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Abstract 
Industry 5.0 is at its dawn, and with it, a new paradigm of the human-machine relationship has 

emerged. This new idea of industry states that humans, sustainability, and resilience should 

be the center of the production goals. This way, society could ensure that it manufactures 

according to human necessities. Industry 4.0 came with a strong development of 

automatization technologies and cyber-physical systems that will enable this change in 

approach. The Digital Twin (DT) falls within this group. DTs open up a new range of 

opportunities, especially regarding the human-centricity central pillar. This technology enables 

sharp modeling of systems, which then can translate into accurate predictions. Thanks to the 

DT application, human behavior, performance, and interaction factors could be better 

understood. As a result, industrial manufacturing can be enhanced, from planning production 

prioritizing the operator’s human nature to increasing human and robot performance by 

establishing close collaboration. This work aims to investigate the current literature, examine 

this technology’s trends within manufacturing and human centricity, and provide a structured 

technology state of the art. 
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1. Introduction  
Rapid technological advancement characterizing the current age is leading to a new 

production paradigm: Industry 5.0. Parting from the intense focus on automation and cyber-

physical systems (CPS) stage defining Industry 4.0, I5.0 aims towards human-centricity, 

sustainability, and resilience. Due to this transition feat's complexity, humanity must rely on 

I4.0 advancements and keep developing them along 5.0 goals. Digital Twin (DT) is one of 

those new advancements. Leveraging several I4.0 technology evolvements, DT involves the 

creation of virtual replicas of physical entities, presenting multiple benefits across industries. 

However, despite its applications, its role in the I5.0 new context and its relationship with 

human-centricity still need to be clarified. 

DT merges the physical world with the digital one. They are a high-fidelity virtual model of a 

physical counterpart enabling real-time communication and correspondence (Bechinie et al., 

2024). By live interchanging and analyzing data between both worlds, DTs can provide 

valuable insights into the analyzed entity's performance and state, whether a product, a 

process, or a system. DTs can accurately simulate, predict, and optimize them thanks to the 

recent improvement of sensors, data analytics, machine learning algorithms, artificial 

intelligence, and computational technologies (Fuller et al., 2020). This capability can translate 

into positive results, such as more efficient operations, better decision-making, and safer 

workplaces. 

I5.0 shifts the focus from productivity to societal goals beyond growth to for a long-term 

sustainable industry. One of its key pillars is human-centricity, which prioritizes human needs 

and interests in industrial production (Xu et al., 2021). The human-centricity pillar underscores 

that humans and machines should work in synergic collaboration. This way, machines capable 

of perceiving human intentions and desires could support human creativity and will 

(Nahavandi, 2019). As a result, with the aid of technologies like cognitive ergonomics and AI 

assistants, Operator 5.0 could be aware of the actual situation, being able to prevent errors, 

be more efficient, and enhance productivity (Palazhchenko et al., 2024). In this context, DTs 

open a new window of possibilities, such as human-machine collaboration systems. Overall, 

DT plays the role of “glue,” combining CPS technologies to implement the I5.0 paradigm 

(Palazhchenko et al., 2024). 

Despite the numerous studies addressing DT applications, a comprehensive framework 

englobing the roles of DT in human-centric manufacturing has not been included in the 

available literature yet. Motivated by this fact, this work aims to explore DT’s multiple roles 

within I5.0’s human-centricity central pillar and provide a structured schema of DTs in 

manufacturing. Firstly, industry state-of-the-art and digital twin definitions and information will 
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be provided to contextualize. Then, a systematic literature review will examine how digital 

twins can enhance human-machine relations, improve workplace safety, and contribute to 

sustainable and more effective industrial practices. Lastly, this project will outline DT’s current 

trends and state-of-the-art and structure and discuss all the findings to provide an 

understanding of the present and future of this technology from a human-centric 

manufacturing perspective. 

1.1 Industry State-of-the-art 

Industrial Manufacturing has had many stages throughout its history, commonly categorized 

as the first, the second, the third, the fourth, and the upcoming fifth industrial revolution. 

It all started in the late 18th century with the first Industrial Revolution, where industrial 

manufacturing was mechanical-based and powered by water and steam. Approximately a 

century later, the second industrial revolution emerged, introducing electricity and the mass 

production concept, exemplified by Henry Ford in the early 20th century (Tomac et al., 2019). 

However, although not human-powered, these machines were generally manually operated 

(C. Liu et al., 2018), and human-machine interaction was not collaborative (Zafar et al., 2024).  

In the 1960s, the third Industrial Revolution brought the development of electronics and 

information technologies. This enabled higher automation and collaboration (Mourtzis et al., 

2022b). Nevertheless, the current fourth industrial revolution’s tools are the ones that will 

facilitate humanity to start achieving real human-machine collaboration. Technologies such as 

Digital Twins, the Internet of Things (IoT), Advanced Data Analytics, Artificial Intelligence, and 

Virtual and Augmented Reality will be the key to human-centric feats such as Human-Machine 

Interaction (HCI) (Zafar et al., 2024). 

 
Figure 1. The Five Industrial Revolutions (Mourtzis et al., 2022b) 
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Industry 4.0 is a technology-centered concept that has enhanced production by establishing 

intelligent interfaces between machines and the physical world: Cyber-physical systems 

(CPS) (Xu et al., 2021). The adoption and development of technologies such as Digital Twins 

(DT), the Internet of Things (IoT), Advanced Data Analytics, and Artificial Intelligence have led 

to unprecedented productivity in all the stages of a product’s life cycle (Opazo-Basáez et al., 

2022; Radanliev et al., 2022). However, I4.0 could have detrimental effects on society in the 

long term due to its lack of focus on sustainability and humankind. This is why (European 

Commission, 2021) emphasizes moving from a profit-focused and technology-centered 

industry to a human-centered one that equally prioritizes sustainability, resilience, and 

profitability. 

I5.0 considers three main pillars: sustainability, resilience, and human-centricity (van Erp et 

al., 2024). The sustainability pillar aims to preserve the planet, requiring a circular economy to 

enhance resource efficiency through reuse, repurposing, and recycling while reducing waste 

and mitigating environmental impact (Ben Youssef & Mejri, 2023). The second priority, 

resilience, is to develop solid industrial production that can withstand disruptions and support 

critical infrastructure during crises (Awouda et al., 2024). The human-centricity pillar states 

that humans should work in conjunction with robots, prioritizing human demands instead of 

the manufacturing process (Adel, 2022). Additionally, while the main focus in Industry 4.0 is 

on automation and other technological advancements, recent studies have highlighted the 

importance of placing the well-being of personnel at the center of manufacturing and utilizing 

digital technologies to achieve sustainable prosperity (Jeong et al., 2023).  Aside from the 

benefits for human life, this human-centered approach presents production advantages such 

as maintaining human flexibility and natural senses (X. Li et al., 2023).  

