
@
Appl. Gen. Topol. 25, no. 2 (2024), 277-289

doi:10.4995/agt.2024.15293

© AGT, UPV, 2024

Lightly chaotic dynamical systems

Annamaria Miranda

Department of Mathematics, University of Salerno, 84084 Fisciano, Salerno, Italy (amiranda@unisa.it)

Communicated by M. Sanchis

Abstract

In this paper we introduce some weak dynamical properties by using
subbases for the phase space. Among them, the notion of light chaos
is the most significant. Several examples, which clarify the relation-
ships between this kind of chaos and some classical notions, are given.
Particular attention is also devoted to the connections between the dy-
namical properties of a system and the dynamical properties of the
associated functional envelope. We show, among other things, that a
continuous map f : X → X, where X is a metric space, is chaotic (in
the sense of Devaney) if and only if the associated functional dynamical
system is lightly chaotic.
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1. Introduction

When describing topological properties in terms of open sets, it suffices to
restrict attention to a fixed base and, sometimes, to a fixed subbase. As an
example, the Alexander subbase Theorem claims: ”Let X be a topological space
and S a subbase for X. Then X is compact if and only if every open cover by
members of S has a finite subcover.”
However, the equivalence is not obvious in general. Except for some rare cases,
expressing a given topological property by elements of a fixed subbase defines
a weaker property than the previous one. In this paper, we introduce some
’subbasic’ dynamical properties and a weak form of chaos, the light chaos,
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giving several examples in order to shed some light on the relationships be-
tween this form of chaos and the notions of transitivity and dense periodicity.
Many authors investigated the chaotic behavior of a dynamical system (see for
example Proposition 2.4 [2], [8], [21]). It should be rather natural to think
that some chaotic behavior of a dynamical system (X, f) reflects, in some way,
on its functional envelope (S(X), Ff ), and viceversa. Recent research deals
with these kinds of relationships(see [5], [7]). We establish a clear connection
between a discrete dynamical system (X, f) and the associated ”functional”
system (S(X), Ff ) regarding the chaotic behavior. We will show that a sys-
tem (X, f) is chaotic (in the sense of Devaney) if and only if (S(X), Ff ) is
lightly chaotic. Moreover, we will give results showing the non-chaoticity of
(S(X), Ff ) for many dynamical systems (X, f).

Our motivation to study the connection between a chaotic dynamical system
and the chaotic properties of its functional envelope also comes from interesting
applications. To study the dynamical behavior of the functional envelope is,
in a certain sense, equivalent to study the dynamical behavior of the solution
of a hyperbolic differential equation. Research about dynamics on a space
of functions has been motivated by the importance that the topic plays in
the semigroup theory, in the theory of functional difference, in the dynamical
systems theory, and, moreover, in the study of one dimensional wave equations
(see [5], [7], [15], [20]).

A discrete dynamical system is a pair (X, f) where X is a topological space
(called phase space) and f : X → X is a continuous map (called a tran-
sition function). We may associate with (X, f) a discrete dynamical sys-
tem (S(X), Ff ) whose phase space is the set S(X) of all continuous self-
maps on X, endowed with a suitable topology, and the transition function
Ff : S(X) → S(X) is defined by Ff (g) = f ◦ g for every g ∈ S(X). In other
words, the phase space of the system (S(X), Ff ) is formed by the transition
functions of all discrete dynamical systems having X as phase space, while Ff
is related in a natural way to the transition function of the dynamical system
(X, f).

The first fundamental step in this topic is to define a function space dynamical
system by endowing the phase set with a suitable topology ensuring conti-
nuity for the transition function. The two most quoted in the literature are
the compact-open topology and the point-open topology. The second one is to
investigate its dynamical properties, in connection with those satisfied by the
original system. In [5], Auslander, Kolyada and Snoha first called functional
envelope of (X, f) the induced system (S(X), Ff ), since it always contains
an isometric copy of (X, f) (see Proposition 2.4 [5]), and denoted there by
(S(X), Ff ), an usual notation in the semigroup theory, since S(X) is a topo-
logical semigroup under the composition and the compact-open topology. Their
paper Functional envelope of a dynamical system([5]) deals with the connec-
tions between the properties of a system and the properties of its functional
envelope, with special attention to orbit closures, ω-limit sets, (non)existence
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of dense orbits, and topological entropy. Since (X, f) can be viewed as a sub-
system of (S(X), Ff ), it inherits many dynamical properties from (S(X), Ff ),
but the converse depends on the topology of S(X). They showed that, when X
is a compact metric space and S(X) is equipped with the compact-open topol-
ogy, some properties can be carried over from (X, f) to (S(X);Ff ), but there
are other properties, such as topological transitivity, weakly mixing, mixing,
and chaoticity, that cannot be easily transferred to the functional envelope.
In particular, they studied the following question, which appears in semigroup
theory. Let X be a compact metric space, and S(X) be equipped with the
compact-open topology. Are there two elements f and ϕ in S(X) such that the
set OFf

