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Abstract

If f : X → X is a function, the associated functional Alexandroff topol-
ogy on X is the topology whose closed sets are {A ⊆ X : f(A) ⊆ A}.
We prove that every functional Alexandroff topology is pseudopar-
tial metrizable and every T0 functional Alexandroff topology is partial
metrizable.
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1. Introduction

Alexandroff spaces (also called principal spaces) first discussed in [1] are
topological spaces in which arbitrary intersections of open sets are open. Ob-
viously, every topology on a finite set is an Alexandroff topology. Alexandroff
spaces play an important role in domain theory. In fact, in [16] Steve Matthews
discusses constructing each semantic domain as an Alexandroff topology. The
key is that the set of upper sets is an Alexandroff topology. These spaces are
also applied in digital topology as they are determined uniquely by the family
of all finite subspaces and are considered a generalization of finite topological
spaces; to learn more about this application one can see [10] and [11] .
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In [5], functional Alexandroff topologies, a new subclass of Alexandroff
topologies on a set were introduced. There they defined the functional Alexan-
droff topology on a set X induced by the mapping f : X → X, to be the topol-
ogy whose closed sets are {A ⊆ X : f(A) ⊆ A}. One can see that arbitrary
unions of closed sets are closed. They denoted this topology by τf . However,
other notations are used. For instance in [15], it is denoted by P(f). In [7]
Echi calls these spaces, primal spaces. A topology τ on a set X is functional
Alexandroff topology if it is realized as τf for some function f : X → X.

The functional Alexandroff topologies, have been applied and studied exten-
sively. For example in [8] they show that Ulam-Kakutani-Collatz conjecture
is true if and only if N is supercompact with respect to a specific functional
Alexandroff topology. To learn more about properties of these spaces one can
see [3], [4], [5], [9], and [14].

In the second section we investigate topological properties of connected func-
tional Alexandroff topologies and will give a characterization of these topologies
based on the specialization order.

In the third and last section we use the results of the second section to prove
that T0 functional Alexandroff topologies are partial metrizable and functional
Alexandroff topologies in general are pseudopartial metrizable. This is help-
ful because metrics and in general distance functions allow us to talk about
distance between the points and sets, closeness of sets and points, and more
importantly one can talk about Cauchy sequences and convergence. This can
be useful in the theory of functional Alexandroff topologies.

2. Connected functional Alexandroff topologies

In this section we find conditions that are equivalent to connectedness of
functional Alexandroff topologies.

Lemma 2.1. Let f : X → X be a mapping. Then the following are equivalent:

(1) τf is T2,
(2) τf is T1,
(3) f is the identity map,
(4) τf is the discrete topology

Proof. Note that (a), (b), and (d) are equivalent for every Alexandroff topology.
We prove (b)⇒(c)⇒(d). Suppose τf is T1. Then for every x ∈ X the singleton
set {x} is closed. Thus, f({x}) ⊆ {x} or in other words f(x) = x. The
implication (c)⇒(d) is trivial as every set is a closed set. �

Recall that N0 = {x ∈ Z : x ≥ 0}. In the following lemma f0(a) = a and
fn(a) = f(fn−1(a)) for every n ∈ N. Also, in a topological space X we denote
the closure of a subset A of X by cl(A).

Lemma 2.2 (Proposition 1.2-(2) of [7]). Let f : X → X be a mapping and
A ⊆ X. Then cl(A) =

⋃
i∈N0

f i(A).
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Lemma 2.3. Let f : X → X be a mapping. If τf is T0 and f(t) 6= t, then
t 6∈ cl(f(t)).

Proof. Suppose τf is T0 and f(t) 6= t. Since τf is T0, either t 6∈ cl(f(t)) or
f(t) 6∈ cl(t). Since f(t) ∈ cl(t), we have t 6∈ cl(f(t)). �

Recall that for every topology τ , its associated preorder (that is, a reflexive
and transitive relation) ≤τ is called the specialization preorder and defined by
a ≤ b if and only if a ∈ cl({b}). Then, one can see that this preorder is a partial
order if and only if τ is T0 which in this case we call it specialization order.

If (X,≤) is a preordered set, a ∈ X, and A ⊆ X, then ↑ a = {x ∈ X : a ≤ x},
↓ a = {x ∈ X : x ≤ a}, ↑ A =

⋃
a∈A ↑ a, and ↓ A =

⋃
a∈A ↓ a.

Let f : X → X be a mapping. By using Lemma 2.2, we have the following
lemma.

Lemma 2.4. Let f : X → X be a mapping and ≤ be the specialization preorder
of τf . If a is an arbitrary element of X, then

(1) ↓ a = cl({a}) = {a, f(a), f2(a), · · · }.
(2) · · · ≤ f3(a) ≤ f2(a) ≤ f(a) ≤ a.

Let f : X → X be a mapping, a ∈ X, and n ∈ N0. Then we define
f−n(a) = {x : fn(x) = a}.

Lemma 2.5. Let f : X → X be a mapping and (X,≤τf ) be a partially ordered
set. If C is a chain in (X,≤τf ), then there is an embedding from C to Z, in
particular C is countable.