I5.0’s human-centricity pillar stresses the importance of human skills and knowledge in 

manufacturing. Consequently, it seeks to balance automation and human action by combining 

human creativity and decision-making while leveraging machines’ precision and efficiency 

(Pinto et al., 2023). Moreover, humans' inherent flexibility enables them to perform various 

tasks using different equipment, machines, and environments, leading to highly adaptable 

technology integration capabilities covering some of the drawbacks of automation (Jeong et 

al., 2023). These realities make sense of the human-machine collaboration (HMC) or human-

robot collaboration (HRC) concepts. These propose the collaboration of humans and cobots 

(collaborative robots) within the same workspace (Mourtzis et al., 2022a). The 

abovementioned concepts will be delved into further in this work. 
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1.4 Digital Twins 

Digital Twin (DT) technology is a dynamic simulation or model of physical entities: products, 

processes, or systems (Krupas et al., 2024; Semeraro et al., 2021).  This technology combines 

various interdisciplinary, multi-physical, and multi-scale simulation processes, leveraging data 

from physical models, IoT sensors, and historical operations. It creates a virtual model that 

precisely mirrors and predicts the behavior and condition of its real-world counterpart by using 

the best available physical models, sensor updates, fleet history, etc. (Modoni & Sacco, 2023). 

Digital twinning allows for real-time monitoring of digital entities and operational indicators. 

Using data and AI, it mirrors the natural world, offering feedback to improve the physical realm. 

According to statistics, 85% of IoT-native devices rely on DT for information security. (Lv, 

2023).  

According to (Modoni & Sacco, 2023), the conventional digital twin model encompasses four 

critical elements: the digital model, the enterprise repository, factory telemetry, and the digital 

thread. The first element presents a conceptual asset classification, detailing its components, 

the logical relationships among those components, and a description of their behavior. The 

second is essentially a database that holds all information related to the organization's 

resource management. The third facilitates a two-way synchronization between the real-world 

artifact and its digital version. Lastly, the digital thread acts as the chronological component of 

the twin, documenting the digital twin's development by collecting and preserving real-world 

data.  

 

Figure 2. Data pipelines in the traditional DT concept (Modoni & Sacco, 2023) 
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DT History is relatively short, mainly due to technological limitations before I4.0 (Tao et al., 

2019). The first publication treating DT and its uses was in 2011 (Tuegel et al., 2011). It 

discussed DT applications in aircraft structural life. A year later, NASA defined DT and 

predicted its uses in the aerospace sector (Glaessgen & Stargel, 2012). It was when 

applications to other fields emerged that the DT concept indeed developed. Moreover, the 

actual development of DT technology came hand-in-hand with other technology 

developments, such as IoT and AI (Tao et al., 2019). It is worth noting the crucial role IoT plays 

in DTs, as it contributes the data that DT systems then leverage for creating the dynamic, real-

time models (Awouda et al., 2024). Additionally, IoT’s improvement is contributing greatly to 

DT cost-effectiveness, making it accessible and profitable for many industries (Maddikunta et 

al., 2022). Other technological advancements enabling the useful implementation of DTs are 

edge and cloud computing, collaborative robots, and advanced networking methods such as 

5G and 6G (Hu et al., 2023; Lv, 2023). Thanks to the development of these technologies, DT 

has become more widespread in recent years. As a result, DT technology is understood as an 

enabler of smart manufacturing (Nguyen et al., 2022), with uses such as human-centric 

scheduling (Sit & Lee, 2023) or HRC safety enhancement (Das et al., 2023). 
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2. Literature Review (Prisma, mapping…) 
As previously mentioned, the main goal of this research is to study the role of Digital Twins in 

manufacturing, especially regarding the human-centricity pillar of I5.0, to establish a structured 

state of the art on the matter. Given all the academic documentation currently available, a 

scoping literature review of it is necessary to understand the reach of Digital Twins. Adhered 

to the PRISMA method for ensuring the quality of results, the following literature review will 

delve into Digital Twins’ current and future human-centric applications and their technological 

capabilities and barriers. 

2.1 Research Methodology 

Based on the initial research on I5.0 manufacturing, which was partly exposed in the 

introduction, literature research was started. This review followed an iterative process of 

search criteria definition, eligibility guidelines establishment, search, documentation filtering, 

sample refinement, and analysis of results. All this with the objective of providing a rigorous 

review of the current literature. The first step was selecting the most adequate platform to find 

relevant documentation. Because of its powerful search tool, its wide variety of English 

language literature, and its facilities for academic documentation and citation, Scopus was 

chosen as the best platform. 

This research was performed using the PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analysis) checklist to create a thorough and transparent systematic review 

(’McKenzie & ’Page, 2023). This method aims to aid authors in enhancing their reporting of 

systematic reviews and meta-analyses (Moher et al., 2009).  

2.2 Eligibility Criteria 

The literature eligibility criteria specified in Table 1 have been previously constituted to ensure 

a precise, unequivocal, and concise application. This careful definition pursues that the 

resulting documentation selection is not only relevant but also representative of the topic to 

analyze, simplifying an exhaustive, non-arbitrary, and precise content evaluation. 

 

Eligibility criteria Condition 

Database Scopus 

Language English 



 

 

10 

Publication period 2020-2024 

Search Date June 1st, 2024 

Search within Article title, Abstract, Keywords 

Keywords and synonyms Figure 3: Literature search outline 

Subject area - 

Document type Article, review, conference paper, and book chapter 

Table 1: Literature eligibility criteria 

Due to the abovementioned advantages, the Scopus database, which is part of the publishing 

company Elsevier, was chosen to perform the review. The selection of English as the only 

language in the results was due to the vast existence of academic literature in the language 

and the facility to work in it. As global reviews of the impact of digital twins on human centricity 

have not been done yet, reviews were included in the document type filter to include different 

views on the state of the art. Articles, conference papers, and book chapters were fundamental 

to constructing a formed idea of the topic. Considering the time period, I5.0 was introduced 

around 2020 (European Commission, 2021); Therefore, the recency of the matter to study 

justifies avoiding previously published papers. 

2.3 Collection of Existing Literature 

Regarding the search criteria, the research keywords included were considered critical for the 

correct review development.  These words were: Digital Twin, Industry 5.0, human 
centricity, and manufacturing. Synonyms or acronyms such as “I5.0” were also included in 

the search to ensure that the available literature was complete and pertinent. Digital Twins 

and Human Centricity are the two main study topics related to this thesis. I5.0 englobes 

human-centricity and provides crucial context. Lastly, manufacturing was added to ensure that 

the literature was related to the industrial processes and added insight into Human-Machine 

Collaboration. DT was used to get more documentation relating to Digital Twins, and I5.0 was 

used to maximize the papers containing I5.0 material. As for the terms finished with asterisks, 

these were used to include all the possible words starting with the letters before them. For 

instance, “Human cent*” included “Human centricity” and “Human centered”.  As a result, the 

following search framework (figure 2) was built. 
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Figure 3. Literature search keywords and synonyms 

The search equation was as follows: 

(TITLE-ABS-KEY ("Digital Twin*") OR TITLE-ABS-KEY (“DT”) AND TITLE-ABS-KEY 

("Industry 5.0") OR TITLE-ABS-KEY ("I5.0") OR TITLE-ABS-KEY ("Human-cent*") OR 

TITLE-ABS-KEY ("Human cent*") AND TITLE-ABS-KEY ("Manufactur*") OR TITLE-ABS-

KEY ("Fabricat*)) 

Figure 4. Search equation 
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Figure 4 shows the publications related to the keywords used during the search over the years. 

