
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Machine learning-based characterization of single-particle
behavior with synthetic experiment videos.

End of Degree Project

Bachelor's Degree in Data Science

AUTHOR: Ahsini Ouariaghli, Yusef

Tutor: Conejero Casares, José Alberto

ACADEMIC YEAR: 2023/2024

Resumen
Este Trabajo de Fin de Grado se centra en examinar el movimiento de partícu-

las individuales dentro de células vivas, utilizando videos de experimentos. Este
trabajo es parte de la participación en el 2nd Anomalous Diffusion (AnDi) Cha-
llenge. En ella, disponemos de videos sin procesar de varias regiones o FOVs de
un experimento. Dicho experimento es un escenario biológico específico definido
mediante un modelo de interacciones y un conjunto de parámetros que descri-
ben la interacción dinámica de las partículas y el entorno. El objetivo es emplear
varios modelos de aprendizaje automático y algoritmos de seguimiento de video
para participar en las dos tareas de la competición.

La primera tarea es la Ensemble Task, que se centra en proporcionar predic-
ciones a nivel de conjunto reconociendo los modelos subyacentes utilizados para
simular el comportamiento de las partículas en el experimento. Esto abarca cin-
co modelos fenomenológicos: modelo de estado único (SSM), modelo de estado
múltiple (MSM), modelo de dimerización (DIM), modelo de confinamiento tran-
sitorio (TCM) y modelo de trampa enfriada (QTM), junto con la distribución de
coeficientes de difusión y exponentes en diferentes condiciones experimentales.

La segunda, la Single-trajectory Task implica un análisis más detallado de las
trayectorias de partículas individuales en cada FOV. Aquí, el objetivo es identifi-
car puntos de cambio dentro de las trayectorias y caracterizar los coeficientes de
difusión, exponentes y restricciones ambientales.

Palabras clave: Difusión Anómala, Seguimiento de Partículas, Visión Compu-
tacional, Aprendizaje Automático, Attention U-Nets

iii

iv

Abstract
This Bachelor Thesis concentrates on examining the movement of individ-

ual particles within living cells, utilizing videos of experiments. This work is
linked to the participation in the 2nd Anomalous Diffusion (AnDi) Challenge.
Raw videos from various regions or FOVs of an experiment are available. This
experiment constitutes a specific biological scenario defined by a model of inter-
actions and a set of parameters describing the dynamic interaction of particles
and the environment. The aim is to employ Machine Learning models and video
tracking algorithms to participate in the two tasks of the challenge.

The first task is the Ensemble Task, focusing on providing ensemble-level pre-
dictions by recognizing the underlying models used to simulate particle behav-
ior in the experiment. This spans five phenomenological models: Single-state
model (SSM), Multi-state model (MSM), Dimerization model (DIM), Transient-
confinement model (TCM), and Quenched-trap model (QTM), alongside the dis-
tribution of diffusion coefficients and exponents across different experimental
conditions.

On the other hand, the Single-trajectory Task involves a more detailed exam-
ination of individual particle trajectories in each FOV. Here, the objective is to
identify changing points within trajectories and characterize the diffusion coeffi-
cients, exponents, and environmental constraints.

Key words: Anomalous diffusion, Single-Particle-tracking, Computer Vision, Ma-
chine Learning, Attention U-Nets

Contents

Contents v
List of Figures vii
List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Structure of the memory . 2

2 Anomalous Diffusion 5
3 The 2nd Andi Challenge 9

3.1 Tasks . 9
3.2 Data . 10
3.3 Evaluation Methodology . 11

3.3.1 Ensemble Tasks Evaluation 11
3.3.2 Single-trajectory Tasks Evaluation 11

4 State of the Art 15
4.1 Introduction . 15
4.2 Particle Tracking . 15

4.2.1 Centroid-Based Algorithms 15
4.2.2 Feature-Based Tracking . 16

4.3 Changing Points in Time Series . 16
4.3.1 PELT (Pruned Exact Linear Time) 17
4.3.2 Window Sliding . 17
4.3.3 Binary Segmentation . 18
4.3.4 Bottom-up Segmentation . 19

4.4 Machine Learning . 20
4.4.1 The Andi Challenge . 20
4.4.2 U-Net . 22

4.5 Conclusion . 23
5 Methodology 25

5.1 Overview . 25
5.2 Data Generation . 27
5.3 Particle Tracking . 28
5.4 Inference of Diffusion Parameters and State Classification 31
5.5 Change Point Detection . 35
5.6 Prediction . 36

6 Validation 37
6.1 Competition Validation . 37
6.2 Local Validation . 38

v

vi CONTENTS

6.3 Conclusion . 43
7 Results 45
8 Conclusions 47

8.1 Objetives . 47
8.2 Relation with Study Porgram . 47

Bibliography 49

Appendices
A Python Code 53
B Sustainable Development Goals 65

List of Figures

2.1 Physical Models of Motion and Interactions 7

3.1 2nd AnDi Challenge Structure . 10
3.2 Field of View in an Experiment . 10

4.1 Window Sliding Method . 18
4.2 Binary Segmentation Algorithm . 19
4.3 Feedforward Neural Network Arquitecture 21
4.4 U-Net Network Arquitecture . 23
4.5 Attention Mechanism in an Attention U-Net 23

5.1 Proposed Methodology . 26
5.2 Data Generation . 28
5.3 Particle Detection . 29
5.4 Particle Tracking . 29
5.5 Video to Trajectory . 30
5.6 Attention U-Net module Prediction Structure 31

6.1 Hexagonal Binning Plot of Real versus Predicted Alpha Values . . . 40
6.2 Hexagonal Binning Plot of Real versus Predicted Alpha Values by

Motion Model . 41
6.3 Comparison of Mean Absolute Error (MAE) as a Function of Real

Alpha Values . 42
6.4 Comparison of Mean Absolute Error (MAE) as a Function of Real

Alpha Values by Motion Model. 42
6.5 Comparison of Mean Squared Logarithmic Error (MSLE) as a Func-

tion of Real K Values . 43
6.6 Comparison of Mean Squared Logarithmic Error (MSLE) as a Func-

tion of Real K Values by Motion Model. 43

List of Tables

5.1 Description of Models with Task Types, Architecture Details, and
Performance Metrics . 34

5.2 Parameter Configurations for State Change Detection 35
5.3 Ensemble Task Prediction Format . 36

vii

viii LIST OF TABLES

6.1 Video Track: Ensemble Task Results During the Validation Phase . 37
6.2 Video Track: Single Trajectory Task Results During the Validation

Phase . 38
6.3 Trajectory Track: Ensemble Task Results During the Validation Phase 38
6.4 Trajectory Track: Single Trajectory Task Results During the Valida-

tion Phase . 39

7.1 Final Result of the Ensemble Task on the Video Track. 45
7.2 Final Result of the Single Trajectory Task on the Video Track. 45

CHAPTER 1

Introduction

Understanding the motion of individual particles is critical for deciphering vari-
ous biological and physical processes. Cell imaging, in combination with single-
particle tracking in combination, has become indispensable in this regard, offer-
ing insights into the dynamics of molecules such as proteins, lipids, and other
biomolecules within complex environments [1].

In the study of diffusion processes, Brownian motion is often the first example
that comes to mind. In Brownian motion, the mean square displacement (MSD)
of particles increases linearly with time, reflecting a simple, predictable pattern
of movement. However, many systems exhibit more complex behavior known
as anomalous diffusion, where this linear relationship no longer holds. Instead,
the MSD varies with time according to a power law, with an exponent α that
characterizes the nature of the diffusion—whether it is faster (superdiffusive) or
slower (subdiffusive) than normal.

Understanding and predicting the anomalous exponent α and the generalized
diffusion coefficient K are crucial for characterizing these complex systems. Un-
like normal diffusion, where the relationship between MSD and time is straight-
forward, anomalous diffusion involves intricate dynamics, often influenced by
how long a particle lingers in one spot before moving on or the interaction with
the rest of the particles. This behavior must be carefully considered to distin-
guish between different modes of motion and identify transitions in a particle’s
trajectory.

1.1 Motivation

In recent years, the advancement of machine learning algorithms and the signif-
icant reduction in computational power costs have revolutionized their applica-
tion across various research domains. This technological leap has made it feasible
to tackle more complex problems. [2, 3].

For instance, in the field of material science, researchers are now employing
machine learning to predict the properties of new materials by analyzing vast
datasets of experimental results [4]. Similarly, in the medical field, these algo-
rithms are being used to identify patterns in medical imaging that can lead to
earlier and more accurate diagnoses [5].

1

2 Introduction

One particularly intriguing application of these advancements is in the char-
acterization of anomalous diffusion coefficients in particles. Traditionally, study-
ing diffusion patterns required extensive and time-consuming experiments, but
now, machine learning models can analyze particle movement data with high
precision and efficiency.

An example of this is the AnDi Challenge 2020, which centered around this
task. As outlined by [6] (hot paper according to Web of Science), the challenge
involved characterizing particles in 1D, 2D, or 3D and included various tasks,
such as inferring the anomalous diffusion exponent α, classifying diffusion mod-
els, and segmenting trajectories. Participants were also given a python library to
generate synthetic experiments through simulation, and validate their methods
using real-world particle tracking datasets.

The main motivation for this End-of-Degree project arises from the launch
of the 2nd Andi Challenge in December 2023 [1]. This challenge introduced sev-
eral updates, including new phenomenological models, additional tracks, and
tasks. It also expanded the competition to require the inference of not only the
anomalous exponent α but also the generalized diffusion coefficient K. Of partic-
ular relevance to this project is the introduction of the video track, where instead
of working with raw particle trajectories, the input of the models will be videos
of the particles in motion, providing the framework for the development of this
work.

1.2 Objectives

The objective is to create a functional model for the video track of the 2nd Andi
Challenge, combining machine learning techniques acquired during the Bache-
lor’s program with video tracking and change-point detection algorithms. The
final model should aim to achieve competitive results in the challenge’s valida-
tion stage, with the goal of securing a Top-5 position in any of the video tasks.
Meeting this target leads to the model being included in the competition’s article
in principle accepted at Nature Communications and co-authorship on it.

1.3 Structure of the memory

The memory is structured in the following parts: The structure of this memory is
organized into the following chapters:

• Chapter 2 introduces the concept of anomalous diffusion in the field of
physics. It delves into the theory behind Fractional Brownian Motion (FBM)
and provides a comprehensive overview of different models of motion,
highlighting their relevance to anomalous diffusion phenomena.

• Chapter 3 is dedicated to the description of the 2nd ANDI Challenge. This
chapter outlines the nature and objectives of the challenge, the dataset pro-
vided, and the evaluation framework employed and the established met-
rics.

1.3 Structure of the memory 3

• Chapter 4 presents a detailed review of the state-of-the-art techniques and
methodologies relevant to the topic. It surveys recent developments, key
research papers, and advances in the modeling and analysis of anomalous
diffusion.

• Chapter 5 discusses the methodology developed and applied in this work.
It includes an in-depth explanation of the techniques utilized, the rationale
behind their selection, and the step-by-step process of implementation, pro-
viding insights into the challenges and solutions encountered during the
process.

• Chapter 6 focuses on the validation of the proposed methodology. This
chapter explains the validation process, presenting the criteria and metrics
used to assess the performance of the methodology, along with a discussion
of the results obtained from this validation.

• Chapter 7 presents and analyzes the results obtained from participating in
the 2nd ANDI Challenge.

• Chapter 8 concludes the memory by summarizing the key findings and re-
sults of the work. Additionally, it reflects on the relationship between the
research conducted and of studies pursued.

CHAPTER 2

Anomalous Diffusion

In physics, diffusion refers to the process by which particles spread out over
time, moving from regions of higher concentration to regions of lower concen-
tration. The standard model of diffusion, known as Brownian motion, describes
this spread as a random walk. In this model, the mean squared displacement
(MSD) of particles grows linearly with time. Mathematically, this relationship is
expressed as:

⟨∆r2(t)⟩ = 2dDt
where:

• r(t) indicates the displacement at time t respect of the origin of the particle.
⟨∆r2(t)⟩ is the mean squared displacement after a time t.

• D is the diffusion coefficient, which measures how fast particles are diffus-
ing.

• d is the spatial dimension (e.g., d = 1 for one-dimensional motion, d = 2 for
two-dimensional motion).

• t t is the time elapsed.

In normal diffusion, the MSD grows linearly with time, indicating that parti-
cles move in a random and uncorrelated manner. This type of diffusion is typ-
ically observed in simple liquids and gases, where there are no significant ob-
stacles or interactions affecting the particles’ motion and it is called Brownian
motion, as it was first observed by R. Brown in 1827 looking at how pollen grains
move under a microscope. Almost one century later, Einstein modeled that these
particles were moved by water molecules [7].

However, in many complex systems, such as in crowded environments, porous
media, or biological systems, the diffusion process deviates from this standard
behavior, leading to what is known as anomalous diffusion. In anomalous diffu-
sion, the MSD does not grow linearly with time but instead follows a power-law
dependence:

⟨∆r2(t)⟩ = 2dKαtα

where:

5

6 Anomalous Diffusion

• Kα is the generalized diffusion coefficient, which encapsulates the effects of
the medium on diffusion.

• α is the anomalous diffusion exponent, which characterizes the deviation
from normal diffusion and are numbers belonging to]0, 2] and different
from 1.

The value of α determines the type of diffusion:

• Normal diffusion occurs when α = 1, which is the standard Brownian mo-
tion case with linear growth of MSD.

• Subdiffusion occurs when α < 1, where the MSD grows more slowly than
linear time, often due to obstacles, trapping, or interactions that hinder par-
ticle movement.

• Superdiffusion occurs when 2 > α > 1, where the MSD grows faster than
linear time, which may be associated with active transport mechanisms or
long-range correlations in the system. Direct diffusion occurs when α = 2.

A prominent model for describing anomalous diffusion is Fractional Brown-
ian Motion (FBM). FBM extends the concept of Brownian motion by introducing
correlations between the increments of a particle’s path. This model is particu-
larly useful for describing various complex processes observed in biological sys-
tems [1, 8, 9]. Mathematically, a FBM where displacement at time t is denoted by
BH(t) is characterized by:

• BH(0) = 0: The process starts at the origin.

