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Introduction

Veksler [14], in 1975, introduced the concepts of a maximal nowhere dense
subset and a homogeneous maximal nowhere dense subset of a Tychonoff space.
He defined a closed subset of a Tychonoff space to be maximal nowhere dense
if it is not a nowhere dense subset of any other closed nowhere dense subset of
the space, and homogeneous maximal nowhere dense provided that each of its
non-void regular-closed subsets is maximal nowhere dense in the space. These
subsets have since appeared in several articles such as [7] and [13]. In [7],
Koldunov considered connections of these subsets with θ-sets, P -sets and P ′-
sets, and in [13], Veksler applied maximal nowhere dense subsets to problems
of the existence of remote points and of weak P -points.

Nowhere dense sublocales were initially introduced by Plewe in [12] as those
sublocales missing the Booleanization of a locale. In locale theory, these sublo-
cales appear in a number of papers, for instance in [4], where the author used
them to characterize submaximal locales. In [8], we used nowhere dense sublo-
cales to define remote sublocales which are those sublocales missing all nowhere
dense sublocales. We further verified that the Booleanization of a locale is a
largest remote sublocale. Knowing how nowhere dense sublocales relate with
the Booleanization of a locale, it is of interest to know how some types of
nowhere dense sublocales also relate with the Booleanization and to also know
how these types of nowhere dense sublocales fit in the point-free context inde-
pendently to their already documented use in classical topology. In this paper,
we introduce and study two variants of nowhere density called maximal nowhere
dense and homogeneous maximal nowhere dense sublocales. These notions are
transferred from classical topology. Here though, we generalize the scope to
arbitrary sublocales instead of closed sublocales. We provide general results
of these sublocales and show among other things that maximal nowhere dense
sublocales are precisely those sublocales that are not nowhere in any nowhere
dense sublocale. It turns out that in the category of TD-spaces, the localic def-
initions of maximal nowhere dense as well as homogeneous maximal nowhere
sublocales are conservative in locales in the sense that a subset of a TD-space
is maximal nowhere dense (resp. homogeneous maximal nowhere dense) if and
only the sublocale it induces is maximal nowhere dense (resp. homogeneous
maximal nowhere dense) in the locale of opens. In a non-Boolean strongly
submaximal locale, the supplement of the Booleanization is maximal nowhere
dense. We study connnections between these sublocales and inaccessible as well
as remote sublocales. It turns out that a locale has all of its non-void nowhere
dense sublocales maximal nowhere dense precisely when all of its its non-void
nowhere dense sublocales are inaccessible. Furthermore, the Booleanization of
a locale is inaccessible with respect to a dense and open sublocale. In relation
to remote sublocales, we show that if the supplement of an open dense sublocale
S is homogeneous maximal nowhere dense, then every S#-remote sublocale is
∗-remote from S.
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This paper is organized as follows. The first section introduces the basic
background. In the second section, we define maximal nowhere dense sublo-
cales. We characterize these sublocales where we show that a sublocale is
maximal nowhere dense if and only if its closure is maximal nowhere dense.
We use this property of maximal nowhere density to prove among other things
that the localic definition of maximal nowhere density is conservative in locales.
As far as maximality of objects is concerned, one would expect a sublocale to
be maximal nowhere dense if it is not contained in any other nowhere dense
sublocale different from itself. This is not the concept that we use in this paper,
however we show that for a locale to have a nowhere dense sublocale that is not
contained in any other nowhere dense sublocale, it is necessary and sufficient
for the join of all of its nowhere dense sublocales to be nowhere dense.

In the third section, we introduce the concept of a homogeneous maximal
nowhere dense sublocale and show that the introduced localic definition is
conservative in locales. We prove that homogeneous maximal nowhere density
is regular-closed hereditary.

In section four, we explore a relationship between maximal nowhere density
and inaccessibility. Veksler [14] introduced inaccessible and almost inaccessible
points of a Tychonoff space. We transfer these concepts to completely regular
locales and further define inaccessible and almost inaccessible sublocales of
arbitrary locales. We use these sublocales to characterize locales in which all
of their non-void nowhere dense sublocales are maximal nowhere dense.