As mentioned, the study field is relatively young, causing documentation to appear from 2020. 
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Figure 5. Prisma Search Outline 



 

 

13 

 

Figure 6. Number of released papers each year 

This year's publication data have yet to be included as it is approximately half of 2024 when 

this work is being written. However, 52 more publications have been published by June 1st. 

Multiplied by 2, assuming that the year's second half will be similar, is 104. This shows signs 

of Digital Twins and I5.0 being an increasingly popular topic. 

VOSviewer software was utilized to explore and map the link networks between the keywords 

and indexed terms in the Scopus database (Van Eck & Waltman, 2018). The search with the 

keywords above and relations resulted in three main clusters. The first of them englobing AI, 

IoT, cobots, edge computing, and other I5.0-enabling technologies related to DTs. The second 

included fields regarding human-centricity and manufacturing. Lastly, the third main cluster 

included augmented reality, human-robot collaboration, human digital twins, maintenance, and 

other fields related to operator 5.0. 
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Figure 7: Cluster analysis results for the search performed. 

 

As detailed in the PRISMA outline above, of the 159 documentation pieces resulting from the 

search, 113 were discarded. Papers between 2020 and 2024 were included due to the recency 

of the human-centricity, digital twins, and I5.0 topics. Earlier literature was discarded to avoid 

unnecessary information noise. Finalist documentation was selected based on its relevance 

to the research and contribution to understanding digital twins' role in human-centric 

manufacturing processes. After the various literature filtering stages (record screening, 

retrieval, etc.), a total of 46 articles remained. 

Literature content was organized in a Microsoft Excel table to accurately categorize each piece 

of content based on the applications addressed. These topics or categories were explicitly 

selected to accurately reflect literature content, avoid redundancy, and form a structured 

outline valid for posterior content analysis.  The selected categories, which are also the main 

topics addressed by the papers included in the review, are the following: 

The chosen analysis categories were Human-Machine Collaboration (HMC) and Human-

Robot Collaboration (HRC), Human Digital Twin (HDT), and Human-Machine Interfaces (HMI). 

It is worth mentioning that, due to DT’s interdisciplinary nature, some information subsets are 

shared across categories. 
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3. Results 
As mentioned, the purpose of this review is to scope the current research on the possibilities 

DT can contribute to the Human-centricity I5.0 pillar in manufacturing and, then, to provide a 

state-of-the-art in terms of applications, technology, and future implications. This review covers 

the literature published between 2020 and 2024, focusing on DT, I5.0, Human-centricity, and 

Manufacturing. Articles were selected with the abovementioned criteria. 

DTs can be categorized in multiple forms due to the technology’s cross-functional nature. For 

instance, (Mendonça et al., 2023) offer a DT categorization in terms of the capacity to perform 

complex tasks. They distinguish the traditional Digital Twin (DT), the Hybrid Twin (HT), and 

the Cognitive Digital Twin (CDT). From the first to the last, they increase in computational 

capabilities until they are able to sense complex and unpredictable behavior. Despite this 

classification, for simplicity reasons and based on the aforementioned categorization, this 

work will first delve into the DT literature treating HMC as a global topic. Then, the more 

specific subjects are HRC and cobots (collaborative robots), HDT, and DT-based HMI 

systems. Overall, the following sections will provide a detailed synthesis of the findings. 

 

 

Figure 8 Distribution of results 
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3.1 Human-Machine Collaboration 

Before the term I5.0 was created, the idea of HMC (Human-Machine Collaboration) emerged 

as a way to combine human and machine resources for better results. With the rise of I5.0, 

which emphasizes a human-centered perspective, machines will be required to directly work 

with human employees, reducing the physical and mental burden of difficult tasks for humans  

(Krupas et al., 2024). (Lv, 2023) describe the ideal I5.0 manufacturing in which operators and 

robots can cooperate in communication on the same workbench, as partners. This way the 

intrinsically human flexibility, creativity, and decision-making could synergically combine with 

the accuracy and efficiency of machines. 

The Human-in-Loop concept adds to understanding HMC. (Bhattacharya et al., 2023) 

describe as a situation in which the operator operates or monitors the system. This is a 

situation in which a highly automatized process requires the action of a human operator. 

Therefore the Human-in-Loop and the HMC concepts are intrinsically related. 

It is important to differentiate between human-machine interaction (HMI) and human-machine 

collaboration. According to (Krupas et al., 2024), while HMC is focused on synergy and 

combined effort, HMI refers to any situation when humans interact with machines and does 

not necessarily involve collaboration or working on a common goal. 

Overall, HMC is a promising approach. According to (Raffik et al., 2023), over 79% of 

manufacturers in the US are currently using HRC or plan to do so in the near future.  
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3.2 Human-Robot Collaboration Systems and Cobots 

Traditional manual processes are gradually evolving into hybrid systems, integrating humans 

and collaborative robots (cobots). One of the most mentioned uses of the DT technology is 

their applications for Human-robot collaboration (HRC). (Baratta et al., 2023) describes the 

I5.0 ideal HRC situation as that in which the robot is able to adjust its autonomy level 

depending on the operator’s needs, instead of fully autonomous. 

3.2.1 The Cobot Concept 

Cobots, or collaborative robots, are designed to work hand-in-hand with human operators, in 

the same collaborative workstation. Unlike traditional industrial robots, the cobots interact with 

humans through sensors and other technologies, allowing them to notice and respond to 

human presence or movement. They are now employed in material handling, packing, 

assembly, and several other manufacturing processes (Raffik et al., 2023). The recuperation 

of the human worker role intrinsic in I5.0 brings more complex manufacturing application 

scenarios. Hence, Cobots must be able to flexibly adapt to different situations (Xiang et al., 

2024). It is also critical for optimal HRC that operators and cobots work together smoothly, 

supporting each other with no interference to shorten the cycle and improve quality (Montini 

et al., 2023).  

3.2.2 A General HRC Framework 

(Montini et al., 2023) discloses a framework that can help overcome the existing limitations in 

current HRC applications. Being the inclusion of humans one of the main HMC-impeding 

factors, the framework aims to include all the relevant elements needed to increase efficiency 

and productivity while greatening flexibility, workers’ comfort, and safety when working with 

cobots. 
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Figure 9. Framework for HMC systems proposed by (Montini et al., 2023) 

(Montini et al., 2023) also mentioned the necessity of Human Digital Twins (HDT) for optimal 

humanization (including humans in the operations), which will be examined in a further 

chapter.  

Considering the manufacturing space as a whole is necessary to fully enable HRC. That is 

why (Montini et al., 2022) states that, in order to advance DT technology and achieve human-

aware factories, it is necessary to develop DT frameworks englobing physical entities, 

processes, communications, and the DT itself. Consequently, they introduce a HDT reference 

model to make possible the mentioned, englobing all the physical attributes.  