• E[BH(t)] = 0: The expected value of the process is zero, indicating no sys-
tematic drift.

• E[BH(t)BH(s)] = K
(
|t|2H + |s|2H − |t − s|2H): This describes the correla-

tion structure of FBM, where k is a constant and H is the Hurst exponent.

We recall that E[] denotes the expected value, and K is a constant with units
length2 * time−2H [1]. Here, the Hurst exponent, which lies in the range 0 < H <
1, determines the nature of the correlations:

• If H = 0.5, the movement reduces to a standard Brownian motion, with no
correlations (i.e., a random uncorrelated motion).

• If H > 0.5, the process shows positive correlations in the increments, mean-
ing that if a particle moves in one direction, it is likely to continue in that
direction, leading to superdiffusion (α > 1).

• If H < 0.5, the process shows negative correlations in the increments, mean-
ing that if a particle moves in one direction, it is more likely to reverse its
motion, resulting in subdiffusion (α < 1).

7

The anomalous diffusion exponent α is related to the Hurst exponent as α =
2H [10]. For an unconstrained fractional Brownian motion (FBM) in 2D, the mean
squared displacement (MSD) scales with time t according to

MSD(t) = 4Ktα[1].

where K is the diffusion coefficient and α = 2H determines the type of diffu-
sion exponent based on the value of the Hurst exponent [1].

In many physical systems, the environment’s complexity leads to a range of
diffusion behaviors among different particles, resulting in a distribution of ex-
ponents α and coefficients Kα. Some particles may exhibit subdiffusive behavior
due to localized trapping, while others may demonstrate superdiffusion driven
by persistent directional motion. These variations reflect the non-uniform and
heterogeneous nature of the environments in which anomalous diffusion occurs.
In the context of the challenge, 5 different physical models of motion and interac-
tions are considered (Figure 2.1):

Figure 2.1: Visual representation of the physical models of motion and interactions.
Source: [1].

• Single-State Model (SSM) — This model describes particles moving within
a single diffusion state, similar to the behavior observed in certain lipids in
the plasma membrane. It is often used as a negative control to assess the
accuracy of detecting changes in diffusion. [11]

• Multi-State Model (MSM) — In this model, particles diffuse according to a
time-dependent, multi-state diffusion process, involving two or more states.
These states can exhibit temporary changes in the diffusion coefficient (K)
and/or the anomalous exponent (α). Such changes in K are seen in proteins
due to factors like allosteric changes or ligand interactions. [12]

• Dimerization Model (DIM) — This model describes how particles diffuse
in a 2-state process, where interactions with other particles lead to transient
changes in K and/or α. Such variations in K have been observed during
protein dimerization and other protein-protein interactions. [13]

• Transient-Confinement Model (TCM) — This model depicts particles dif-
fusing within a spatially-dependent, 2-state process. It is seen when pro-
teins are temporarily confined in regions with different diffusion properties,
such as those created by clathrin-coated pits on the cell membrane. When
there is a high density of these confinement regions, the model can mimic
the picket-and-fence effect, which explains how the actin cytoskeleton in-
fluences transmembrane protein movement. [14]

8 Anomalous Diffusion

• Quenched-Trap Model (QTM) — This model involves particles diffusing
in a space-dependent, 2-state process where proteins become temporarily
immobilized at specific sites due to binding with immobile structures, like
those caused by cytoskeletal pinning. [16]

CHAPTER 3

The 2nd Andi Challenge

This section offers a comprehensive overview of the 2nd Andi Challenge1, out-
lining the various tasks involved, which are the main objectives of this bachelor
thesis. It also includes details on the structure of the provided data and the eval-
uation methodology.

3.1 Tasks

The challenge is organized along two tracks. The organizers provide the data-
generating models for training the machine-learning models and try to replicate
live-cell molecule images. Track 1 is based on the analysis of raw videos, and Track
2 is based on the analysis of trajectories. In each track, participants can compete
in two different tasks:

• Ensemble Task — ensemble-level predictions, providing for each experi-
mental condition the model used to simulate the experiment, the number of
states, and the fraction of time spent in each state. For each identified state,
participants should determine the mean and standard deviation of the dis-
tribution of the generalized diffusion coefficients K, and the mean and stan-
dard deviation of the distribution of the anomalous diffusion exponent α
corresponding to the underlying motion.

• Single-trajectory Task — trajectory-level predictions, providing for each
trajectory a list of M inner CPs delimiting M + 1 segments with different
dynamic behavior. For each segment, participants should identify the gen-
eralized diffusion coefficient K, the anomalous diffusion exponent α corre-
sponding to the underlying motion, and an identifier of the kind of con-
straint imposed by the environment (0 = immobile (QTM model), 1 = con-
fined (TCM model), 2 = free (unconstrained), 3 = directed (α > 1.9)). For
Track 1, predictions must be provided for a subset of particles (we will refer
to them as VIP, very important particles) identified through a label map of
the first frame of the movie. For Track 2, predictions must be provided for
all the trajectories.

1https://codalab.lisn.upsaclay.fr/competitions/16618

9

https://codalab.lisn.upsaclay.fr/competitions/16618

10 The 2nd Andi Challenge

Figure 3.1 presents a visual representation of the challenge structure, illustrat-
ing the data utilized in each track and the associated tasks.

Figure 3.1: Illustrative representation of the 2nd AnDi Challenge tracks (b, c) and tasks
(d, e). Source: [1].

3.2 Data

The datasets for the competition consist of various experiments, each stored in
a folder labeled sequentially (e.g., EXP_1, EXP_2). These folders correspond to
different models with fixed but unknown parameters. Inside each experiment
folder, there are files named sequentially (e.g., FOV_1, FOV_2), each containing
data from 30 fields of view (FOVs). A FOV is a specific area within the experiment
where data on particle movement is captured as shown in figure 3.2. Each FOV
captures data on particles diffusing within a 128 × 128 pixel area.

Figure 3.2: Illustrative representation of a field of view in an experiment. Source: [1].

For Track 1, the particle coordinates in each FOV are used to create 200-frame
videos, stored as a series of 8-bit images in multi-tiff format. These synthetic im-
ages include noise to simulate background fluorescence and shot noise, following

3.3 Evaluation Methodology 11

a Poisson distribution. Additionally, there is an extra image representing a map
of the VIP particles. In this track, only the 10 VIP particles need to be predicted,
and they are identified by unique integer values presented in this frame.

For Track 2, each FOV has an associated CSV file containing a table with
columns for trajectory index, time step, x-coordinate, and y-coordinate. The sim-
ulated trajectories are corrupted with Gaussian noise, reflecting the finite preci-
sion of localization, and can have a maximum length of 200 frames.

The competition provides a starter kit that includes labeled data from 5 dif-
ferent experiments, each containing 20 FOVs. Additionally, a Python library is
available to generate datasets through simulation for both tracks [15]. The range
of values considered for α is between 0 and 2, while for the k coefficient, the values
are between 10−12 and 106.

3.3 Evaluation Methodology

3.3.1. Ensemble Tasks Evaluation

For Ensemble Tasks, participants were required to submit predictions, including
the model type used for each experiment, the number of states S, and the pa-
rameters of each state. While the correctness of the model type was noted, it did
not influence the ranking. The number of states S was evaluated by comparing
the predictions to the ground truth. For both the generalized diffusion coeffi-
cient K and the anomalous diffusion exponent α, participants provided the mean,
standard deviation, and relative weight for each state, from which multi-modal
distributions P(K) and P(α) were constructed. The similarity of these distribu-
tions to the ground-truth distributions Q(K) and Q(α) was quantified using the
first Wasserstein distance:

W1(P, Q) =
∫

supp(Q)

∣∣CDFP(x)− CDFQ(x)
∣∣ dx

where CDF stands for the cumulative distribution function and supp(Q) stands
for the smaller closed set where Q do not anihilate.

3.3.2. Single-trajectory Tasks Evaluation

For single-trajectory tasks, participants have to predict the number of change-
points (CPs) M and the dynamic properties of the resulting M + 1 segments in
which the changepoints split the trajectory, which include the generalized diffu-
sion coefficient K, the anomalous exponent α, and the constraint imposed by the
environment in each segment. The evaluation involved various metrics to as-
sess the accuracy of these predictions, which were stated by the organizers of the
challenge.

• Changepoint Detection Changepoint detection was evaluated by compar-
ing predicted CPs to ground-truth CPs. It can happen that we were not able

12 The 2nd Andi Challenge

to predict the same number of CPs. So that, the Hungarian algorithm was
firstly employed to solve the assignment problem, minimizing the sum of
distances between paired CPs:

dCP = min
(
∑ di,j

)
.

Once we have pared the i-th ground-truth CP at t(GT),i and the j-th predicted
CP at t(P),j, the gated absolute distance these CPs is defined as:

di,j = min
(
|t(GT),i − t(P),j|, ϵCP

)
,

where ϵCP = 10 was used as a maximum penalty for CPs located beyond
this threshold.

As we can have correct and incorrectly determined CPs we compute true
positives (TP), false positives (FP), and false negatives (FN) and then the
Jaccard similarity coefficient (JSC) was computed as:

JSC =
TP

TP + FN + FP
.

in order to measure the dissimilarity of the predictions respect to the ground
truth.

For CPs classified as TP, the root mean square error (RMSE) was calculated
as:

RMSE =

√√√√∑
(

t(GT),i − t(P),j
)2

N
,

where N represents the number of paired CPs.

• Dynamic Property Estimation The evaluation of dynamic properties in-
volved pairing predicted and ground-truth segments based on their JSC.
The Hungarian algorithm maximized the JSC sum, and only paired seg-
ments were considered for further metric calculations. For paired segments
i from the ground truth GT and j from the predictions P, the mean squared
logarithmic error (MSLE) for K was calculated as:

MSLE =
∑pairs(i,j)

[(
log(K(GT),i) + 1)− log(K(P),j + 1)

)2
]

N
.

For the anomalous diffusion exponent α, the mean absolute error (MAE)
was computed as:

MAE =
∑ |α(GT),i − α(P),j|

N
,

where N is the number of paired segments. The reason for using MSLE for
k is that it handles a wide range of possible values, both small and large,

3.3 Evaluation Methodology 13

without biasing the model toward predicting higher values. The diffusion-
type classification was evaluated using the F1-score:

F1 =
2TPc

2TPc + FPc + FNc
,

where TPc, FPc, and FNc denote true positives, false positives, and false
negatives for the classification.

CHAPTER 4

State of the Art

4.1 Introduction

This chapter reviews the state of the art in 3 key areas for participation in the
challenge: particle tracking algorithms, methods for detecting change points in
time series, and machine learning models. These areas are the fundamental bases
of the methodology showcased in the next chapter.

4.2 Particle Tracking

Particle tracking is an essential technique for studying the movement of particles
within various media. The development of robust and accurate particle tracking
algorithms is vital for analyzing experimental data, especially when dealing with
noisy environments or crowded fields [17]. In the case of this work, it is essen-
tial to be able to extract the trajectories from the experiment videos. Over the
years, several algorithms have been developed, each with its own strengths and
limitations.

4.2.1. Centroid-Based Algorithms

Centroid-based algorithms enhance particle detection by improving upon simple
thresholding methods. Instead of relying solely on intensity thresholds to detect
particles, these algorithms calculate the center of mass, or centroid, of detected
particles, based on the intensity distribution within a defined region of interest
[18]. This approach makes the method more robust against noise, variations in
particle intensity, and changes in illumination, as the centroid calculation inher-
ently considers the full intensity profile of a particle. Additionally, centroid-based
algorithms are computationally efficient, allowing for accurate particle localiza-
tion without significant processing overhead, even in challenging imaging condi-
tions.

One widely used example is the Crocker-Grier algorithm, developed by these
authors in 1996 [19]. This method combines Gaussian filtering with local max-
ima detection to identify particles across a sequence of images. The Gaussian

15

16 State of the Art

filter smooths the image, reducing noise and it enhances particle-like features,
making it easier to detect local intensity maxima corresponding to particle posi-
tions. Once particles are identified in individual frames, the algorithm links them
into trajectories by calculating the displacement of particles between consecutive
frames. It uses a cost matrix to find the optimal linking, minimizing the over-
all displacement while allowing for some tolerance to missing particles or false
positives due to noise.

This algorithm is particularly effective in handling overlapping particles to a
certain extent, making it robust in complex datasets. Its ability to maintain high
accuracy while keeping computational demands low has made it popular in real-
time applications and large datasets, where both precision and speed are crucial.
The Crocker-Grier algorithm strikes a balance between handling noise and pro-
viding accurate particle tracking, making it adaptable to a variety of experimental
conditions and imaging environments.

4.2.2. Feature-Based Tracking

Feature-based tracking algorithms offer a more sophisticated approach to parti-
cle tracking by extracting distinctive features, such as intensity, size, shape, and
texture, from individual particles to track them across time. This method allows
for greater flexibility in identifying and following particles in dynamic and com-
plex environments. Unlike threshold-based methods that rely solely on intensity,
feature-based tracking can distinguish between particles based on multiple char-
acteristics, making it highly effective in scenarios where particles may overlap,
occlude each other, or exhibit variations in appearance.

Popular techniques within this category include the Scale-Invariant Feature
Transform (SIFT) [20] and Speeded-Up Robust Features (SURF) [21]. These al-
gorithms extract unique and stable features from each particle, ensuring that the
same particle can be identified and tracked across different frames, even under
challenging conditions. SIFT, for instance, detects key points in an image that
is invariant to scaling, rotation, and slight changes in illumination, making it
ideal for complex environments. Similarly, SURF improves upon SIFT by offering
faster computation while maintaining robust feature detection. Both techniques
are particularly useful in crowded environments, where particles may overlap or
occlude one another, as they focus on unique feature patterns rather than relying
solely on intensity thresholds.

By leveraging these feature extraction methods, feature-based tracking algo-
rithms can maintain accurate tracking even in cluttered or noisy datasets, where
simpler methods might fail. These algorithms provide an effective solution for
complex tracking problems, balancing robustness and computational efficiency
in real-world applications.