(ϕ) is dense in S(X)? In other words, for a given system (X, f) with X
being a compact metric space, does the functional envelope (S(X), Ff ) have a
dense orbit? They showed that the functional envelope of the full shift on AN,
where A is a compact metric space, contains dense orbits, but, in general, the
answer is negative ([5], Theorem 5.6 and Proposition 5.7]). So it is natural to
ask if, for a compact metric space X and a continuous map f : X → X, there
exists a suitable, obviously coarser, topology T on S(X) such that the func-
tional envelope (S(X), Ff ) of (X, f) has at least one dense orbit. In the paper
Functional envelopes relative to the point-open topology ([7]), the authors Chen
and Huang study this question. They consider a locally compact separable
topological space X and the point-open topology (denoted by P), also known
as pointwise convergence topology, on S(X). In particular, for any continuous
map f : [0, 1]→ [0, 1], the functional envelope (S([0, 1]),P, Ff ) of ([0, 1], f) has
no dense orbits ([7], Theorem 2.1). Therefore, it is not chaotic. This leads
them to restrict the point-open topology on a subset A of X, that is, to con-
sider the topology PA generated by the subbase SA = {[x, U ] : x ∈ A and U
is an open subset of X}, where [x, U ] = {ϕ ∈ S(X) : ϕ(x) ∈ U}. They inves-
tigate the chaotic behavior of the (SA(X), Ff ), for a countable dense subset A
of X in relation to that of the dynamical system (X, f), where X is a locally
compact separable metric space. Is a dynamical property, such as transitivity,
minimality, or strong mixing of a system (X, f), absorbed by its functional
envelope (SA(X), Ff )? If not, what is a coarser property satisfied by it? If A
is countable and X is a locally compact separable metric space they show that:
If (X, f) is weakly mixing and A is a countable dense subset of X, then the
functional envelope (SA(X), Ff ) of (X, f) has at least one dense orbit.

2. Preliminaries

In this section, we recall some basic definitions and results involving topo-
logical dynamics and function space topologies useful in the sequel. We refer
to [1], [10], [12] and [22] for definitions and results not explicitly given. By a
discrete dynamical system we mean a pair (X, f) where X is a (usually compact
metrizable) topological space and f : X → X is a continuous map. Given a
point x ∈ X, its orbit is the set Of (x) = {x, f(x), f2(x), ...}. For every n ∈ Z+,
we define the iterates fn : X → X as f0 = idX(the identity map on X) and
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fn+1 = fn◦f . By a subsystem of a dynamical system (X, f) we mean a system
(Y, g) where Y is a closed f -invariant subset of X (i.e. f(Y ) ⊂ Y ) and g is the
restriction of f to Y . Two dynamical systems (X, f) and (Y, g)(or the maps f
and g) are said to be (topologically) conjugate if there exists a homeomorphism
h : X → Y such that h ◦ f = g ◦ h. A dynamical system (X, f) (or the map

f) is called (topologically) transitive if for every pair of nonempty open sets U
and V there is a positive integer k such that fk(U) ∩ V 6= ∅.
Topological transitivity and the existence of a dense orbit are not equivalent
for (X, f) (see [14]). It is easy to check that any T1 point-transitive system
without isolated points is transitive. Conversely, if X is separable metrizable
and of second category then transitivity implies the existence of a dense orbit.
A point x is periodic if fk(x) = x for some integer k ≥ 1. The least k for which

this happens is called period of x. A dynamical system (X, f) (or the map f)
is called periodically dense if the set of periodic points of f is dense in X. Now,

let (X, d) be a metric space. A continuous map f : (X, d) → (X, d) exhibits
sensitive dependence on initial conditions, in brief is sensitive, if there is some
δ > 0 such that, for every point x and every neighborhood V of x in (X, d),
there exists a y ∈ V and an integer k ≥ 1 such that d(fk(x), fk(y)) ≥ δ.
Transitivity, sensitivity, and periodic points’ density are dynamical ingredients
used to introduce various kinds of chaoticity. Among them, we consider De-
vaney chaoticity.