In addition, (Papacharalampopoulos et al., 2023) propose a computer-aided process planning 

(CAPP) in which a global DT or central entity receives and processes data from smaller DTs. 

This setup could help avoid collisions between autonomous mobile robots (AMRs) and 
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workers thanks to IoT wearables with position-tracking capabilities, which will also be 

discussed in further sections. 

 

Figure 10. Global DT system proposed by (Papacharalampopoulos et al., 2023) 

(Sit & Lee, 2023) gives another use to DT in manufacturing systems. They cover low volume 

high mix production optimization. They use a DT to do so. In their model, they study and 

optimize the combination of both human and robot roles. Combining this approach and human 

flexibility could help for a more human-centric manufacturing, with the benefit of enhancing 

mass customization to fully adapt to human customer necessities. 

3.2.3 Cognitive Digital Twin in HRC 

Due to the human-machine coordination criticality, authors in (Mendonça et al., 2023) and 

(Sharma & Gupta, 2024) introduce the Cognitive Digital Twin concept. With the inclusion of AI 

techniques such as machine learning (ML) and deep learning (DL), the DT model can 

dynamically adapt to the environment, resulting in fast analytics, system optimization, and 

prediction of situations. This concept is critical for HMC, as it is critical for the system to 
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continuously improve due to the complex nature of the human-machine relationship. Because 

of this necessity, the idea pf an AI-enabled continuous learning DT will be present along the 

following section. 

Considering the cognitive DT idea, multiple literature pieces propose collaborative 

manufacturing ideas on it. (Das et al., 2023)  introduce a DT architecture that integrates a 

Neuro-Adaptive Controller (NAC) and edge computing technology. On the one hand, the NAC 

allowed advanced robot synchronization with its physical counterpart. On the other hand, edge 

computing enabled obstacle monitoring at the autonomous robot’s workspace, leading the 

robot to an uncertainty-aware safe operation. Through experimentation, (Das et al., 2023) 

demonstrate that human-robot synchronization is achieved with low error. The experimental 

results indicate that NAC outperforms traditional controllers, allowing for more precise 

movements and a safer human-robot coworking space.  

(S. Wang et al., 2024) also gives deep learning capabilities to the robot DT, which could be 

linked to the NAC and edge computing contribution made by (Das et al., 2023). As exposed 

during cognitive DT explanation, this DL approach continuously improves the system. 

Consequently, the system better detects and classifies human and robot movements, 

enhancing safety and reliability. Consisting of a robot DT, the physical system, the robot 

operating system (ROS), and deep learning and data generation layers, a deep learning DT 

framework was proposed by (S. Wang et al., 2024). The learning system could include both 

real and synthetic data, which, combined, created positive synergies regarding precision and 

consistency, as revealed by the performed experiment.  

 

Figure 11. Theoretical framework of using deep learning and Digital Twin techniques for monitoring Cobots (S. 
Wang et al., 2024) 
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For the system’s learning process, (Steed & Kim, 2023) propose DT human-in-loop 

simulations in which the operator participates to improve the process. However, compared to 

the previously mentioned deep learning systems, this approach seems less promising but 

complementary. 

3.2.4 Sensors and Machine Vision Technology 

In order for the DT to receive accurate information and provide the according insights to control 

robots for HRC, advanced sensing technologies such as IoT and AI-enabled Machine Vision 

have been proposed. Sensing technology is a pivotal part of intelligent manufacturing, 

enabling the robot to sense the environment though systems such as DTs and promote the 

development of human-machine integration (Lv, 2023). 

(Borck et al., 2022) adds that smart sensors are critical in DT’s quality consistency due to the 

importance of production data reliability, they propose of IoT-networked sensor systems and 

computer vision systems based on them as the keys for accurate DTs. 

Continuing this trend, (H. Wang et al., 2023) leveraged machine vision technologies into a DT-

based workshop concept which integrated real and virtual data with a certain set of rules to 

identify the workshop unsafe states and realize automatic reasoning of risk level and 

measurement accurately and unambiguously. In their system, workshop DTs were used to 

train the deep learning network in detecting dangerous situations, which could be especially 

useful in HMC situations. 

 

Figure 12. DT-based workshop safety management system using YOLO deep learning model proposed by (H. 
Wang et al., 2023) 
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(Fraga-Lamas et al., 2022) describes a thermal machine vision solution for collaborative 

robotics. Based on edge computing and thermal imaging, it enhances HMC safety, allowing 

for closer coworking, while keeping the DT system cost-effective. 

Other authors such as (Lehmann et al., 2023) describe the physical system-sensor-DT 

information flow. (Awouda et al., 2024) adds DT-IoT frameworks and practical cases. However, 

none were specifically applied to HMC nor parts of it. As a result and seeking this thesis 

conciseness, these studies will not be looked into. 

It is worth noting that part of the system’s sensing could come from extended reality (XR) 

devices wore by the operators coworking with the robots. Section 3.4 will delve further into it. 

Additionally, in section 3.3 more detail on operator detection will be provided. 

3.2.5 DT for Assembly Monitoring and Quality Inspection 

(X. Zhang et al., 2021) unveiled a DT model consisting of 3 modules: A process control module 

controlling multiple robots receiving feedback from sensors, cameras, and the quality 

inspection model. A parallel quality inspection module judging with deep learning whether the 

product qualifies or not the requirements. This last offering a human-monitoring module with 

a 3D DT display. Contributing to the topic, (Thangavel et al., 2024)  proposes a DT-based 

system to assess and predict welding quality in manufacturing. This would aid operators in 

inspecting and preemptive decision-making when HMC. Lastly, (Pang et al., 2023) propose a 

multi-layered digital twin system for verification-oriented, part-focused assembly monitoring. 

An algorithm was used to detect if the goal layer matched the actual entity layer. The 

information was provided to operators through an interface for manual assembly assistance. 

Additionally, (Jeong et al., 2023) describe a set of smart tools that operators can use to 

increase productivity and quality. These smart tools are capable of sending their position to 

the DT and a tool-blocking system to ensure correct assembly. The author describes this use 

in the aircraft assembly process, which is particularly complex, both for the quantity of parts 

involved and the quality needed. Moreover, because of the intricacy of the process, human-

labor flexibility is necessary, demonstrating the importance of human-centered technology 

development. 
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3.3 Human Digital Twins 

Human digital twins (HDT), also known as operator digital twins (ODT) in the context of 

manufacturing, are digital replicas of real humans. They encapsulate crucial information, 

including physical, physiological, and psychological models. Beyond capturing human 

personality and traits, they also encompass human-machine and human-environment 

interactions, providing comprehensive representations. The applications of HDT are diverse, 

spanning from the customization of human-centric prototypes to the enhancement of human-

robot collaboration (B. Wang et al., 2024). 

As (Montini et al., 2023) argue, HDT is an important part of achieving efficient I5.0 HMC. 