4.3 Changing Points in Time Series

Detecting change points in time series data is crucial for identifying shifts in the
underlying processes that govern the dynamics of particle diffusion. In the con-

4.3 Changing Points in Time Series 17

text of anomalous diffusion, change points can indicate transitions between dif-
ferent diffusion regimes, such as from subdiffusive to superdiffusive behavior.
Several methods and algorithms have been developed for detecting these change-
points over time:

4.3.1. PELT (Pruned Exact Linear Time)

The PELT (Pruned Exact Linear Time) algorithm, introduced by [22], is widely
recognized for its efficiency in detecting change points in time series data. The
key advantage of PELT is its ability to identify the optimal segmentation of a
time series while maintaining a linear computational complexity. This makes it a
powerful tool in scenarios where both precision and scalability are required. The
algorithm operates by assessing the entire time series and detecting points where
significant changes in data distribution occur. Unlike simpler methods, PELT
minimizes a cost function that balances the accuracy of the segmentation with
a penalty for introducing too many change points, thereby avoiding overfitting.
This makes the algorithm ideal for detecting meaningful shifts in data, especially
in complex time series where abrupt changes might not be immediately obvious.

What makes PELT particularly effective is its use of pruning techniques to re-
duce the number of change points evaluated, thereby improving computational
efficiency. As the algorithm processes each time step, it applies a pruning rule that
eliminates certain points from further consideration if they are unlikely to im-
prove the segmentation. This reduces the overall number of calculations needed,
allowing PELT to operate more efficiently than traditional dynamic programming
approaches. However, while PELT offers precise change point detection, its per-
formance can still be a challenge when applied to extremely large datasets. As the
size of the data increases, the number of potential change points can grow signif-
icantly, which might lead to higher memory usage and longer processing times.
Despite this, PELT remains one of the most reliable algorithms for change point
detection, particularly when both accuracy and a balance between computational
speed and complexity are essential.

4.3.2. Window Sliding

The window sliding method is a straightforward yet powerful approach for de-
tecting change points in time series data. This technique works by dividing the
time series into either overlapping or non-overlapping windows, then applying
change point detection algorithms within each segment to identify significant
shifts in the data [23]. By breaking the data into smaller, manageable sections,
the window sliding method is able to localize change points more effectively.
One of its primary advantages lies in its low computational complexity, as the
analysis is limited to smaller segments rather than the entire time series at once.
Additionally, the method is easy to implement and highly adaptable, making it a
popular choice in practical applications where large datasets need to be quickly
and efficiently processed. Figure 4.1 presents a visual representation of window
sliding works.

18 State of the Art

Moreover, the window sliding method’s flexibility allows it to be combined
with other advanced techniques to enhance its detection capabilities. For ex-
ample, [24] applied this approach in conjunction with deep learning methods
to identify change points in predicted models. By integrating deep learning with
window sliding, they were able to capture more complex patterns and improve
the precision of change point detection, even in challenging datasets with intri-
cate dynamics. This hybrid approach demonstrates the versatility of the window
sliding method, as it can be tailored to meet the demands of specific datasets and
problem types, whether the goal is to detect abrupt changes or subtle shifts in
data patterns. Overall, the window sliding method offers a balanced solution
that combines computational efficiency with adaptability, making it a valuable
tool for a wide range of time series analysis tasks.

Figure 4.1: Illustrative representation of the Window Sliding method. Source: [23].

4.3.3. Binary Segmentation

Binary segmentation is a simple yet effective technique for detecting change points
in time series data. The method works on an iteratively basis dividing the time
series into two segments, identifying the most likely change point within each
segment, as shown in figure 4.2 [23, 25, 26]. At each iteration, the algorithm mini-
mizes a cost function—typically based on the difference between statistical prop-
erties such as the mean or variance—until it finds a significant change point. Once
a change point is identified, the process repeats within the resulting segments,
splitting them further until a predefined stopping criterion, such as a maximum
number of change points or a threshold for statistical significance, is met. This
makes binary segmentation conceptually straightforward and computationally
efficient for many applications.

However, one limitation of binary segmentation is its sensitivity to the stop-
ping criterion, which can impact the method’s effectiveness in detecting subtle
or small changes. If the criterion is too lenient, the algorithm may over-segment
the data, detecting too many change points. Conversely, a strict criterion could

4.3 Changing Points in Time Series 19

result in missing meaningful shifts. To address these limitations, several exten-
sions of the basic technique have been proposed. For example, circular binary
segmentation adapts the method for detecting changes in periodic data, while
wild binary segmentation enhances its ability to detect multiple change points
by introducing random subsampling of the data. These extensions make binary
segmentation more versatile and capable of handling a wider variety of change
point detection scenarios.

Figure 4.2: Illustrative representation of the Binary Segmentation algorithm. Source: [23].

4.3.4. Bottom-up Segmentation

In contrast to binary segmentation, bottom-up segmentation takes an opposite
approach by first splitting the time series into many small segments and then
progressively merging them based on a cost function that measures the qual-
ity of the segmentation. This method begins with a large number of segments
and evaluates whether merging two adjacent segments reduces the overall cost.
The merging process continues until no further improvements can be made or
a predefined stopping criterion is met. This bottom-up approach is known for
its linear computational complexity, making it efficient for large datasets, and its
conceptual simplicity, which allows for easy implementation [23].

Despite its advantages, bottom-up segmentation can be unstable because it
starts with very small segments. If the initial segmentation is not representative
of the true underlying structure of the data, the merging process may result in in-
accurate or suboptimal change point detection. The reliance on local information
from small segments makes the algorithm sensitive to noise or minor fluctuations
in the data, which can affect the stability of the results. This instability is a po-
tential drawback in cases where a more global perspective of the time series is
required to capture meaningful changes. Nonetheless, bottom-up segmentation
remains a useful technique, particularly for applications where speed and sim-
plicity are prioritized over fine-tuned precision.

20 State of the Art

4.4 Machine Learning

Machine learning plays a key role in analyzing complex systems like anomalous
diffusion. By applying machine learning models, researchers can make predic-
tions and better understand the mechanisms behind diffusion processes. This
section is divided into two parts: the first part covers some models used in the
initial Andi Challenge that was mainly based on predicting the diffusion expo-
nent and classifying the trajectories according to five diffusion models: Annealed
Transient Time Motion, Continuous Time Random Walk, Fractional Brownian
Motion, Lévy Walk, and Scaled Brownian Motion [6]. The second part focuses
on U-Nets which is the architecture in which we have based our models for the
challenge.

4.4.1. The Andi Challenge

The following machine learning methods were developed in the frame of the first
edition of the Andi Challenge. We give an overview of the different approaches
considered in that challenge.

XGBoost

XGBoost (eXtreme Gradient Boosting) is an advanced implementation of Gra-
dient Boosting Trees (GBTs) designed for enhanced speed and performance in
predictive modeling. Like GBTs, XGBoost builds an ensemble of decision trees,
where each tree corrects the errors of the previous ones by minimizing a loss
function through gradient descent [27].

One of its primary enhancements is the inclusion of L1 and L2 regulariza-
tion, which helps prevent overfitting and makes the model more generalizable.
XGBoost also supports parallel processing, allowing for the simultaneous con-
struction of trees, which significantly speeds up training on large datasets. Ad-
ditionally, XGBoost employs advanced tree pruning techniques to retain only the
most relevant branches, further reducing the risk of overfitting. It also automat-
ically handles missing data, improving accuracy even when data is incomplete.
Moreover, XGBoost uses a weighted quantile sketch to accelerate tree learning,
making it well-suited for large datasets.

The DeepSPT team introduced a model that integrated XGBoost with ResNet,
which was applied in the 1st AnDi challenge for anomalous exponent inference
and diffusion model classification in 1D trajectories [6]. Similarly, [28] utilized a
GBT for the same tasks but extended their approach to also address 2D trajecto-
ries.

Feedforward Neural Networks

Feedforward Neural Networks (FNNs) are a category of artificial neural net-
works that aim to replicate the way the human brain processes information. As
depicted in Figure 4.3, FNNs are composed of multiple layers of interconnected

4.4 Machine Learning 21

nodes or neurons. These layers include an input layer, one or more hidden lay-
ers, and an output layer. Each connection between neurons carries a weight that
is adjusted during the training process to minimize prediction errors.

In an FNN, neurons in each layer receive inputs, compute a weighted sum
of these inputs, and then pass the result through a non-linear activation func-
tion. This process allows the network to learn and model complex, non-linear
relationships between the input data and the output predictions. The non-linear
activation functions are crucial as they introduce the ability to capture intricate
patterns that linear models cannot.

The network’s ability to adjust the weights of the connections between neu-
rons through training makes FNNs highly versatile and effective for a wide range
of predictive tasks, from classification to regression. Figure 4.3 visually illustrates
this structure, highlighting how data flows through the network and how differ-
ent layers and connections contribute to the final output.

Figure 4.3: Illustrative representation of a Feedforward Neural Networks architecture.

In the study of anomalous diffusion, [24] used an FNN architecture to char-
acterize anomalous exponent and diffusion model prediction in 1D, 2D, and 3D
trajectories.

CNN + biLSTM

Convolutional Neural Networks (CNNs) are designed to process grid-like data
structures, applying convolutional layers with learned filters (kernels) to capture
local patterns, such as edges in images or motifs in time series data. This allows
the network to extract relevant spatial features from the input data automatically.

On the other hand, Bidirectional LSTM or biLSTM are an extension of Long
Short-Term Memory Networks (LSTMs), which are specialized for capturing long-
term dependencies in sequential data. Unlike standard LSTMs, which process
sequences in one direction, biLSTMs process the input sequence in both forward

22 State of the Art

and backward directions, allowing the model to capture context from both past
and future data points.

By combining a CNN with biLSTM, the model first extracts spatial features
from the data through convolutional layers. These features are then fed into the
biLSTM layers, which capture temporal dependencies in both directions.

In the context of anomalous diffusion, [29] presented an approach that com-
bined CNN and biLSTM to infer the anomalous exponent and classify the diffu-
sion model for trajectories of 1, 2, and 3 dimensions.

4.4.2. U-Net

Compared to the previous challenge, where the prediction was made on single
trajectories, the trajectories of this new version of the ANDI challenge are pre-
sented as FOVs of an experiment with several parts that exhibit similar diffusion
properties and diffusion coefficients. Additionally, some of these trajectories even
interact within them. In this context, all the trajectories within the FOV can be rep-
resented as a 3-dimensional matrix with the structure ParticlesxFramesxDimensions.

U-Net is a convolutional network architecture originally developed for biomed-
ical image segmentation and designed to have 3D matrix as input. The U-Net ar-
chitecture has a symmetric encoder-decoder structure, making it well-suited for
predicting coefficients and states for each frame of the original matrix. The en-
coder path (down-sampling) captures the context of the input data. In contrast,
the decoder path (up-sampling) enables precise localization by combining feature
maps from the encoder with upsampled data [30]. Figure 4.4 represents a visual
example of a U-Net network where the compression is taking in powers of two
by each leavel. The ability of U-Nets to combine context and localization is partic-
ularly valuable in applications requiring both high-resolution feature extraction
and precise predictions.

Attention U-Nets extend the traditional U-Net architecture by incorporating
attention mechanisms. Attention mechanisms allow the network to focus on the
most relevant parts of the input data, effectively weighting the importance of
different regions or features [32]. The attention mechanism typically involves
calculating attention weights based on the input features and then applying these
weights to the feature maps in the decoder path.

Figure 4.5 illustrates the attention mechanism in the upscaling concatenation
process of an Attention U-Net. Let g represent the matrix input from the skip
connection with the encoder, and xl denote the upscaled image from the de-
coding process. The attention mechanism begins by transforming both g and
xl through a convolutional filter. These transformed features are then concate-
nated and passed through a ReLU activation function, followed by another con-
volutional filter and a sigmoid activation function. The output of this sequence,
denoted as α, is rescaled to match the dimensions of xl. Subsequently, α is con-
catenated with xl and used as input for the convolutional filters in the decoder at
that level.

This approach enhances the network’s ability to focus on important regions
and ignore less relevant ones. This merged representation is used to generate an

4.5 Conclusion 23

Figure 4.4: Illustrative representation of a U-Net model architecture. Source: [31].

Figure 4.5: Illustrative representation of the attention mechanism. Source: [32].

attention map that highlights or suppresses certain features. Finally, the atten-
tion map recalibrates the original signal input, emphasizing the features deemed
important by the attention mechanism.

4.5 Conclusion

This chapter has provided a comprehensive review of the current state of parti-
cle tracking, change point detection, and machine learning models, specifically
in the context of studying anomalous diffusion. Importantly, some of the algo-
rithms and models showcased in this review will serve as the fundamental base
for developing the models presented later in this work.

CHAPTER 5

Methodology

Building on the theoretical background and cutting-edge research discussed ear-
lier, this section outlines the methodology employed for participating in the chal-
lenge. It begins with an overview and rationale for the chosen approach (5.1).
Next, it explains the generation of the database used to train the models (5.2),
the development of the particle tracking algorithm (5.3), the model for inferring
diffusion parameters and particle states (5.4), and the Change-Point algorithm
for detecting changes in diffusion states/parameters (5.5). Finally, it details how
these components are integrated and how predictions for the competition are
made (5.6).

5.1 Overview

Given the tight timeframe (Mid-March to June), we propose a modular approach.
This method allows different components to be developed separately and easily
swapped with alternative algorithms, ensuring that changes do not affect the rest
of the system and simplifying the process of making improvements. Addition-
ally, it minimizes the computational resources required for both data generation
and model training. This is achieved by using raw trajectories instead of videos
for inference of parameters and states, as particles will be tracked with a particle
tracking algorithm, allowing the models to be trained directly on raw trajecto-
ries. These trajectories require less computational resources to generate through
simulation and train models than the videos.

The proposed methodology is illustrated in Figure 5.1. It comprises three
main components: a particle tracking algorithm, Attention U-Net models, and
a Change-Point algorithm. Initially, the video of the particle within the FOV (a)
is processed by the particle tracking algorithm to extract the particle trajectories
(b). These trajectories are then analyzed by three distinct Attention U-Net models
to predict the α coefficient, the k coefficient, and the particle’s state at each frame
of the video (c). Using the resulting three different time series, a Change-Point
algorithm is employed to identify changes in state and/or diffusion coefficients
for the various particles (d).