Proof. Let a be an arbitrary element of C. Note that by Lemma 2.4, if x ≤ a
then x ∈ {a, f(a), f2(a), · · · } and if x ≥ a then x ∈ f−n(a) for some non-
negative integer n. Thus, C = (↓ a ∩ C) ∪

⋃
n∈NHn, where

Hn = {x ∈ C : fn(x) = a and fm(x) 6= a for 0 ≤ m < n }\ ↓ a.
We show that |Hn| ≤ 1 for every n ∈ Z+. By way of contradiction suppose

there is an integer n such that Hn has more than one element. Thus, there
are two different elements b, c ∈ C such that b, c ∈ Hn. Either b ≤ c or
c ≤ b. Without lost of generality suppose that b ≤ c. Thus, there is a positive
integer m such that b = fm(c). Either m < n or n ≤ m. If m < n then
a = fn(c) = fn−m(fm(c)) = fn−m(b) and n−m < n which is in contradiction
with b ∈ Hn. If m ≥ n then b = fm(c) = fm−n(fn(c)) = fm−n(a) ∈↓ a which
is a contradiction. Thus, |Hn| ≤ 1. Now define θ : C → Z by

θ(x) =

{
n, if x ∈ Hn;

−n if x = fn(a) and x 6= fm(a) for m < n.

One can easily see that θ is one-to-one and order preserving. Consequently,
θ is an embedding.

�

Consider the mapping f : X → X and define the relation Rf on X as
follows:
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aRfb if and only if there are m,n ∈ N0 such that fm(a) = fn(b).

This relation has been defined in [5], except that there the authors assume
m,n ∈ N. So, some of the results related to connectedness of τf that are
already in [5] are stated here due to their role later on in the next section.

One can easily verify that Rf is reflexive and symmetric. For transitivity
suppose fm(a) = fn(b) and fr(b) = fs(c), where m,n, r, s ∈ {0, 1, 2, · · · , }.
Then fm+r(a) = fn+r(b) = fn+s(c) and so, aRfb and bRfc implies aRfc.

One can see that cl({a}) = {a, f(a), f2(a), f3(a), · · · , } ⊆ [a] for a ∈ X
where [a] is the equivalence class of a. In fact, [a] = cl({a}) ∪ f−1(cl({a})) ∪
f−2(cl({a})) ∪ f−3(cl({a})) · · · .

Lemma 2.6. If f : X → X is a mapping, then [a] is a clopen set of τf for
every a ∈ X.

Proof. Suppose a ∈ X. We show that [a] is clopen. Since m ∈ [a] if and only
if f(m) ∈ [a], f([a]) ⊆ [a] and f(X \ [a]) ⊆ X \ [a]. Consequently, both [a] and
X \ [a] are closed. So, [a] is a clopen set. �

Corollary 2.7. If f : X → X is a mapping, then τf is connected if and only
if for every a, b ∈ X there are m,n ∈ N0 such that fm(a) = fn(b).

Corollary 2.8. If f : X → X is a mapping and a ∈ X, then τf is connected
if and only if X =

⋃
m∈N0

⋃
n∈N0

f−n(fm({a}))

Recall that a preordered set (X,≤) is called connected if for any a, b ∈ X,
there exists a finite sequence (a = x1, · · · , xn = b) such that xi and xi+1 are
comparable for every i = 1, · · · , n− 1.

One can easily verify the proof of the following lemma.

Lemma 2.9. A preordered set (X,≤) is connected if and only if X =↑↓
{a}∪ ↑↓↑↓ {a} ∪ · · · . for every a ∈ X

Theorem 2.10. Let f : X → X be a mapping. Then the following are equiv-
alent:

(1) τf is connected,
(2) (X,≤τf ) is a connected preordered set,
(3) X =↑↓ {a} for every a ∈ X.

Proof. We prove the theorem by showing that both (a) and (b) are equivalent
to (c).

For (a) ⇒ (c) suppose τf is connected. We prove that X =↑↓ {a} for every
a ∈ X. If b ∈ X, then by Corollary 2.7 there are m,n ∈ {0, 1, 2, · · · , } such
that fm(a) = fn(b). Since fm(a) = fn(b) ≤τf a, we have fn(b) ∈↓ {a}.
On the other hand, fn(b) ≤τf b or b ∈↑ fn(b). Thus, b ∈↑ fn(b) ⊆↑↓ {a}.
Consequently, X =↑↓ {a}.

For (c) ⇒ (a) , suppose X =↑↓ {a} for every a ∈ X. We prove that τf
is connected. It is enough to show that for every x ∈ X there are m,n ∈
{0, 1, 2, · · · , } such that fm(x) = fn(a). Note that every x ∈ X belongs to the
set ↑↓ {a} =↑ {a, f(a), f2(a), · · · }. Thus, there is an n ∈ {0, 1, 2, · · · , } such
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that fn(a) ≤τf x or fn(a) ∈↓ {x} and by Lemma 2.4, fn(a) = fm(x) for some
non-negative integer m. Hence, by Corollary 2.8, τf is connected.