A continuous map f : (X, d) → (X, d) is chaotic (in the sense of Devaney)
if it is transitive, periodically dense and sensitive (see [9]). It is worth noting
that if X is infinite, a continuous map f : (X, d) → (X, d) is chaotic (in the
sense of Devaney) if and only if it is transitive and periodically dense. So, it
is surprising that sensitivity, a metric property that plays a central role in the
definition of several kinds of chaos, is, in the definition of Devaney chaos, a
redundant property (see [6]).
Moreover, if X is an interval of the real line, then f is chaotic (in the sense of
Devaney) if and only if it is transitive. Several topologies can be defined on the

set Y X = {f : X → Y }, where X,Y are topological spaces (see [3], [4], [13],
[16], [17], [19]). Among them, we shall consider the compact-open topology,
the point-open topology, and the uniform convergence topology. Let K[X] be
the family of all compact subsets of X. For each K ∈ K[X] and G ∈ T let us
set

[K,G] = {g ∈ Y X : g(K) ⊂ G}.
The family S = {[K,G] : K ∈ K[X], G ∈ T } is a subbase for a topology Tk on
Y X , the compact-open topology. Moreover, given a point x ∈ X and an open
set G ∈ T , let

[{x}, G] = {g ∈ Y X : g(x) ∈ G}.
The sets [{x}, G] form a subbase for a coarser topology Tp on Y X , the point-
open topology (or topology of pointwise convergence). Note that this is just
the product topology on Y X . Evidently, Tp = Tk iff every compact subset
of X is finite. In particular, this happens when X is discrete. Moreover, on
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equicontinuous families of functions of Y X the compact-open topology reduces
to the point-open topology (see [22]).
Now, let (Y, d) be a metric space, and let Td be the topology on Y generated
by d. We may define on B(X,Y ), the set of all continuous bounded maps from
X to Y , the uniform metric:

d̂(f, g) = supx∈Xd(f(x), g(x)).

The topology generated by d̂, Td̂, is called the uniform convergence topology.
Let C(X,Y ) be the set of continuous maps from X to Y . If X is compact,
then B(X,Y ) = C(X,Y ) and the topology Td̂ coincides with the compact-open
topology. Moreover, this is independent of the choice of d, i.e., every metric on
Y equivalent to d generates the compact-open topology. If (X, d) is a compact
metric space, then (C(X,X), Td̂) is a separable complete metric space.

Let (X, T ) be a topological space. We will denote C(X,X), the set of
all continuous self-maps on X, by using the simpler notation S(X) coming
from semigroup theory ([5] and [7]). It is straightforward to check that if
f : (X, T )→ (X, T ) is a continuous map, then the map

Ff : (S(X), Tk)→ (S(X), Tk)

defined by Ff (g) = f ◦ g for every g ∈ S(X) is continuous. In this way,
we associate with any discrete dynamical system (X, f) the dynamical sys-
tem (S(X), Ff ). We will concisely denote the topological space (S(X), Tk) by
Sk(X). When X is a compact metric space, then (Sk(X), Ff ) (considered as
a metric space with the uniform metric or with the Hausdorff metric applied
to the graphs of maps) is called functional envelope of (X, f) (see Definition
1.1. in [5]). Let us note that one could use this name even in a more general
setting.

Definition 2.1. Let (X, f) be a dynamical system given by a topological
Hausdorff space X and a continuous map f : X → X. If Ff : (S(X), TS(X))→
(S(X), TS(X)) is continuous for some topology TS(X) on S(X), then we call the
dynamical system (S(X), Ff ) functional envelope of (X, f).

Proposition 2.2. If TS(X) is the compact-open topology or the point- open
topology then the map Ff : (S(X), TS(X)) → (S(X), TS(X)) is continuous and
the dynamical system (S(X), Ff ) contains a subsystem topologically conjugate
to the original system (X, f).