25

26
M

ethodology

Figure 5.1: Illustrative representation of the proposed methodology.

5.2 Data Generation 27

5.2 Data Generation

Due to the limited size of the dataset offered by the competition, synthetic data is
generated. To generate experiments with the different physical models of motion
and interactions the Python library used is andi-datasets [15]. This library enables
the simulation of experiments using five distinct phenomenological models. This
library allows us to generate either videos of experiments or just the raw trajec-
tories. However, as previously noted, since inference is separated from particle
tracking, the model training will only require the raw trajectories.

The library allows us to generate experiments for any of the 5 models while
controlling parameters such as the number of particles, trajectory lengths, α and
k values, and state transition probabilities. It also includes built-in functions to
generate parameter values.

An important consideration in experiment generation is the concept of FOVs.
An FOV is a specific window within the experiment used to obtain trajectories (or
videos in Track 1). For example, an experiment sized 512 × 512 can have FOVs of
128 × 128. To avoid boundary effects, FOVs are smaller than the full experiment
size. Since all trajectories within a FOV are correlated, they are saved together in
a matrix of size 64 × 208 × 2, where 64 represents the number of particles (exper-
iments can have more particles, in this case, several matrices are generated), 208
is the trajectory length, and 2 denotes the X and Y positions. The particles can
move in and out of the FOV, so when converting the trajectories into a matrix, a
0 is assigned whenever a particle is outside the FOV.

Generating a large number of simulations demands significant computational
resources and time. Due to constraints on both computational and financial re-
sources, we chose not to use high-demand services such as AWS, Azure, or Google
Cloud because of their costs. Instead, we opted for Google Colab, which provides
a more cost-effective solution for accessing computational resources. Through-
out the project, we acquired 1,600 computational credits for data generation and
model training at a cost of €136.00 and 200GB of shared storage on Google Drive
for €11.96.

On the technical side, the data generation library does not utilize multipro-
cessing techniques, and implementing these would require significant time and
resources. To accelerate the data generation process, multiple computers were
used in parallel, sharing memory. These computers ran the data generation tasks
using low-cost CPU-only instances with extended RAM (Basic CPU, with 51 GB),
as the library does not benefit from GPU acceleration.

The data generation process involved running between 2 and 5 instances si-
multaneously, simulating 4,000 experiments, each containing 5 FOVs, resulting
in a total of 20,000 FOVs. For each FOV, we generated three matrices and one
tag: the matrices represent raw trajectories, coefficients, and particle states, with
dimensions 64 × 208 × 2 for the first two matrices and 64 × 208 for the state ma-
trix. The tag corresponds to the physical model of motion and interactions. Each
batch was compressed and saved using Numpy, containing 3 arrays of matrices
and one array of tags. Figure 5.2 showcases the data generation process. In the
Listing A.1, the last version of the script used to generate the data is showcased.

28 Methodology

Figure 5.2: Illustrative representation of the data generation.

The final database generated is composed of approximately 775,000 FOVs
with 49 million trajectories, corresponding to 155,000 independent experiments,
where each physical model constitutes one-fifth of the database. To determine
the α and k coefficients, as well as other experiment parameters, we used the li-
brary’s built-in functions to generate random values. For the α and k coefficients,
we combined values from the library with random sampling from a uniform dis-
tribution for large k values. This approach addresses the function’s limitation in
generating only small k values (between (0, 2]), whereas actual values can range
from 10−12 to 106. High values of k and α are not practical for all models in ex-
periments of this scale, so we limited k to a range between 10−6 as the minimum
and 102 as the maximum.

5.3 Particle Tracking

Particle tracking is a technique used to follow the movement of particles across
successive frames in a video, enabling the analysis of their trajectories over time.
In our specific task, we need to track particles in videos with dimensions of
128x128 pixels over 200 frames1, and identify specific particles of interest (VIP
particles) by their locations in the first frame. To achieve this, we use the TrackPy
library [33], which implements the Crocker-Grier algorithm for efficient particle
detection and tracking [19].

Before processing with TrackPy, the video frames undergo a preprocessing
step where their borders are expanded. This expansion helps in mitigating edge
effects that could affect the accuracy of particle detection near the boundaries
of the frame. After preprocessing, we use the trackpy.batch function to de-
tect particles across all 200 frames. This function is fine-tuned with parameters
such as particle diameter, intensity thresholds, and separation distance using the
videos presented in the development database provided by the competition (100

1The discrepancy in the number of frames between the trajectories and videos provided by the
competition and the generated data is intentional. The use of 208 frames is due to the specific
nature of the models employed. For predictions based on competition data, padding with zeros
will be applied.

5.3 Particle Tracking 29

videos). Figure 5.3 shows visually the detection of particles made by the algo-
rithm.

Figure 5.3: Particle detection with TrackPy.

Once the particles are detected, we link them across frames using trackpy.link .
This step connects the detected particles from one frame to the next, creating
continuous trajectories that represent the movement of each particle throughout
the video. The algorithm accounts for potential challenges like particles leaving
and reentering the frame or temporarily overlapping with other particles. Figure
5.4 presents a visual comparison of the real trajectories and those derived using
trackpy.link . Note that the colors do not consistently identify the same parti-

cles across the plots. Nevertheless, the two plots align very closely, showcasing a
high degree of similarity.

Figure 5.4: Comparison of real trajectories and trajectories extracted with TrackPy.

To connect these trajectories with their corresponding VIP particles, we imple-
mented a function that matches the detected particles with the known locations
of VIP particles in the first frame. The function first identifies the positions of
all particles in the VIP location matrix (or first frame) after border expansion.
It then computes the distance between these positions and the detected particle
positions in the first frame with trackpy using the Hungarian algorithm (linear
sum assignment). By minimizing the distance, we assign each detected particle a
unique identifier corresponding to the VIP particle it most likely represents. The
Python implementation is shown in Listing 5.1.

In Figure 5.5, the visual representation of the tasks of the particle tracking
module is shown from the video of the particles moving to a 3D matrix used as
input of the Attention U-Net.

30 Methodology

Figure 5.5: Illustrative representation of the video to trajectory transformation.

1 def loc_particles(firstframe , df_video):
2 """
3 Maps detected particles VIP particles in the first frame.
4

5 This function identifies and assigns unique IDs to the VIP
particles based on their positions in the first frame. It
matches these particles with those detected previously with
Trackpy using the Hungarian algorithm for optimal assignment
.

6

7 Parameters:
8 - firstframe (numpy.ndarray): 2D array of the first video frame

with unique integer IDs for particles (0 for background).
9 - df_video (pandas.DataFrame): DataFrame with columns "frame",

"x", and "y" representing particle positions in each frame.
10

11 Returns:
12 - dict: Mapping of VIP particle indices by Trackpy to their

unique IDs.
13

14 """
15 indxparticles = {}
16 df_firstframe = df_video[df_video["frame"] == 0]
17 firstframe = expand_borders ([firstframe])[0]
18 items = np.unique(firstframe)[:-1]
19 positions = [np.mean(np.where(firstframe == itm), axis =1) for

itm in items]
20 positions_array = np.array(positions)
21 detected_array = df_firstframe [[’y’, "x"]]. values
22 distances = np.sqrt (((detected_array [:, np.newaxis , :] -

positions_array) ** 2).sum(axis =2))
23 row_ind , col_ind = linear_sum_assignment(distances)
24

25 for detected , assigned in zip(row_ind , col_ind):
26 if len(np.where(firstframe == items[assigned])[0]) >= 3:
27 indxparticles[int(detected)] = int(items[assigned])
28

29 return indxparticles

Listing 5.1: Python function for VIP particle location.

5.4 Inference of Diffusion Parameters and State Classification 31

5.4 Inference of Diffusion Parameters and State Clas-
sification

This section details our methodology for inferring the diffusion parameters and
classifying states using an Attention U-Net model for each task. Figure 5.6 illus-
trates the input and output dimensions before and after the data passes through
the α, k, and state Attention U-Net models. The Attention U-Net architecture is an
enhancement of the traditional U-Net with attention mechanisms, as mentioned
in the literature review.

Figure 5.6: Illustrative representation of the prediction structure.

The Attention U-Net architecture is designed to manage symmetric predic-
tions, where both the input and output have the first two dimensions of equal
size. This is achieved through a combination of convolutional and decoding op-
erations. The model starts with convolutional blocks, which include a series of
convolutional layers combined with batch normalization and ReLU activation
to extract detailed features from the input data. These blocks are arranged into
encoder stages that sequentially capture hierarchical features while decreasing
the spatial dimensions of the input via max pooling layers. To enhance feature
relevance, the network uses attention gates to selectively emphasize important
features by integrating information from both the encoder and decoder paths. In
the decoder stages, upsampling layers restore the spatial dimensions and merge
features from the encoder path, refined by attention mechanisms. The final seg-
mentation output is produced through a convolutional layer with a Softmax ac-
tivation function for classification tasks or ReLU for regression tasks. The model
is optimized using the Adam optimizer. The Python implementation of an At-
tention U-Net for multi-class classification, featuring two encoder levels and two
successive convolutional layers at each level, is detailed in Listing 5.2.

1 import tensorflow as tf
2 from tensorflow.keras import layers as L
3 from tensorflow.keras.models import Model
4

5 def conv_block(x, num_filters):
6 """ Convolutional block with two Conv2D layers followed by

BatchNormalization and ReLU activation."""
7 x = L.Conv2D(num_filters , (3, 3), padding="same")(x)
8 x = L.BatchNormalization ()(x)
9 x = L.Activation("relu")(x)

10

32 Methodology

11 x = L.Conv2D(num_filters , (3, 3), padding="same")(x)
12 x = L.BatchNormalization ()(x)
13 x = L.Activation("relu")(x)
14

15 return x
16

17 def encoder_block(x, num_filters):
18 """ Encoder block with a convolutional block followed by max

pooling."""
19 x = conv_block(x, num_filters)
20 p = L.MaxPool2D ((2, 2))(x)
21 return x, p
22

23 def attention_gate(g, s, num_filters):
24 """ Attention gate for selective feature merging."""
25 Wg = L.Conv2D(num_filters , 1, padding="same")(g)
26 Wg = L.BatchNormalization ()(Wg)
27

28 Ws = L.Conv2D(num_filters , 1, padding="same")(s)
29 Ws = L.BatchNormalization ()(Ws)
30

31 out = L.Activation("relu")(Wg + Ws)
32 out = L.Conv2D(num_filters , 1, padding="same")(out)
33 out = L.Activation("sigmoid")(out)
34

35 return out * s
36

37 def decoder_block(x, s, num_filters):
38 """ Decoder block with upsampling , attention gate , concatenation

, and convolutional block."""
39 x = L.UpSampling2D(interpolation="nearest")(x)
40 s = attention_gate(x, s, num_filters)
41 x = L.Concatenate ()([x, s])
42 x = conv_block(x, num_filters)
43 return x
44

45 def attention_unet(input_shape):
46 """ Builds the Attention U-Net model."""
47 inputs = L.Input(input_shape)
48

49 # Encoder
50 s1 , p1 = encoder_block(inputs , 64)
51 s2 , p2 = encoder_block(p1 , 96)
52 b1 = conv_block(p2, 128)
53

54 # Decoder
55 d1 = decoder_block(b1, s2, 96)
56 d2 = decoder_block(d1, s1, 64)
57

58 # Output layer
59 outputs = L.Conv2D(5, 1, padding="same", activation="softmax")(

d2)
60

61 # Model definition
62 model = Model(inputs , outputs , name="Attention -UNET")
63 model.compile(
64 optimizer=’adam’,
65 loss=tf.keras.losses.CategoricalCrossentropy (),
66 metrics =[’accuracy ’]

5.4 Inference of Diffusion Parameters and State Classification 33

67)
68

69 return model

Listing 5.2: Python implementation with Tensorflow/Keras of a Attention U-Net for a
multi-classification taks.

Using this architecture, we tested multiple versions of the models for each
task by varying the number of encoder levels, filters, and convolutional blocks.
The dataset was split 80-20, with 620,000 FOVs used for training and 155,000 for
validation. The validation set was used to compare different architectures. The
final architectures were selected not only based on performance but also on the
time taken to train until early-stopping2 stops the training occurred.

To train models with such a large database of matrices, we had to load the
data in blocks and perform the training in multiple stages. The GPUs used for
training were the NVIDIA L4 and A100, selected based on the complexity of the
configuration. These GPUs provide 24 GB and 40 GB of VRAM, respectively, al-
lowing us to maximize the block sizes loaded into memory. The batch size varied
between 16 and 128, depending on the model’s complexity and corresponding
memory limitations.

As a preprocessing step for the database, we calculate the displacement at
each position between t and t−1 for each dimensional space. The new values of
the matrix in the dimension X and Y are calculated as:

∆x
′
i(t) = 128 · (xi(t)− xi(t − 1))

∆y
′
i(t) = 128 · (yi(t)− yi(t − 1))

The multiplication by 128 compensates for the normalization applied during
data generation. This preprocessing step converts absolute positions into relative
movements.

In Table 5.1, we provide a summary of the final configurations selected. The
α and ks models, which represent numerical values, are handled as regression
tasks. For these, the error functions optimized are MAE (Mean Absolute Error)
and MSLE (Mean Squared Logarithmic Error), respectively, as per the competi-
tion’s evaluation metrics. The output of these models corresponds to a parameter
for each particle at each frame, resulting in a matrix of size 64 × 208x×.

On the other hand, predicting the particle state is treated as a multiclass classi-
fication problem, where categorical cross-entropy is used as the loss function. The
model predicts 4 classes based on environmental constraints, along with an ad-
ditional class for cases when the particle is absent from the FOV in a given frame
(i.e., Xij = 0). The output is a matrix of size 64 × 208 × 5 that will transform after
the prediction to 64 × 208 × 5 using argmax to select the class with higher proba-
bility and normalizing the preditions, since a particle can not change of state for
at least 3 frames.