The fifth section discusses a connection between maximal nowhere density
and remoteness.

The last section studies preservation and reflection of maximal nowhere den-
sity. We prove that every open localic map that sends dense elements to dense
elements preserves and reflects maximal nowhere dense sublocales and if such
a localic map is further injective, then it sends homogeneous maximal nowhere
dense sublocales back and forth.

1. Preliminaries

The book [10] is our main reference for the theory of locales and sublocales.

1.1. Locales. We recall that a locale L is a complete lattice satisfying the
following infinite distributive law:

a ∧
∨
B =

∨
{a ∧ b : b ∈ B}

for every a ∈ L, B ⊆ L. The top element and the bottom element of a locale
L are denoted by 1L and 0L, respectively, with subscripts dropped if there is
no possibility of confusion. An element p ∈ L is called a point if p < 1 and
a ∧ b ≤ p implies a ≤ p or b ≤ p, for all a, b ∈ L. The pseudocomplement of
an element a ∈ L is the element a∗ =

∨
{x ∈ L : x ∧ a = 0}. An element

a ∈ L is dense if a∗ = 0, rather below b ∈ L, denoted by a ≺ b, if a∗ ∨ b = 1,
complemented if a ∨ a∗ = 1 and completely below b ∈ L, denoted by a ≺≺ b, if
there is a sequence (xq) of elements of L indexed by Q∩ [0, 1] such that a = 0,
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b = 1 and xq ≺ xr whenever q < r. A locale L is Boolean if all of its elements
are complemented and completely regular in case a =

∨
{x ∈ L : x ≺≺ a} for

all a ∈ L.
A localic map is an infimum-preserving function f : L → M between lo-

cales such that its left adjoint f∗, called the associated frame homomorphism,
preserves binary meets.

1.2. Sublocales. A sublocale of a locale L is a subset S ⊆ L such that (1)∧
A ∈ S for all A ⊆ S, and (2) for all x ∈ L and s ∈ S, x → s ∈ S, where →

is a Heyting operation on L satisfying:

a ≤ b→ c if and only if a ∧ b ≤ c

for every a, b, c ∈ L. We denote by S(L) the collection of all sublocales of a
locale L. A sublocale S of a locale L is void if S = O = {1}, non-void provided
that S 6= O, and complemented if it has a complement in S(L). It misses a
sublocale T ⊆ L provided that S ∩ T = O. Every S ∈ S(L) has a supplement,
denoted by L r S or S#, which is the smallest sublocale T of L such that
S ∨ T = L. A sublocale S ⊆ L is linear if

S ∩
∨
{Ci : i ∈ I} =

∨
{S ∩ Ci : i ∈ I}

for each family {Ci : i ∈ I} ⊆ S(L). Complemented sublocales are linear. The
sublocales

c(a) = {x ∈ L : a ≤ x} and o(a) = {a→ x : x ∈ L},

of a locale L are respectively the closed and open sublocales induced by a ∈ L.
They are complements of each other. A sublocale is clopen if it is both closed
and open. For any S ∈ S(L), its closure, denoted by S, is the smallest closed
sublocale containing S and its interior, denoted by int(S), is the largest open
sublocale contained in S. By a dense sublocale we mean a sublocale S of L such
that S = L. In fact, a sublocale is dense if and only if it contains the bottom
element of the locale. The sublocale B(L) = {x → 0 : x ∈ L} of a locale L
is the smallest dense sublocale of L and is referred to as the Booleanization
of L. In classical topology, a subset of a topological space is nowhere dense
if the interior of its closure is empty. By a nowhere dense sublocale we mean
a sublocale that misses the smallest dense sublocale and by a regular-closed
sublocale we refer to a sublocale which is the closure of some open sublocale.
We denote by Nd(L) the join of all nowhere dense sublocales of a locale L. We
shall use the prefix S- for localic properties defined on a sublocale S of L.

