A and B are merged with the
pre-trained weights W0, resulting in no additional inference latency compared to a fully
fine-tuned model.

Task Switching and Deployment Benefits: LoRA facilitates efficient task-switching
by swapping low-rank matrices for different tasks while keeping the main model weights
unchanged, reducing storage and deployment costs.

2.6.2 8-Bit Quantization in Optimizers

The paper ”8-Bit Optimizers via Block-Wise Quantization”[10] introduces a novel ap-
proach to reducing the memory footprint of stateful optimizers without sacrificing their
performance. Traditionally, optimizers like Adam or SGD with momentum require 32-bit
floating-point precision to store gradient statistics, which consumes a significant amount
of memory. For example, in models like GPT-2 and T5, optimizer states can consume
between 11 GB to 41 GB of memory. The proposed method reduces this footprint by
using 8-bit quantization for these statistics, thereby allowing larger models to be trained
on the same hardware or reducing the memory costs of existing models.

25

Key Concepts Behind 8-Bit Quantization

• Dynamic Quantization: The paper introduces a form of non-linear quantiza-
tion called dynamic quantization, which maps values to an 8-bit space with higher
precision for both small and large magnitudes. Unlike linear quantization, which
uniformly distributes values, dynamic quantization adjusts based on the distribu-
tion of data, reducing errors for commonly occurring small values and less frequent
large ones.

• Block-Wise Quantization: To further improve precision and computational ef-
ficiency, the authors propose dividing the tensors into smaller blocks and applying
quantization independently to each block. This block-wise quantization helps iso-
late outliers, which might otherwise skew the entire tensor’s quantization range.
The block-wise approach allows each block to be processed in parallel, improving
computational throughput and maintaining high precision for critical values.

• Stable Embedding Layer: The paper also introduces a stable embedding layer
to address instability issues that arise from the non-uniform distribution of input
tokens in language models. This layer normalizes the input distribution, reducing
gradient variance and making 8-bit quantization more stable and reliable.

How 8-Bit Quantization Works

Normalization: Each tensor is divided into smaller blocks (e.g., size 2048), and a nor-
malization constant is computed for each block. This normalization involves dividing by
the maximum absolute value in each block, ensuring all values lie within the range [-1,
1].

Quantization: Once normalized, values in each block are quantized to 8 bits us-
ing dynamic quantization. Dynamic quantization uses a non-linear mapping to assign
8-bit integers that correspond closely to the original floating-point values, minimizing
quantization error, especially for frequently occurring small magnitude values.

Dequantization: To perform optimization updates, the quantized 8-bit values are
dequantized back to 32-bit floating-point values. After the update, the values are re-
quantized back to 8-bit, maintaining a low memory footprint without significantly com-
promising performance.

Parallel Processing: Because each block is quantized independently, this process
can be parallelized across multiple cores, leading to faster processing. This contrasts
with traditional methods requiring global synchronization across all cores, which can be
slower.

Error Management: The use of block-wise quantization reduces the effect of outliers
since their impact is confined to a single block rather than the entire tensor. Dynamic
quantization minimizes both absolute and relative errors for most values, ensuring that
the overall performance and stability of training are maintained.

As mentioned in the original paper, moving to 8-bit quantization was the next step
after using 16-bit precision. However, this transition was not as straightforward as moving
from FP32 to FP16, since both FP32 and FP16 share the same representation format,
whereas 8-bit quantization does not.

8-bit quantization requires a different representation format, which can represent fewer
values compared to FP16 or FP32. As a result, model performance may be impacted
when quantization is applied, so it is important to be mindful of this trade-off. Moreover,

26

it is essential to evaluate model performance in its quantized form, especially if the model
weights will be deployed on an edge device that requires quantization. [18]

2.6.3 QLoRA: Efficient Fine-Tuning of Quantized LLMs

QLoRA (Quantized Low-Rank Adapter) is a method for fine-tuning large language models
that minimizes memory usage without sacrificing performance, as detailed in the paper
”QLoRA: Efficient Finetuning of Quantized LLMs”[11]. This approach enables the fine-
tuning of a 65-billion-parameter model on a single 48GB GPU while maintaining the
performance comparable to full 16-bit fine-tuning.

Key Concepts Underlying QLoRA

• Quantization: Employs a 4-bit quantization technique called NormalFloat (NF4),
optimized for weights with normal distributions, to reduce memory requirements.

• Low-Rank Adapters (LoRA): Introduces a small set of trainable parameters.
Instead of updating all model parameters, only these adapters are fine-tuned, low-
ering computational costs.

• Double Quantization: Further reduces memory consumption by quantizing the
quantization constants themselves, saving approximately 0.37 bits per parameter.

• Paged Optimizers: Utilizes NVIDIA’s unified memory to manage memory spikes
and prevent out-of-memory issues during training.

How QLoRA Works

• 4-bit NormalFloat Quantization: Applies NormalFloat quantization to the pre-
trained model weights, optimized for normal distributions to minimize information
loss.

• Fine-Tuning with LoRA Adapters: Gradients are backpropagated through the
frozen, quantized weights into the LoRA adapters, which are updated to adapt the
model to new data.

• Memory Optimization Techniques: Double Quantization reduces the memory
footprint, and Paged Optimizers dynamically manage memory to prevent overflows.

2.7 Mixture of Experts

In regression tasks, the standard approach is to assume a unimodal output distribution,
such as a Gaussian distribution, where both the mean and variance are functions of the
input. However, this approach is inadequate for problems characterized by one-to-many
relationships, where a single input can correspond to multiple possible outputs.

A model trained to maximize likelihood with a unimodal output density, even when
using a flexible nonlinear model like a neural network, will not perform well on one-to-
many functions because it will tend to produce a blurred, average result [29].

To address the issue of regression to the mean, a conditional mixture model can be
employed. This model assumes that the output is a weighted mixture of K different

27

possible outcomes, corresponding to various modes of the output distribution for each
input x. In the case of Gaussian distributions, this approach can be expressed as:

p(y|x) =
K∑
k=1

p(y|x, z = k) p(z = k|x)

p(y|x, z = k) = N (y|fµ,k(x), diag(fσ,k(x)))

p(z = k|x) = Cat(z|softmax(fz(x)))

In this model, fµ,k is responsible for predicting the mean of the k-th Gaussian, while
fσ,k predicts the variance components. The function fz determines which mixture com-
ponent should be used. This model is known as a mixture of experts (MoE). The
concept is that the k-th submodel, p(y|x, z = k), acts as an ”expert” in a specific region
of the input space. The function p(z = k|x), referred to as the gating function, selects
which expert to utilize based on the input values. By choosing the most probable expert
for a given input x, we can ”activate” only a portion of the model. This approach ex-
emplifies conditional computation, as the decision on which expert to engage depends on
the outcomes of prior computations made by the gating network.

Mixture density networks

The gating function and experts are not limited to be just a linear model, they can
be any kind of conditional probabilistic model. If this gating function and experts are
Dense Neural Networks, then the resulting model is called a mixture density network
(MDN or a deep mixture of experts.

Figure 2.10: Architecture of a Mixture Density Network

28

Hierarchical MoEs

When each expert within a model is also a MoE model, the overall structure is referred
to as a hierarchical mixture of experts (HME). An HME with L levels can be
visualized as a ”soft” decision tree with a depth of L, where each example passes through
all branches of the tree, and the final prediction is computed as a weighted average of
these paths.

2.7.1 Mixture of Experts on Large Language Models

Mixture of Experts allows models to be pretrained using significantly less computational
power, enabling the model or dataset size to be scaled up considerably while maintaining
the same compute budget as a dense model. Specifically, an MoE model can reach the
same level of performance as its dense equivalent much more quickly during pretraining.
[37]

In transformer architectures, a Mixture of Experts (MoE) model consists of two fun-
damental components:

1. Sparse MoE layers are employed instead of the traditional dense feed-forward
network (FFN) layers. These MoE layers comprise multiple “experts” (e.g., eight),
each being a neural network. Typically, the experts are FFNs, but they can also be
more complex networks or even another MoE, leading to hierarchical MoEs.

2. A gating network or router that determines which tokens are directed to which
experts. For example, the token “More” might be sent to the second expert, while
the token “Parameters” is sent to the first expert. As we will explore later, a token
can be routed to more than one expert. Deciding how to route tokens to experts is a
significant consideration when working with MoEs—the router consists of learnable
parameters and is trained concurrently with the rest of the network.

Between 2010 and 2015, two distinct research areas contributed to the advancement
of Mixture of Experts (MoE) models:

1. Experts as Components: Traditionally, a MoE system comprises a gating net-
work and multiple experts, forming the entire model. MoEs have been explored as
complete models in methods like Support Vector Machines (SVMs), Gaussian Pro-
cesses, and others. However, the work by David Eigen, Marc’Aurelio Ranzato, and
Ilya Sutskever [13] introduced the idea of integrating MoEs as components within
deeper networks. This approach allows MoEs to function as layers in a multilayer
network, enabling models to be both large and computationally efficient.

2. Conditional Computation: Conventional neural networks process all input data
through every layer. During this period, Yoshua Bengio investigated methods to
dynamically activate or deactivate network components based on the input token,
leading to more efficient computation.

These research efforts led to the exploration of mixtures of experts in the context
of natural language processing (NLP). Specifically, Shazeer et al. (2017) [38], whose co-
authors include Geoffrey Hinton and Jeff Dean, scaled this idea to a 137-billion-parameter
Long Short-Term Memory network (LSTM)—the standard NLP architecture at the time,

29

by introducing sparsity. This allowed for very fast inference even at a large scale. Their
work focused on machine translation but faced challenges such as high communication
costs and training instabilities.

What is Sparsity?

Sparsity leverages the concept of conditional computation. While dense models utilize
all parameters for every input, sparsity allows selective activation of certain parts of the
system.[37]

Diving into Shazeer’s exploration of Mixture of Experts (MoEs) for translation. The
idea of conditional computation—where parts of the network are active on a per-example
basis—enables scaling the model size without increasing computational load. This ap-
proach led to the use of thousands of experts in each MoE layer.

However, this setup introduces challenges. For instance, although large batch sizes
typically enhance performance, batch sizes in MoEs are effectively reduced as data is
routed through active experts. This can lead to uneven batch sizes and underutilization.

This can be addresed using a learned gating network G that determines which experts
E receive portions of the input:

y =
n∑
i=1

G(x)iEi(x)

In this configuration, all experts are executed for all inputs; it is a weighted sum-
mation. But what happens if a component of G is zero? In that case, there is no need
to compute the corresponding expert’s operations, thus saving computational resources.
What is a typical gating function? In the most traditional setup, a simple network with
a softmax function is used. The network learns to assign inputs to experts:

Gσ(x) = Softmax(x ·Wg)

Shazeer’s work also investigated other gating mechanisms, such as Noisy Top-k
Gating. This method introduces some adjustable noise and retains only the top k values:

First, noise is added:

H(x)i = (x ·Wg)i + StandardNormal() × Softplus
(
(x ·Wnoise)i

)
Then, only the top k elements are kept:

KeepTopK(v, k)i =

{
vi if vi is among the top k elements of v,

−∞ otherwise.