For (b) ⇒ (c) it is enough to prove ↑↓↑↓ {a} ⊆↑↓ {a} for every a ∈ X.
Assume x ∈↑↓↑↓ {a}. Thus, there is a y ∈↓↑↓ {a} such that y ≤τf x. Since
y ∈↓↑↓ {a}, there is a b ∈↑↓ {a} such that y ≤τf b. By Lemma 2.4, b ∈↑
{a, f(a), f2(a), · · · }. There is a non-negative integer m such that fm(a) ≤τf b.
Thus, fm(a) ∈↓ {b} and therefore, by Lemma 2.4, there is a non-negative
integer n such that fm(a) = fn(b). On the other hand, since y ≤τf b, there is
a non-negative integer r such that y = fr(b). Either r ≥ n or r < n. If r ≥ n,
then fm+(r−n)(a) = fn+(r−n)(b) = fr(b) = y ≤τf x. Thus, x ∈↑↓ {a}. In the
case of r < n we have fm(a) = fn(b) ≤τf fr(b) = y ≤τf x. So, x ∈↑↓ {a}.
Consequently, ↑↓↑↓ {a} =↑↓ {a} and therefore, (b) implies (c). Thus, parts (b)
and (c) are equivalent as (c) implies (b). �

Lemma 2.11. Let f : X → X be a mapping and τf be T0. If X is connected,
then X with respect to the inequality ≤τf is a ∧-semilattice.

Proof. Suppose a, b ∈ X. We prove that a∧b exists. Since X is connected, there
are m,n ∈ N0 such that fm(a) = fn(b). Thus, t = fm(a) = fn(b) ≤τf a, b.
If s ≤τf a, b with s ≥τf t then s ∈ {a, f(a), · · · , fm(a)} ∩ {b, f(b), · · · , fn(b)}.
Since both sets {a, f(a), · · · , fm(a)} and {b, f(b), · · · , fn(b)} are finite and form
a chain, we can find the biggest element s in their intersection which will be
a ∧ b. �

Remark 2.12. Let f : X → X be a mapping and τf be connected and T0. By
Lemma 2.11 (X,≤τf ) is a ∧-semilattice. We claim that for every x, y ∈ X

there are l, k ∈ N0 such that f l(x) = fk(y) and whenever, f i(x) = f j(y)
for i, j ∈ N0 we have l ≤ i and k ≤ j. Suppose k = min{d ∈ N0 : ∃c ∈
N0 f

d(y) = f c(x)}. Thus, there is an c0 ∈ N0 such that fk(y) = f c0(x). Let
l = min{c ∈ N0 : fk(y) = f c(x)}. We prove that if f i(x) = f j(y) for i, j ∈ N0

we have l ≤ i and k ≤ j. By definition of k we have k ≤ j. We prove that l ≤ i.
If l > i then, fk(y) = f l(x) = f i+(l−i)(x) = f j+(l−i)(y) ≤τf f j(y) ≤τf fk(y).

Thus, fk(y) = f l(x) = f j(y) = f i(x). By definition of l, we have l ≤ i which
contradicts, l > i. Thus, l ≤ i. By definition of infimum, x∧y = f l(x) = fk(y).

We call the pair (l, k) the (x, y)-connector. It is clear by the procedure that
if (l, k) is the (x, y)-connector, then (k, l) is the (y, x)-connector. Thus, by
definition, if (l, k) is the (x, y)-connector, then x ∧ y = f l(x) = fk(y).

Lemma 2.13. Let f : X → X be a mapping and τf be T0 and connected. If
x, z ∈ X, then for every y ∈ X either x ∧ z ≥τf x ∧ y or x ∧ z ≥τf y ∧ z.

Proof. Suppose (θ, η) is the (x, y)-connector and (ξ, ϕ) is the (y, z)-connector.
Thus, x ∧ y = fθ(x) = fη(y) and y ∧ z = fξ(y) = fϕ(z). Either ξ ≤ η
or η ≥ ξ. If ξ ≤ η, then fθ(x) = fη(y) = fξ+η−ξ(y) = fϕ+η−ξ(z). Thus,
x ∧ z ≥τf fθ(x) = x ∧ y. Similarly, for the case η ≥ ξ one can show that
x ∧ z ≥τf y ∧ z. �
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Recall that a nonempty subset C of the preordered set (X,≤) is called cyclic
if x ≤ y for every x, y ∈ C. We call a cyclic subset nontrivial, if it has more
than one element.

We call a preordered set (X,≤) cyclic free if it does not contain any nontrivial
cyclic subset.

Lemma 2.14. Let f : X → X be a mapping. If τf is connected, then every
cyclic subset of (X,≤τf ) is finite.

Proof. Suppose C is a cyclic subset of X. Assume that a is a fixed element of
C. Then for x ∈ C we have x ≤τf a and a ≤τf x. Thus, there are non-negative
integers m,n such that x = fn(a) and a = fm(x). Thus, a = fm+n(a).
Therefore, C ⊆ {a, f(a), · · · , fm+n−1(a)}. Consequently, C is finite. �

Remark 2.15. Note that in Lemma 2.14, the cyclic {a, f(a), · · · , fm+n−1(a)}
is a maximal cyclic. Because if {a, f(a), · · · , fm+n−1(a)} ⊆ D then d ≤ a for
every d ∈ D. Thus, d = fq(a) for some non-negative integer q and therefore,
d ∈ {a, f(a), · · · , fm+n−1(a)}.

Definition 2.16. Let (X,≤) be a partially ordered set. We call X a Z-primal
(N-primal) if X is ∧-semilattice and every chain of X can be embedded in Z
(N).

Definition 2.17. Let (X,≤) be a preordered set. We call X cyclic primal if
X = H ∪ C, where C is a finite nontrivial cyclic subset of X and H is either
empty set or an N-primal such that every element of C is less than or equal to
every element of X.

Example 2.18. For the following functions we will classify the specialization
preorder of the functional Alexandroff topology induced on the domain by the
function.