By a nucleus we mean a function ν : L → L such that (1) a ≤ ν(a), (2)
a ≤ b =⇒ ν(a) ≤ ν(b), (3) νν(a) = ν(a), and (4) ν(a ∧ b) = ν(a) ∧ ν(b) for
every a, b ∈ L. For each sublocale S ⊆ L there is an onto frame homomorphism
νS : L→ S defined by

νS(a) =
∧
{s ∈ S : a ≤ s}.
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Open sublocales and closed sublocales of a sublocale S of L are given in terms
of nucleus as

oS(νS(a)) = S ∩ o(a) and cS(νS(a)) = S ∩ c(a),

respectively, for a ∈ L. For any S ∈ S(L) and x ∈ L, S ⊆ o(x) if and only if
νS(x) = 1.

A localic map f : L→M induces the following functions: (1) f [−] : S(L)→
S(M) given by the set-theoretic image of each sublocale of L under f , and (2)
f−1[−] : S(M)→ S(L) given by

f−1[T ] =
∨
{A ∈ S(L) : A ⊆ f−1(T )}.

For a localic map f : L→M , x ∈M and A ∈ S(L),

f−1[cM (x)] = cL(f∗(x)); f−1[oM (x)] = oL(f∗(x)) and f [A] ⊆ f [A].

By an open localic map we refer to a localic map f : L→M such that f [A] is
open for each open A ∈ S(L).

We denote by OX the locale of open subsets of a topological space X, and

denote by Ã or SA a sublocale of OX induced by a subset A of a topological

space X. For a topological space X and A,B ⊆ X, we have that Ã∨B̃ = Ã ∪B
and Ã ∩B ⊆ Ã ∩ B̃.

2. Maximal nowhere dense sublocales

Veksler [14] says that a closed nowhere dense subset of a Tychonoff space is
maximal nowhere dense if it is not nowhere dense in any other closed nowhere
dense subset of the space. We broaden our study to arbitrary nowhere dense
subsets of any topological space. We give the following definition.

Definition 2.1. A nowhere dense subset N of a topological space X is maximal
nowhere dense in case there is no nowhere dense subset K of X such that N
is nowhere dense in K.

We aim to introduce maximal nowhere dense sublocales such that a subset
of a topological space X is maximal nowhere dense if and only if the sublocale
it induces is maximal nowhere dense in OX.

We transfer maximal nowhere density to locales by replacing subsets with
sublocales from Definition 2.1.

Definition 2.2. Let L be a locale. A nowhere dense sublocale N of L is
maximal nowhere dense (m.n.d) if there is no nowhere dense sublocale S of L
such that N is nowhere dense in S.

We consider some examples. We remind the reader that a locale L is nowhere
dense as a sublocale of itself if and only if L = {1}.

Example 2.3. (1) In a non-Boolean strongly submaximal locale L (according
to [4], a locale is strongly submaximal if each of its dense sublocales is open),

Nd(L) =
∨
{N ∈ S(L) : N is nowhere dense in L}
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is maximal nowhere dense. To see this, we start by showing that in a strongly
submaximal locale L, Nd(L) is nowhere dense. Indeed, observe that in a
strongly submaximal locale L, the dense sublocale BL is open (in particular,
complemented), so

BL ∩Nd(L) = BL ∩
∨
{S : S is nowhere dense}

=
∨
{BL ∩ S : S is nowhere dense}

=
∨
{O} = O

making Nd(L) nowhere dense.
Now, let A ∈ S(L) be nowhere dense such that Nd(L) is nowhere dense in

A. By the nature of Nd(L), A = Nd(L), making Nd(L) nowhere dense as a
sublocale of itself. Hence Nd(L) = O. This means that O is the only nowhere
dense sublocale of L, which contradicts that L is non-Boolean.

An easy computation may show that Nd(L) = L rBL whenever Nd(L) is
nowhere dense in a locale L. So, in a non-Boolean strongly submaximal locale
L, LrBL is maximal nowhere dense.