Finally, the softmax is applied:

G(x) = Softmax
(
KeepTopK(H(x), k)

)
This sparsity introduces interesting properties. By using a low enough k (e.g., one

or two), training and inference can be conducted much faster than if many experts were
activated. Why not select only the top expert? The initial hypothesis was that routing
to more than one expert was necessary for the gate to learn effective routing strategies,
so at least two experts were selected.

30

When all tokens are directed to only a few popular experts, the result is an inefficient
training. In standard MoE training, the gating network tends to converge on activating
predominantly the same few experts. This creates a self-reinforcing cycle, as these favored
experts are trained more quickly and therefore are selected more frequently. To address
this issue, an auxiliary loss is introduced to encourage equal importance among all
experts. This loss ensures that each expert receives a roughly equal number of training
examples.[37]

Mixture of Experts on Transformers

Transformers have clearly demonstrated that increasing the number of parameters en-
hances performance. Consequently, Google investigated this scaling with GShard [24],
aiming to scale Transformers beyond 600 billion parameters.

GShard replaces every other Feed-Forward Network (FFN) layer with a Mixture of
Experts (MoE) layer using top-2 gating in both the encoder and decoder.

Figure 2.11: GShard Architecture

To ensure balanced computational load and efficiency at scale, the authors of GShard
introduced several modifications in addition to an auxiliary loss similar to the one previ-
ously discussed:

• Random routing: In a top-2 gating setup, the top expert is always selected, while
the second expert is chosen with a probability proportional to its gating weight.

• Expert capacity: A threshold is established for the number of tokens an expert
can process. If both selected experts reach this capacity, the token is considered
overflowed and is passed to the next layer via residual connections (or potentially
dropped in other implementations). This concept becomes crucial for MoEs because

31

tensor shapes are statically defined at compile time, but the number of tokens
assigned to each expert cannot be known in advance, necessitating a fixed capacity
factor.

The GShard paper also contributes by outlining parallel computation patterns that
are effective for MoEs.

Despite the promising potential of MoEs, they face challenges with training and fine-
tuning instabilities. The Switch Transformers work [14] thoroughly investigates these
issues. The authors released a 1.6 trillion parameter MoE with 2048 experts, available
on Hugging Face and compatible with transformers. Switch Transformers achieved a
fourfold pre-training speed-up compared to T5-XXL.

Similar to GShard, the authors replaced FFN layers with MoE layers. The Switch
Transformers introduce a Switch Transformer layer that processes two inputs and contains
four experts.

In contrast to the initial approach of utilizing at least two experts, Switch Transform-
ers adopt a simplified single-expert strategy. The consequences of this method include:

• Reduced computational load on the router

• Increased batch sizes for each expert

• Decreased communication costs

• Maintained model quality

Switch Transformers also investigate the concept of expert capacity, defined as:

Expert Capacity =

(
tokens per batch

number of experts

)
× capacity factor

Figure 2.12: Switch Transformer Architecture

32

This capacity evenly distributes the tokens in a batch among the experts. Using a
capacity factor greater than one allows for a buffer when token distribution is uneven.
However, increasing the capacity factor can lead to higher inter-device communication
costs, presenting a trade-off. Notably, Switch Transformers perform effectively at low
capacity factors (1–1.25).[37]

Expert Specialization

The authors observed that encoder experts tend to specialize in specific groups of to-
kens or surface-level concepts. Conversely, decoder experts display less specialization.
Furthermore, in multilingual training settings, the mechanisms of token routing and load
balancing ensure that no single expert specializes exclusively in a particular language.[37]

33

Chapter 3

Vision Language Models

In this chapter we are going deep dive into different state-of-the-art Vision Language
Models, their architecture and different approaches to solve multimodal problems, in this
case, for only two modalities: images and text.

3.1 PaliGemma

On their paper, called ”PaliGemma: A versatile 3B VLM for transfer”, Beyer, et al.
(2024) proposed the architecture of PaliGemma, [7] a versatile 3-billion-parameter Vision-
Language Model (VLM), is designed to integrate a vision encoder (SigLIP-So400m) with
a language model (Gemma-2B) in a unified framework that efficiently handles a diverse
range of vision-language tasks. Below is a detailed, formal description of its architecture:

3.1.1 Model Components

Vision Encoder: SigLIP-So400m

PaliGemma employs the SigLIP-So400m [43] as its vision encoder. The SigLIP (Sig-
moid Language-Image Pretraining) model is a ”shape-optimized” Vision Transformer
(ViT-So400m) with approximately 400 million parameters. The encoder was pre-trained
contrastively on a large-scale dataset using a sigmoid-based objective function, which
enables it to learn high-quality visual representations despite its relatively compact size.
The output of the SigLIP encoder consists of a sequence of visual tokens that capture
the essential features of the input image.

Language Model: Gemma-2B

The language modeling component of PaliGemma is the Gemma-2B model [39], an au-
toregressive, decoder-only Transformer model with 2 billion parameters. The Gemma-2B
is a part of the Gemma family of models, which are designed for high-efficiency gen-
eration tasks. The Gemma-2B model is initialized with a publicly available pretrained
checkpoint, which has been optimized to strike a balance between model size and perfor-
mance. This component is responsible for generating textual outputs, such as captions
or answers, in response to the input provided by the vision encoder.

34

Linear Projection Layer

To integrate the outputs from the SigLIP image encoder with the inputs of the Gemma-2B
language model, PaliGemma utilizes a linear projection layer. This linear transformation
maps the output tokens from the SigLIP encoder into the same embedding space as the
tokens processed by the Gemma-2B model. Early empirical investigations demonstrated
that more complex transformations, such as Multi-Layer Perceptrons (MLPs), did not
offer significant performance gains, making the linear layer a preferred choice for simplicity
and computational efficiency.

3.1.2 Input-Output Processing and Masking Strategy

Input Formatting

PaliGemma is designed to handle multimodal input in the form of one or more images
accompanied by a textual prompt describing the task (e.g., a question or a directive for
captioning). The model follows an ”image+text to text” processing paradigm, where
the output is generated as a coherent text string that serves as the model’s response or
prediction.

Prefix Language Modeling (Prefix-LM) Masking

PaliGemma employs a Prefix-LM masking strategy to facilitate its multimodal processing
capabilities. Under this masking scheme, the image tokens and the text prefix tokens
(i.e., the prompt) are fully visible to each other through bidirectional attention. In
contrast, the output tokens (i.e., the suffix) are autoregressively masked, enforcing a
causal dependency that is typical in autoregressive language models. This design allows
the image tokens to attend to the task-specific text prefix, enhancing their ability to
adapt their representations dynamically based on the task context. The suffix, or the
output sequence, is generated autoregressively.

Tokenization and Concatenation

The image is encoded into a sequence of visual tokens (denoted as Nimg) by the SigLIP
encoder. Concurrently, the input text is tokenized into a sequence of text tokens (Ntxt)
using the SentencePiece tokenizer specific to the Gemma model. These tokens are con-
catenated to form a unified input sequence for the model in the following format:

tokens = [image tokens . . . ,BOS, prefix tokens . . . , SEP, suffix tokens . . . ,EOS,PAD . . .]

where BOS denotes the ”beginning of sentence,” SEP is a separator token, EOS
marks the ”end of sentence,” and PAD represents padding tokens used to maintain
consistent input lengths.

3.1.3 Pretraining and Transfer Framework

Pretraining Stages

PaliGemma’s training process is structured into multiple stages to optimize its perfor-
mance across various vision-language tasks:

35

• Stage 0: Unimodal Pretraining

– The unimodal components (SigLIP and Gemma-2B) are pretrained individ-
ually on image and text tasks, respectively, leveraging their specific training
checkpoints to capture domain-specific knowledge efficiently.

• Stage 1: Multimodal Pretraining

– This stage integrates the vision and language components into a single model,
training them jointly on a mixture of multimodal tasks. The focus here is on
aligning the modalities and enabling the model to learn to associate visual and
textual representations effectively.

• Stage 2: Resolution Enhancement

– In this stage, the model undergoes continued training at higher image res-
olutions, enhancing its capability to process higher-resolution images. This
step is critical for tasks that require detailed visual understanding, such as
fine-grained object detection or text recognition in images.

• Stage 3: Task-Specific Transfer

– The final stage involves fine-tuning the pretrained model for specific down-
stream tasks (e.g., COCO Captioning, Remote Sensing VQA, etc.). This fine-
tuning leverages a unified transfer recipe with minimal hyperparameter tuning
to demonstrate the model’s adaptability across a broad range of tasks.

3.1.4 Design Rationale and Key Features

Simplicity and Computational Efficiency

PaliGemma prioritizes simplicity in its architectural design to minimize unnecessary com-
plexity and computational overhead. For example, the choice of a linear projection layer
over more sophisticated alternatives ensures that the model remains efficient while re-
taining competitive performance across tasks.

Versatility and Adaptability

The model is built as a versatile base that can be adapted to a wide array of vision-
language tasks through minimal fine-tuning. This is achieved through a carefully designed
multimodal pretraining strategy that maximizes the model’s generalization capabilities.

3.1.5 Contrastive Vision Encoder

As mentioned before, PaliGemma utilizes a contrastive vision encoder known as SigLIP
(Sigmoid Language-Image Pretraining) [43] for its vision component. Specifically, the
model incorporates the ”shape-optimized” ViT-So400m, a Vision Transformer that has
been pretrained using a contrastive learning paradigm at a large scale, leveraging a
sigmoid-based loss function. The purpose of this contrastive pretraining is to enable
the encoder to learn visual representations by effectively distinguishing between match-
ing and non-matching pairs of images and their corresponding text descriptions.

36

Mechanism of the Contrastive Vision Encoder

Contrastive Pretraining: The SigLIP encoder is trained with a contrastive learning
objective. This objective entails maximizing the similarity between representations of
matching image-text pairs while minimizing the similarity between representations of
non-matching pairs. By doing so, the encoder learns to associate images with their
correct textual descriptions while discriminating against incorrect associations. This is
typically achieved through the use of a large-scale dataset comprising diverse image-text
pairs, which enables the encoder to learn robust and generalizable visual representations.

Use of Sigmoid Loss: A sigmoid-based loss function is employed during the con-
trastive pretraining phase. This loss function is designed to facilitate the learning of
fine-grained distinctions between similar-looking images and their associated textual de-
scriptions. The sigmoid loss is particularly well-suited for binary classification tasks,
such as determining whether a given image and text pair match or do not match, thus
supporting the contrastive learning objective effectively.

Implementation in PaliGemma

In PaliGemma, the SigLIP-So400m serves as the vision encoder, and its pretrained
weights, obtained through contrastive learning, are leveraged directly. The encoder out-
puts a sequence of visual tokens, which are subsequently linearly projected into the same
embedding dimension as the input tokens for the Gemma-2B language model. This
architectural design allows PaliGemma to integrate visual features extracted by the con-
trastive vision encoder seamlessly with the language model, facilitating a wide range of
vision-language tasks.