However, the variability and inconsistency of human behavior pose a significant challenge 

(Ramírez-Gordillo et al., 2024). (Modoni & Sacco, 2023) states that DT solutions available are 

almost entirely on physical assets and not on human operators, which is a shortcoming of the 

current DT state-of-the-art.  

(Picone et al., 2024) described the minimum capabilities that should describe an ODT in 

manufacturing are: 

Representativeness and 

contextualization: 

Shadowing: Augmentation: 

 

§ The ODT must accurately 

represent its physical 

counterpart within its 

physical context, including 

properties, actions, events, 

and relationships. 

 

§ It is essential for the ODT 

to keep updated. 

§ Achieved by accurately 

mapping and computing 

the critical attributes, 

characteristics, and 

capabilities of the real 

operators in a 

synchronized manner 

(e.g., heart rate and steps).   

§ Continual development of 

insights and deepening of 

analysis.  

§ These new analysis 

capabilities allow 

manufacturers to 

accurately understand the 

physical, cognitive, and 

even emotional states of 

workers, which could have 

a positive impact on the 

well-being and productivity 

of workers.  

Table 2. HDT necessary characteristics  (Picone et al., 2024) 
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Figure 13 Schematic view of the scenario proposed for ODTs (Picone et al., 2024) 

Adding to this, (X. Zhang et al., 2024) defend that to develop a high-quality ODT, it's essential 

to integrate a variety of modeling techniques and to balance its cost and utility. Thus, enabling 

an economically feasible HDT that encapsulates the entire spectrum of human performance. 

Literature found exposes two main Human Digital Twin applications: Human modeling for 

enhancing HMC and human modeling for operator human-centric management. 

3.3.1 Human Digital Twins for Human-Machine Collaboration Enhancement 

Motion recognition 
(Fan et al., 2023) designed an HDT model aimed at improving worker well-being and, 

especially, enhancing safety in HRC. Created and trained with visual RGB-D and 

complimentary depth data, it is able to depict, predict, and visualize human posture, action 

intention, and ergonomic risk in HRC scenarios. In Figure 14, the system’s continuous control 

loop is described.  

 

 

Figure 14. Overview of the HDT-based HRC system proposed by (Fan et al., 2023) 
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(Fan et al., 2023)  then depicted their adaptive motion control strategy involving the following 

steps: 

§ A decision-making step is responsible for selecting robotic action missions, such as 

picking up an object, along with the associated task specifications, such as the pick-

up position. 

§ In this approach, the task assigned to the robot for proactive help is determined by 
predicting the intention behind human actions. 

§ Upon startup, the robot will initially assume the standby state. This state serves as the 

default mode, to which the robot will revert immediately after finishing any other 

actions. 

Additionally (T. Liu et al., 2023) details a 3D human body modelling and recognition system 

which could be also employed in robot’s operator detection. Based on a project to develop 

Aerospace Defense devices on which any careless activity could cause critical harm, this 

method could help monitor tasks for higher safety. Their approach has already shown clear 

advantages in keeping the operators more careful and more responsible. For RGB+D, this 

system features optimally achieve up to 86.62% accuracy. 

 

Figure 15. Frame of human skeleton model by (T. Liu et al., 2023) 

 

(Maruyama et al., 2021) also developed a HDT scoping to improve HMC. Aside from the DT 

interaction modules and a system schema similar to Figure 8, they described the HDT’s 

representation of the operator’s actual body. Consisting of a node layer and link structure 

describing general movement possibilities and a deformable skin surface adding volume to 
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the model. The sensing camera used marker-based optical motion as the sensing submodule, 

where 3D marker positions are captured by multiple cameras arranged in the environment. 

This is an improvement compared to the RGB-D proposed by (Fan et al., 2023), as this type 

of sensor is limited to the worker moving in a limited area, i.e., within the field of view. 

 

Figure 16. General HDT-Based HMC system architecture (Maruyama et al., 2021) 

Following the neural network usage described in section 3.2.3, (Ji et al., 2023) use neural 

networks to represent human body parameters from images. They robust their model by 

feeding the system with partial and augmented data. (Ji et al., 2023) also proposes to construct 

separate DT models of humans and robots, integrating them in a workspace simulation to 

reduce movement prediction inaccuracies. 

Emotion recognition 
It is vital for HMC that robots can recognize human intentions and patterns. (Baratta et al., 

2023) defined a DT-based module for emotion recognition in HRC. Their system would 

examine facial expression, body gesture, and vital parameters through neural networks, 

machine vision, and sensors (temperature, biometric, electroencephalography, etc.). Emotion 

classification modules leveraging ML were proposed. By performing simulations within the DT, 

predictive and corrective can be taken, guaranteeing the maximum physical and cognitive 

ergonomics. The module would work within a DT reflecting the collaboration process. 

Nevertheless, this system presents limitations as the analysis dimensions required are 

significantly numerous and have innumerable degrees of freedom.  
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Figure 17 (Baratta et al., 2023) proposal for emotion recognition. 

3.3.2 Human Digital Twins for a Human-centric Workforce Dynamic Scheduling 

In (Maruyama et al., 2021), they include a dynamic scheduling function in the system to 

prevent human operators from injuries caused by physical overload. The system estimates 

current working progress (calculated with motion analysis of the worker), future working 

progress (predicted based on the worker’s time cycle), and physical strain (computed with 

kinematics/dynamics analysis). This function introduces this section, in which HDT uses for 

scheduling within a human-centric paradigm are discussed.  

The work of (Berti et al., 2023) describes an HDT architecture with a different scheduling 

approach. Focused on avoiding hazardous situations in the workplace and comparing it to the 

predictive maintenance concept, they argue that modeling workers’ posture and habits with a 

DT system can avoid jeopardy to operators’ health. (Zafar et al., 2024) backs this position, 

arguing that HDTs in HMC can notice bad postures, decreasing the risk of operator injury. The 

architecture system (Berti et al., 2023) propose, evaluates fatigue and other risk states in real-

time and modifies the schedule strategy accordingly. 
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Figure 18. HDT architecture designed by (Berti et al., 2023). 

In their architecture, (Berti et al., 2023) describe two modes for responding to risk when task 

rescheduling: 

§ Reactive: The production line manager receives a warning message whenever 

hazardous postures and/or high levels of occupational risk are present in one or more 

workstations. This approach is useful for peak production periods when urgent orders 

do not allow a long-term rescheduling plan. 

§ Proactive: Adopts time-weighted occupational risk grading to monitor, simulate, and 

predict risk levels. 

(Modoni & Sacco, 2023) adds a new dimension to the HDT concept: a Skills Virtual Model 

(SVM). This provides a description of the needed worker skills in order to perform certain 

production stages. Combined with a Digital Factory Model (DFM), it would contribute to 

human-centric operator scheduling.  