(2) O is not maximal nowhere dense. This follows since O is nowhere dense
as a sublocale of itself. As a result, we get that a Boolean locale does not have
a maximal nowhere dense sublocale. This also tells us that N in Definition 2.2
cannot be open. Otherwise, L r N is dense (since a sublocale N is nowhere
dense if and only if L r N is nowhere dense, see [8]), making L r N dense
because L r N ⊆ L r N . Since N is non-void (since it is maximal nowhere
dense, making it different from O) and open, we must have that (LrN)∩N 6= O
which is not possible because N is complemented.

In Proposition 2.5 below, we give a characterization of maximal nowhere
dense sublocales some part of which will be used in calculations that involve
maximal nowhere dense sublocales.

Denote by x∗A the pseudocomplement of an x ∈ A, calculated in A ∈ S(L).
Recall that for a dense A ∈ S(L), we have the equalities

x∗A = x→A 0A = x→ 0L = x∗

so that BA = BL.
For use below, we prove the following lemma.

Lemma 2.4. A sublocale N of a locale L is nowhere dense in K ∈ S(L) iff N
is nowhere dense in K.

Proof. Recall that BS = BL for every dense S ∈ S(L). Because every sublo-
cale is dense in its closure, we have N ∩BK = N ∩BK, which implies N is
nowhere dense in K if and only if N is nowhere dense in K. �

We shall use ND(L) to denote the collection of all nowhere dense sublocales
of a locale L.

Recall from [8] that a sublocale is nowhere dense if and only if its closure is
nowhere dense.
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Proposition 2.5. Let N be a nowhere dense sublocale of a locale L. The
following statements are equivalent.

(1) N is maximal nowhere dense.
(2) There is no closed nowhere dense sublocale of L having N as its nowhere

dense sublocale.
(3) N is maximal nowhere dense.
(4) N is not a nowhere dense sublocale of any closed nowhere dense sublo-

cale of L.

(5) There is no dense y ∈ L such that y ≤
∧
N and (

∧
N)
∗c(y)

= y.

Proof. (1) =⇒ (2): Follows since there is no nowhere dense (particularly, closed
nowhere dense) sublocale A of L in which N ∈ ND(A).

(2) =⇒ (3): Nowhere density of N follows since a sublocale is nowhere dense
if and only if its closure is nowhere dense, see [8].

Now, suppose that there is a nowhere dense sublocale K such that N is
nowhere dense in K. Since every sublocale of a nowhere dense sublocale is
nowhere dense, N is nowhere dense in K. By Lemma 2.4, N is nowhere dense
in the closed nowhere dense sublocale K, which contradicts the hypothesis in
condition (2). Thus N is maximal nowhere dense.

(3) =⇒ (4): Trivial.

(4) =⇒ (5): Let y ∈ L be dense such that y ≤
∧
N and (

∧
N)
∗c(y)

= y. This
means that

∧
N is c(y)-dense which implies that cc(y) (

∧
N) is c(y)-nowhere

dense. Because cc(y) (
∧
N) = N ∩ c(y) = N , we have that N is nowhere dense

in the closed sublocale c(y), which contradicts the hypothesis.
(5) =⇒ (1): Assume that N is nowhere dense in a nowhere dense sublocale

K of L. By Lemma 2.4, N is nowhere dense in the closed nowhere dense
sublocale K. Therefore

∧
K is a dense element of L such that

∧
K ≤

∧
N and

(
∧
N)
∗K

=
∧
K, which is a contradiction. �

In terms of closed nowhere dense sublocales, we have the following result
which holds since for every a, b ∈ L,

a∗c(b) =
∨
c(b)

{x ∈ c(b) : a ∧ x = 0c(b) = b}

= νc(b)

(∨
{x ∈ c(b) : a ∧ x = b}

)
= b ∨

(∨
{x ∈ L : a ∧ x = b}

)
= b ∨ (a→ b)

= a→ b.