(1) For the function f : N → N defined by f(x) = max{x − 1, 1}, the
specialization preorder ≤τf is the usual order on N. Thus, N with
respect to ≤τf is a connected N-primal partially ordered set.

(2) For the function g : Z→ Z defined by g(x) = x− 1, the specialization
preorder ≤τg is the usual order on Z. Thus, Z with respect to ≤τg is a
connected Z-primal partially ordered set.

(3) Consider the function h : Z→ Z defined by

h(x) =

{
x− 2, if x is even;

1 if x is odd.

The specialization preorder ≤τh on the set of even numbers is the
usual order of Z. However, 1 ≤τh x for every odd number x. One can
see that every even number is incomparable with every odd number.
Therefore, Z with respect to ≤τh is not connected and consists of two
components, 2Z which is a Z-primal with respect to ≤τh and the set of
odd integers which is an N-primal with respect to ≤τh .
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(4) Consider the function r : N→ N defined by

r(x) =

{
x− 1, if x > 1;

4 if x = 1.

Then N with respect to ≤τr is connected and cyclic primal such
that N = {5, 6, 7, · · · } ∪ {1, 2, 3, 4} with {5, 6, 7, · · · } being N-primal
and {1, 2, 3, 4} being cyclic and we have 1, 2, 3, 4 ≤τr x for every x ∈ N.

Lemma 2.19. Let f : X → X be a mapping and τf be connected. Then
(X,≤τf ) is either a Z-primal (N-primal) or a cyclic primal.

Proof. If (X,≤τf ) is a partially ordered set then by Lemma 2.5 and Lemma
2.11, (X,≤τf ) is a Z-primal (N-primal). If (X,≤τf ) is not a partially or-
dered set, then there are at least two different elements a and b such that
a ≤τf b and b ≤τf a. Then by the proof of Lemma 2.14, there is a posi-
tive integer m such that a = fm(a) which results in a maximal finite cyclic
C = {a, f(a), · · · , fm−1(a)} that contains both a and b. Next we prove that
z ≤ x for every x ∈ X and z ∈ C. Since X is connected, there are r, s ∈ N0

such that fr(x) = fs(a). Assume z = fq(a) for some q ∈ N0. There is a j ∈ N0

such that q + jm ≥ s. Thus, z = fq(a) = fq+jm(a) = f (q+jm−s)+s(a) =
f (q+jm−s)+r(x) ≤ x. It remains to show that X \ {a, f(a), · · · , fm−1(a)} is ei-
ther the empty set or an N-primal. If X \ {a, f(a), · · · , fm−1(a)} is the empty
set, then X = {a, f(a), · · · , fm−1(a)} and therefore, X is cyclic. So, suppose
X \ {a, f(a), · · · , fm−1(a)} is non-empty.

We show the set X \ {a, f(a), · · · , fm−1(a)} is cyclic free; meaning that any
cyclic of X \ {a, f(a), · · · , fm−1(a)} must be singleton. By the way of con-
tradiction suppose J is a cyclic of X \ {a, f(a), · · · , fm−1(a)} with at least
two elements u and v. Using u ≤ v and v ≤ u will result in the existence
of a positive integer k with fk(u) 6= u and fk+1(u) = u. Since τf is con-
nected, there are non-negative integers r, s such that fr(a) = fs(u). Now,
u = fk+1(u) = fs(k+1)(u) = fsk+s(u) = fsk+r(a) ∈ {a, f(a), · · · , fm−1(a)}
which is a contradiction. Thus, X \ {a, f(a), · · · , fm−1(a)} is cyclic free.

Now we prove that X \ {a, f(a), · · · , fn−1(a)} is a partially ordered set.
By the way of contradiction suppose there are two different elements e, k ∈
X \ {a, f(a), · · · , fm−1(a)} such that e ≤ k and k ≤ e. Thus, {e, k} will be a
nontrivial cyclic of X \{a, f(a), · · · , fn−1(a)} which by the previous paragraph
is impossible. Thus, X \ {a, f(a), · · · , fm−1(a)} is a partially ordered set.

Next we prove that X \ {a, f(a), · · · , fm−1(a)} is an N-primal.
Define g : X \ {a, f(a), · · · , fm−1(a)} → X \ {a, f(a), · · · , fm−1(a)} by

g(x) =

{
x, if x ∈ f−1(a);

f(x) otherwise
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We prove that for every positive integer n, gn(x) is in the form of f i(x) where
i ∈ {0, · · · , n}. Note that by definition it is true for k = 1. Next suppose it is

true for k−1. Then gk(x) = g(gk−1(x)) =

{
gk−1(x), if gk−1(x) ∈ f−1(a);

f(gk−1(x)) otherwise

But by hypothesis, gk−1(x) is in the form of f i(x), where i ∈ {0, · · · , k−1}.
Thus, for every positive integer n we have gn(x) = f i(x) where i ∈ {0, · · · , n}.

Next we show that ≤τg=≤τf on X \{a, f(a), · · · , fm−1(a)}. If x ≤τg y then

by Lemma 2.2 x ∈ {y, g(y), g2(y), · · · }. Since for every positive integer n,
gn(y) is in the form of f i(y) where i ∈ {0, · · · , n}, we have x ≤τf y. Thus,

≤τg⊆≤τf . On the other hand if x ≤τf y, then x = f l(y) for some non-negative

integer l. Note that gl(y) is in the form of f i(y) where i ∈ {0, · · · , l} and so,
gl+l−i(y) = f i+l−i(y) = f l(y) = x. Consequently, x ≤τg y. Hence, ≤τg=≤τf .