In particular, if TS(X) = Tp we will denote (S(X), Tp) by Sp(X).
It is easy to prove that the previous result holds when TS(X) is any λ − open
topology. The λ− open topologies (or set-open topologies), a generalization of
the compact-open and pointwise convergence topologies, were first introduced
by Arens and Dugundji (see [3]).
Sometimes it is also convenient to endow S(X) with coarser topologies induced
by reduced subbases. For example, if (X, f) is a dynamical system given by
a separable space X with metric d and a continuous map f : X → X, A =
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{a1, a2, ....} is a countable dense subset of X, then (SA(X), Ff ), where SA(X)
is S(X) endowed with the point-open topology on the set A, is a functional
envelope of (X, f) (see Proposition 4 in [7]).

3. Light chaoticity

Compactness is equivalent to compactness with respect to a subbase, as the
Alexander subbase Theorem states. However, subbases are not always sufficient
to describe a topological property, and this allow to introduce a weaker pro-
perty. Indeed, let P be a topological property. Let X be a topological space and
S a subbase of X. We say that X is lightly−P with respect to S if X satisfies
P relatively to all subbasic open sets in S. Evidently, any topological space
P is lightly-P, but the converse is not true. Obviously, when the equivalence
doesn’t occur it makes sense to consider a weaker form of the property.

Our attention is devoted to some dynamical properties. We introduce in
particular the light transitivity, the light periodically density, and the light sen-
sitivity, and define a weak form of chaoticity, the light chaoticity.

Let (X, f) be a discrete dynamical system and S a subbase for the topological
space (X, τ).

Definition 3.1. (X, f) (or the map f : (X, τ) → (X, τ) is said to be lightly
transitive (with respect to S), briefly LS -transitive, if for every U, V ∈ S−{∅}
there exists some positive integer k such that fk(U) ∩ V 6= ∅.

Definition 3.2. (X, f) (or the map f : (X, τ) → (X, τ) is said to be lightly
periodically dense (with respect to S), briefly LS -periodically dense, if every
U ∈ S − {∅} contains a periodic point of f .

Definition 3.3. (X, f) (or the map f : (X, τ) → (X, τ) is said to be lightly
chaotic (with respect to S), briefly LS -chaotic, if:

LC1: (X, f) is LS -transitive;
LC2: (X, f) is LS -periodically dense.

In other words, a continuous map is LS -chaotic if it satisfies transitivity and
dense periodicity restricted to some subbase S for X. Evidently, any LS -chaotic
map is a LS′ -chaotic map for each S′ ⊂ S. Moreover, if the topology τ(S′)
generated by S ′ is strictly weaker than τ(S) and f ′ : (X, τ(S′) → (X, τ(S′) is
continuous, then the dynamical system (X, f ′) is lightly chaotic too.

It is clear from the definition that:

(i) Every transitive periodically dense map is LS -chaotic with respect to
any subbase for X.

(ii) Every transitive interval map is chaotic and, a fortiori, lightly chaotic.
(iii) Since a transitive map f : S1 → S1 is chaotic if and only if it has a

periodic point, it follows that, for transitive self-maps on S1, chaos and
light chaos coincide.

The condition (i) is not necessary.
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Example 3.4. A lightly chaotic periodically dense map which is not transitive.
The map f : R → R defined by f(x) = −x is a non transitive periodically
dense map. Moreover, f is lightly chaotic with respect to the subbase S =
{]−∞, a[, ]b,+∞[}a,b∈R. The map f sends any half line in its opposite and two
half lines, both right(or left), are always not disjoint. So f(]−∞, a[)∩]b,+∞[ 6= 0
and f(]b,+∞[)∩]−∞, a[6= 0 for every a, b ∈ R.

Example 3.5. A lightly chaotic transitive map which is not periodically dense.
Consider the dynamical system ({0, 1}N, σ), where {0, 1}N is the Cantor set
and σ is the shift map. Let S be the set of all eventually constant sequences
in {0, 1}N and s∗ /∈ S a transitive point. Since Oσ(s∗) = {0, 1}N then the set
X = S ∪ Oσ(s∗) is dense in {0, 1}N. Moreover, σ(X) ⊂ X. Let s ∈ X. If s =
σn(s∗), then σ(s) = σn+1(s∗) ∈ X. If s ∈ S (that is to say s = (s0, s1, ..., sn, ..)
and there exists a positive integer k such that sn is constant ∀n ≥ k), then
σ(sn) is eventually constant. Now, let g = σ|X : X → X. Since σ is transitive

and X = {0, 1}N, then g is transitive (or simply Oσ(s∗) = X). S is closed in
X, the periodic points of g are the constant sequences, so g is not periodically
dense. We claim that g is lightly chaotic with respect to the canonical subbase
given by the sets of the form X ∩

∏
nDn where |Dn| = 2 ∀n ∈ ω − {k} and

|Dk| = 1, for some k. Let G = X ∩
∏
nDn with |Dn| = 2 ∀n 6= k and |Dk| = 1.