Figure 3.1: PaliGemma Architecture

3.1.6 Linear Connector

PaliGemma employs a linear connector to map the output embeddings from the SigLIP
vision encoder to the input space of the Gemma language model. This linear connector

37

serves as a transformation layer that projects the output tokens generated by the SigLIP
encoder into the same embedding dimension as the input tokens processed by the Gemma-
2B language model.

Connector Design

The linear connector is implemented as a matrix that transforms the visual modality
embeddings from the SigLIP encoder into a format compatible with the input embeddings
of the Gemma-2B model. This design ensures that the embeddings from both modalities
(visual and textual) are aligned within the same vector space.

The choice of using a linear connector was based on a comparative analysis with more
complex alternatives, such as a Multi-Layer Perceptron (MLP) with a hidden layer and
GeLU activation function. Empirical evaluations from the team at Google, demonstrated
that the linear connector achieves comparable performance to the MLP in scenarios where
all model weights were tuned, as well as in cases where only the connector was tuned.
Consequently, the simpler linear layer was selected due to its computational efficiency
and minimal impact on performance.

Integration into PaliGemma

Within the PaliGemma architecture, the output from the SigLIP encoder is first converted
into a sequence of visual tokens, denoted asNimg. These tokens are then projected through
the linear connector into the same embedding dimensionality as the token embeddings
utilized by the Gemma-2B language model.

This linear projection is a critical step that enables the concatenation of visual tokens
with the textual tokens produced by the Gemma-2B model’s tokenizer. After alignment
through this projection, the combined sequence of tokens—comprising both image and
text tokens—can be processed by the Gemma-2B decoder component, facilitating a vari-
ety of multimodal tasks.

Model Name Dataset/Task Score in Transferred Task
paligemma-3b-ft-
vqav2-448

Diagram Understanding 85.64 Accuracy on VQAV2

paligemma-3b-ft-
cococap-448

COCO Captions 144.6 CIDEr

paligemma-3b-ft-
science-qa-448

Science Question Answering 95.93 Accuracy on ScienceQA
Img subset with no CoT

paligemma-3b-ft-
refcoco-seg-896

Understanding References to
Specific Objects in Images

76.94 Mean IoU on refcoco;
72.18 Mean IoU on refcoco+;
72.22 Mean IoU on refcocog

paligemma-3b-ft-rsvqa-
hr-224

Remote Sensing Visual Ques-
tion Answering

92.61 Accuracy on test; 90.58
Accuracy on test2

Table 3.1: PaliGemma performance across various tasks

38

3.2 LLaVA

The architecture of LLaVA (Large Language and Vision Assistant) is designed to enable
a general-purpose multimodal model that follows language-image instructions effectively.
The model integrates a visual encoder with a large language model (LLM) to create a
unified system capable of handling tasks that require both visual and linguistic under-
standing.

3.2.1 Overall Architecture

LLaVA combines the capabilities of a pre-trained visual encoder with a language decoder
to achieve multimodal instruction-following abilities. The architecture comprises three
main components:

• Visual Encoder: Utilizes the CLIP (Contrastive Language-Image Pre-training)
model’s visual encoder (specifically, the ViT-L/14 variant) to extract visual features
from input images. The CLIP visual encoder, pre-trained on large-scale image-text
pairs, provides a set of high-dimensional visual feature representations.

• Projection Layer: A linear transformation layer maps the visual features ob-
tained from the CLIP encoder to the input space of the language model. This
transformation ensures compatibility between the visual embeddings and the token
embeddings expected by the language model.

• Language Model (Vicuna): Leverages Vicuna, a fine-tuned open-source large
language model, as the language decoder. Vicuna is chosen for its state-of-the-art
instruction-following performance on language tasks. The visual tokens from the
projection layer are fed into Vicuna, allowing it to process both visual and linguistic
inputs in a unified manner.

3.2.2 Detailed Component Description

Visual Encoder The visual encoder in LLaVA is the ViT-L/14 variant of CLIP, which
transforms input images Xv into a set of visual features Zv. The visual encoder processes
images through a series of Transformer layers, generating a grid of visual tokens that cap-
ture both global and local image properties. For the instruction-following tasks, LLaVA
uses the visual features extracted either from the grid tokens before the last Transformer
layer or from the final Transformer output.

Projection Layer To align the visual features Zv with the input token space of the
language model, a simple linear projection layer is employed. This layer is parameterized
by a trainable weight matrix W that maps the visual feature vectors into the same
dimensionality as the word embeddings of the language model:

Hv = W · Zv
where Hv represents the projected visual tokens that are now compatible with the

Vicuna language model’s embedding space. This lightweight projection design allows for
rapid iteration and tuning of data-centric experiments.

39

Language Model (Vicuna) Vicuna is employed as the core language model, providing
state-of-the-art capabilities in understanding and generating human-like text responses.
After the visual features are mapped into the language embedding space via the projection
layer, they are concatenated with the text input tokens, forming a multimodal sequence
that Vicuna can process. This sequence is treated as an end-to-end input for the LLM,
allowing it to generate contextually relevant outputs based on both visual and textual
information.

3.2.3 Training Procedure

LLaVA is trained using a two-stage instruction-tuning process:

Stage 1: Pre-training for Feature Alignment In the first stage, LLaVA is pre-
trained to align the visual features with the language model’s token embeddings. A
large-scale image-text dataset (CC3M) is filtered to obtain 595K image-text pairs, which
are then converted to an instruction-following format. During this stage, the weights of
both the visual encoder and the language model are kept frozen, and only the projection
layer is trained. The model learns to align visual representations with the pre-trained
language model’s word embeddings, effectively creating a visual tokenizer compatible
with the LLM.

Stage 2: Fine-tuning End-to-End In the second stage, LLaVA undergoes fine-
tuning on a diverse dataset of 158K multimodal instruction-following samples, which in-
clude conversations, detailed descriptions, and complex reasoning tasks. The fine-tuning
process updates both the projection layer and the language model weights, while keep-
ing the visual encoder weights frozen. This stage enables the model to learn nuanced
multimodal reasoning, instruction-following, and contextual understanding capabilities.

3.2.4 Output Format and Loss Function

The training process is designed to predict a sequence of responses given both the visual
and text inputs. The input sequence for training comprises alternating ”Human” and
”Assistant” tokens, with each token corresponding to either an instruction (from the
human) or a response (from the assistant). The loss is computed using an auto-regressive
objective, where the model is trained to maximize the likelihood of generating the correct
response tokens:

p(Xa|Xv, Xinstruct) =
L∏
i=1

pθ(xi|Xv, Xinstruct, < i,Xa, < i)

where Xa represents the assistant’s responses, Xv represents the visual input, Xinstruct

denotes the instructions, and θ represents the trainable parameters.

3.2.5 Performance and Evaluation

LLaVA demonstrates robust performance on multiple multimodal tasks, including a new
state-of-the-art accuracy on the ScienceQA benchmark. The model is also evaluated on
two custom benchmarks, LLaVA-Bench (COCO) and LLaVA-Bench (In-the-Wild), to

40

assess its multimodal instruction-following capabilities. Quantitative evaluations show
that LLaVA performs significantly better than other models such as BLIP-2 and Open-
Flamingo in various visual understanding tasks.

3.3 Phi-3 Vision

The Phi-3.5-Vision model is a multimodal language model designed by Microsoft [1], that
can handle both image and text inputs, allowing it to generate textual outputs based on
this combination. The architecture of Phi-3.5-Vision comprises two main components:

• Image Encoder: This is a modified version of the CLIP ViT-L/14 (Visual Trans-
former), which is responsible for processing visual information. The image encoder
converts images into a series of visual tokens that can be combined with text to-
kens. This transformation allows the model to handle visual data similarly to how
it handles text data.

• Transformer Decoder: The text component of the model is based on the Phi-3.5-
mini transformer decoder. The decoder processes the interleaved visual and text
tokens, allowing the model to understand the relationship between the text and the
images.

3.3.1 Image Encoder: CLIP ViT-L/14

The image encoder in Phi-3.5-Vision is a modified version of the CLIP (Contrastive
Language-Image Pretraining) ViT-L/14 [35]. This image encoder consists on:

• Visual Tokenization: The CLIP model takes an input image and transforms it
into a sequence of visual tokens. This is accomplished by first dividing the image
into smaller patches (e.g., 16x16 pixels), which are then linearly projected into
embedding vectors. Each of these vectors represents a ”token” in the context of the
transformer model.

• Vision Transformer (ViT) Backbone: The visual tokens are processed through
a Vision Transformer (ViT) architecture, specifically the ViT-L/14 [12], which is
known for its robust image classification capabilities. The ViT consists of multiple
layers of self-attention mechanisms and feed-forward networks. The attention layers
allow the model to learn complex relationships between different parts of the image,
capturing both local and global features effectively.

• Dynamic Cropping Strategy: Phi-3.5-Vision employs a dynamic cropping strat-
egy to handle images of varying resolutions and aspect ratios. This strategy divides
the input image into a 2D array of blocks (smaller sub-images) and treats each
block as a separate token, concatenating them to represent the entire image. This
method ensures that all parts of the image are covered while maintaining compu-
tational efficiency.

• Multi-Image Handling: For tasks that involve multiple images, the encoder
processes each image separately and concatenates their corresponding visual tokens.
This concatenation occurs in the input layer, allowing the model to handle multiple
images as a single input sequence.

41

3.3.2 Transformer Decoder: Phi-3.5-Mini

The Transformer Decoder in Phi-3.5-Vision is adapted from the Phi-3.5-mini archi-
tecture, a compact but powerful language model designed to process text efficiently.

• Decoder-Only Architecture: The model uses a decoder-only transformer archi-
tecture, meaning it focuses solely on generating output based on the input tokens
it receives. This architecture is particularly well-suited for text generation tasks,
where the model needs to predict the next word or token in a sequence. In the
context of Phi-3.5-Vision, the decoder processes a mix of visual and text tokens.

• Interleaved Token Processing: The decoder processes tokens from both image
and text inputs in an interleaved manner, without a fixed order. This interleaved
approach allows the model to dynamically understand and generate responses based
on both types of data. For example, if given an image with accompanying text, the
model can reason about the visual content in conjunction with the textual context
provided.

3.3.3 Multimodal Integration Strategy

The architecture of Phi-3.5-Vision relies on several advanced techniques to effectively
integrate visual and textual data:

• Token Embeddings and Positional Encoding: Both visual and text tokens are
embedded into a shared high-dimensional space. Positional encoding is added to
these embeddings to provide the model with information about the order of tokens.
This is critical in ensuring that the model can distinguish between different parts
of an image or text, allowing for a coherent understanding of the input sequence.

• Cross-Attention Layers: To enhance multimodal reasoning, Phi-3.5-Vision in-
corporates cross-attention layers where textual tokens attend to visual tokens and
vice versa. This bidirectional attention mechanism allows the model to jointly
reason about the text and images, making connections between descriptions and
corresponding visual elements.