Despite the abovementioned benefits for HMC and safety, (Berti et al., 2023) raise concerns 

despite the clearly visible benefits. They argue that, although employee monitoring and 

biomonitoring have been around for a while, they could cause polemic regarding workers’ 

rights, privacy, and trust. Especially in fields such as data protection, with biometric data 

collection probably crashing head-on with data protection regulations. (B. Wang et al., 2024) 

mentions additional HDT challenges. The increasing complexity of algorithms can cause a 
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decrease in decision transparency from a human-centric perspective. Furthermore, as current 

DT systems are not so human-centered, the switch to using HDT can be complex, involving 

changes from technology standardization to resource organization. (Montini et al., 2022) 

agree, adding that HDT must have stricter privacy measures, again, due to the storage of 

operator’s sensitive information. 

Regarding HDT feasibility, (Picone et al., 2024) argue that HDTs can be doable computation-

wise after experimenting with the ODT-IoT interaction. (Fan et al., 2023), is also positive about 

this application’s future, describing the results of their HMC experiments as promising. 

(Maruyama et al., 2021) experimenting proves that movement-wise, it is possible to model 

humans with sufficient accuracy to integrate human and machine effort. However, (Berti et al., 

2023) and (Maruyama et al., 2021) also refer to the technology as potentially being applicable 

to many industries but still in the development phase. Budget and scalability reasons are 

mentioned.  
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3.4 DT-based Human-Machine Interaction Platforms 

I5.0 places a big emphasis on the importance of human-machine interaction (Raffik et al., 

2023). According to (C. Zhang et al., 2023), human-cyber-physical systems (HCPS) with 

reality are able to enhance the sensing and cognition capabilities in humans. In this mission, 

the duo of digital twins and extended reality plays a crucial role. 

According to (Bechinie et al., 2024), developing human-centered assistance systems that are 

adaptable to different expertise levels and, also, able to enhance operator’s capabilities (from 

sensorial and cognitive to physical) is crucial for optimized human-machine system 

performance. 

3.3.1 Extended Reality and Digital Twins 

According to (C. Zhang et al., 2023), DT and extended reality (XR) can help in driving the 

human-cyber-physical fusion. By integrating the physical environment with the physical one, 

this duplet elevates real-world entities with computer-generated information that contributes 

to multi-functional flexible assembly technology (Mincă et al., 2022). (Mourtzis et al., 2022b) 

describe and divide extended reality into the following categories: 

§ Augmented Reality (AR): Combines physical and virtual, interactive in real-time, and 

registered in 3D. 

§ Mixed Reality (MR): Physical and virtual worlds are displayed within the same display. 

Virtual and real objects can be interacted with at the same level, making MR a step 

further than AR. Headsets with an integrated computer, translucent glass, and sensors 

are required in these applications. Microsoft’s HoloLens is an example of these 

headsets. 

§ Virtual Reality (VR): The use of real-time computers to generate a simulation of an 

alternate world or environment. This is the DT world. 

According to (S. Li et al., 2024), manufacturing MR integrates DT models with an AR 

environment. While AR primarily focuses on visually merging objects with the physical world, 

MR goes further by analyzing the physical state of systems, simulating future conditions using 

DT models, and then presenting this simulation information through AR. 

Proposed Architectures and Uses 
Multiple publications propose use cases and frameworks for a synergic combination of DTs 

with XR. The literature resulting from the search will be studied below. 

(C. Li et al., 2023) worked on a DT-XR interactive system contributing to HMC. They state that, 

by wearing AR devices, operators can both monitor the status of the physical robot and the 
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robot’s DT, which would provide a control/planning interface, within their field of view. The DT’s 

display would allow the operator to preview the robot’s motion, lowering the chances of 

collisions and enhancing cognition in safety and control. Moreover, adding safety zone 

indications to the operator’s field of vision could also help the operator to be aware of the 

robot’s operating range and speed, also improving safety. 

Besides safety, (C. Li et al., 2023)  include another use of AR-DT systems: Visual work 

instruction software. This allows workers to receive and analyze stream manufacturing 

information and provides them with suggestions for the optimization of their tasks in terms of 

productivity and quality through MR glasses. 

(Liao & Cai, 2024) design and propose a system for improved human-machine interaction in 

HMC. The proposed system has three layers. 

§ The robot’s DT:  real joint states, trajectories, collisions, sensor data, and other 

physical messages are transmitted to the virtual counterpart, allowing for real-time 

monitoring, visualization, and diagnosis. 

§ Two-way communication channels between the physical and virtual robots. Goal 

positions, limitations, desired joint angles, and some system commands can be sent 

to the physical counterpart. 

§ Human involvement is introduced, and human intelligence is utilized to control and 

optimize the robot’s operation, such as collision avoidance and trajectory optimization 

through the AR interface. 

The framework is composed of three primary components: robot-AR headset communication, 

intuitive interface design, and implemented algorithms (spatial anchor, object recognition and 

tracking, and robot kinematic model). 
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Figure 19. AR-DT integration for enhanced HMC (Liao & Cai, 2024) 

Additionally, (Yang et al., 2022) propose a framework for digital twin-based smart industrial 

facilities, exemplified with a crane. The DT-based framework combines AR with Microsoft 

HoloLens with a dynamic data-driven DT to intermediate and exchange data between the 

physical model and the simulation model. (Kuts et al., 2022) also work on augmenting the 

usual operator-machine interaction by combining DT and virtual reality (VR) technologies 

instead of the usual human-machine interaction with a keyboard and mouse.  

 

Figure 20. Virtual model of the control model prototyping and of the MR actual application with HoloLens 
proposed by (Yang et al., 2022) 

(C. Li et al., 2023) state that robots can use AR devices to better perceive worker information 

and relevant environmental information. This is, using AR headsets as motion/positioning 

sensors for distance-speed control, obstacle avoidance motion planning, protective stops, etc. 

(Papacharalampopoulos et al., 2023) adds that the tracking capabilities of AR glasses can 

prevent dangerous behaviors, support workers in making better decisions that require more 

experience and prevent important errors. Moreover, since a digital twin will be responsible for 

monitoring, storing, and analyzing the aforementioned data, it could be much easier to not 
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overlook an error that caused an accident and to successfully detect the cause of a problem. 

Without the use of wearables, manual data input and inquiry are required, whereas the use of 

wearables enables automated learning and prediction. 

Re(Tu et al., 2023)  presented TwinXR, which is a platform that serves as the foundation for 

DT-XR systems. It is designed to work across various applications (e.g., robotic arms, cranes, 

etc.). As it is applicable to many situations, it improves interoperability across industrial 

machines, DTs, and XR platforms.  

(S. Li et al., 2024) presented an MR-enabled mutual-cognitive HRC architecture consisting of 

ergonomic collaboration in physical spaces, virtual reasoning modules and DTs, and cognitive 

services. 

 

Figure 21. HRC architecture based on MR and DT technologies (S. Li et al., 2024). 

The mutual-cognitive intelligence in Proactive HRC systems stands for empathic 

understanding between human-robot teams. They divide their system in two attending to the 

necessary bi-directional information flow for task cognition: 

• For improved human cognition the proposed MR loop enables active communication 

within the HRC system. The MR system provides the human operation with insights 

and suggestions to enhance their performance. 