2Early stopping is a technique used to prevent overfitting by halting the training of a model
once its performance on a validation set starts to degrade. It monitors a specific metric, such
as validation loss, and stops training when no improvement is observed after a set number of
iterations.

34
M

ethodology

Table 5.1: Description of Models with Task Types, Architecture Details, and Performance Metrics

Model Task Encoder
Levels

Conv.
Blocks

Filters per
level Parameters Epoch Output

Size
Output Activation

Function
Batch
Size

Metric
Error Error

Alpha’s Regression 3 2 128-512-1024 28,753,665 2 (64x208x1) ReLu 16 MAE 0.041
K’s Regression 3 2 128-512-1024 28,753,665 1 (64x208x1) ReLu 16 MSLE 0.043

State Classification 3 6 64-96-128 2,448,677 10 (64x208x5) SoftMax 64 Categorical
Cross-Entropy 0.116

5.5 Change Point Detection 35

5.5 Change Point Detection

After generating the predictions, we will have three distinct time series for each
particle in the field of view (FOV): α, k, and the state at each position. To detect
changes in state, we will focus mainly on the α and k time series while using
the state series to fine-tune the detection process. Specifically, particles in the
"trapped" state exhibit α and k values close to zero, which helps us refine the
change point detection method.

For detecting change points, we use the sliding window method implemented
in the ruptures Python library [23], with the l2 model incorporated. The l2
model detects changes by minimizing the squared differences between different
segments of the time series, allowing it to identify significant variations in the
data. The method works by sliding a window of fixed width across the data and
analyzing the segments to determine if any notable change has occurred.

The key parameters of the sliding window function in the ruptures library are:

1. Width: This sets the size of the window that moves across the data. A
smaller width detects rapid changes, while a larger width captures broader trends.
For trajectories without trapped states, we set the width to 12. For trajectories
with trapped states, we use a wider window of 18 to account for smoother tran-
sitions.

2. Jump: This controls how much the window shifts after each iteration. We
use a jump of 1 in both cases to ensure high precision by evaluating every possible
position along the time series.

3. Min_size: This parameter sets the minimum number of time steps needed
for a state change to be detected. In our case, it is set to 3, which reflects the
minimum span for a particle to change states.

4. Penalization (pen): This influences the algorithm’s sensitivity to detecting
changes. A larger penalization discourages the detection of small or insignificant
changes, while a smaller penalization makes the algorithm more sensitive to mi-
nor changes. For trajectories with no trapped states, we use a penalization value
of 29 to focus on significant transitions. For trajectories with trapped states, we
use a smaller penalization of 5, making the algorithm more responsive to subtle
changes when the particle is in a low-variation state.

Table 5.2: Parameter Configurations for State Change Detection

Trajectory Type Model Width Jump Min_size Penalization (pen)
No Trapped State "l2" 12 1 3 29

With Trapped States "l2" 18 1 3 5

This configuration ensures that the sliding window method is tuned to accu-
rately detect both rapid state transitions and the more gradual changes associated
with trapped states. By adjusting the width, jump size, minimum size, and pe-
nalization values, we improve the accuracy and reliability of the change point
detection across different particle behaviors.

36 Methodology

5.6 Prediction

After identifying the change points, we can obtain predictions for the single-
particle task for the video task by computing the average of α and k between
each pair of consecutive change points, CPi and CPi+1. We then select the class
that appears most frequently in the state time series. For each particle, we gener-
ate a string formatted as follows: "ParticleIDinVIPimage, K1, α1, State1, CP1, ...,
Kn, αn, Staten, CPn, TrajectoryLength". Then, all the predictions made in an FOV
are saved in a .txt.

For the ensemble task, we need to extract data for an experiment across all its
fields of view (FOVs). If the number of detected change points across the entire
FOVs is very low, we consider only one state and calculate the mean and standard
deviation of both α and k. Conversely, if the number of change points is sufficient,
we apply K-Means clustering with K = 2 to categorize the detected segments into
two groups. We then compute the mean and standard deviation of α and k for
each group, as well as the relative weight of each state. Table 5.3 outlines the
submission format for the ensemble task. In the header labeled model, replace
modelxxx with the physical models of motion used in the experiment, selected
based on state predictions. In the header num_state, replace YYY with the number
of states. Each column corresponds to a state, with rows representing the average
of α (µn

α), the standard deviation of α (σn
α), the average of k (µn

k), the standard
deviation of k (σn

k), and the relative weight of each state (Nn) for the column n.

Table 5.3: Ensemble Task Prediction Format

model: modelXXX; num_state: YYY
µ1

α; µ2
α; µ3

α; . . .
σ1

α ; σ2
α ; σ3

α ; . . .
µ1

K; µ2
K; µ3

K; . . .
σ1

K; σ2
K; σ3

K; . . .
N1; N2; N3; . . .

The Python script used to generate predictions for the challenge—encompassing
particle tracking, inference with Attention U-Nets, change point detection, and
prediction formatting for both the ensemble and single trajectories tasks is shown
in Listing A.2.

CHAPTER 6

Validation

This chapter explores the crucial process of model validation, a fundamental step
in assessing how well a model performs with new, unseen data. Validation is es-
sential for identifying and addressing issues such as overfitting and underfitting,
ensuring that models generalize effectively beyond their training datasets.

The first dataset used to validate the performance of the models is the vali-
dation file provided by the competition. Using this file for validation serves two
key purposes: it introduces an unknown data structure and generation method,
and allows for comparison with other models.

6.1 Competition Validation

Although the primary objective of this thesis is to participate in the video track,
the modular approach also enables us to submit predictions for the raw trajecto-
ries in the Trajectory track.

Table 6.1 presents the ensemble results for the video track. Our implementa-
tion (ICSO UPV) successfully submitted one of the two valid predictions, show-
casing the hardness of the challenge and achieving the top position in the ranking
with the best W1 for various K values. For the Single Trajectory Task, Table 6.2
shows the ranking. Here, only a few teams submitted valid results. Our metrics
are highly competitive, though we secured second place, but with a bad result in
the MAE for the α.

Table 6.1: Video Track: Ensemble Task Results During the Validation Phase

Ranking Team Name MRR Metrics

W1 (K) W1 (alpha)

1 ICSO UPV 0.750 0.50 (1) 0.43 (2)
2 SPT-HIT 0.750 0.72 (2) 0.21 (1)
3 SU-FIONA 0.333 1000000.00 (3) 2.00 (3)
4 HNU 0.333 1000000.00 (3) 2.00 (3)

On the other hand, the Trajectory track had a higher number of valid sub-
missions, which facilitated a more thorough comparison of the results. For the

37

38 Validation

Table 6.2: Video Track: Single Trajectory Task Results During the Validation Phase

Ranking Team Name MRR Metrics

RMSE (CP) JSC (CP) MSLE (K) MAE (alpha) F1 (diffusion type)

1 SU-FIONA 0.867 3.05 (3) 0.50 (1) 0.07 (1) 0.20 (1) 0.82 (1)
2 ICSO UPV 0.533 0.80 (1) 0.44 (2) 0.13 (2) 0.48 (3) 0.77 (3)
3 SPT-HIT 0.433 2.27 (2) 0.44 (3) 0.80 (3) 0.26 (2) 0.78 (2)
4 HNU 0.250 10.00 (4) 0.00 (4) 100000.00 (4) 2.00 (4) 0.00 (4)

Ensemble task, detailed in Table 6.3, the performance of the models was impres-
sive, with our approach achieving a Top 3 position. Specifically, it secured the
second-best W1 score for inferring the parameter K and demonstrated competi-
tive performance with the W1 score for α.

Regarding the Single Trajectory Task, the results presented in Table 6.4 high-
light the model’s robust performance across various metrics. Our approach achieved
7th place overall, with metrics such as MSLE and MAE being closely aligned with
those of the leading entries on the leaderboard.

Table 6.3: Trajectory Track: Ensemble Task Results During the Validation Phase

Ranking Team Name MRR Metrics

W1 (K) W1 (alpha)

1 Unfriendly AI 1.000 0.10 (1) 0.12 (1)
2 KCL 0.375 0.36 (4) 0.16 (2)
3 ICSO UPV 0.350 0.28 (2) 0.17 (5)
4 HSC AI 0.250 0.31 (3) 0.18 (6)
4 SPT-HIT 0.250 0.43 (6) 0.16 (3)
5 Nanoninjas 0.188 1.03 (8) 0.16 (4)
6 UCL SAM 0.171 0.38 (5) 0.20 (7)
7 Sk 0.121 0.59 (7) 0.33 (10)
8 BIOMED-UCA 0.108 10.78 (11) 0.25 (8)
9 DeepSPT 0.106 1.34 (10) 0.31 (9)

10 D.AnDi 0.101 1.34 (9) 0.39 (11)
11 far_naz 0.083 37.13 (12) 0.59 (12)

6.2 Local Validation

This subsection details the validation of machine learning models using a set of
155,000 Fields of View (FOVs) and approximately 10 million trajectories. The re-
sults from this validation set will be compared with those from the competition’s
validation, as described in the previous subsection. This comparison aims to eval-
uate the models’ performance and accuracy relative to established benchmarks.

In Figure 6.1, a hexagonal binning plot is presented to compare the real ver-
sus predicted alpha values generated by the model. This plot reveals a notable
concentration of data points along the diagonal line, indicating that predictions

6.2 Local Validation 39

Table 6.4: Trajectory Track: Single Trajectory Task Results During the Validation Phase

Ranking Team Name MRR Metrics

RMSE (CP) JSC (CP) MSLE (K) MAE (alpha) F1 (diffusion type)

1 SPT-HIT 0.583 1.52 (3) 0.75 (1) 0.03 (3) 0.15 (1) 0.86 (4)
2 HNU 0.562 0.12 (1) 0.61 (5) 0.14 (9) 0.16 (2) 0.89 (1)
3 Unfriendly AI 0.457 2.32 (7) 0.69 (2) 0.02 (1) 0.17 (7) 0.87 (2)
4 SU-FIONA 0.289 2.84 (13) 0.69 (3) 0.02 (2) 0.16 (3) 0.85 (5)
5 UCL SAM 0.241 1.24 (2) 0.67 (4) 0.03 (5) 0.22 (9) 0.81 (7)
6 KCL 0.204 1.98 (4) 0.60 (6) 0.09 (7) 0.18 (8) 0.86 (3)
7 ICSO UPV 0.183 2.34 (8) 0.59 (8) 0.03 (4) 0.16 (4) 0.83 (6)
8 M3 0.134 2.09 (5) 0.50 (13) 0.12 (8) 0.17 (6) 0.80 (10)
9 BIOMED-UCA 0.128 2.42 (9) 0.52 (12) 0.08 (6) 0.17 (5) 0.78 (13)

10 KNU-ON 0.102 2.99 (15) 0.60 (7) 0.18 (10) 0.31 (11) 0.80 (9)
11 Nanoninjas 0.096 2.55 (10) 0.28 (16) 0.31 (11) 0.25 (10) 0.81 (8)
12 AIntgonnawork 0.082 2.13 (6) 0.47 (14) 0.86 (16) 1.02 (19) 0.43 (17)
13 HSC AI 0.081 2.67 (12) 0.53 (10) 2.57 (19) 0.37 (12) 0.78 (12)
14 bjyong 0.075 3.02 (16) 0.58 (9) 1.42 (18) 0.53 (18) 0.79 (11)
15 DeepSPT 0.073 2.65 (11) 0.23 (17) 0.62 (14) 0.39 (13) 0.71 (15)
16 D.AnDi 0.073 3.49 (18) 0.52 (11) 0.56 (12) 0.43 (14) 0.45 (16)
17 Sk 0.065 2.94 (14) 0.32 (15) 0.80 (15) 0.44 (15) 0.35 (18)
18 EmetBrown 0.065 3.40 (17) 0.05 (18) 0.61 (13) 0.47 (16) 0.77 (14)
19 far_naz 0.055 3.79 (19) 0.05 (19) 1.11 (17) 0.51 (17) 0.04 (19)

closely match the actual values. This alignment suggests that the model exhibits
strong performance in predicting alpha values.

To assess whether this behavior is consistent across different models, Figure
6.2 displays similar hexagonal binning plots, each separated by model type. The
comparison demonstrates minimal differences among the models, with each plot
showing a similar diagonal trend as observed in the previous figure. This con-
sistency across models further supports the reliability of the prediction perfor-
mance.

In Figure 6.3, we plot the MAE of the model as a function of the real α value.
The plot shows a similar error for α values between 0 and 1.5, with the error
increasing linearly until it reaches 2. This may be due to the lower frequency of
higher α values in the experiments, which could be influenced by the limitations
of the FOV space (128 × 128). Particles diffusing too quickly are likely to exit the
FOV boundaries faster, reducing their observation time.

Figure 6.4 presents the same comparison but separated by motion model.
Here, the error patterns are similar across models, except for MSM, which tends
to have a lower error after α > 1.

Figure 6.5 shows the MSLE as a function of the real value of K, where we
observe a consistent error across the spectrum, with slightly lower values for K <
10. When separating the results by motion model in Figure 6.6, the error profiles
remain consistent, except for MSM, which again shows some variation.

Both the MAE and MSLE results are in line with the validation presented in
Table 6.4.

40 Validation

Figure 6.1: Hexagonal binning plot of real versus predicted alpha values. The plot visu-
alizes the distribution of prediction errors by grouping data points into hexagonal bins,
with color shading indicating the frequency of data point occurrences. Darker hexagons

indicate higher density and potentially more reliable predictions.

6.2
LocalV

alidation
41

Figure 6.2: Hexagonal binning plot showing the relationship between real and predicted alpha values based on the motion model. The models
include: Single-State Model (SSM), Multi-State Model (MSM), Dimerization Model (DIM), Transient-Confinement Model (TCM), and Quenched-

Trap Model (QTM).

42 Validation

Figure 6.3: Comparison of Mean Absolute Error (MAE) as a function of feal flpha V
values.

Figure 6.4: Comparison of Mean Absolute Error (MAE) as a function of real alpha
values by motion model. The models include: Single-State Model (SSM), Multi-State
Model (MSM), Dimerization Model (DIM), Transient-Confinement Model (TCM), and

Quenched-Trap Model (QTM).