Thus, (X \ {a, f(a), · · · , fm−1(a)},≤τg ) is a partial order set and therefore, by

Lemma 2.11 (X \ {a, f(a), · · · , fm−1(a)},≤τg ) is an ∧-semilattice. We show

that every chain C of (X \ {a, f(a), · · · , fm−1(a)},≤τg ) can be embedded in
N. By Lemma 2.5 every chain C can be embedded in Z. So, it is enough to
show that C has an smallest element. If t is a fixed element of C then we show
that ↓ t = {t, f(t), f2(t), · · · } is a finite set and therefore, C has a minimum
element. Since X is connected, there are k1, k2 ∈ N0 such that fk1(t) = fk2(a)
and so, fmk1(t) = fmk2(a) = a 6∈ C. Thus, {x ∈ C : x ≤τg t} =↓ t ∩ C ⊆
{t, f(t), f2(t), · · · , fmk1−1(t)} and therefore, ↓ t ∩ C is finite. Consequently, C
can be embedded in N and the proof is complete. �

We recall that if X is a partially ordered set and x, y ∈ X, x ≺ y means
x < y and whenever z < y we have z ≤ x.

Theorem 2.20. Let τ be a topology on a set X such that every component of
(X,≤τ ) is either a Z-primal (N-primal) or a cyclic primal. Then there is a
function f : X → X such that τf is finer than τ and ≤τf =≤τ .

Proof. First we assume X is connected. If X is Z-primal or N-primal, define
f : X → X by

f(x) =

{∨
{t : t <τ x}, if {t : t <τ x} 6= ∅;

x, if {t : t <τ x} = ∅
.

One can see that if {t : t <τ x} 6= ∅, f(x) ≺ x. Also since X is connected and
Z-primal (N-primal), one can see that for every x, y ∈ X with x <τ y , there
are y0, · · · , yn ∈ X with x = y0 ≺ · · · ≺ yn = y. Thus, by definition of f one
can easily verify that x = fn(y).

We prove that τf is finer than τ . Suppose V ∈ τ . We prove V ∈ τf or
equivalently, f(X \ V ) ⊆ X \ V . Note that if a ∈ X \ V and t ≤τ a, then
t ∈ cl({a}) ⊆ cl(X \ V ) = X \ V . In particular, f(a) ∈ X \ V as f(a) ≤τ a.
Thus, f(X \ V ) ⊆ X \ V . Consequently, τ ⊆ τf .

The inclusion τ ⊆ τf implies ≤τf⊆≤τ . For the converse, let x <τ y. Then,
x = fn(y) for some positive integer n. On the other hand by Lemma 2.2 closure
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of {y} with respect to τf is {y, f(y), f2(y), · · · }. Hence, x <τf y. Consequently,
≤τf =≤τ .

For the case that X is a cyclic primal, assume X = H ∪ C, where C =
{c1, · · · , cm} is a finite cyclic subset of X and H is either the empty set or an
N-primal such that every element of C is less than or equal to every element
of X.

If H = ∅, then X = {c1, · · · , cm}. Define f : C → C by f(xi) = xi+1

for i = 1, · · · ,m − 1 and f(xm) = x1. It is straightforward to verify that
τf = τ = {∅, X} and therefore, ≤τf =≤τ and we leave it to the reader.

In the case that H is an N-primal, define f : X → X by

f(x) =


∨
{t ∈ H \ C : t < x}, if x ∈ H \ C and {t ∈ H \ C : t < x} 6= ∅;

x, if x ∈ H \ C and {t ∈ H \ C : t < x} = ∅
xi+1, if x = xi, i = 1, · · · ,m− 1

x1, if x = xm

.

Similar to the other case one can prove that τf is finer than τ and ≤τf =≤τ
and we leave it to the reader.

For the case that X is not connected, assume X =
⋃
i∈I Xi with |I| > 1

where Xi’s are the components of X. Then define f : X → X such that
f(x) = fi(x) for every x ∈ Xi where fi is defined on the connected components
Xi exactly the way we defined f on a connected case in the first part. Since
Xi’s form a partition for X, f is well-defined. It is straightforward to verify
that τ ⊆ τf and ≤τf =≤τ and we leave it to the reader. �

Theorem 2.21. Let f : X → X be a mapping. If τf is compact, then for every
a ∈ X there is a positive integer n such that fn(a) = fn−1(a). The converse
is true if and only if τf has finitely many component.

Proof. By the way of contradiction suppose that there is a z ∈ X such that
fn(z) 6= fn−1(z) for every positive integer n. Note {z, f(z), f2(z), f3(z), · · · , } ⊇
{f(z), f2(z), f3(z), · · · , } ⊇ {f2(z), f3(z), · · · , } ⊇ · · · is a descending chain of
closed sets with

⋂
n∈N0
{fn−1(z), fn(z), · · · , } = ∅. Thus, X =

⋃
n∈N0
{fn−1(z),

fn(z), · · · , }c. Since X is compact, and {fn−1(z), fn(z), · · · , }c’s form a chain,
X = {fm−1(z), fm(z), · · · , }c for some m ∈ N0. So, {fm−1(z), fm(z), · · · , } =
∅ which is a contradiction.