Corollary 2.6. Let L be a locale and c(x) ∈ S(L). Then c(x) is maximal
nowhere dense if and only if x is dense and there is no dense y ∈ L such that
y ≤ x and x→ y = y.
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Proposition 2.5 suggests that, when doing calculations about maximal nowhere
dense sublocales, there is no loss of generality with restricting to closed nowhere
dense sublocales.

We give the following result regarding binary intersections of induced sublo-
cales which will be used below. Recall that for any open subset U of a topo-

logical space X, o(U) = Ũ and OX r Ũ = X̃ r U .

Lemma 2.7. Let X be a topological space. For any A,B ⊆ X with B̃ comple-

mented in OX, Ã ∩B = Ã ∩ B̃.

Proof. It is clear that Ã ∩B ⊆ Ã ∩ B̃.
On the other hand, A ∩ B ⊆ A ∩ B implies that A ⊆ (A ∩ B) ∪ (X r B).

Because S̃ ∪ T = S̃ ∨ T̃ for all S, T ⊆ X, we have that Ã ⊆ Ã ∩B ∨ X̃ rB =

Ã ∩B ∨ (OX r B̃). Therefore

Ã ∩ B̃ = Ã ∩ (OX r (OX r B̃)) ⊆ Ã ∩B

since B̃ is complemented. �

We show below that a subset is nowhere dense in a subspace of a TD-
space precisely when the sublocale it induces is nowhere dense in the sublocale
induced by the subspace. We shall make use of [2, Proposition 4.1.] which
states that a sublocale is nowhere dense if and only if its closure has a void
interior. We remind the reader that open sublocales of a sublocale S of a locale
L are the oS(a) = S∩o(a) for a ∈ S. So, in OX, open sublocales of S ∈ S(OX)

are the oS(U) = S ∩ o(U) = S ∩ Ũ for U ∈ S.
We give the following lemma which we shall use below.

Lemma 2.8. Let X be a TD-space. For each subset N such that Ñ is comple-

mented in OX, N ∩A = ∅ if and only if Ñ ∩ Ã = O.

Proof. (=⇒): Follows from Lemma 2.7.

(⇐=): Follows from the fact that B ⊆ C if and only if B̃ ⊆ C̃, for all
B,C ⊆ X where X is a TD-space. See [10]. �

Lemma 2.9. Let X be a TD-space and F ⊆ X. Then A ⊆ F is F -nowhere

dense iff Ã is F̃ -nowhere dense.

Proof. (=⇒) : Let U ∈ F̃ be such that oF̃ (U) ⊆ Ã
F̃

. Then U ∈ OX and

Ũ ∩ F̃ ⊆ Ã
F̃

= Ã ∩ F̃ so that Ũ ∩ F ⊆ Ũ ∩ F̃ ⊆ Ã. Therefore U ∩ F ⊆ A

making U ∩F ⊆ AF
. Since A is F -nowhere dense, U ∩F = ∅. By Lemma 2.8,

Ũ ∩ F̃ = O making intF̃

(
Ã

F̃
)

= O. Thus Ã is F̃ -nowhere dense.

(⇐=) : Let U ∈ OX be such that U ∩ F ⊆ A
F

= A ∩ F . Then U ∩ F ⊆ A.

Since U is open, it follows from Lemma 2.7 that Ũ ∩ F̃ ⊆ Ã which gives
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Ũ ∩ F̃ ⊆ Ã ∩ F̃ . Because Ã is F̃ -nowhere dense, Ũ ∩ F̃ = O implying that
U ∩ F = ∅. Therefore A is F -nowhere dense. �

We are now in a position to show that the notion of maximal nowhere density
introduced in Definition 2.2 is conversative in locales. Recall that for a subset
N of a topological space X:

(1) N is nowhere dense in X if and only if Ñ is nowhere dense in OX, and

(2) If X is a TD-space, then Ñ = Ñ .

Proposition 2.10. Let X be a TD-space. A subset F of X is maximal nowhere

dense in X iff F̃ is maximal nowhere dense in OX.