6.3 Conclusion 43

Figure 6.5: Comparison of Mean Squared Logarithmic Error (MSLE) as a function of real
K values

Figure 6.6: Comparison of Mean Squared Logarithmic Error (MSLE) as a function of real
K values by motion model. The models include: Single-State Model (SSM), Multi-State
Model (MSM), Dimerization Model (DIM), Transient-Confinement Model (TCM), and

Quenched-Trap Model (QTM).

6.3 Conclusion

After evaluating the system and model performance through both the compe-
tition platform and local validation, it can be confirmed that the models deliver
strong performance across all tracks and tasks. The results were competitive with
other models in the validation phase, achieving similar outcomes. Furthermore,
the alignment between local validation metrics and competition results demon-

44 Validation

strates the high quality of the generated data, the effective separation of train and
test sets, and the robustness of the model training process.

CHAPTER 7

Results

In this section, the final results of the competition are discussed in detail. Fol-
lowing the completion of the 2nd Andi Challenge on July 15, 2024, the models
developed as part of this Bachelor’s Thesis by the ICSO UPV team achieved sec-
ond place in both video tracks, as illustrated in Table 7.1 and Table ??. Among
more than 20 participating teams, only two teams successfully submitted mod-
els for all tasks and tracks, covering both video and simple trajectory categories,
with ICSO UPV being one of them.

Table 7.1: Final Result of the Ensemble Task on the Video Track.

Ranking Team MRR W1 (K) alpha rank K rank W1 (alpha)

1 SPT-HIT 0.400 0.058 1 1 0.259
2 BIOMED-UCA 0.167 0.330 2 3 0.273
2 ICSO UPV 0.167 0.143 3 2 0.380

Table 7.2: Final Result of the Single Trajectory Task on the Video Track.

Ranking Team RMSE
(CP)

JSC
(CP)

MAE
(alpha)

MSLE
(K)

F1
(diff. type)

RMSE
rank

JI
rank

MAE
rank

MSLE
rank

F1
rank MRR

1 SU-FIONA 2.948 0.301 0.224 0.578 0.910 3 1 1 3 1 0.733
2 ICSO UPV 2.508 0.216 0.425 0.185 0.827 1 3 3 1 3 0.600
3 SPT-HIT 2.800 0.272 0.297 0.288 0.848 2 2 2 2 2 0.500

A key factor in this success was the design choice to make all components of
the models modular. This approach provided the flexibility needed to adapt the
models to the specific requirements of each track, enabling participation in all
categories. The modular structure was particularly advantageous in overcoming
several technical challenges, such as the difficulty in identifying particles from the
VIP matrix, which generated multiple errors. By isolating and addressing these
issues within the modular framework, the models maintained high performance
across all tasks.

The models performed strongly in the video track, with results closely aligned
with the other two competitors. This consistent performance highlights the ro-
bustness and adaptability of the models developed, as well as the effectiveness of
the methodologies employed.

45

46 Results

As a result of achieving a Top 5 position in one of the competition tracks, the
methodology developed in this Bachelor’s Thesis will be included in an article
that is "in principle accepted" for publication in the journal Nature Communi-
cations, with co-authorship being granted. Additionally, a presentation on the
methodology will be delivered at the Andi Workshop, scheduled to take place at
the University of Gothenburg in June 2025.

CHAPTER 8

Conclusions

8.1 Objetives

In conclusion, the objectives defined at the outset of this Bachelor’s Thesis have
been successfully achieved, as demonstrated in the results chapter. The out-
comes not only met but exceeded expectations, showcasing the effectiveness of
the methodologies employed. With the results presented, it is hoped that this
work will make a significant contribution to the field of anomalous diffusion
research and push the boundaries of scientific understanding. By advancing
knowledge and providing new insights, this thesis aims to foster further explo-
ration and innovation in the study of the diffusion processes.

8.2 Relation with Study Porgram

The following courses, taken as part of the Bachelor’s in Data Science, provided
the essential knowledge and practical experience that made this work possible:

• Programming Fundamentals (14002), Programming (14003), Algorithmics
(14007): These courses provided the foundational programming skills nec-
essary for integrating the various modules of the model, including predic-
tion and data generation.

• Evaluation, Deployment, and Monitoring of Models (14028), Descriptive
and Predictive Models I (14010), Descriptive and Predictive Models II
(14011): The machine learning and deep learning techniques covered in
these courses enabled the successful training of the models used in the the-
sis.

• Project III, Data Analysis (14021): This course’s emphasis on scientific rigor
allowed for high-level collaboration with researchers from various research
centers as part of the AnDi Challenge.

• Infrastructure for Data Processing (14016): This course provided knowl-
edge on different cloud infrastructures and guided the selection of Google
Colab to optimize resource utilization.

47

48 Conclusions

Special recognition goes to the course Artificial Neural Networks and Deep
Learning (054307), which I attended during my exchange semester at Politecnico
di Milano. In this course, I was introduced to the use of U-Nets and explored
various neural network architectures in depth.

Bibliography

[1] G. Muñoz-Gil et al., "Quantitative evaluation of methods to analyze mo-
tion changes in single-particle experiments," In-principle accepted at Nature
Communications (Registered Report Phase 1), 2023. doi: 10.48550/arXiv.2311.
18100.

[2] P. P. Shinde and S. Shah, "A review of machine learning and deep learn-
ing applications," in 2018 Fourth International Conference on Computing Com-
munication Control and Automation (ICCUBEA), 2018, pp. 1-6. doi: 10.1109/
ICCUBEA.2018.8697857.

[3] W. J. Dally, S. W. Keckler, and D. B. Kirk, "Evolution of the graphics
processing unit (GPU)," IEEE Micro, vol. 41, no. 6, pp. 42-51, 2021. doi:
10.1109/MM.2021.3113475.

[4] P. Rajendra, A. Girisha, and T. G. Naidu, "Advancement of machine learn-
ing in materials science," Materials Today: Proceedings, vol. 62, pp. 5503-5507,
2022. doi: 10.1016/j.matpr.2022.04.238.

[5] Y. Kumar and M. Mahajan, "Recent advancement of machine learning and
deep learning in the field of healthcare system," in Computational Intelligence
for Machine Learning and Healthcare Informatics, vol. 1, 2020, pp. 77. doi: 10.
1515/9783110648195.

[6] G. Muñoz-Gil et al., "Objective comparison of methods to decode anomalous
diffusion," Nature Communications, vol. 12, no. 1, pp. 6253, 2021. doi: 10.
1038/s41467-021-26320-w.

[7] A. Einstein, "Über die von der molekularkinetischen Theorie der
Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen," Annalen der Physik, vol. 4, 1905. doi: 10.1002/andp.19053220806.

[8] M. Weiss, "Single-particle tracking data reveal anticorrelated fractional
Brownian motion in crowded fluids," Physical Review E—Statistical, Nonlin-
ear, and Soft Matter Physics, vol. 88, no. 1, pp. 010101, 2013. doi: 10.1103/
PhysRevE.88.010101.

[9] W. Wang, A. G. Cherstvy, X. Liu, and R. Metzler, "Anomalous diffusion
and nonergodicity for heterogeneous diffusion processes with fractional
Gaussian noise," Physical Review E, vol. 102, no. 1, pp. 012146, 2020. doi:
10.1103/PhysRevE.102.012146.

49

10.48550/arXiv.2311.18100
10.48550/arXiv.2311.18100
10.1109/ICCUBEA.2018.8697857
10.1109/ICCUBEA.2018.8697857
10.1109/MM.2021.3113475
10.1016/j.matpr.2022.04.238
10.1515/9783110648195
10.1515/9783110648195
10.1038/s41467-021-26320-w
10.1038/s41467-021-26320-w
10.1002/andp.19053220806
10.1103/PhysRevE.88.010101
10.1103/PhysRevE.88.010101
10.1103/PhysRevE.102.012146

50 BIBLIOGRAPHY

[10] B. B. Mandelbrot and J. W. Van Ness, "Fractional Brownian motions, frac-
tional noises and applications," SIAM Review, vol. 10, no. 4, pp. 422-437, 1968.
doi: 10.1137/1010093.

[11] C. Eggeling et al., "Direct observation of the nanoscale dynamics of mem-
brane lipids in a living cell," Nature, vol. 457, no. 7233, pp. 1159-1162, 2009.
doi: 10.1038/nature07596.

[12] A. I. Shushin, "Anomalous two-state model for anomalous diffusion," Phys-
ical Review E, vol. 64, no. 5, pp. 051108, 2001. doi: 10.1103/PhysRevE.64.
051108.

[13] T. Sungkaworn et al., "Single-molecule imaging reveals receptor–G protein
interactions at cell surface hot spots," Nature, vol. 550, no. 7677, pp. 543-547,
2017. doi: 10.1038/nature24264.

[14] Y. Chen, B. Yang, and K. Jacobson, "Transient confinement zones: a type
of lipid raft?," Lipids, vol. 39, no. 11, pp. 1115-1119, 2004. doi: 10.1007/
s11745-004-1337-9.

[15] G. Muñoz-Gil, B. Requena, G. Fernández Fernández, H. Bachimanchi, J.
Pineda, and C. Manzo, "AnDiChallenge/andi_datasets: AnDi Challenge 2".
Zenodo, dic. 05, 2023. doi: 10.5281/zenodo.10259556.

[16] T. Miyaguchi and T. Akimoto, "Anomalous diffusion in a quenched-trap
model on fractal lattices," Physical Review E, vol. 91, no. 1, pp. 010102, 2015.
doi: 10.1103/PhysRevE.91.010102.

[17] C. Manzo, and M.F. Garcia-Parajo. "A review of progress in single parti-
cle tracking: from methods to biophysical insights". Reports on Progress in
Physics, 78(12), 124601. doi:10.1088/0034-4885/78/12/124601

[18] M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative comparison
of algorithms for tracking single fluorescent particles," Biophysical Journal,
vol. 81, no. 4, pp. 2378-2388, 2001, doi: 10.1016/S0006-3495(01)75884-5.

[19] J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for col-
loidal studies," J. Colloid Interface Sci., vol. 179, no. 1, pp. 298-310, 1996, doi:
10.1006/jcis.1996.0217.

[20] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," In-
ternational Journal of Computer Vision, vol. 60, pp. 91-110, 2004, doi: 10.1023/
B.0000029664.99615.94.

[21] H. Bay, T. Tuytelaars, and L. Van Gool, "SURF: Speeded up robust fea-
tures," in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A.
Pinz, Eds. Berlin, Heidelberg: Springer, 2006, vol. 3951, pp. 404-417, doi:
10.1007/11744023_32.

[22] R. Killick, P. Fearnhead, and I. A. Eckley, "Optimal detection of changepoints
with a linear computational cost," Journal of the American Statistical Associa-
tion, vol. 107, no. 500, pp. 1590-1598, 2012. doi: 10.1080/01621459.2012.
737745.

10.1137/1010093
10.1038/nature07596
10.1103/PhysRevE.64.051108
10.1103/PhysRevE.64.051108
10.1038/nature24264
10.1007/s11745-004-1337-9
10.1007/s11745-004-1337-9
10.5281/zenodo.10259556
10.1103/PhysRevE.91.010102
10.1088/0034-4885/78/12/124601
10.1016/S0006-3495(01)75884-5
10.1006/jcis.1996.0217
10.1023/B.0000029664.99615.94
10.1023/B.0000029664.99615.94
10.1007/11744023_32
10.1080/01621459.2012.737745
10.1080/01621459.2012.737745

BIBLIOGRAPHY 51

[23] C. Truong, L. Oudre, and N. Vayatis, "Selective review of offline change point
detection methods," Signal Processing, vol. 167, pp. 107299, 2020. doi: 10.
1016/j.sigpro.2019.107299.

[24] A. Gentili and G. Volpe, "Characterization of anomalous diffusion classi-
cal statistics powered by deep learning (CONDOR)," Journal of Physics A:
Mathematical and Theoretical, vol. 54, no. 31, pp. 314003, 2021. doi: 10.1088/
1751-8121/ac0c5d.

[25] A. J. Scott and M. Knott, "A cluster analysis method for grouping means
in the analysis of variance," Biometrics, pp. 507-512, 1974. doi: 10.2307/
2529204.

[26] J. Bai, "Estimating multiple breaks one at a time," Econometric Theory, vol. 13,
no. 3, pp. 315-352, 1997. doi: 10.1017/S0266466600005831.

[27] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco, CA, USA, 2016, pp. 785-794.
doi: 10.1145/2939672.2939785.

[28] J. Janczura et al., "Classification of particle trajectories in living cells: Ma-
chine learning versus statistical testing hypothesis for fractional anoma-
lous diffusion," Physical Review E, vol. 102, no. 3, pp. 032402, 2020. doi:
10.1103/PhysRevE.102.032402.

[29] Ò. Garibo-i-Orts et al., "Efficient recurrent neural network methods for
anomalously diffusing single particle short and noisy trajectories," Journal
of Physics A: Mathematical and Theoretical, vol. 54, no. 50, pp. 504002, 2021.
doi: 10.1088/1751-8121/ac3707.

[30] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for
biomedical image segmentation," in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, October 5-9, 2015, Proceedings, Part III, vol. 18, Springer Interna-
tional Publishing, 2015, pp. 234-241. doi: 10.1007/978-3-319-24574-4_28.

[31] R. Booto Tokime, X. Maldague, and L. Perron, "Automatic Defect Detection
for X-Ray Inspection: A U-Net Approach for Defect Segmentation," Digital
Imaging and Ultrasonics for NDT 2019, July 2019.

[32] O. Oktay et al., "Attention U-Net: Learning Where to Look for the Pancreas,"
arXiv, 2018. doi: 10.48550/arXiv.1804.03999.

[33] D. B. Allan, T. Caswell, N. C. Keim, C. M. van der Wely R. W. Verweij,
"soft-matter/trackpy: v0.6.4". Zenodo, jul. 10, 2024. doi: 10.5281/zenodo.
12708864.