• Layer Normalization and Residual Connections: The model employs layer
normalization and residual connections within its transformer layers to stabilize
training and enhance performance. Layer normalization helps mitigate issues such
as vanishing or exploding gradients, while residual connections enable better gra-
dient flow during backpropagation, which is essential for training deep networks.

3.3.4 Training and Optimization

• Pre-Training: The model undergoes a pre-training phase where it is trained on a
diverse dataset that includes image-text pairs, interleaved image-text documents,
and synthetic data (such as OCR outputs). During this phase, the model learns
to predict the next token based on a combination of text and visual context. Only
text tokens contribute to the loss function during this phase, with image tokens
being used to enhance the contextual understanding of the text.

42

• Supervised Fine-Tuning (SFT): After pre-training, the model undergoes super-
vised fine-tuning on specific multimodal datasets. This phase involves training the
model to perform well on various tasks, such as visual question answering, docu-
ment understanding, chart interpretation, and multi-image comparison. The data
for SFT includes curated multimodal datasets that cover a wide range of domains
and tasks.

• Direct Preference Optimization (DPO): In the DPO stage, the model is fur-
ther refined using feedback from human evaluators and other optimization tech-
niques to align its outputs with user preferences. This step helps the model learn
to generate responses that are not only correct but also contextually appropriate
and aligned with human expectations.

3.3.5 Safety and Alignment Features

• Safety Post-Training: Phi-3.5-Vision integrates a rigorous safety alignment pro-
cess during both the SFT and DPO stages. This includes training on datasets
that focus on minimizing harmful outputs, reducing biases, and ensuring that the
model’s responses adhere to ethical AI standards. The safety post-training data
includes various harm categories identified in both public and internal benchmarks.

• Red Teaming and Iterative Improvement: The model undergoes continuous
evaluation by a dedicated team that attempts to identify and mitigate any safety
or bias issues. This iterative process helps refine the model further by addressing
newly discovered weaknesses or potential risks.

3.4 LLaVA-OneVision

Explain LlaVa One Vision LLaVA-OneVision is a family of open large multimodal mod-
els (LMMs) designed to enable versatile visual task transfer across multiple modalities,
including single-image, multi-image, and video scenarios. [25] The model consolidates
insights from previous iterations in the LLaVA (Large Vision-and-Language Assistant)
series [27], advancing the performance boundaries of open LMMs in a wide range of
computer vision tasks.

3.4.1 Core Concept of LLaVA-OneVision

• Unified Multimodal Learning: LLaVA-OneVision aims to function as a general-
purpose vision-and-language assistant capable of executing a diverse set of visual
tasks. Unlike existing LMMs, which are often tailored to specific scenarios (e.g.,
single-image or video tasks), LLaVA-OneVision is designed to perform effectively
across multiple scenarios within a single model. This unified approach enables
effective knowledge transfer between different types of visual tasks, facilitating new
capabilities to emerge.

• Cost-Efficient Design: The model is constructed utilizing a cost-efficient method-
ology that integrates robust pre-trained models with optimized data representa-
tions. Building upon the capabilities of preceding LLaVA models, such as LLaVA-
1.5 and LLaVA-NeXT, LLaVA-OneVision employs strategies like AnyRes to process

43

high-resolution images and leverages a meticulously curated set of high-quality in-
structional data to achieve state-of-the-art performance.

• Task Transfer Across Modalities: A distinctive attribute of LLaVA-OneVision
is its capacity to perform task transfer across different visual modalities. Although
trained primarily on image data, the model is capable of understanding videos by in-
terpreting them as sequences of images. This zero-shot modality transfer capability
is facilitated by the model’s design, enabling it to generalize knowledge from static
images to dynamic video content without necessitating specialized, video-specific
training.

3.4.2 Architecture of LLaVA-OneVision

LLaVA-OneVision’s architecture is characterized by its minimalist design, which focuses
on leveraging the pre-trained capabilities of both a large language model (LLM) and a
vision encoder while enabling robust scaling in terms of both data and model complexity.

• Large Language Model (LLM): The LLM employed in LLaVA-OneVision is
Qwen-2 [42], chosen for its strong language processing capabilities and its avail-
ability in multiple model sizes. The LLM processes language instructions and in-
tegrates them with visual features. The language model is parameterized by fϕ(·),
where ϕ represents the parameters of the LLM.

• Vision Encoder: LLaVA-OneVision utilizes SigLIP [43] as its vision encoder, a
state-of-the-art model for visual information encoding. The vision encoder, denoted
as gψ(·), takes an input image Xv and transforms it into a visual feature represen-
tation Zv = g(Xv). The model considers both grid features before and after the
final Transformer layer to capture comprehensive visual information from the input
image.

• Projector Module: A 2-layer Multi-Layer Perceptron (MLP) serves as a Pro-
jector module, denoted by pθ(·), which maps the visual features from the vision
encoder into the word embedding space of the LLM. This module generates a se-
quence of visual tokens Hv = p(Zv) that can be processed by the LLM. The pro-
jector is essential for aligning visual and textual information, enabling the model
to handle multimodal data effectively.

• Visual Representation Strategy (AnyRes): The AnyRes Strategy is em-
ployed to efficiently manage visual input representations. This strategy divides
input images into smaller crops and adjusts the number of tokens, allowing the
model to process images of varying resolutions. Visual representations are adapted
based on the scenario: individual image crops for single-image tasks, individual
images for multi-image tasks, and frames for video tasks. This flexible approach
supports generalization across different visual modalities.

• Training and Scaling: The architecture is designed for scalable training and
efficient adaptation to increasing data and model size. The training process is
organized into stages: aligning visual features with the language model, high-quality
knowledge learning, and visual instruction tuning across different modalities.

44

Figure 3.2: LLaVa One Vision Architecture

3.4.3 Emerging Capabilities and Task Transfer

LLaVA-OneVision’s architecture facilitates several key emerging capabilities:

• Zero-Shot Transfer: The model demonstrates the ability to transfer knowledge
learned from one visual modality (such as images) to another (such as videos)
without requiring additional task-specific training, achieving strong zero-shot per-
formance.

• Cross-Scenario Understanding: LLaVA-OneVision is optimized to perform well
across single-image, multi-image, and video tasks, making it suitable for a variety
of computer vision applications.

• Open Source and Scalability: The model and its components have been released
as open source, enabling further development and refinement by the research and
open-source communities.

3.4.4 Training LLaVA-OneVision

The training approach for LLaVA-OneVision is detailed in three main stages, following
a curriculum learning principle that progressively increases the complexity of training
objectives and examples:

Training Stages of LLaVA-OneVision

• Stage-1: Language-Image Alignment The primary goal in this stage is to align
visual features with the word embedding space of the Large Language Model (LLM).
This alignment ensures that the model can effectively integrate visual and textual
information. The model uses a base image representation with 729 tokens, and only
the projector module is updated during this stage. The learning rate for the vision
encoder is set to be five times smaller than for the LLM.

45

• Stage-1.5: High-Quality Knowledge Learning This intermediate stage aims
to inject high-quality knowledge into the model while balancing compute efficiency.
The training configuration in this stage mirrors that of Stage-2 to ensure consis-
tency. The purpose is to integrate new knowledge seamlessly, preparing the model
for more complex tasks in the subsequent stage.

• Stage-2: Visual Instruction Tuning In this final stage, the model learns to
solve a diverse set of visual tasks by training on various instruction datasets. This
stage involves two phases:

– Single-Image Training: The model is first trained on approximately 3.2
million single-image instructions. This phase develops the model’s ability to
follow diverse instructions for visual tasks using single images.

– OneVision Training: The model is subsequently trained on a mixture of
video, single-image, and multi-image data. This phase expands the model’s
capabilities beyond single-image scenarios, allowing it to perform tasks in var-
ious visual modalities. It also enables the transfer of learned knowledge across
different scenarios, leading to new emergent capabilities.

Throughout these stages, the maximum image resolution and the number of visual
tokens gradually increase. The model begins with a base representation of 729 tokens
and, by Stage-3, uses the AnyRes strategy, allowing up to 5 or 10 times more visual
tokens. The training strategy is designed to maximize performance while maintaining a
cost-efficient compute budget.

Training Strategies and Configurations The training of LLaVA-OneVision uses a
staged approach with specific configurations for each stage, focusing on optimizing the
alignment of visual and language representations and enhancing the model’s multimodal
capabilities.

Configuration for Each Training Stage

• Vision Representation:

– In Stage-1, the base image resolution is set at 384 pixels, with a maximum of
729 tokens. Only the projector module is trainable during this stage.

– In Stage-1.5, the resolution is increased, allowing multiple crops and varied
configurations such as 384 × {2 × 2, 1 × {2, 3}, {2, 3} × 1}. The number of
visual tokens can go up to 5 times the base amount. The full model becomes
trainable, aligning with the high-quality knowledge learning objective.

– In Stage-2, the resolution is further increased to handle more complex visual
tasks with configurations such as 384 × {1 × 1, . . . , 6 × 6}, and the number of
visual tokens may reach up to 10 times the base amount, depending on the
visual scenario. Both single-image and multi-modal data (multi-image and
video) are used in this stage, allowing the model to generalize across various
tasks and visual scenarios.

• Data Usage:

46

– In Stage-1, the model is trained on an initial dataset of approximately 558,000
samples of image data, focusing on aligning the visual representation with the
language model.

– Stage-1.5 utilizes around 4 million samples of high-quality knowledge data to
refine the model’s understanding, enhancing its multimodal capabilities.

– Stage-2 leverages a combination of 3.2 million single-image data samples and
1.6 million samples from mixed sources (including multi-image and video data)
to develop and fine-tune the model’s ability to handle diverse visual scenarios.

• Model Training Specifics:

– The training is organized to progressively increase the complexity of visual
inputs and the corresponding tasks. For instance, in the early stages, only
the projector module is updated to achieve initial language-visual alignment.
As training progresses, the entire model is fine-tuned to enhance multimodal
understanding.

– The learning rate (LR) is carefully adjusted across different components, with
a lower LR for the vision encoder (LR : ψvision = 2 × 10−6) compared to the
language model and projector (LR : {θproj, ϕLLM} = 1 × 10−5) in later stages,
ensuring stable convergence and effective learning.

• Batch Size and Epochs:

– The model is trained with varying batch sizes, set at 512 for the smaller (0.5B)
model and 256 for larger models (7B and 72B) to balance memory consumption
and compute efficiency.

– The training process is carried out over a single epoch for each stage, focusing
on efficient use of compute resources and incremental learning through staged
objectives.

Performance Evaluation

The effectiveness of the training strategy is validated through standardized evaluations
across multiple benchmarks, including single-image, multi-image, and video scenarios.
The model’s performance is measured against other state-of-the-art LMMs (such as GPT-
4V, GPT-4o, and Gemini) on various tasks like chart understanding, document analysis,
visual chat, and real-world understanding. LLaVA-OneVision demonstrates competitive
or superior performance across most benchmarks, indicating that its training approach
effectively integrates multimodal capabilities across diverse tasks.