For the second part, suppose that for every a ∈ X there is a positive integer
n such that fn(a) = fn−1(a). We prove that τf is compact if and only if τf has
finitely many components. If τf has infinity many components, then obviously,
τf is not compact. For the converse, assume that there are a1, · · · , am such that
X = [a1]∪· · ·∪[am]. To prove that τf is compact suppose X =

⋃
α∈I Vα. By the

assumption, for every ai there is an integer ri such that fri(ai) = fri−1(ai),
i = 1, · · · ,m. For every ai there is an αi ∈ I such that fri(ai) ∈ Vαi

. We
show that [ai] ⊆ Vαi

. Suppose x ∈ [ai]. Thus, there are non-negative integers
m and n with n ≥ ri such that fm(x) = fn(ai) and so, fm(x) = fn(ai) =
fri(ai) ∈ Vαi . Since Vαi is open and fm(x) ∈ Vαi , we have x ∈ Vαi . Therefore,
[ai] ⊆ Vαi . Consequently, X =

⋃m
i=1 Vαi . �
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3. Partial metrics and functional Alexandroff topologies

In this section we are investigating when a functional Alexandroff topology
comes from a generalized metric. Note that by Lemma 2.1, if a functional
Alexandroff topology is T1, then it is the discrete topology and therefore,
is metrizable. So, it seems that the more interesting functional Alexandroff
topologies are those that are not T1. So, we first consider T0 functional Alexan-
droff topologies and later on any functional Alexandroff topology. Therefore,
we are after distance functions that satisfy weaker axioms than metrics. Partial
metrics are one of the distance functions that have a T0 induced topology and
are a good candidate here.

Partial metrics were introduced in the early 1990’s in [17], by a computer
scientist, Steve Matthews, to deal with the reality of having only partial in-
formation and to model the gaining of partial knowledge about ideal objects
through a computer program.

Partial metrics are less well known than metrics, but are useful in the study
of the asymmetric topologies that arise in domain theory which is a part of
computer logic. The structures of domain theory are continuous posets, and
each continuous poset has a partial metric on it that gives rise to all three
topologies studied there: Scott topology, lower topology, and the join of these
two, Lawson topology; see [12]. Each partial metric also has a natural com-
pletion which turns out to be the order theoretic round ideal completion, that
yields a continuous poset, see [13]. To learn more about partial metrics and
their development see [2], [6], [12], [16], [17], [19], and [20].

As you see below in the definition of partial metrics it is not required that
the distance of a point from itself be zero.

Definition 3.1. A partial metric is a function p : X ×X → [0,∞) satisfying
the following axioms:

• For every x, y ∈ X, p(x, y) ≥ p(x, x),
• For every x, y ∈ X, p(x, y) = p(y, x),
• For every x, y, z ∈ X, p(x, z) + p(y, y) ≤ p(x, y) + p(y, z),
• For every x, y ∈ X, x = y if p(x, y) = p(x, x) = p(y, y).

One can see that a partial metric is a metric if and only if p(x, x) = 0 for
every x ∈ X.

A pseudopartial metric is a function p : X ×X → [0,∞) satisfying all of the
axioms of partial metrics except the last one.

For a pseudopartial metric p on the set X, a ∈ X, and r > 0, define

Nr(a) = {x ∈ X : p(x, a) − p(x, x) ≤ r} and N∗r (a) = {x ∈ X : p(x, a) −
p(a, a) ≤ r}. Then define,
τp = {U ⊆ X : a ∈ U ⇒ ∃r > 0 Nr(a) ⊆ U} and
τ∗p = {U ⊆ X : a ∈ U ⇒ ∃r > 0 N∗r (a) ⊆ U}.
Then both τp and τ∗p form topologies on the set X and τp is called the

induced topology by p. Both topologies τp and τ∗p are T0 if and only if p is a
partial metric.
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In the following theorem we will prove that every T0 functional Alexandroff
topology is partial metrizable.

Theorem 3.2. Let f : X → X be a mapping. If τf is T0 then there is a partial
metric p : X ×X → R such that τf = τp.

Proof. Suppose f : X → X is a function such that τf is T0. First assume τf is
connected. Then, X = [a] for every a ∈ X. Since τf is T0, by then by Lemma
2.5 and Lemma 2.11, (X,≤τf ) is either N-primal or Z-primal. We prove the
theorem separately for each case.

Case 1 (Z-primal case): Here we assume that X is Z-primal and not
N-primal as we prove the case of N-primal later. Since (X,≤τf ) is Z-primal

and not N-primal, there exists a b ∈ X such that b > f(b) > f2(b) > · · · .
Since X is connected by Lemma 2.8, X =

⋃
m,n∈N0

f−m(fn(b)). Now define

α : X → R such that for x ∈ f−m(fn(b)),

α(x) =

{
1

−m+n+2 , if −m+ n ≥ 0;
−m+n−1
−m+n−2 , if −m+ n < 0.

First we show that α is well defined. It is enough to prove that if x ∈
f−r(fs(b))∩f−m(fn(b)) then −r+s = −m+n. If x ∈ f−r(fs(b))∩f−m(fn(b))
then fs(b) = fr(x) and fn(b) = fm(x). Either r ≤ m or m ≤ r. Without
lost of generality assume r ≤ m. Thus, fn(b) = fm(x) = f (m−r)+r(x) =
f (m−r)(fs(b)) and so, n = m− r + s or −r + s = −m+ n.