• Regarding robot cognition, it interacts with humans in accordance with ergonomic rules 

such as handover position and orientation, improving the overall human wellbeing. 
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The MR-enabled visual reasoning-based method advances mutual-cognitive HRC systems, 

leading to human-centric smart manufacturing. Apart from the above advantages, precision of 
coworking strategy generation can be improved with further experimental tests, for example, 

such as addressing the sample imbalance via data-augmented techniques. In ergonomic 

tests, there are two reasons why a few human skeleton models fail to meet requirements. One 

part is visual estimation errors of human skeleton points in models such as the one proposed 

by (T. Liu et al., 2023), whereas the other one is human movement uncertainty when moving 

towards a position. It is in this second part where works in the HDT section could play a crucial 

role. 

Application Results 
(Kuts et al., 2022)  experimentally compared the DT interfaces to the physical ones. Regarding 

execution time, it decreased significantly with the newer. However, in terms of the subjective 

survey they performed, the DT solution created more anxiety for operators and was more 

demanding than the real robot cell. Nevertheless, the DT solution did not generate more 

physiological stress than the traditional solution. Additionally, eye-tracking data revealed that 

concentration levels were higher in the newer approach, mainly linked to an increase in safety 

perception. 

Regarding AR results, (Liao & Cai, 2024) tested the effectiveness of their AR-DT system for 

their robotic arm. The outcomes also demonstrated an improvement in the operation times 

and quality compared to the traditional one. Moreover, user satisfaction and perceived ease 

of use were higher. The following figure compares their AR system’s quantitative results 

against normal 2D interfaces.  

 
Figure 22. results on DT-AR systems HMC (Liao & Cai, 2024) 

Regarding (Liao & Cai, 2024) qualitative results, they reveal that there is no significant 

difference between the levels of physical demand in traditional systems and their proposed 

one. However, AR outperforms in all the interactional aspects, especially regarding efficiency 

and willingness to use this system. 
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(Modoni & Sacco, 2023) performed an experiment more focused on assembly instruction 

software with similarly positive results. They demonstrated that all workers, independently 

from their experience, could perform tasks faster with fewer mistakes with the DT and AR-

based instructions during their assembly activities. Furthermore, operators’ qualitative results 

were also positive: 71% felt more confident with the new assistance, 80% believed the solution 

offered clear support along the assembly steps, and 90% argued that the solution provided 

better guidance than previous systems. 

 

Figure 23. (Modoni & Sacco, 2023) experiment results on AR for assembly instruction software 
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4. Discussion 
This literature review has exposed the main applications of DT technology for human-centric 

manufacturing. As previously mentioned, a structured outline of this field is lacking in the 

available literature. The following is an overview of the state of DT and its role in 

manufacturing. 

4.1 Summary of Key Findings 

As shown, the results were divided into three interrelated applications, which englobed 

different DT fields. All of the three mentioned fields had the objective of improving Human-

Machine Collaboration or Human-Robot collaboration and, consequently, enhancing workers’ 

well-being, security, production quality, and efficiency. 

Overall, DT acts as an information exchange, analysis, prediction, and optimization platform 

in a manufacturing context. From the literature review, it can be extracted that DT’s major 

contributions to Human-centric Manufacturing can be canalized through HMC, as DT improves 

it. The following insights extracted from the literature prove so: 

• DTs improve robot control, which is strictly necessary for HMC. 

o Facilitates humanization (Montini et al., 2023) thanks to HDTs, body recognition 

(T. Liu et al., 2023), wearables (C. Li et al., 2023), etc. 

o Manufacturing space DT aids in avoiding collisions (Papacharalampopoulos et 

al., 2023). 

o Continuous robot control improvement thanks to the proposed AI-enabled 

cognitive systems by authors such as (Das et al., 2023) and (S. Wang et al., 

2024). 

• DTs enable easier Human-Robot-System communication, which is also critical for 

HMC. 

The subsequent HMC benefits justify DT’s potential for Human-centric manufacturing: 

• Lower physical and mental strain (Krupas et al., 2024). Enhanced worker well-being. 

• Increased manufacturing flexibility (Montini et al., 2023), (Jeong et al., 2023) while 

maintaining quality and efficiency. 

• Inclusion of human will and creativity (Lv, 2023). 
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Moreover, DT, especially HDT, eases in-depth analysis of unprecedentedly measured human 

metrics such as stress, emotional state (Baratta et al., 2023), or fatigue (Berti et al., 2023). As 

a result, groundbreaking measures can be taken to lead to human-centric scheduling or health 

hazard avoidance (Zafar et al., 2024). 

The following is a holistic schematic view of the integration of the different DT modules 

proposed in the available literature: 

 

Figure 24. Possible architecture integrating discussed DT-based technologies. Arrows represent information flow. 

4.2 Control and Collaboration 

Robot control is a critical factor in HMC. Thus, its evolution is crucial for HMC's evolution. 

Aside from pure control, this category includes human-awareness modules, robotic action fit 

within the production chain, robot operating system (ROS) training, machine vision and 

sensors, and quality assurance. All these DT-improvable applications could enhance 

manufacturing results in terms of safety, human well-being, quality, and efficiency. 
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Both (Montini et al., 2023) and (Montini et al., 2023) propose general DT-based HRC 

frameworks that could allow for reaching I5.0 goals on human-centricity. Although they cover 

the micro and the macro scale of HRC, (Montini et al., 2023) support the necessity of HDT for 

truly effective human-robot coworking.  

The HDT description (Picone et al., 2024) clearly defines how HDT could contribute to HRC. 

The three minimum HDT capabilities of representativeness and contextualization, shadowing, 

and augmentation are necessary for the ROS to understand and determine with which 

movements to proceed. To accurately portray the human body, (T. Liu et al., 2023) defined a 

framework for creating those models. (Maruyama et al., 2021) add an emotion-recognizing DT 

based on machine vision, biometric data, sensors, etc. Regarding the HDT integration within 

the HRC system, it is covered by  (Fan et al., 2023) control loop/strategy. This would interact 

with an HDT combining the concepts of (T. Liu et al., 2023), (Maruyama et al., 2021), and 

(Baratta et al., 2023) and, attending to postures and ergonomic states, the ROS would receive 

predictions on human intention and act accordingly. 

An advantage of having 3D body models and other human information about the workers in 

the HDT is that it is possible to schedule according to these. (Berti et al., 2023) describe an 

HDT-based architecture that does so. Attending to sustained postures, fatigue patterns, and 

sensor information, the system would organize the operator’s timetable. As a result, 

unnecessary strain, injuries, and hazards could be avoided, increasing human well-being and 

safety. This approach matches with (Papacharalampopoulos et al., 2023) and (T. Liu et al., 

2023). This model could include the emotion recognition system proposed by (Baratta et al., 

2023) in order to better notice stress or other impactful emotional states.  

However, (Montini et al., 2023) argue that the variability and inconsistency of human behavior 

make digitally twinning a human challenging. This is where the augmentation is needed. (Das 

et al., 2023) and (S. Wang et al., 2024) propose cognitive DT with continuous improvement 

capability. This is a DT capable of generating synthetic data, combining it with real data, and, 

through deep learning techniques, improving the ROS to enhance the robot’s motion, 

ergonomic adjustment, and overall interaction with humans. 