This structured approach to training, coupled with the strategic use of high-quality
data and scalable model configurations, allows LLaVA-OneVision to perform well across
a range of visual modalities, making it a robust tool for general-purpose visual under-
standing.

47

3.5 Challenges Building Multimodal Model Archi-

tectures

When building multimodal models a few challenges can be found. Some of the most
relevant are: Data Scarcity, Representation, Alignment, Co-Learning, Translation and
Fusion. [33]

3.5.1 Data Gathering and Scarcity

Collecting multimodal data, which involves acquiring data from multiple sources or
modalities (such as text, audio, images, and video), is a significant challenge in mul-
timodal machine learning. Unlike unimodal data, which is often abundantly available,
multimodal data is relatively scarce due to the complexities involved in data acquisition,
synchronization, and storage. Each modality may require different sensors or equipment,
specialized processing, and significant manual effort to ensure proper alignment and qual-
ity.

Additionally, many publicly available datasets do not cover all required modalities or
may lack the necessary granularity and diversity for robust model training. This scarcity
makes it difficult to build large-scale datasets that are diverse and representative enough
to train effective multimodal models. To address these issues, researchers often need to
curate and annotate datasets manually or rely on synthetic data generation, which can
introduce its own set of challenges and limitations. As a result, the scarcity of multimodal
data remains a fundamental barrier to the advancement of multimodal machine learning.

3.5.2 Representation

Multimodal representation involves encoding data from multiple modalities into a vector
or tensor format. High-quality representations that capture the semantic information of
raw data are crucial for the effectiveness of machine learning models. However, extract-
ing features from heterogeneous data while leveraging the synergies between different
modalities is a challenging task. It is also essential to fully utilize the complementary
information across modalities while minimizing attention to redundant information. [34]

Multimodal representations can be categorized into two types:
1. Joint representation: Each modality is encoded and then combined into a shared

high-dimensional space. This direct approach is often effective when the modalities have
a similar nature.

2. Coordinated representation: Each modality is encoded separately, but their
representations are coordinated by applying a constraint. For example, one such con-
straint might require their linear projections to be maximally correlated:

(u∗, v∗) = arg max
u,v

(uTX, vTY)

where X and Y represent the input modalities, (uT , vT) are matrices that transform
the input modalities into a representation space, and (u∗, v∗) are the optimal representa-
tion matrices that transfer inputs to a common representation space after imposing the
constraint.

48

3.5.3 Alignment

Alignment is the process of ensuring that data from different modalities are synchro-
nized in time, space, or other relevant dimensions. Misalignment between modalities can
result in inconsistent or incomplete representations, which can negatively affect model
performance.

Alignment can be particularly challenging when the modalities are collected at differ-
ent times or from different sources. For example, in video analysis, aligning audio with
visual information can be difficult due to delays in data acquisition. Similarly, in speech
recognition, aligning audio with its transcription can be challenging due to varying speech
rates, accents, and background noise.

Several techniques have been developed to address alignment challenges in multimodal
machine learning models. For instance, temporal alignment methods help align data over
time by estimating time offsets between modalities. Spatial alignment methods align
data in space by finding corresponding points or features in different modalities.

Deep learning techniques, such as attention mechanisms, can also be used to auto-
matically align data during the model training process. Each alignment technique has its
strengths and limitations, so the choice of method depends on the specific problem and
the data characteristics.

3.5.4 Co-learning

Co-learning involves learning from multiple modalities simultaneously to improve model
performance. It leverages the correlations and dependencies between different modalities
to create a more robust and accurate representation of the underlying data.

Designing models for co-learning is challenging, as they must handle the heterogeneity
and variability of data from different modalities while identifying the relevant information
that can be shared. Co-learning can also result in negative transfer, where learning from
one modality negatively affects model performance on another modality.

To tackle co-learning challenges, several techniques have been proposed. One approach
is joint representation learning, such as deep canonical correlation analysis (DCCA) or
cross-modal deep metric learning (CDML), which aims to capture correlations between
modalities. Another method is using attention mechanisms that dynamically allocate
model resources to the most informative modalities or features.

Co-learning remains an active area of research in multimodal machine learning, with
many open challenges, such as handling missing modalities or incorporating prior knowl-
edge into the learning process.

3.5.5 Translation

Translation involves converting data from one modality or language to another, such as
translating speech to text, text to speech, or images to text.

Multimodal machine learning models that require translation must account for dif-
ferences in structure, syntax, and semantics between the source and target languages
or modalities. They must also handle variability in the input data, such as accents or
dialects, and adapt to context.

Several approaches address the translation challenge in multimodal models. Neural
machine translation (NMT) models have proven successful in translating text between

49

languages and can also translate speech to text or vice versa by training on paired audio-
text data. Another approach is to use multimodal models that learn to map data from
one modality to another, such as image-to-text or speech-to-text translation.

Translating between modalities or languages is challenging. The performance of trans-
lation models depends heavily on the quality and size of the training data, the complexity
of the task, and the availability of computing resources.

3.5.6 Fusion

Fusion involves combining information from different modalities to make a decision or
prediction. There are various fusion methods, including early fusion, late fusion, and
hybrid fusion.

Early fusion combines raw data from different modalities at the input level. This
approach requires aligning and pre-processing data, which can be challenging due to
differences in formats, resolutions, and sizes.

Late fusion processes each modality separately and combines the outputs at a later
stage. This approach can be more robust to differences in data formats and modalities,
but it may also result in the loss of important information.

Hybrid fusion combines both early and late fusion methods, fusing some modalities
at the input level and others at a later stage.

Choosing the right fusion method is crucial for the success of a multimodal machine
learning model. The fusion technique should be tailored to the specific problem and data
characteristics, designed to preserve the most relevant information from each modality,
and avoid introducing noise or irrelevant information.

50

Chapter 4

Speech to Text models

Automatic Speech Recogntion (ASR) is a task on the field of Natural Language Process-
ing that consists on the real-time computanional transcription of spoken language. Since
the 1950s, ASR has been at the forefront of research in human-computer interfaces. In
recent years, the emergence of personal artificial intelligence assistants such as Siri, Alexa,
and Cortana has significantly elevated the importance of ASR, leading to unprecedented
advancements in the field.[22]

ASR can be described as: given an input of audio samples X from a recorded speech
signal, apply a function f to map it to a sequence of wordsW that represent thre transcript
of what was said.

This field focuses on the processing of sequential audio data for the production of
word sequences. Numerous models have been developed for this task. These models
must be robust to variations in speakers, acoustic environments, and contextual factors.
Human speech can exhibit any combination of temporal variations (such as speaking
rate), articulation, pronunciation, volume, and vocal characteristics (e.g., raspy or nasal
qualities) while still producing the same transcript.

From a linguistic perspective, additional variables such as prosody (e.g., rising into-
nation when asking a question), mannerisms, and spontaneous speech elements known as
filler words can imply different emotions or connotations, even when the same words are
spoken. When these linguistic variables are combined with environmental factors—such
as audio quality, microphone distance, background noise, reverberation, and echo—the
complexity of the recognition task increases exponentially.

4.1 Whisper: Overview and Functionality

Whisper is a state-of-the-art large-scale speech recognition system developed by OpenAI[36]
that leverages weak supervision to enhance robustness and generalization across diverse
audio datasets. The model is designed to predict transcripts of audio directly from a
broad and diverse dataset gathered from the internet, consisting of 680,000 hours of mul-
tilingual and multitask audio supervision, including speech recognition and translation
tasks. The primary goal of Whisper is to provide a reliable ”out of the box” speech
recognition solution that does not require fine-tuning for different datasets, making it
highly versatile across multiple domains and languages.

51

4.1.1 Model Architecture and Training:

Whisper employs an encoder-decoder Transformer architecture, which has been widely
validated for its scalability and effectiveness in sequence-to-sequence learning tasks. The
encoder processes an 80-channel log-magnitude Mel-spectrogram representation of the
audio, while the decoder generates text outputs conditioned on the audio input. Whisper
is trained on various speech processing tasks using a shared multitask format, allowing
the model to handle transcription, translation, language identification, and voice activity
detection within a single framework. The model is pre-trained on a web-scale dataset
and does not require additional self-supervised learning or fine-tuning techniques.

4.1.2 Data and Preprocessing:

Whisper is trained on a diverse set of audio data collected from the internet, which
includes transcripts in multiple languages. The dataset encompasses a wide range of audio
types, environments, and speaker variations. To ensure the quality of the training data,
Whisper incorporates several automated filtering methods to exclude machine-generated
transcripts and non-human-like text patterns. Furthermore, an audio language detector
is employed to ensure that the spoken language matches the transcript’s language. The
model handles audio in 30-second segments and is trained to predict the raw text of
transcripts without significant standardization, relying on the model’s expressiveness to
map between utterances and their transcriptions.

4.1.3 Multilingual and Multitask Training:

Whisper is trained on a multitask format that integrates several speech-related tasks
within a single model, including multilingual transcription, speech translation, spoken
language identification, and voice activity detection. This unified training approach al-
lows Whisper to generalize well across different tasks and datasets, achieving state-of-
the-art performance in several multilingual speech recognition benchmarks. The model’s
performance improves with the scale of training data, suggesting that weakly supervised
pre-training at a large scale has been underappreciated in speech recognition research.

52

Figure 4.1: Whisper Architecture

4.2 Performance of Previous Work before Whisper

4.2.1 Wav2Vec 2.0 and Unsupervised Pre-training:

The development of unsupervised pre-training techniques, such as Wav2Vec 2.0 (Baevski
et al., 2020) [4], has significantly advanced progress in speech recognition. These methods
learn from raw audio data without needing human-provided labels, allowing them to
leverage extensive datasets of unlabeled speech. For instance, they have scaled up to using
1,000,000 hours of training data (Zhang et al., 2021), a dramatic increase compared to
the approximately 1,000 hours typically used in academic supervised datasets. (Section
1: Introduction)

4.2.2 Comparison with Supervised Baselines:

On its paper (Radfor et al.,2022)[36], the Whisper model achieves a Word Error Rate
(WER) of 2.5% on the LibriSpeech clean-test set, a performance comparable to the best
supervised baselines or the state of the art from mid-2019. However, Whisper’s zero-
shot models exhibit much greater robustness across different datasets, outperforming all
benchmarked models trained on LibriSpeech by a substantial margin.

53

4.2.3 Human Performance and Claims of Superhuman Accu-
racy:

In 2015, Deep Speech 2 (Amodei et al., 2015) [2] reported that their system had reached
human-level performance on the LibriSpeech test-clean split, and suggested that further
improvements on clean read speech without domain-specific adaptation were unlikely.
However, seven years later, the state-of-the-art WER on the LibriSpeech test-clean set
decreased further by 73%, from 5.3% to 1.4% (Zhang et al., 2021) [44], significantly below
the human error rate of 5.8% they had reported.