[34] D. Domingo-Calabuig, S. Hoyas, R. Vinuesa, and J.A. Conejero, "1(5), 810-
812, ACS Sust. Res. Manag." 2024. doi: 10.1021/acssusresmgt.4c00074.

10.1016/j.sigpro.2019.107299
10.1016/j.sigpro.2019.107299
10.1088/1751-8121/ac0c5d
10.1088/1751-8121/ac0c5d
10.2307/2529204
10.2307/2529204
10.1017/S0266466600005831
10.1145/2939672.2939785
10.1103/PhysRevE.102.032402
10.1088/1751-8121/ac3707
10.1007/978-3-319-24574-4_28
10.48550/arXiv.1804.03999
10.5281/zenodo.12708864
10.5281/zenodo.12708864
10.1021/acssusresmgt.4c00074

APPENDIX A

Python Code

1

2 import pandas as pd
3 import numpy as np
4 import random
5 from andi_datasets.datasets_challenge import

challenge_phenom_dataset , _get_dic_andi2 , _defaults_andi2
6 from google.colab import drive
7 drive.mount(’/content/drive’)
8

9 def single_state(alpha):
10 values = _get_dic_andi2 (1)
11 values["T"] = 208
12 values["N"] = random.randint (80, 120)
13 values["Ds"] = np.array ([random.choice ([random.uniform (0.0001 , 1)

, random.uniform (1,10), random.uniform (10 ,40)]), 0.01])
14 values["alphas"] = np.array ([alpha , 0.01])
15 return values
16

17 def multi_state(alpha):
18 values = _get_dic_andi2 (2)
19 values["T"] = 208
20 values["N"] = random.randint (60, 120)
21 alpha2 = random.uniform (0.001 , 1.99999)
22 while abs(alpha2 - alpha) < 0.2:
23 alpha2 = random.uniform (0.001 , 1.99999)
24 if random.random () > 0.5:
25 k1 = random.choice ([random.uniform (1,5), random.uniform (5,10),

random.uniform (10 ,40)])
26 k2 = random.uniform (0.01 , 2)
27 values["alphas"] = np.array ([[alpha , 0.01] ,[alpha2 , 0.01]])
28 values["Ds"] = np.array ([[k1, 0.01] ,[k2, 0.01]])
29 else:
30 k2 = random.choice ([random.uniform (1,5), random.uniform (5,10),

random.uniform (10 ,40)])
31 k1 = random.uniform (0.01 , 2)
32 values["alphas"] = np.array ([[alpha2 , 0.01] ,[alpha , 0.01]])
33 values["Ds"] = np.array ([[k2, 0.01] ,[k1, 0.01]])
34

35 return values
36

37 def inmobile_traps(alpha):
38 values = _get_dic_andi2 (3)
39 values["T"] = 208

53

54 Python Code

40 values["N"] = random.randint (80, 120)
41 ks = random.choice ([random.uniform (0.5 ,2), random.uniform (2,10),

random.uniform (10 ,40)])
42 values["Ds"] = np.array ([ks, 0.01])
43 values["alphas"] = np.array ([alpha , 0.01])
44 values["Nt"] = random.randint (250, 400)
45 values["r"] = random.uniform (0.35 , 0.6)
46 values["Pu"] = random.uniform (0.01 , 0.02)
47 return values
48

49 def dimerization(alpha):
50 values = _get_dic_andi2 (4)
51 values["T"] = 208
52 values["N"] = random.randint (80, 120)
53 alpha2 = random.uniform (0.001 , 1.99999)
54 while abs(alpha2 - alpha) < 0.2:
55 alpha2 = random.uniform (0.001 , 1.99999)
56

57 k1 = random.choice ([random.uniform (1,4), random.uniform (4,10),
random.uniform (10 ,60)])

58

59 values["alphas"] = np.array ([[alpha , 0.01] ,[alpha2 , 0.01]])
60 values["Ds"][0][0] = k1
61 values["Pu"] = random.uniform (0.01 , 0.03)
62 values["Pb"] = random.uniform (0.01 , 0.03)
63

64 return values
65

66 def confinement(alpha):
67 values = _get_dic_andi2 (5)
68 values["T"] = 208
69 values["N"] = random.randint (60, 120)
70 alpha2 = random.uniform (0.001 , 1.99999)
71

72 k1 = random.choice ([random.uniform (1,4), random.uniform (4,10),
random.uniform (10 ,60)])

73 if alpha < values["alphas"][0][0]:
74 if alpha >= (values["alphas"][0][0] -0.2):
75 values["alphas"][1][0] = alpha -0.35
76 else:
77 values["alphas"][1][0] = alpha
78 elif alpha <= (values["alphas"][0][0]+0.2):
79 values["alphas"][0][0] = alpha + 0.35
80 else:
81 values["alphas"][0][0] = alpha
82

83 values["Ds"][0][0] = k1
84

85 values["Nc"] = random.randint (30, 45)
86 values["trans"] = random.uniform (0.1, 0.15)
87 values["r"] = random.uniform (4.5, 6)
88 return values
89

90 for generation_batch in [1,2,3,4,5]:
91 experiments = []
92 model_used = []
93 model_type = []
94 for i in np.linspace (1.9, 0.01, 20):
95 for _ in range (40):

55

96 alpha = random.uniform(i, i+0.09)
97 if alpha >= 1.9:
98 model_type.extend ([1]*5)
99 else:

100 model_type.extend ([0]*5)
101

102 experiments.append(single_state(alpha))
103 model_used.extend ([1])
104 experiments.append(multi_state(alpha))
105 model_used.extend ([2])
106 experiments.append(inmobile_traps(alpha))
107 model_used.extend ([3])
108 experiments.append(dimerization(alpha))
109 model_used.extend ([4])
110 experiments.append(confinement(alpha))
111 model_used.extend ([5])
112

113 dfs = []
114 models = []
115 modeltype = []
116 for i, experiment in enumerate(experiments):
117 try:
118 df , _, _ = challenge_phenom_dataset(save_data = False , # If

to save the files
119 dics = [experiment], #

Dictionaries with
the info of each
experiment (and FOV
in this case)

120 return_timestep_labs =
True , get_video =
False ,

121 num_fovs = 5, # Number
of FOVs

122 files_reorg = False)
123 dfs.extend(df)
124 models.extend ([model_used[i]]*5)
125 modeltype.extend ([model_type[i]]*5)
126 except:
127 print(i, " error")
128

129

130 trajs_list = []
131 coef_list = []
132 states_list = []
133 for df in dfs:
134 input = np.zeros ((64 ,208, 2))
135 coef = np.zeros ((64,208, 2))
136 state = np.zeros ((64 ,208))
137 df["state"] = df["state"] + 1
138 grouped = df.groupby ([’traj_idx ’])
139 for _,group in grouped:
140 part = int(_[0])
141 if part <64:
142 org , dest = int(group["frame"].iloc [0]), int(group["

frame"].iloc [-1])
143 input[part , org:dest+1, 0] = group["x"]/128
144 input[part , org:dest+1, 1] = group["y"]/128
145 coef[part , org:dest+1, 0] = group["alpha"]

56 Python Code

146 coef[part , org:dest+1, 1] = group["D"]
147 state[part , org:dest +1] = group["state"]
148

149 trajs_list.append(input)
150 coef_list.append(coef)
151 states_list.append(state)
152

153 np.savez_compressed(f"/content/drive/MyDrive/data/trajs_train_{
generation_batch }.npz", np.array(trajs_list))

154 np.savez_compressed(f"/content/drive/MyDrive/data/coef_train_{
generation_batch }.npz", np.array(coef_list))

155 np.savez_compressed(f"/content/drive/MyDrive/data/state_train_{
generation_batch }.npz", np.array(states_list))

156 np.savez_compressed(f"/content/drive/MyDrive/data/modelgen_train_
{generation_batch }.npz", np.array(models))

157 np.savez_compressed(f"/content/drive/MyDrive/data/
modeltype_train_{generation_batch }.npz", np.array(modeltype))

Listing A.1: Python script to generate simulate experiments

1

2 from sklearn.cluster import KMeans
3 import numpy as np
4 import ruptures as rpt
5 from collections import Counter
6 from scipy.optimize import linear_sum_assignment
7 from andi_datasets.utils_videos import import_tiff_video
8 import trackpy as tp
9 import pandas as pd

10 import keras
11 import os
12

13 # Function to expand the borders of each frame in the video
14 def expand_borders(v, fm=False):
15 expanded_images = []
16 for frame in v:
17 # Set the median pixel value for padding
18 img_median = 255 if fm else np.median(frame)
19

20 # Expand borders by padding the edges of the frame
21 img_borders = np.vstack ((frame[-4:, :], frame , frame [:4,

:]))
22 img_borders = np.hstack ((img_borders [:, -4:], img_borders ,

img_borders [:, :4]))
23

24 # Set the expanded border areas to the median value
25 img_borders [:4, :] = img_median
26 img_borders [-4:, :] = img_median
27 img_borders [:, :4] = img_median
28 img_borders [:, -4:] = img_median
29

30 expanded_images.append(img_borders)
31

32 return np.array(expanded_images)
33

34 # Function to track particles in a video and return trajectories
35 def video2traj(raw_video):
36 # Expand borders of video frames to avoid boundary issues
37 raw_video = expand_borders(raw_video)

57

38

39 # Detect particles in the video frames
40 f = tp.batch(raw_video , diameter=3, invert=True , minmass =13,

separation =2.6, max_iterations =10)
41

42 # Link particles to form trajectories
43 try:
44 traj = tp.link(f, 25, memory =10, neighbor_strategy="BTree",

link_strategy="auto")
45 except:
46 traj = tp.link(f, 4, memory =10, neighbor_strategy="BTree",

link_strategy="auto")
47

48 # Return sorted trajectories
49 return traj[["particle", "frame", "x", "y"]]. sort_values(by=["

particle", "frame"], ignore_index=True)
50

51 # Function to locate particles in the first frame and map them to
detected particles

52 def loc_particles(firstframe , df_video):
53 indxparticles = {}
54

55 # Extract the first frame data
56 df_firstframe = df_video[df_video["frame"] == 0]
57 firstframe = expand_borders ([firstframe])[0]
58

59 # Identify unique particle IDs in the first frame
60 items = np.unique(firstframe)[:-1]
61 positions = []
62 for itm in items:
63 pos = np.where(firstframe == itm)
64 positions.append ((np.mean(pos [0]), np.mean(pos [1])))
65

66 positions_array = np.array(positions)
67 detected_array = df_firstframe [[’y’, "x"]]. values
68 distances = np.sqrt (((detected_array [:, np.newaxis , :] -

positions_array) ** 2).sum(axis =2))
69

70 # Solve the assignment problem to match detected particles to
identified particles

71 row_ind , col_ind = linear_sum_assignment(distances)
72 indxparticles = {}
73

74 for detected , assigned in zip(row_ind , col_ind):
75 if len(np.where(firstframe == items[assigned])[0]) >= 3:
76 indxparticles[int(detected)] = int(items[assigned])
77

78 return indxparticles
79

80 # Function to load videos , track particles , and locate them
81 def load_videos(dir , n_fov):
82 fovs = []
83 vipfovs = []
84 print("Loading videos ...")
85 for fov in range(n_fov):
86 print(f"Video {fov}")
87 video = import_tiff_video(dir + f"videos_fov_{fov}.tiff")
88 vidtrajs = video2traj(video [1:])
89 locpart = loc_particles(video [0], vidtrajs)

58 Python Code

90 fovs.append(vidtrajs)
91 vipfovs.append(locpart)
92 print("Videos loaded")
93 return fovs , vipfovs
94

95 # Function to read fields of view (FOVs) and prepare data for
prediction

96 def read_fovs(nfov , dir_data):
97 fovs_trajs = []
98 fovs_trajs_2 = []
99 fovs_id = []

100 fovs_rang_trajs = []
101 fovs_ind_trajs = []
102

103 # Load videos and trajectories
104 fovs_video , vipfovs = load_videos(dir_data , nfov)
105

106 for fov , df in enumerate(fovs_video):
107 fovs_id.append(fov)
108 input = np.zeros ((64, 208, 2))
109 rang_trajs = []
110 real_ind = []
111 grouped = df.groupby ([’particle ’])
112 indvips = 0
113

114 # Process each particle group
115 for _, group in grouped:
116 part = int(_[0])
117 org = int(group["frame"].iloc [0])
118 dest = org + len(group["x"])
119 if part in vipfovs[fov].keys():
120 rang_trajs.append ((org , dest))
121 real_ind.append(vipfovs[fov][part])
122 input[indvips , org:dest , 0] = group["x"]
123 input[indvips , org:dest , 1] = group["y"]
124 indvips += 1
125

126 # Compute the difference between consecutive frames
127 for i in range(1, 208):
128 input[:, -i] = input[:, -i] - input[:, -i - 1]
129

130 if len(real_ind) != 10:
131 print(f"len real {len(real_ind)}")
132

133 fovs_ind_trajs.append(real_ind)
134 fovs_rang_trajs.append(rang_trajs)
135 input_copy = input.copy()
136 input[:, 0] = np.zeros ((64, 2))
137 fovs_trajs.append(input)
138 fovs_trajs_2.append(input_copy)
139

140 return fovs_trajs , fovs_trajs_2 , fovs_rang_trajs , fovs_id ,
vipfovs , fovs_ind_trajs

141

142 # Function to normalize the predicted signal
143 def normalizar_pred(signal):
144 for i in range(1, len(signal) - 2):
145 if signal[i - 1] != signal[i] and (signal[i + 1] != signal[

i] or signal[i + 2] != signal[i]):

59

146 signal[i] = signal[i - 1]
147 return signal
148

149 # Function to detect change points in a signal using rupture
150 def change_points_model(pred_states , org , dest):
151 try:
152 signal = normalizar_pred(pred_states[org:dest])
153 model = "l2" # Model used for segmentation
154 algo = rpt.Window(width =10, model=model , jump=1, min_size

=3).fit(signal)
155 cp = algo.predict(pen =1)
156 return cp
157 except:
158 return []
159

160 # Function to detect change points in a signal using rupture
without normalization

161 def change_pointsnolog(pred_coef , org , dest):
162 try:
163 signal = pred_coef[org:dest]
164 model = "l2" # Model used for segmentation
165 algo = rpt.Window(width =18, model=model , jump=1, min_size