Regarding HDT feasibility aspects, experiments by (Picone et al., 2024) and (Fan et al., 2023) 

suggest it is promising and computationally doable. (Maruyama et al., 2021) experimenting 

proves that movement-wise, it is possible to model humans with sufficient accuracy to 

integrate human and machine effort. However, (Berti et al., 2023) and (Maruyama et al., 2021) 

also refer to the technology as potentially being applicable to many industries but still in the 

development phase. Budget and scalability reasons are mentioned. Nonetheless, no scaled 

manufacturing uses were described, revealing potential gaps in the field. 
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Although technical feasibility aspects are crucial for the development of HDTs, privacy, and 

moral concerns also arise. Due to the storage of sensitive information, (Berti et al., 2023) 

raised preoccupation on rights, privacy, trust, and regulation compliance. (B. Wang et al., 

2024) add to the trust argument, suggesting that HDT usage could lead to a lack of 

transparency, and (Montini et al., 2022) assert that it would be necessary to impose stricter 

privacy measures. 

4.3 Human-Robot-System Communication 

The main DT-based Human-Robot-System Communication tool is XR. (C. Zhang et al., 2023) 

mention that XR implementation could drive the human-cyber-physical fusion sought in the 

I5.0 paradigm. Through these tools, operators can visualize real objects while keeping up with 

simulations and being cautious of their surroundings. Overall, these technologies can 

potentially elevate or augment human worker’s perceptions. Therefore, both safety and 

performance can be notably enhanced. 

(C. Li et al., 2023) proposed a system that enhanced, as mentioned, the operator’s view by 

previewing the robot’s motion, among other visualizations. XR systems can also help in 

providing assembly or operations instruction and suggestions. 

XR devices can also serve as a base for whole HRC systems. (Liao & Cai, 2024) proposed a 

system in which the HRC cornerstone was the XR, in this case, AR, a device worn by the 

operator. (Yang et al., 2022) did the same with a crane instead of the robotic arm used in the 

previous work. Proving that this approach is usable in multiple situations. Moreover, XR 

devices have been primarily theoretically introduced as a substitute for keyboard-mouse 

setups (Kuts et al., 2022). 

XR devices for locating human operators in the workplace, thanks to sensors and other 

technologies, create synergies leading to better HMC. These synergies are represented in the 

HRC architecture presented by (S. Li et al., 2024), which complements the abovementioned. 

In the system, the author’s focus is on mutual cognitive intelligence, standing for empathic 

understanding between human-robot teams, and establishing bi-directional communication 

through MR. 

Experimental results are promising, with lower execution times and the number of errors in 

the XR-assisted systems. These results were present in studies both in HRC with robotic arms 

(Liao & Cai, 2024) and in advanced assembly instruction (Modoni & Sacco, 2023). 

Nevertheless, in (Kuts et al., 2022), the subjective perception of the surveyed was that these 
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systems increased their anxiety. However, when using quantitative measuring methods, this 

was not the case, proving that it may have been a result of the lack of habit. 

Finally, (Papacharalampopoulos et al., 2023) contribute by adding that XR wearables’ tracking 

capabilities could help avoid hazardous actions. This links well with (T. Liu et al., 2023) human 

detection system, which tracks operators’ movements in order to grant safety in potentially 

disastrous manufacturing situations. The work (Papacharalampopoulos et al., 2023) can also 

relate to posture or habit prevention through HDT, which has been discussed earlier. 

Other interaction platforms, such as smart tools, have been discussed (Jeong et al., 2023). 

Still, the main focus within the available literature is XR applications. Due to the potential 

synergies between XR applications, smart tools, and DTs, a promising gap in this regard 

appears. Furthermore, despite already having efficient XR devices, such as the 

aforementioned Microsoft HoloLens, and also having the technology to develop precise DTs, 

such as edge computing and AI, a real-world scalable holistic HMC DT is still non-existent. 

The next step would be to physically integrate the available technology and know-how for 

comprehensive DT systems that make the most out of the likely synergies between the 

approaches described in this paper. 
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5. Conclusion 
This paper has introduced, reviewed, and discussed Digital Twin’s prospective role in Human-

centric manufacturing. Based on a PRISMA methodology for literature reviews, a conscious 

and systematic approach was done. Thus, existing literature could be consistently examined, 

ensuring an accurate perspective of the knowledge in the field. All of this with a focus on 

human-centricity and manufacturing.  

One of the primary manufacturing areas in which DT technology can be applied is human-

machine collaboration. This technology’s data exchange and augmentation capabilities 

suggest that it will be a key enabler of HMC. Regarding the data augmentation capacity, 

through AI techniques, DTs can improve data quality by combining it with other records and 

by creating synthetic data capable of training the system. Data-exchange-wise, DTs improve 

the information flow, providing insights to human operators and enhancing their vision, and 

also acting as a central station connecting all the modules in the different HMC architectures. 

HDTs could play a vital role in coordinating robot’s and human’s actions. They could enable 

human intention based on patterns, emotional states, etc. By doing so, ROS could better 

understand human coworkers and act accordingly, avoiding collisions, enhancing ergonomics 

for humans, and improving overall efficiency. Additionally, authors describe another use for 

HDTs. As HDTs allow for better recognition of the physical and psychological state of 

operators, they can enable systems for human-centric scheduling. This is scheduling workers 

strongly focused on their well-being. Nevertheless, privacy, trust, and law compliance issues 

could arise with HDTs, creating another research gap in the field. 

The last main DT usage exposed in the scoping is their application to XR and other interactive 

platforms. As described, I5.0 focuses on human involvement in industrial activity. To enable 

this within such advanced and automated processes, it is necessary to have advanced 

interaction systems augmenting human cognition. This is what XR does by including crucial 

insight into the operator’s field of vision or through similar means. Early-stage tests suggest 

significant productivity and operator cognition enhancements. The role of DTs here would be 

to bi-directionally share information with the XR system.  As a result, the whole HMC, or even 

the whole manufacturing site, could make use of the wearables’ information to enhance safety, 

efficiency, human well-being, and quality in the production process. 

However, collaborative robotics and HMC have not been fully applied as described above. 

The most used sort of DT currently are DTs representing systems or material entities, which 

are easier to model and help with multiple tasks such as predictive maintenance and resource 

assignment. Due to the complexity inherent to their physical counterparts and the 

computational limitations, HDT is still a premature technology. However, the potential 
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advantages they could create make HDT worth the watch. This fact induces the necessity of 

further investigation on the topic, aiding to develop more insight into this promising technology. 

Finally, an architecture that combines the three main areas studied by the authors was 

proposed in this work. In this architecture, HMC, HDT, and XR could synergically be used 

within the same system, united by different DTs, improving data exchange, quality, and utility. 

Nevertheless, this is a theoretical approach. As most of the literature studied was based on 

theory and only experimental systems have been tested for such holistic systems, a future 

research direction is to seek the integration of these systems into the real world in a useful 

and scalable way.  
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