4.3 Performance of Whisper

The Whisper model demonstrates significant improvements over previous state-of-the-
art methods in several key areas of speech recognition and translation. Its performance
is particularly notable in terms of zero-shot generalization, robustness, and handling of
multilingual and multitask scenarios, as outlined below:

4.3.1 Advancements Over Wav2Vec 2.0 and Unsupervised Pre-
training

While unsupervised pre-training techniques, such as Wav2Vec 2.0 (Baevski et al., 2020)
[4], have marked a substantial step forward by learning from raw audio data without
requiring labeled datasets, Whisper’s approach extends these advancements by incorpo-
rating large-scale weak supervision. Unlike Wav2Vec 2.0, which relies on unsupervised
learning from 1,000,000 hours of unlabeled speech, Whisper achieves robust performance
by utilizing 680,000 hours of labeled audio in a weakly supervised setting. This allows
Whisper to generalize effectively to various standard benchmarks without the need for
fine-tuning, contrasting with the requirement of Wav2Vec 2.0 for additional fine-tuning
to achieve optimal results

4.3.2 Improved Robustness Compared to Supervised Baselines

Whisper achieves a Word Error Rate (WER) of 2.5% on the LibriSpeech clean-test set, a
performance comparable to that of the best supervised baselines from mid-2019. However,
its true advancement lies in its effective robustness across multiple datasets. Whisper’s
zero-shot models significantly outperform all benchmarked models trained on LibriSpeech,
including those utilizing supervised learning, by a wide margin in out-of-distribution
evaluations. For instance, the best zero-shot Whisper models demonstrate an average
relative error reduction of 55.2% compared to a supervised LibriSpeech model with similar
in-distribution performance, highlighting Whisper’s superior generalization capabilities
without requiring dataset-specific fine-tuning

4.3.3 Challenging the Claims of Superhuman Accuracy in Speech
Recognition

The Whisper model also recontextualizes claims of superhuman accuracy in speech recog-
nition. For example, Deep Speech 2 (Amodei et al., 2015) [2] had previously reported

54

achieving human-level performance on the LibriSpeech test-clean split. However, Whis-
per’s performance demonstrates that earlier estimates of human-level error were signif-
icantly overestimated. Whisper models, trained on a diverse dataset and evaluated in
a zero-shot setting, match or even surpass human-level performance in robustness and
accuracy across various datasets, unlike previous models that were trained and evaluated
predominantly within a narrow distribution

4.3.4 Superior Performance in Translation Tasks

Whisper sets a new state-of-the-art performance in translation tasks, particularly for
X→en translation. It achieves a BLEU score of 29.1 in zero-shot settings without utiliz-
ing any CoVoST2 training data, surpassing the previous best models, such as mSLAM,
by 6.7 BLEU points. This superior performance can be attributed to the large amount of
translation data (68,000 hours) used in Whisper’s pre-training, which, despite being nois-
ier than the CoVoST2 dataset, offers a substantial increase in scale. Whisper’s strength in
low-resource settings underscores its ability to leverage vast amounts of data effectively,
demonstrating improved performance where previous models showed limitations

55

Chapter 5

VISMAID

5.1 Problem Definition

With the rapid development in the field of Deep Learning and with all the technologies
previously mentioned throughout this work, the use of state-of-the-art models has become
increasingly affordable. Additionally, the computing power available to an individual is
increasing year by year in the form of a mobile device.

Considering this state of greater democratization of technology, new applications for
these models and technological developments can begin to be discussed. In this context,
the proposal is to create a system to help people with visual impairments, using audio,
vision, and language models within a data pipeline, where the user communicates via a
voice interface to request a description of what the camera of a mobile device detects,
then use what the user said as a prompt to a Vision Language Model small enough to be
executed on limited hardware, such as a mobile device, then take the response from this
VLM and run a Text-To-Speech model so the user receive feedback in the form of audio
in natural language.

Using this approach, each visual impaired person can have a solution without needing
to pay for use it, since it all will work on its own device. However this can have many
challenges, such as using a lot of the battery, working with high latency due to each
device being different.

5.2 System Architecture

The proposed solution for this problem has been called ”VISMAID”, for Visual Impair-
ment Support through Multimodal AI-driven Description, given that the main task is
ambiguous, some time the final user might want a short answer, in that case a fine-tuned
model on the task of Visual Question Answering is the right choice, or just want to know
what is the system seeing, where the task of Image Captioning is much more related to
that.

The entire pipeline from the solution is the following:

56

Figure 5.1: Proposed VISMAID Pipeline

5.3 Implementation

In this scenario, the user interface is designed to be as straightforward as a camera-like
application. The app allows users to capture an image with a simple command and then
record audio using the device’s built-in microphone. This audio is sent to the Whisper
model, which transcribes it into text. The resulting text becomes the prompt for a
Vision-Language Model (VLM). Simultaneously, the captured image is also sent to the
VLM, which uses both inputs—the image and the text prompt—to perform inference.
After processing, the VLM generates an output in text form, which is then converted
into speech.

For the speech-to-text conversion, various models could be utilized, but the free tier
of the ElevenLabs API is a practical solution for this task. This approach makes use of
a widely accessible tool, allowing efficient and cost-effective transcription.

To integrate these models into a mobile application, frameworks like ONNX (Open
Neural Network Exchange) can be used to export and optimize the models for inference
on mobile devices. Alternatively, models from HuggingFace can be exported to PyTorch
Mobile, which helps reduce their size and optimize them for efficient mobile inference.

The recommended models for this application include the Whisper small model for Au-
tomatic Speech Recognition (ASR), the LLaVA One Vision 0.5B as the Vision-Language
Model, and the ElevenLabs API for speech synthesis. This combination provides a
balanced solution, ensuring the app performs effectively while being resource-efficient.
Additionally, these choices facilitate a seamless user experience, where the app quickly
responds to commands and processes inputs in real-time, even on devices with limited
computational power.

57

5.3.1 Fine tuning

Several fine-tuned adapters were developed to handle different tasks that the system
may need to perform. Two PaliGemma Adapters were created using LoRa and QLoRa
techniques for tasks such as Visual Question Answering (VQA) and Image Captioning.
Additionally, another family of models, the Phi 3 Vision models, were fine-tuned for these
same tasks.

The datasets used for this fine-tuning process were VQA v2 [17] for Visual Question
Answering and COCO [26] for Image Captioning. However, due to the large size of these
datasets and the goal of maintaining model compactness, only 10% of each dataset was
utilized for the fine-tuning process. This approach strikes a balance between achieving
task-specific performance and keeping the model size manageable for efficient deployment
and usage in various environments. By using a smaller subset of data, the models remain
lightweight and capable of running on devices with limited computational resources, while
still retaining enough data to generalize well for these specific tasks.

5.3.2 Mobile Application

The strategy of creating a mobile application allows more people to engage with these
models through a user-friendly and familiar interface, like those found on mobile devices
such as iPhones, iPads, tablets, and smartphones. This approach not only makes ad-
vanced technology accessible to a wider audience but also significantly reduces costs. By
leveraging the computational power already available on the user’s device, the need to
rent expensive GPUs and servers from a cloud provider is eliminated. This method not
only cuts down on infrastructure expenses but also enhances the efficiency and respon-
siveness of the application, offering users a seamless experience without the delays that
often come with cloud-based processing. Furthermore, mobile applications can operate
offline, providing uninterrupted access to features and functionalities even in areas with
limited or no internet connectivity. This makes the application more versatile and useful
in a broader range of environments and situations.

5.3.3 Flutter for multi platform development

Flutter is an ideal choice for building mobile apps that incorporate deep learning models
due to its cross-platform capabilities, seamless performance, and ease of integration with
machine learning frameworks.

Firstly, Flutter enables developers to create a single base of code that runs efficiently
on both iOS and Android, significantly reducing development time and cost. This is
particularly valuable for apps utilizing deep learning models, which often require complex
algorithms and substantial computational resources.

Flutter’s use of the Dart language, combined with its highly optimized rendering
engine, ensures smooth, high-performance apps even when dealing with resource-intensive
tasks like real-time image processing or natural language understanding. Furthermore,
Flutter provides access to native APIs, allowing developers to leverage device-specific
features such as hardware acceleration or platform-specific optimizations to run deep
learning models more efficiently.

Additionally, Flutter integrates well with popular deep learning frameworks such as
TensorFlow Lite and PyTorch Mobile. Other options to build the solution are Swift and

58

Kotlin, that allows to develop mobile apps natively, Swift for building iOS apps and
Kotlin for Android apps.

59

Chapter 6

Evaluation and Results

Since the objective of this work is not to develop new models or adapters but to create
an ensemble solution capable of handling different modalities, the evaluation focused
on three main criteria: the computational resources required to run these models, their
licensing for distribution, and their compatibility with mobile devices.

The goal was to assess how efficiently these models could be integrated into a sin-
gle solution that can operate across various input types while minimizing computational
demands. This involved analyzing the processing power needed to run the models effec-
tively on mobile devices, ensuring they operate smoothly without overloading the device’s
resources. Additionally, the licensing terms of each model were reviewed to confirm they
could be legally distributed and deployed within the application. Compatibility with
mobile platforms was also a crucial factor, ensuring that the models could be easily
adapted and optimized for mobile environments to provide a seamless and accessible user
experience.

Overall, the evaluation emphasized creating a practical, multi-modal solution that
balances performance, legal compliance, and device compatibility, rather than developing
new machine-learning models from scratch.

6.1 PaliGemma

PaliGemma can be utilized directly via the HuggingFace library, making it accessible
and straightforward to implement for various tasks such as Visual Question Answering,
Image Captioning, and Object Detection. However, it does come with certain limitations
due to its licensing terms. Despite being a relatively small model with around 3 billion
parameters, PaliGemma still requires approximately 8 GB of VRAM to be fully loaded,
necessitating the use of quantization techniques to reduce memory consumption and make
it more practical for deployment on devices with limited resources.

One significant drawback of PaliGemma is that its licensing makes it challenging
to export the model into a single file format, such as ONNX, which is often preferred
for optimizing models for deployment across different platforms, especially edge devices.
The restrictive license complicates model portability, limiting the flexibility to adapt and
optimize it further outside the HuggingFace ecosystem. This constraint makes it harder to
integrate the model into customized environments where compatibility and optimization
are crucial, despite its solid performance across various computer vision tasks.

60

6.2 LlaVa One Vision 0.5B

Running the LLaVA One Vision 0.5B model requires only 2GB of VRAM in an envi-
ronment like Google Colab, making it relatively lightweight and accessible for various
use cases. When paired with Qwen2 as its Language Model, this combination allows
the model to be exported into an ONNX file format, which is ideal for optimization and
deployment on different platforms, including mobile devices. In terms of performance,
this setup delivers satisfactory results for tasks such as Visual Question Answering and
Image Captioning.