We may assume that Dk = {0}, so 0 = (0, 0, ....) is a periodic point of g such
that 0 ∈ G. Therefore g is lightly chaotic.

Periodically density doesn’t suffice to ensure light chaoticity as the following
example shows.

Example 3.6. A map which is not lightly periodically dense nor lightly tran-
sitive.
Let f : R→ R given by f(x) = |x|. f is not lightly chaotic with respect to any
subbase for R. Let S be a subbase of R endowed with the usual topology. We
may assume that S consists of intervals (if S ′ is the family of all components of
members of S, then f is lightly chaotic with respect to S iff it is lightly chaotic
with respect to S ′). Now let V1, ..., Vk, S1, ..., Sn ∈ S such that V1 ∩ ... ∩ Vk =
] −∞,−1[ and S1 ∩ ... ∩ Sn =]1,+∞[. We may assume that Vi, Sj 6= R ∀i, j.
So Vi =] −∞, ai[, Sj =]bj ,+∞[ ∀i, j. Then ai = −1, bj = 1 for some i and
for some j. Therefore ]−∞,−1[, ]1,+∞[∈ S, and fk(]1,+∞[)∩]−∞,−1[= 0
∀k. Thus f is not lightly transitive. Moreover, the set of periodic points R+

0 is
evidently never dense.

Now, let (X, d) be a metrizable space.

Definition 3.7. A continuous map f : (X, d) → (X, d) is said to be lightly
sensitive(with respect to a subbase S), briefly LS -sensitive, if there is some
δ > 0 such that, for every point x and every subbasic neighborhood V of x in
(X, d), there exist y ∈ V and an integer k ≥ 1 such that d(fk(x), fk(y)) ≥ δ.

It is clear that, since X is metrizable, any chaotic map (in the sense of Devaney)
is also LS - sensitive.
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Example 3.8. A non lightly sensitive map.
Let f : [−1, 1] → [−1, 1] given by f(x) = x

|x|+1 . f is not lightly sensitive with

respect to any subbase of R endowed with the usual topology. Consider δ > 0,
the point x = 0 and a subbasic neighborhood V for x such that diam(f(V )) < δ.
Then for every y ∈ V and every integer k ≥ 1 we have d(fk(x), fk(y)) =

d(0, y
k|y|+1 ) = |y|

k|y|+1 ≤
|y|
|y|+1 = d(f(0), f(y)) < δ

Recall that a dynamical system is chaotic (in the sense of Devaney) if and
only if it is transitive, sensitive, and periodically dense. If X is infinite any
transitive and periodically dense map f : (X, d)→ (X, d) is sensitive (see [6]).
But the corresponding assertion for light properties does not remain true, as
the following example shows.

Example 3.9. A lightly chaotic map which is not lightly sensitive.
Let C+ ⊂ R3 be the cone whose base is the circle S1 in the coordinate plane
xy and whose vertex is (0, 0, 1) and C− ⊂ R3 its symmetric with respect to
the coordinate plane xy. Consider the surface X = C+ ∪ C−, and the map f
defined by f((e2πiθ), t) = (|t−1|e2πi(θ+α),−t), where α = p

q and p and q are co-

prime. Note that this is a glide rotation (i.e. an isometry that is a composition
of a rotation around an axis with a translation parallel to the rotation axis)
by an angle α. The dynamical system (X, f) is lightly chaotic but it is not
lightly sensitive. All the open half-spaces in R3 are a subbase. Let S be the
induced subbase on X. Evidently, any subbasic open set contains a periodic
point since it contains a vertex, a fixed point, or intersects the double cone base
at a periodic point of period q. Moreover, if U and V are two subbasic open
sets then there is a positive integer k such that fk(U)∩V . Indeed, if U contains
a vertex, then f(U) ∩ V . If U does not contain any vertex, then there is an
integer k ≤ q such that fk(U)∩V . However, f is not lightly sensitive. Consider
any δ > 0 and let x ∈ X be a point having altitude 0. Now, if U is a subbasic
neighborhood such that diam(U) < δ, then d(fk(x), fk(y)) = d(0, y) < δ for
every y ∈ U and k ∈ N.