=3).fit(signal)
166 cp = algo.predict(pen =5)
167 return cp
168 except:
169 return []
170

171 # Function to perform K-Means clustering on two lists of values
172 def k_means_clusters(lista1 , lista2):
173 # Combine the two lists into a 2D array
174 data = list(zip(lista1 , lista2))
175

176 # Apply K-Means with K=2
177 kmeans = KMeans(n_clusters =2, random_state =0, n_init="auto").

fit(data)
178

179 # Get cluster labels
180 labels = kmeans.labels_
181

182 # Group data by cluster
183 clusters = [[[], []], [[], []]]
184 for i, label in enumerate(labels):
185 clusters[label][0]. append(lista1[i])
186 clusters[label][1]. append(lista2[i])
187 return clusters
188

189 # Function to handle missing parts in prediction files
190 def missing_parts(archivo , fov , exp , dir_data):
191 files_missing = []
192 try:
193 with open(archivo , ’r’, encoding=’utf -8’) as file:
194 lineas = file.readlines ()
195 if len(lineas) != 10:
196 files_missing.append ((archivo , dir_data + ""))
197 except:
198 pass
199

200 # Function to predict trajectories and save results

60 Python Code

201 def pred_trajs_fov_video(nfov , dir_pred , dir_data , unet_alpha ,
unet_ks , unet_states):

202 # Read FOVs and prepare data
203 fovs_trajs , fovs_trajs2 , fovs_rang_trajs , fovs_id , vips ,

fovs_ind_trajs = read_fovs(nfov , dir_data)
204

205 print("Predicting videos")
206

207 # Predict alpha and k values using the models
208 pred_alphas = unet_alpha.predict(np.array(fovs_trajs), verbose

=0)
209 pred_ks = unet_ks.predict(np.array(fovs_trajs), verbose =0)
210 pred_trajs = np.concatenate ((pred_ks , pred_alphas), axis=-1)
211 pred_states = np.argmax(unet_states.predict(np.array(

fovs_trajs2), verbose =0), axis=-1)
212

213 states = 1
214 ensembles_alphas = []
215 ensembles_ks = []
216 preb = -1
217

218 # Check the mode of predicted states
219 states_stats = np.unique(pred_states , return_counts=True)
220 ch_mode = 0
221 if len(states_stats [1]) == 3:
222 if states_stats [1][1] > 200:
223 ch_mode = 1
224

225 if not os.path.exists(dir_pred):
226 os.makedirs(dir_pred)
227

228 # Process each FOV and write results to files
229 for fov in range(nfov):
230 submission_file = dir_pred + f’/fov_{fov}.txt’
231 with open(submission_file , "w") as f:
232 for id_part , ran in enumerate(fovs_rang_trajs[fov]):
233 img = fov
234 if ch_mode == 0:
235 cp_part = change_pointsnolog(pred_trajs[img ,

id_part], ran[0], ran [1])
236 else:
237 cp_part = change_points_model(pred_states[img ,

id_part], ran[0], ran [1])
238

239 if len(cp_part) > 0:
240 if cp_part [-1] == ran [1] - ran [0]:
241 cp_part = cp_part [:-1]
242

243 if len(cp_part) == 0:
244 alpha = np.median(pred_alphas[img , id_part , ran

[0]: ran [1]])
245 ks = np.median(pred_ks[img , id_part , ran [0]: ran

[1]])
246 state = Counter(pred_states[img , id_part , ran

[0]: ran [1]]).most_common (1) [0][0]
247 state = state - 1
248 if state == 1:
249 alpha = 0
250 ks = 0

61

251 if state < 0:
252 print(state)
253 ensembles_alphas += [alpha] * int(ran [1] - ran

[0] + 1)
254 ensembles_ks += [ks] * int(ran[1] - ran[0] + 1)
255 res = [fovs_ind_trajs[fov][id_part], ks , alpha ,

int(state), int(ran[1] - ran[0] + 1)]
256 formatted_numbers = ’,’.join(map(str , res))
257 f.write(formatted_numbers + ’\n’)
258 else:
259 states = 2
260 alpha = np.median(pred_alphas[img , id_part , ran

[0]: cp_part [0] + ran [0]])
261 ks = np.median(pred_ks[img , id_part , ran [0]:

cp_part [0] + ran [0]])
262 state = Counter(pred_states[img , id_part , ran

[0]: cp_part [0] + ran [0]]).most_common (1)
[0][0]

263 state = state - 1
264 if state == 1:
265 alpha = 0
266 ks = 0
267

268 ensembles_alphas += [alpha] * int(cp_part [0] +
1)

269 ensembles_ks += [ks] * int(cp_part [0] + 1)
270 preb_chcount = int(cp_part [0] + 1)
271

272 res = [fovs_ind_trajs[fov][id_part], ks , alpha ,
state , int(cp_part [0] + 1)]

273 cp_part = cp_part + [int(ran[1] - ran [0])]
274 for i in range(len(cp_part) - 1):
275 state = Counter(pred_states[img , id_part ,

int(cp_part[i] + ran [0]):int(cp_part[i +
1] + ran [0])]).most_common (1) [0][0]

276 state = state - 1
277 alpha = np.median(pred_alphas[img , id_part ,

int(cp_part[i] + ran [0]):int(cp_part[i
+ 1] + ran [0])])

278 ks = np.median(pred_ks[img , id_part , int(
cp_part[i] + ran [0]):int(cp_part[i + 1]
+ ran [0])])

279 if state == 1 and alpha > 1.7:
280 alpha = 0
281 ks = 0
282

283 ensembles_alphas += [alpha] * (int(cp_part[
i + 1] + 1) - preb_chcount)

284 ensembles_ks += [ks] * (int(cp_part[i + 1]
+ 1) - preb_chcount)

285 preb_chcount = int(cp_part[i + 1] + 1)
286

287 res.extend ([ks, alpha , state , int(cp_part[i
+ 1] + 1)])

288 formatted_numbers = ’,’.join(map(str , res))
289 f.write(formatted_numbers + ’\n’)
290

291 # Save ensemble labels and statistics
292 with open(dir_pred + "/ensemble_labels.txt", ’w’) as f:

62 Python Code

293 if states == 1:
294 f.write(f’model: single_state; num_state: {int(states)}

\n’)
295 data = []
296 data.append(np.array([np.mean(np.array(ensembles_alphas

)), np.std(np.array(ensembles_alphas)),
297 np.mean(np.array(ensembles_ks)),

np.std(np.array(ensembles_ks))
, len(ensembles_alphas)]))

298 else:
299 state_type = "multi_state"
300

301 if ch_mode == 1:
302 if states_stats [0][1] == 1:
303 state_type = "immobile_traps"
304 if states_stats [0][1] == 2:
305 state_type = "confinement"
306 f.write(f’model: multi_state; num_state: {int(states)}

\n’)
307 cluster_states = k_means_clusters(ensembles_alphas ,

ensembles_ks)
308 data = []
309 data.append(np.array([np.mean(np.array(cluster_states

[0][0])), np.std(np.array(cluster_states [0][0])),
310 np.mean(np.array(cluster_states

[0][1])), np.std(np.array(
cluster_states [0][1])), len(
cluster_states [0][0])]))

311 data.append(np.array([np.mean(np.array(cluster_states
[1][0])), np.std(np.array(cluster_states [1][0])),

312 np.mean(np.array(cluster_states
[1][1])), np.std(np.array(
cluster_states [1][1])), len(
cluster_states [1][0])]))

313

314 data = np.transpose(np.array(data))
315 data[-1, :] /= data[-1, :].sum()
316 # Save the data in the corresponding ensemble file
317 np.savetxt(f, data , delimiter=’;’)
318

319 # Function to check if a file has the expected number of lines
320 def comprobar_lineas(archivo):
321 with open(archivo , ’r’, encoding=’utf -8’) as file:
322 lineas = file.readlines ()
323 return len(lineas) != 10
324

325 # Function to solve missing particles by updating prediction files
326 def solve_missing_particles(pred_dir , data_dir , fovs):
327 for fov in range(fovs):
328 misspart = comprobar_lineas(pred_dir + f’/fov_{fov}.txt’)
329 if misspart:
330 video = import_tiff_video(data_dir + f"/videos_fov_{fov

}.tiff")
331 particles = np.unique(video [0]) [:-1]
332 with open(pred_dir + f’/fov_{fov}.txt’, ’r’, encoding=’

utf -8’) as file:
333 lineas = file.readlines ()
334 par_in = [int(l.split(",")[0]) for l in lineas]

63

335 lost_ids = [i for i in particles if i not in par_in
]

336

337 with open(pred_dir + f’/fov_{fov}.txt’, ’a’, encoding=’
utf -8’) as f:

338 for part in lost_ids:
339 print(part)
340 res = [part , 0, 0, 2, 5]
341 formatted_numbers = ’,’.join(map(str , res))
342 f.write(formatted_numbers + ’\n’)
343

344 # Load pre -trained models
345 unet_alpha = keras.models.load_model("/models/alphas -3-2-1024-v5-

epoch -2. keras", compile=False) # CHANGE DIRECTORY
346 unet_ks = keras.models.load_model(f"/models/ks -3-2-1024-newdata -

epoch -3. keras", compile=False) # CHANGE DIRECTORY
347 unet_states = keras.models.load_model(f"/models/states -3-6-128-v1-

epoch -10. keras", compile=False) # CHANGE DIRECTORY
348

349 # Process each experiment
350 for exp in range (12):
351 print("Pred. file ", exp)
352 dir_data = rf"/data/public_data_challenge_v0/track_1/exp_{exp}/

" # CHANGE DIRECTORY
353 dir_pred = rf"/data/track_1/exp_{exp}" # CHANGE DIRECTORY
354 pred_trajs_fov_video (30, dir_pred , dir_data , unet_alpha ,

unet_ks , unet_states)
355 solve_missing_particles(dir_pred , dir_data , 30)

Listing A.2: Python script to make the predictions of the validation and competition data
for the 2nd Andi Challenge.

APPENDIX B

Sustainable Development Goals

Degree of Relation of the Work with the Sustainable Development Goals
(SDGs).

Sustainable Development Goals High Medium Low Not
Related

SDG 1. No Poverty. X
SDG 2. Zero Hunger. X
SDG 3. Good Health and Well-being. X
SDG 4. Quality Education. X
SDG 5. Gender Equality. X
SDG 6. Clean Water and Sanitation. X
SDG 7. Affordable and Clean Energy. X
SDG 8. Decent Work and Economic Growth. X
SDG 9. Industry, Innovation. X
SDG 10. Reduced Inequality. X
SDG 11. Sustainable Cities and Communities. X
SDG 12. Responsible Consumption and Production. X
SDG 13. Climate Action. X
SDG 14. Life Below Water. X
SDG 15. Life on Land. X
SDG 16. Peace, Justice, and Strong Institutions. X
SDG 17. Partnerships for the Goals. x

65

66 Sustainable Development Goals

Alignment with Sustainable Development Goals (SDGs)

This Bachelor Thesis, titled Machine Learning-based Characterization of Single-
Particle Behavior with Synthetic Experiment Videos, aligns closely with several
Sustainable Development Goals (SDGs), demonstrating its broader impact be-
yond the immediate scope of particle tracking and video analysis [34].

SDG 3: Good Health and Well-Being The study’s focus on understanding par-
ticle behavior within living cells has direct implications for improving health out-
comes. By accurately characterizing single-particle dynamics, we enhance our
comprehension of cellular processes and their anomalies, which can lead to more
precise diagnostic tools and targeted therapies. Understanding how particles
move and interact in biological systems is crucial for identifying early biomarkers
for diseases, developing new treatments, and improving overall health diagnos-
tics. This research thus contributes to the advancement of medical science and
public health, supporting SDG 3.

SDG 9: Industry, Innovation, and Infrastructure The application of Machine
Learning to analyze experimental videos represents a significant innovation in
the field of biophysics and cell biology. By leveraging advanced algorithms to
track and characterize particle behavior, this work exemplifies how cutting-edge
technology can drive scientific progress. The integration of Machine Learning
models in this context not only enhances our ability to interpret complex biolog-
ical data but also sets a precedent for future research methodologies. This con-
tributes to the broader goals of SDG 9 by promoting the use of technology and
innovation to solve real-world problems.

SDG 4: Quality Education The methodologies developed and the insights
gained from this thesis have educational value. They contribute to the field of
computational biology and machine learning by providing new tools and tech-
niques for analyzing biological data. Sharing these findings with the scientific
community supports SDG 4 by enhancing knowledge dissemination and foster-
ing a deeper understanding of cellular dynamics among researchers, educators,
and students. The techniques and models used in this research can serve as valu-
able educational resources for those studying biophysics, data science, and re-
lated fields.

SDG 17: Partnerships for the Goals Participation in the 2nd Anomalous Diffu-
sion (AnDi) Challenge reflects a commitment to collaborative efforts in advanc-
ing scientific research. Such challenges often involve collaboration between re-
searchers, institutions, and industries, fostering partnerships that drive innova-
tion and progress. By contributing to this challenge, the thesis supports SDG
17 by emphasizing the importance of cooperation and knowledge exchange in
achieving common goals.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Structure of the memory

	Anomalous Diffusion
	The 2nd Andi Challenge
	Tasks
	Data
	Evaluation Methodology
	Ensemble Tasks Evaluation
	Single-trajectory Tasks Evaluation

	State of the Art
	Introduction
	Particle Tracking
	Centroid-Based Algorithms
	Feature-Based Tracking

	Changing Points in Time Series
	PELT (Pruned Exact Linear Time)
	Window Sliding
	Binary Segmentation
	Bottom-up Segmentation

	Machine Learning
	The Andi Challenge
	U-Net

	Conclusion

	Methodology
	Overview
	Data Generation
	Particle Tracking
	Inference of Diffusion Parameters and State Classification
	Change Point Detection
	Prediction

	Validation
	Competition Validation
	Local Validation
	Conclusion

	Results
	Conclusions
	Objetives
	Relation with Study Porgram

	Bibliography
	Python Code
	Sustainable Development Goals