However, the primary limitation of this model is its restricted multilingual capabili-
ties. Qwen2 was trained primarily on datasets in English and Chinese, which means its
effectiveness is significantly reduced when handling tasks in other languages. This limita-
tion poses challenges for applications requiring broad multilingual support, as the model’s
language comprehension is confined to these two languages. While it performs adequately
in its trained languages, expanding its multilingual capabilities would require additional
training on diverse datasets to enhance its versatility and applicability in global contexts.

6.3 Phi 3.5 Vision

Although Phi 3.5 Vision is considered a small model, it requires a substantial amount
of VRAM when loaded into the environment without any quantization techniques. This
high memory consumption poses a challenge, especially for devices with limited resources
or when trying to optimize for cost-effective deployment.

One of the key challenges with Phi 3.5 Vision is the way it handles images, as they
need to be tokenized in a specific manner for the model to process them correctly. This
tokenization process can be complex and resource-intensive, which can further impact
the model’s performance and usability.

However, this issue can be addressed by implementing an efficient data processing
pipeline. Such a pipeline would streamline the tokenization of images before they are
fed into the model, optimizing the input data for faster and more efficient processing.
This approach would help mitigate the VRAM requirements by pre-processing images
in a way that aligns with the model’s needs, making Phi 3.5 Vision more viable for
use in environments with limited computational resources. Additionally, the pipeline can
include techniques like batching, caching, and optimizing data formats, further enhancing
the model’s performance and reducing memory usage.

6.4 PaliGemma Quantizied Fine-tuned

To minimize the number of parameters and reduce VRAM usage in the PaliGemma model,
an adapter was developed using QLoRa for the tasks of Visual Question Answering (VQA)
and Image Captioning. This adapter was fine-tuned over two epochs using just 10% of
the original dataset, which resulted in a total training time of around 6 hours.

While this approach successfully decreased the computational footprint of the model,
making it more suitable for environments with limited resources, it also resulted in some
performance trade-offs. The model’s ability to handle image captioning tasks became
more constrained, and it lost some of its original capabilities in generating detailed and

61

nuanced image descriptions. This narrower performance range reflects the trade-off be-
tween optimizing the model for lower resource usage and retaining its comprehensive
functionality across different tasks.

Despite the reduction in capabilities for image captioning, this approach still offers
a practical solution for applications that prioritize resource efficiency while maintaining
acceptable performance in key tasks like Visual Question Answering.

6.5 Phi 3.5 Vision MoE

This model specializes in different tasks but requires significantly more VRAM, making
it a resource-intensive solution. Despite this drawback, it offers the best approach to
achieving a relatively small model with high precision across multiple tasks. The model
uses a ”Mixture of Experts” strategy, incorporating three specialized experts: one fine-
tuned for Visual Question Answering, another for Image Captioning, and the general Phi
3.5 Vision Instruct model to handle a broader range of tasks.

Running this Mixture of Experts model without any quantization requires 24 GB of
VRAM, highlighting the substantial memory demands. However, this setup allows the
model to deliver high accuracy and task-specific performance by leveraging the strengths
of each specialized expert. This makes it an excellent choice for applications where
precision is a priority, and adequate computational resources are available. The use of
specialized experts ensures that the model maintains strong performance across varied
tasks, from generating detailed image captions to providing accurate answers to visual
questions, while still keeping the overall model size relatively manageable.

6.6 LlaVa One Vision 0.5B with Machine Translation

By integrating the MarianMT model, a neural machine translation model, into the work-
flow, we can enhance both the prompt’s quality and the response generated by a smaller
model like LLaVA One Vision. This approach effectively addresses the primary weakness
of LLaVA One Vision—its limited multilingual capabilities—by translating inputs and
outputs into the desired language.

Using MarianMT ensures that the translation process is accurate and contextually
relevant, enabling the LLaVA One Vision model to perform better across different lan-
guages, thus broadening its applicability. The key advantage here is that MarianMT, like
LLaVA One Vision and other models used in this setup, is relatively small and lightweight.
This makes it suitable for deployment on edge devices such as smartphones or tablets,
where computational resources are limited.

By employing MarianMT alongside LLaVA One Vision and Whisper small, the sys-
tem can maintain a compact footprint while providing robust multilingual support and
improving the overall coherence and relevance of its outputs. This combination allows
for a more versatile application that can operate efficiently on mobile devices, enhancing
both usability and accessibility across various languages and contexts.

This is the final model running in the mobile application.
To provide a quantitative evaluation, we use specific metrics derived from three main

criteria: computational resources required, licensing and distribution, and compatibility
with mobile devices. These metrics are normalized to a scale from 0 to 10. The evaluation
method is as follows:

62

6.7 Evaluation Method

• Computational Resources Required (Score A):

– Metric: VRAM required (in GB) for running the models.

– Formula:

A = 10 ×
(

1 − VRAM Required (GB)

Max VRAM (GB)

)
The maximum VRAM considered here is 24 GB (as Phi 3.5 Vision MoE re-
quires 24 GB).

• Licensing and Distribution (Score B):

– Metric: Licensing openness and restrictions.

– Scale:

∗ Fully Open Source: 3

∗ No Commercial Use: 2

∗ Restrictive License: 1

∗ Private: 0 (None of the models mentioned are private)

• Compatibility with Mobile Devices (Score C):

– Metric: Model size, quantization capability, multilingual support, and opti-
mization for mobile.

– Scale:

∗ Fully Compatible and Optimized: 3

∗ Moderate Compatibility, Some Optimization Needed: 2

∗ Low Compatibility, High Resource Usage or Major Optimization Needed:
1

• Spanish Precision (Score D):

– Metric: Performance of the model on visual question answering and image
captioning when the prompt is in Spanish.

– Scale:

∗ Poor: 0-1

∗ Fair: 2-3

∗ Good: 4-5

6.7.1 Quantitative Scores for Each Model

Based on the provided criteria, the scores for each model are calculated as follows:

63

Model VRAM
Re-
quired
(GB)

LicensingMobile
Com-
patibil-
ity

Spanish
Pre-
cision
(0-5)

Score
A

Score
B

Score
C

Score
D

PaliGemma 8 1 2 4 6.67 1 2 4
LLaVA One
Vision 0.5B

2 3 3 1 9.17 3 3 1

Phi 3.5 Vision 8 3 2 4 6.67 3 2 4
PaliGemma
Quantized
Fine-tuned

4 1 2 3 8.33 1 2 3

Phi 3.5 Vision
MoE

24 3 1 5 0 3 1 5

LLaVA One
Vision 0.5B
with Machine
Translation

2 3 3 4 9.17 3 3 4

Table 6.1: Quantitative Scores for Each Model Based on Evaluation Criteria

6.7.2 Final Score Calculation

The final score for each model is calculated as the weighted average of the four scores:

Final Score = 0.35 × A+ 0.25 ×B + 0.25 × C + 0.15 ×D

where the weights (0.35 for computational resources, 0.25 for licensing, 0.25 for com-
patibility, and 0.15 for Spanish precision) reflect the relative importance of each criterion,
emphasizing computational efficiency slightly more while also considering licensing, com-
patibility, and language support.

6.7.3 Final Scores

Model Score A Score B Score C Score D Final
Score

PaliGemma 6.67 1 2 4 4.00
LLaVA One Vision
0.5B

9.17 3 3 1 6.42

Phi 3.5 Vision 6.67 3 2 4 5.42
PaliGemma Quan-
tized Fine-tuned

8.33 1 2 3 4.78

Phi 3.5 Vision MoE 0 3 1 5 2.10
LLaVA One Vision
0.5B with Machine
Translation

9.17 3 3 4 7.17

Table 6.2: Final Scores for Each Model Based on Weighted Evaluation Criteria

64

Based on the evaluations, the LLaVA One Vision 0.5B with Machine Transla-
tion model achieves the highest score (9.13), reflecting its high compatibility with mobile
devices, ease of licensing, and low computational resource requirements. The LLaVA
One Vision 0.5B model is also a strong contender with a score of 8.17, performing well
across all criteria but with slightly lower compatibility due to limited multilingual capa-
bilities. The Phi 3.5 Vision MoE model scores the lowest (3.00) due to its high VRAM
requirements, making it unsuitable for mobile or resource-constrained environments.

65

Chapter 7

Conclusions and future work

Throughout this work, we have examined the state of the art in multimodal deep learning,
a rapidly evolving field that still requires substantial exploration to develop more gener-
alist and versatile models. The ”VISMAID” project demonstrated that state-of-the-art
models can be effectively utilized to address a wide range of tasks by applying multi-
modal models, all while keeping costs significantly lower than traditional approaches.
Our findings confirm that these models can be deployed efficiently on widely accessible
devices, such as smartphones and tablets, creating a significant opportunity to develop
inclusive technologies for marginalized communities, in this case focused on those with
visual impairments.

Our approach in this project involved an ensemble system composed of multiple spe-
cialized models, each focused on a specific task, such as image recognition, audio pro-
cessing, or text analysis. This strategy harnessed the unique strengths of each model
to achieve high performance across different modalities. However, recent advancements,
such as the introduction of OpenAI’s GPT-4o, have brought about a paradigm shift.
GPT-4o is an end-to-end model that claims the capability to process audio, video, and
text within a single unified framework, unlike its predecessors, like GPT-4, which relied
on a combination of separate models to handle different data types.

This new approach, referred to as ”omnimodal” modeling, represents the next logical
step in advancing multimodal deep learning, and for this work. The aim is to develop
a truly integrated, end-to-end system that can seamlessly handle diverse inputs—audio,
images, and text—within a single model. The potential benefits of omnimodal mod-
els are substantial, promising to enhance the efficiency, accuracy, and flexibility of AI
applications by consolidating multiple functionalities into one model, thereby reducing
complexity, resource usage, and deployment costs. The shift towards developing omni-
modal models marks a transformative moment in the field. Such advancements could lead
to significant breakthroughs in areas such as accessibility, assistive technologies, and more
sophisticated human-computer interactions. These models could revolutionize the way
AI systems engage with users by offering seamless, real-time understanding and response
to diverse forms of communication, ultimately making AI more inclusive and effective in
supporting diverse user needs.

In conclusion, while the current ensemble approach demonstrates the feasibility of
applying multimodal AI at a lower cost and with accessible technology, the future lies in
the development of omnimodal models. These models could provide a more unified and
efficient solution, paving the way for innovative applications that are both inclusive and
widely deployable across different contexts and communities.

66

Chapter 8

Sustainable Development Goals

APPENDIX

SUSTAINABLE DEVELOPMENT GOALS

Degree to which the work relates to the Sustainable Development Goals (SDGs).

Sustainable development goals High Medium Low Not Applicable
SDG 1. No poverty. X
SDG 2. Zero hunger. X
SDG 3. Good health and well-
being.

X

SDG 4. Quality education. X
SDG 5. Gender equality. X
SDG 6. Clean water and sanita-
tion.

X

SDG 7. Affordable and clean en-
ergy

X

SDG 8. Decent work and economic
growth.

X

SDG 9. Industry, Innovation and
Infrastructure.

X

SDG 10. Reduced Inequality. X
SDG 11. Sustainable cities and
communities.

X

SDG 12. Responsible consumption
and production.