As already noted, if X is an infinite, metrizable space, then every transitive
periodically dense map is LS -chaotic and LS - sensitive with respect to any
subbase for X, but there are dynamical systems satisfying both light chaoticity
and light sensitivity that are not chaotic, as the following example shows.

Example 3.10. A lightly chaotic, lightly sensitive map which is neither tran-
sitive nor periodically dense or sensitive.
The ”truncated tent map by 1

2” T 1
2

: I → I is defined by

T 1
2
(x) =

 2x, if 0 ≤ x < 1
4

1
2 , if 1

4 ≤ x <
3
4

−2x+ 2, if 3
4 ≤ x ≤ 1

The map f : I → I symmetric of T 1
2

: I → I with respect to the line y− 1
2 = 0,

defined f(x) =

 −2x+ 1, if 0 ≤ x < 1
4

1
2 , if 1

4 ≤ x <
3
4

2x− 1, if 3
4 ≤ x ≤ 1

is not periodically dense: U =
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] 14 ,
1
2 [ is an open set such that ∀x ∈ U fk(x) = 1

2 6= x ∀k. Moreover, f is not
transitive. It suffices to observe that f is not onto. Evidently f is not sensitive.
If x = 1

2 and U =] 12 − ε,
1
2 + ε[ for some ε < 1

4 , then |fk(x) − fk(y)| = 0 for
every y ∈ U .
It is straightforward to check that f is lightly chaotic with respect to the
subbase S = {[0, a[, ]b, 1]}0<a≤1,0≤b<1. Moreover, f is lightly sensitive. Let
0 < δ < 1

4 , x ∈ X and U a neighborhood of X. If U = [0, a[ where 0 < a ≤ 1

then there exists some positive integer k ≥ 1 such that |fk(x) − fk(0)| =
|fk(x) − 1| ≥ δ. If U =]b, 1] where 0 ≤ b < 1 then there exists some positive
integer k ≥ 1 such that |fk(x)− fk(1)| = |fk(x)− 1| ≥ δ.

It is worth noting that, starting from the notion of topological sensitivity ([11]),
it would be interesting to study LS -topological sensitivity, too.

4. Lightly chaotic functional envelopes

In the study of the relationships between the dynamical properties of a
system and its functional envelope it is evident that the dynamical behaviour
of the functional envelope is more complicated than that of the original system.
In particular, the functional envelope of a chaotic dynamical system in general
fails to be chaotic. It suffices to think about transitivity, even for usual spaces
(see, for example, Corollary 5.5 and Theorem 5.6 in [5]). Our first result fits
in the realm of these investigations. Here are some starting remarks.

Remark 4.1. For every f : I → I continuous, Ff : S(I)→ S(I) is not chaotic.
However, if f is chaotic then Ff is lightly chaotic.
Let f : S1 → S1 be a transitive continuous map conjugate to an irrational
rotation. Since f has no periodic points, Ff is not lightly chaotic with respect
to any subbase for S1.

It emerges a certain difficulty in obtaining that the functional envelope is
chaotic, even if the original system is chaotic. So, a natural question arises: is
the chaoticity of a given dynamical system equivalent to the light chaoticity of
its functional envelope? The answer is given by the following.

Theorem 4.2. Let (X, d) be a metric space, and f : (X.d)→ (X, d) a contin-
uous mapping. Then the following are equivalent

(1) f is chaotic
(2) Ff : Sk(X) → Sk(X) is lightly chaotic with respect to the canonical

subbase.
(3) Ff : Sp(X)→ Sp(X) is lightly

chaotic with respect to the canonical subbase.

Proof. Let Sk = {[K,G] : K ∈ K[X], G ∈ T (d)} be the canonical subbase
for (S(X), Tk). Let A = [F,U ], B = [C, V ] ∈ S − {∅}. We will show that
F kf (A) ∩ B 6= ∅ for some positive integer k. Since U, V are non-empty open

subsets of (X, d), and f is transitive, there is some positive integer k such that
fk(U) ∩ V 6= ∅. Let q ∈ U such that fk(q) = p ∈ V . Now, let g ∈ S(X) be
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the map defined by g(x) = q for every x ∈ X. Observe that g ∈ A, so F kf (g) ∈
F kf (A). Moreover, (F kf (g))(x) = Ffk(g))(x) = (fk◦g)(x) = fk(g(x)) = fk(q) =

p ∈ V for every x ∈ X. Therefore Ff
k(g) ∈ B. Hence F kf (A) ∩ B 6= ∅. Now

let us show that every member of S − {∅} contains a periodic point of Ff .
Let A = [F,U ] ∈ S − {∅}. Since U is a non-empty open subset of X and f
is periodically dense, there is some k > 0 and x0 ∈ U such that fk(x0) = x0.
Let g : X → X be the map given by g(x) = x0 for every x ∈ X. Then g ∈ A
and (F kf (g))(x) = (Ffk(g))(x) = (fk ◦ g)(x) = fk(g(x)) = fk(x0) = x0 ∈ V
for every x ∈ X, so F kf (g) = g and g is a periodic point of Ff contained in A.