Next we show that x < y implies α(x) < α(y). Since x < y there is a
positive integer l such that x = f l(y). On the other hand, there are non-
negative integers r, s,m and n such that fr(x) = fs(b) and fm(y) = fn(b).
Either l ≤ m or l > m.

If l ≤ m, then fn(b) = fm(y) = fm−l(f l(y)) = fm−l(x). Therefore, x ∈
f−(m−l)(fn(b)) ∩ f−r(fs(b)) and so, −r + s = −m + l + n > −m + n. If
−m + n ≥ 0, then α(y) = 1

−m+n+2 > 1
−r+s+2 = α(x). If −m + n < 0 then,

α(y) = −m+n−1
−m+n−2 . On the other hand, if −r + s ≥ 0 we have α(x) = 1

−r+s+2 ≤
1
2 <

−m+n−1
−m+n−2 = α(y) and if −r + s < 0 we have α(x) = −r+s−1

−r+s−2 <
−m+n−1
−m+n−2 =

α(y) as −r + s = −m+ l + n > −m+ n.
If l > m, then x = f l(y) = f l−m(fm(y)) = f l−m(fn(b)). So, x ∈ f l−m(fn(b))

with l − m + n > 0. Thus, α(x) = 1
l−m+n+2 . On the other hand, either

α(y) = 1
−m+n+2 if −m+n ≥ 0 or α(y) = −m+n−1

−m+n−2 if −m+n < 0 and in either

case we have α(y) > α(x).
Now define pa : X ×X → R by pa(x, y) = α(x) +α(y)−α(x∧ y). We prove

that pa is a partial metric and τpa = τf . One can easily verify that since α
is order preserving, for every x, y ∈ X, pa(x, y) ≥ pa(x, x). It is obvious that
pa(x, y) = pa(y, x). For the triangularity, we have to show for every x, y, z we
have pa(x, z) +pa(y, y) ≤ pa(x, y) +pa(y, z), or α(x) +α(z)−α(x∧ z) +α(y) ≤
α(x) + α(y) − α(x ∧ y) + α(z) + α(y) − α(z ∧ y) or α(x ∧ y) + α(z ∧ y) ≤
α(x ∧ z) + α(y). By Lemma 2.13 either x ∧ y ≤ x ∧ z or y ∧ z ≤ x ∧ z.
If x ∧ y ≤ x ∧ z, since α is order preserving, α(x ∧ y) ≤ α(x ∧ z). On the
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other hand, α being order preserving implies α(y ∧ z) ≤ α(y) and therefore,
α(x∧ y) +α(z ∧ y) ≤ α(x∧ z) +α(y). For the case that y ∧ z ≤ x∧ z similarly,
can be proved α(x ∧ y) + α(z ∧ y) ≤ α(x ∧ z) + α(y).

For the last property note that pa(x, y) = pa(x, x) = pa(y, y) implies α(y) =
α(x∧y) and α(x) = α(x∧y). Thus, x∧y = x as x∧y < x implies α(x∧y) < α(x).
Similarly, x ∧ y = y. Therefore, x ∧ y = x = y.

We now show that τpa = τf . Suppose U ∈ τf . We show that U ∈ τpa .
If U is the empty set, we are done. So, let x ∈ U . We show that there is
an r > 0 such that Nr(x) ⊆ U . Either α(x) = 1

n+2 or α(x) = n+1
n+2 for some

non-negative integer number n. If α(x) = 1
n+2 , let r = 1

2 ( 1
n+2 −

1
n+3 ) and if

α(x) = n+1
n+2 let r = 1

2 (n+1
n+2 −

n
n+1 ). We prove that Nr(x) ⊆ U . Note that

Nr(x) = {y : pa(x, y) − pa(y, y) ≤ r} = {y : α(x) − α(x ∧ y) ≤ r}. For every
y ∈ X, either α(x)− α(x ∧ y) = 0 or α(x)− α(x ∧ y) > 0. If α(x) = α(x ∧ y),
since x and x ∧ y are comparable, x = x ∧ y or x ≤ y. In this case y ∈ U ,
since U is open in τf . If α(x) − α(x ∧ y) > 0 then by the way α is defined,
α(x) − α(x ∧ y) ≥ α(x) − α(f(x)) > r and therefore, y 6∈ Nr(x). Thus,
Nr(x) ⊆ {y : α(x)− α(x ∧ y) = 0} = {y : x ≤ y} ⊆ U .

Next assume U ∈ τpa . We show that U ∈ τf or equivalently, f(X \ U) ⊆
(X \ U). By the way of contradiction suppose t ∈ X \ U but f(t) ∈ U . Since
U is open in τpa , there is an r > 0 such that Nr(f(t)) ⊆ U . By definition,
Nr(f(t)) = {y : α(f(t))− α(f(t) ∧ y) ≤ r}. So, t ∈ Nr(f(t)) as t ≥ f(t). This
is a contradiction with t ∈ X \ U . Thus, f(X \ U) ⊆ (X \ U). Consequently,
τpa ⊆ τf .