X

SDG 13. Climate action. X
SDG 14. Life below water. X
SDG 15. Life on land X
SDG 16. Peace and justice strong
institutions.

X

SDG 17. Partnerships to achieve
the goal.

X

67

Consideration of how this master’s thesis aligns with the Sustainable Development
Goals (SDGs) and identifies the most relevant SDG(s).

Based on the proposed system to help people with visual impairments using audio,
vision, and language models within a data pipeline on mobile devices, the following United
Nations Sustainable Development Goals (SDGs) and their corresponding targets are met:

SDG 3: Good Health and Well-being

• Target 3.8: Achieve universal health coverage, including financial risk protection,
access to quality essential health-care services, and access to safe, effective, quality,
and affordable essential medicines and vaccines for all.

• Relevance: By providing an accessible and affordable technological solution for
visually impaired individuals, this system contributes to better health and well-
being through improved access to information and navigation capabilities.

SDG 4: Quality Education

• Target 4.5: Eliminate gender disparities in education and ensure equal access to
all levels of education and vocational training for the vulnerable, including persons
with disabilities, indigenous peoples, and children in vulnerable situations.

• Relevance: The proposed system enhances learning opportunities and access to
information for people with visual impairments, thus supporting inclusive education
and equitable access.

SDG 9: Industry, Innovation, and Infrastructure

• Target 9.5: Enhance scientific research, upgrade the technological capabilities of
industrial sectors in all countries, particularly developing countries, including, by
2030, encouraging innovation and substantially increasing the number of research
and development workers per 1 million people and public and private research and
development spending.

• Relevance: The development of a system that uses state-of-the-art deep learning
models on mobile devices promotes innovation, especially in the field of assistive
technologies.

SDG 10: Reduced Inequalities

• Target 10.2: By 2030, empower and promote the social, economic, and political
inclusion of all, irrespective of age, sex, disability, race, ethnicity, origin, religion,
or economic or other status.

68

• Relevance: The system supports social and economic inclusion for people with
visual impairments by enhancing their ability to interact with their environment
independently.

SDG 11: Sustainable Cities and Communities

• Target 11.2: By 2030, provide access to safe, affordable, accessible, and sustain-
able transport systems for all, improving road safety, notably by expanding public
transport, with special attention to the needs of those in vulnerable situations,
women, children, persons with disabilities, and older persons.

• Relevance: The proposed system improves navigation and mobility for visually
impaired individuals, enhancing their access to public and private transport systems
and overall urban mobility.

SDG 12: Responsible Consumption and Production

• Target 12.5: By 2030, substantially reduce waste generation through prevention,
reduction, recycling, and reuse.

• Relevance: The use of existing mobile devices to run advanced models reduces the
need for additional specialized hardware, contributing to the responsible consump-
tion of resources.

SDG 17: Partnerships for the Goals

• Target 17.8: Fully operationalize the technology bank and science, technology,
and innovation capacity-building mechanism for least developed countries by 2017
and enhance the use of enabling technology, in particular information and commu-
nications technology.

• Relevance: The development and dissemination of such technology leverage ICT
to empower visually impaired individuals, potentially in collaboration with various
stakeholders and international organizations.

This project aligns with these SDGs by promoting accessibility, innovation, and in-
clusion, providing a scalable and affordable solution to enhance the independence and
quality of life for people with visual impairments.

69

Bibliography

[1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad
Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl,
Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin
Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun
Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ro-
nen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del
Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Rus-
sell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan
Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi,
Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi
Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan
Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan,
Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel
Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Lil-
iang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang,
Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, An-
drea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang,
Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte,
Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian
Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang,
Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna
Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report:
A highly capable language model locally on your phone, 2024.

[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich
Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Hannun, Billy
Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan
Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta,
Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, and
Zhenyao Zhu. Deep speech 2: End-to-end speech recognition in english and man-
darin, 2015.

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV), December
2015.

70

[4] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec
2.0: A framework for self-supervised learning of speech representations, 2020.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate, 2016.

[6] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal ma-
chine learning: A survey and taxonomy, 2017.

[7] Lucas Beyer*, Andreas Steiner*, André Susano Pinto*, Alexander Kolesnikov*, Xiao
Wang*, Daniel Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschan-
nen, Emanuele Bugliarello, Thomas Unterthiner, Daniel Keysers, Skanda Koppula,
Fangyu Liu, Adam Grycner, Alexey Gritsenko, Neil Houlsby, Manoj Kumar, Keran
Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer, Matko Bošnjak, Xi Chen,
Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic, Joan Puigcerver,
Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut, Jeremiah Harmsen,
and Xiaohua Zhai*. PaliGemma: A versatile 3B VLM for transfer. arXiv preprint
arXiv:2407.07726, 2024.

[8] A. Burkov. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

[9] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using rnn encoder-decoder for statistical machine translation, 2014.

[10] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers
via block-wise quantization, 2022.

[11] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora:
Efficient finetuning of quantized llms, 2023.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale, 2021.

[13] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored repre-
sentations in a deep mixture of experts, 2014.

[14] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity, 2022.

[15] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning, 2017.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[17] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh.
Making the V in VQA matter: Elevating the role of image understanding in Visual
Question Answering. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

71

http://www.deeplearningbook.org

[18] JP Hennessy. What is quantization, Oct 2023.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9:1735–80, 12 1997.

[20] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models, 2021.

[21] Kushal Kafle, Robik Shrestha, and Christopher Kanan. Challenges and prospects in
vision and language research. Frontiers in Artificial Intelligence, 2, 2019.

[22] U. Kamath, J. Liu, and J. Whitaker. Deep Learning for NLP and Speech Recognition.
Springer International Publishing, 2019.

[23] Yann Lecun. Generalization and network design strategies. Elsevier, 1989.

[24] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yan-
ping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling
giant models with conditional computation and automatic sharding, 2020.

[25] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen
Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task
transfer, 2024.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2015.

[27] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction
tuning, 2023.

[28] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-
Hill, 1997.

[29] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,
2022.

[30] Merve Noyan. Introduction to quantization cooked, Aug 2023.

[31] Merve Noyan and Edward Beeching. Vision language models explained, Apr 2024.

[32] Letitia Parcalabescu, Nils Trost, and Anette Frank. What is multimodality?, 2021.

[33] Petru Potrimba. Multimodal models and computer vision: A deep dive, May 2023.

[34] Konstantinos Poulinakis. Multimodal deep learning: Definition, examples, applica-
tions, Dec 2022.

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural lan-
guage supervision, 2021.

72

[36] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. Robust speech recognition via large-scale weak supervision, 2022.

[37] Omar Sanseviero, Lewis Tunstall, Philipp Schmid, Sourab Mangrulkar, Younes
Belkada, and Pedro Cuenca. Mixture of experts explained, 2023.

[38] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer, 2017.

[39] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupati-
raju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette
Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone,
Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai,
Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy,
Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland,
Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane
Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen,
Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Mil-
lican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Miku la,
Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem,
Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma
Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto
Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan,
Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris
Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean,
Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Bar-
ral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek
Andreev, and Kathleen Kenealy. Gemma: Open models based on gemini research
and technology, 2024.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, volume 30, 2017.

[41] Wikipedia. Braille — Wikipedia, the free encyclopedia. http://en.wikipedia.

org/w/index.php?title=Braille&oldid=1240822029, 2024. [Online; accessed 27-
August-2024].

[42] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-
peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei,
Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing

73

http://en.wikipedia.org/w/index.php?title=Braille&oldid=1240822029
http://en.wikipedia.org/w/index.php?title=Braille&oldid=1240822029

Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024.

[43] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss
for language image pre-training, 2023.

[44] Yu Zhang, Daniel S. Park, Wei Han, James Qin, Anmol Gulati, Joel Shor, Aren
Jansen, Yuanzhong Xu, Yanping Huang, Shibo Wang, Zongwei Zhou, Bo Li, Min Ma,
William Chan, Jiahui Yu, Yongqiang Wang, Liangliang Cao, Khe Chai Sim, Bhu-
vana Ramabhadran, Tara N. Sainath, Francoise Beaufays, Zhifeng Chen, Quoc V.
Le, Chung-Cheng Chiu, Ruoming Pang, and Yonghui Wu. Bigssl: Exploring the fron-
tier of large-scale semi-supervised learning for automatic speech recognition. IEEE
Journal of Selected Topics in Signal Processing, 16(6):1519–1532, October 2022.

74

	Acknowledgements
	Introduction
	Motivation

	Theoretical Framework
	Basics
	Supervised Machine Learning
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Transformers

	Multimodality
	Multimodal Deep Learning
	Encoding Sate
	Fusion Stage
	Classification

	Vision Language Models
	Visual Question Answering
	Quantization and Optimization
	Low-Rank Adaptation (LoRA) of Large Language Models
	8-Bit Quantization in Optimizers
	QLoRA: Efficient Fine-Tuning of Quantized LLMs

	Mixture of Experts
	Mixture of Experts on Large Language Models

	Vision Language Models
	PaliGemma
	Model Components
	Input-Output Processing and Masking Strategy
	Pretraining and Transfer Framework
	Design Rationale and Key Features
	Contrastive Vision Encoder
	Linear Connector

	LLaVA
	Overall Architecture
	Detailed Component Description
	Training Procedure
	Output Format and Loss Function
	Performance and Evaluation

	Phi-3 Vision
	Image Encoder: CLIP ViT-L/14
	Transformer Decoder: Phi-3.5-Mini
	Multimodal Integration Strategy
	Training and Optimization
	Safety and Alignment Features

	LLaVA-OneVision
	Core Concept of LLaVA-OneVision
	Architecture of LLaVA-OneVision
	Emerging Capabilities and Task Transfer
	Training LLaVA-OneVision

	Challenges Building Multimodal Model Architectures
	Data Gathering and Scarcity
	Representation
	Alignment
	Co-learning
	Translation
	Fusion

	Speech to Text models
	Whisper: Overview and Functionality
	Model Architecture and Training:
	Data and Preprocessing:
	Multilingual and Multitask Training:

	Performance of Previous Work before Whisper
	Wav2Vec 2.0 and Unsupervised Pre-training:
	Comparison with Supervised Baselines:
	Human Performance and Claims of Superhuman Accuracy:

	Performance of Whisper
	Advancements Over Wav2Vec 2.0 and Unsupervised Pre-training
	Improved Robustness Compared to Supervised Baselines
	Challenging the Claims of Superhuman Accuracy in Speech Recognition
	Superior Performance in Translation Tasks

	VISMAID
	Problem Definition
	System Architecture
	Implementation
	Fine tuning
	Mobile Application
	Flutter for multi platform development

	Evaluation and Results
	PaliGemma
	LlaVa One Vision 0.5B
	Phi 3.5 Vision
	PaliGemma Quantizied Fine-tuned
	Phi 3.5 Vision MoE
	LlaVa One Vision 0.5B with Machine Translation
	Evaluation Method
	Quantitative Scores for Each Model
	Final Score Calculation
	Final Scores

	Conclusions and future work
	Sustainable Development Goals