Therefore Ff is lightly chaotic. Then (S(X), Ff ) is lightly chaotic with respect
to any subbase of the point-open topology contained in Sk.
Conversely, we have to show that f is transitive and periodically dense. Let us
first check the transitivity. Let U and V be a pair of non-empty open subsets
of X, and let us pick some x0 ∈ X. Then, denoted by Sp the canonical subbase
for (S(X), Tp), A = [{x0}, U ], B = [{x0}, V ] ∈ Sp − {∅}. Since Ff is lightly
chaotic with respect to the canonical subbase Sp, there is some k > 0 such
that F kf (A) ∩ B 6= ∅. So there are two maps g and h such that g ∈ A, h ∈ B
and F kf (g) = h. Now g(x0) ∈ U and h(x0) ∈ V , so fk(g(x0)) = Ffk(g)(x0) =

(F kf (g))(x0) = h(x0) ∈ fk(U) ∩ V 6= ∅. Therefore, f is transitive.
Now let us show that f is periodically dense. Let U be a non-empty open subset
of X and let x0 ∈ U . Since Ff is lightly chaotic and A = [{x0}, U ] ∈ Sp−{∅},
there is some g ∈ A and k > 0 such that F kf (g) = g. Thus fk(g(x0)) =

(F kf (g))(x0) = g(x0) ∈ U , and this means that g(x0) is a periodic point of f
contained in U . The map f is periodically dense, hence chaotic. �

Let us also recall that a continuous self-map f on a compact metric space (X, d)
is said to be structurally stable if there is some ε > 0 such that every g ∈ S(X)

with d̂(f, g) < ε is topologically conjugate to f . We introduce a useful notion.

Definition 4.3. Let f : X → X onto, f is onto-stable if there exists an open
set U of Sk(X) such that f ∈ U and every g ∈ U is onto.

Remark 4.4. Every transitive structurally stable map f : X → X, where X is
a compact (metric) space, is ”onto-stable”.

Remark 4.5. Let f : X → X be a structurally stable map where X is compact.
Then f is onto-stable.

The next result gives some additional information about the chaotic behavior of
(S(X), Ff ), where X is a compact metrizable space and Ff : Sk(X)→ Sk(X)
is a continuous map. Let P(f) be the set of all periodic points for f .

Theorem 4.6. The following hold:

i) Let X be a (metric) first countable continuum and let f : X → X be a
continuous map. If |P(f)| < c then Ff is not periodically dense.

ii) If f : I → I, where I = [0, 1], is periodically dense, then Ff is not
transitive.
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iii) Let X is be a compact (metric) space and let f : X → X be a continuous
map. If f is transitive structurally stable ”onto-stable” then Ff is not
transitive.

iv) Let X is be a compact (metric) space and let f : X → X be a continuous
map. If f is ”onto-stable” and P(f) 6= X then Ff is not periodically
dense.

Proof.

i) Let us suppose that g is a periodic point of Ff . We claim that g must

be constant. Let us take a positive integer k such that Ff
k(g) = g, that

is, F kf (g)(x) = g(x) ∀x ∈ X, then g(x) is a periodic point of f ∀x ∈ X.