Case 2 (N-primal case): If (X,≤τf ) is N-primal, then every maximal

chain containing {a, f(a), f2(a), · · · } has an smallest element. Therefore, there
is a non-negative integer number such that fm(a) = fm+1(a). Let b = f t(a)
where t = min{i ∈ N0 : f i(a) = f i+1(a)}. Let B0 = {b}, B1 = f−1(b) \ B0,

B2 = f−2(b) \ (B0 ∪ B1),..., Bn = f−n(b) \ (
⋃n−1
i=0 Bi). Note that for every

x ∈ X there are non-negative integers r and s such that fr(a) = fs(x) and
so, fs+t(x) = fr+t(a) = fr(b) = b. Thus, x ∈ f−(s+t)(b). Consequently,
x ∈

⋃
i∈N0

Bi. Thus, X =
⋃
i∈N0

Bi.

Now define α : X → R such that α(x) = n+1
n+2 if x ∈ Bn. We prove that

Pa : X ×X → R such that pa(x, y) = α(x) +α(y)−α(x∧ y) is a partial metric
such that τf = τpa .

First we show that x < y implies α(x) < α(y). Suppose y ∈ Bj . Thus,

α(y) = j+1
j+2 . Since x < y, x = f l(y) for some positive integer l. Either l ≤ j

or j < l. If l ≤ j, then b = f j(y) = f j−l(f l(y)) = f j−l(x). Thus, x ∈ Bk
with k ≤ j − l < j. Thus, α(x) = k+1

k+2 < j+1
j+2 = α(y). In case that j < l we

have, x = f l(y) = f l−j+j(y) = f l−j(f j(y)) = f l−j(b) = b. Thus, B0 = {x}
and therefore, α(x) = 1

2 . Since x 6= y, we have y 6∈ B0. Thus, j > 0. Hence,

α(y) = j+1
j+2 >

0+1
0+2 = α(x).

In this case similar to Case 1 we use α being order preserving to show that
pa is a partial metric. Also similarly it can be shown that τpa = τf .
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For the case that X is not connected, X =
⋃
i∈I [ai] such that |I| > 1. Define

p : X ×X → R by

p(x, y) =

{
pak

(x,y)

1+pak
(x,y) , if ∃k such that x, y ∈ Pak ;

1 otherwise

Note that since [ai]’s are disjoint, p is well defined. The proof that p is a
partial metric can be found in [18]. Since for every partial metric the induced
topology by the partial metric p

1+p is the same as the induced metric by p, we

will have τf = τp in this case. �

Since the partial metric in Theorem 3.2 is defined based on the specialization
order, Theorem 2.20 and Theorem 3.2 yield to the following corollary.

Corollary 3.3. Let τ be a topology on a set X such that every component of
X is a Z-primal (N-primal) with respect to ≤τ . Then τ is partial metrizable.

Theorem 3.4. Every functional Alexandroff topology is pseudopartial metriz-
able.

Proof. Suppose f : X → X is a mapping. We prove that there is a pseudopar-
tial metric p : X ×X → R such that τf = τp. If τf is T0, then by Theorem 3.2
τf is partial metrizable and therefore, pseudopartial metrizable. So, assume τf
is not T0. We first assume τf is connected. So, suppose X = [a] for a fixed
a ∈ X. By Lemma 2.19 (X,≤τf ) is cyclic primal as in the case of Z-primal
(N-primal) τf is T0. Thus, X = H ∪ C, where C is a finite nontrivial cyclic
subset of X and H is either empty set or an N-primal such that every element
of C is less than or equal to every element of X. If H = ∅ then X = C. In
this case define ea : X ×X → R by ea(x, y) = 0 for every x, y ∈ X. Then one
can easily show that ea is a pseudopartial metric and τea = τf = {∅, X}. In
the case that H 6= ∅, define ea : X × X → R by using the partial metric pa
that was defined in Theorem 3.2 as following

ea(x, y) =



pa(x, y), if x, y ∈ X \ C
and x ∈ (↑↓ {y}∪ ↑↓↑↓ {y} ∪ · · · ) ∩ (X \ C);

pa(x, x) + pa(y, y), if x, y ∈ X \ C
and x 6∈ (↑↓ {y}∪ ↑↓↑↓ {y} ∪ · · · ) ∩ (X \ C);

0, if x, y ∈ C;

pa(x, x) if x ∈ H \ C and y ∈ C,
pa(y, y) if x ∈ C and y ∈ H \ C.

It is straightforward to prove that ea is a pseudopartial metric and τea = τf
and we will leave it to the reader.

In the case that τf is not connected, we define a pseudopartial metric on X
based on the pseudopartial metrics on the components as we did in Theorem
3.2 �
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Corollary 3.5. Let τ be a topology on a set X such that every component of
(X,≤τ ) is either a Z-primal (N-primal) or a cyclic primal. Then there is a
pseudopartial metric p such that ≤τ=≤p.

Proof. Suppose τ is a topology on a setX such that every component of (X,≤τ )
is either a Z-primal (N-primal) or a cyclic primal. Then by Theorem 2.20 there
is a function f : X → X such that ≤τ=≤τf . Then, by Theorem 3.4 there is a
pseudopartial metric p such that ≤τf =≤p and so, ≤τ=≤p. �

4. Conclusion

The focus of this article is mainly about general metrizability of functional
Alexandroff topologies which enables us to talk about distance. In other words,
it connects these topologies with analysis. These topologies might have inter-
esting properties in the context of topological groups when the domain of the
function is a group rather than a set and the mapping is a group homomor-
phism.
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