So g(X) ⊂ P(f). By hypothesis |g(X)| < c. Since g(X) is a (metric)
first countable continuum space, it follows that |g(X)| = 1, namely g is
constant. Now, let a, b ∈ X, a 6= b and let U and V two open sets of X
such that a ∈ U , b ∈ V and U ∩V = ∅. Then G = [{a}, U ]∩ [{b}, V ] is
a non-empty open subset of S(X) (since it contains the identity map),
which does not contain constant functions, so Ff is not periodically
dense.

ii) Since S(I) is a separable complete metric space without isolated points,

it is enough to show that Ff has no dense orbit (see [14]), i.e., OFf
(g) 6=

S(I) for every g ∈ S(I), where OFf
(g) = {Ffn(g) : n ∈ N} = {g, f ◦

g, f2 ◦ g, ...}. If g is a constant map, then OFf
(g) consists of constant

functions. Now the set V = [[0, 12 ], ]0, 14 [] ∩ [{1}, ] 23 ,
3
4 [] is a non-empty

open subset of S(I), equipped with the compact-open topology, which
does not contain constant maps, so V ∩OFf

(g) = ∅. If g is not constant,
then g(I) has a non-empty interior. Since f is periodically dense, g(I)
contains a periodic point p of f . Let q ∈ I such that g(q) = p and set
U = [I, I − Of (p)]. U is a non-empty open subset of S(I) such that
U ∩ OFf

(g) = ∅. In fact (fn ◦ g)(q) = fn(g(q)) = fn(p) ∈ Of (p) for
every n ∈ N, so fn ◦ g /∈ U ∀n. Therefore f is not transitive.

iii) Any transitive structurally stable map f : X → X, where X is a
compact (metric) space, is onto-stable (by Definition 4.3). Let C0 be
the subspace of S(X) consisting of all onto maps. Since f ∈ C0, then
C0 6= ∅. Moreover, C0 is closed. Indeed, if g ∈ S(X) − C0, let a ∈
X − g(X) and let U = [X,X − {a}]. U is open in S(X), g ∈ U and
U ∩ C0 = ∅, so g /∈ clC0. Observe that C0 6= X. Moreover C0 is Ff -
invariant: ∀g ∈ C0, Ff (g) = f ◦ g is onto, so Ff (g) ∈ C0. Since f is
structurally stable then IntC0 6= ∅. In fact, there exists ε > 0 such
that Bε(f) consists only of maps conjugate to f . These are transitive
maps, hence onto, so Bε(f) ⊂ C0. Therefore Ff is not transitive.

iv) Let X be a compact metric space and f : X → X an ”onto-stable”
map. Let us prove that if P(f) 6= X then Ff is not periodically dense.
Let ε > 0 be such that g is onto ∀g ∈ Bε(f). If g is a periodic point of

Ff , then ∃k > 0 such that Ff
k(g) = g, that is fk(g(x)) = g(x) ∀x ∈ X.

So g(x) ∈ P(f) ∀x ∈ X, and this means that g(X) ⊂ P(f). Therefore,
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by hypothesis, it follows that g(X) 6= X, so g /∈ Bε(f). Therefore
Bε(f) does not contain periodic points of Ff .

�

As we noted, there exists a lightly sensitive, lightly chaotic map that is neither
transitive nor periodically dense. This continues to hold true in hypothesis of
sensitivity.

Example 4.7. A sensitive lightly chaotic map which is neither transitive nor
periodically dense.
Let f : I → I be any chaotic map, e.g., the tent map. Applying the previous
Theorems 4.2 and 4.6, it follows that Ff : S(I) → S(I) is neither transitive
nor periodically dense, but it is lightly chaotic. It remains to be shown that
Ff exhibits a sensitive dependence on initial conditions. We must prove that
∃δ > 0 such that ∀g ∈ S(I) and for all open sets Ug containing g, ∃h ∈ Ug and
n > 0 such that ρ̂(Ff

n(g), Ff
n(h)) > δ. So, let Ug = ∩mi=1[Ki, Vi] and take x0 ∈

K1, g(x0) ∈ V1. Since the map f is chaotic and therefore sensitive, called δ the
sensitive constant, then ∃y0 ∈ V1 and n > 0 such that ρ(fn(g(x0)), fn(y0)) > δ.
Let h : I → I be a continuous map such that h(K1) = y0 and h|Kj

= f|Kj

∀j ≥ 2. Now, h ∈ Ug. Moreover ρ̂(f
n
(g), f

n
(h)) = supx∈I ρ(fn(g(x)), fn(y)) ≥

ρ(fn(g(x0)), fn(y0)) > δ.

5. Concluding remarks

Future investigations could have two perspectives. The first concerns the
introduction of other light dynamical properties and the study of their interde-
pendencies with classical dynamical properties, the second one concerns their
connections with the dynamical properties of the functional envelope. It might
be worth considering set-open topologies and uniform convergence topologies
(see, for example [4], [13], [16], [17], [18], [19]). Moreover, analogously, it might
be interesting to study the connections when the envelope is hyperspace.
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