Proof. (=⇒): Let F ⊆ X be such that F̃ is not maximal nowhere dense in

OX. It follows from Proposition 2.5 that the sublocale F̃ = F̃ is not maximal
nowhere dense in OX. Therefore, there is a closed sublocale K of OX such

that F̃ in nowhere dense in K. Because S is a closed sublocale of OX, choose

a closed set K ⊆ X such that K = c(X rK) = K̃. It follows from Lemma 2.9
that F is K-nowhere dense, making F not maximal nowhere dense in X.

(⇐=): If F is not maximal nowhere dense in X, then F is nowhere dense

in some nowhere dense subset K of X. It follows from Lemma 2.9 that F̃
is nowhere dense in the nowhere dense sublocale K̃ of OX. Thus F̃ is not
maximal nowhere dense in OX. �

We close this section by considering some results about maximal nowhere
dense sublocales.

Recall from [6] that for any sublocale S of L,

int(S) = o
(∧

(Lr S)
)

= Lr c
(∧

(Lr S)
)

= Lr Lr S.

This can be applied to any complemented sublocale A of a locale L and
arbitrary F ∈ S(L) as follows:

intA
(
F ∩A

)
= Ar (Ar

(
F ∩A

)
)
A

= Ar
(
Ar

(
F ∩A

)
∩A

)
= A ∩

(
Lr

(
Ar

(
F ∩A

)
∩A

))
= A ∩

((
Lr

(
Ar

(
F ∩A

)))
∨ (LrA)

)
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=
(
A ∩

(
Lr

(
Ar

(
F ∩A

))))
∨ (A ∩ (LrA))

= A ∩
(
Lr

(
Ar

(
F ∩A

)))
= A ∩

(
Lr

(
A ∩

(
Lr

(
F ∩A

))))
= A ∩

(
Lr

(
A ∩

(
Lr F

))
∨ (A ∩ (LrA))

)
= A ∩

(
Lr

(
A ∩

(
Lr F

)))
.

Remark 2.11. From the preceding paragraph we get that a sublocale F of
a complemented sublocale A of L is A-nowhere dense if and only if A ⊆
A ∩ (Lr F ). This follows since

F is nowhere dense in A ⇐⇒ intA

(
F

A
)

= O

⇐⇒ A ∩
(
Lr

(
A ∩

(
Lr F

)))
= O

⇐⇒ A ⊆ A ∩
(
Lr F

)
.

Proposition 2.12. Let L be a locale and F a non-void nowhere dense sublocale
of L. Then

(1) If A ∈ ND(L), F is maximal nowhere dense in L and F ⊆ A, then A
is maximal nowhere dense in L.

(2) If F ∩(LrN) 6= O for all N ∈ ND(LrF ), then F is maximal nowhere
dense in L.

Proof. (1) If A ∈ ND(L), F is maximal nowhere dense in L, F ⊆ A and
N ∈ ND(L) such that A ∈ ND(N), then F ∈ ND(N), which is a contradiction.
Thus A is maximal nowhere dense in L.

(2) We prove this statement by contradiction: Suppose that F is not max-
imal nowhere dense, i.e., there is a nowhere dense sublocale c(x) such that

F ∈ ND(c(x)). We get that c(x) ∩
(
Lr c(x) ∩ (Lr F )

)
= O.

Claim: c(x) ∩ (Lr F ) ∈ ND(Lr F ). To verify this, assume that c(x)∩(Lr
F ) is not (L r F )-nowhere dense. Then there is a non-void (L r F )-open

sublocale S such that S ⊆ (Lr F ) ∩ c(x). Such S is of the form S = o(a) ∩
(Lr F ) for some a ∈ L. Therefore

o(a) ∩ (Lr F ) ⊆ o(a) ∩ (Lr F ) ⊆ (Lr F ) ∩ c(x) ⊆ (Lr F ) ∩ c(x) ⊆ c(x).

But c(x) ∈ ND(L) and o(a) ∩ (L r F ) is open in L, so c(a) ∩ (L r F ) = O.
Therefore o(a) ⊆ F . Since F is nowhere dense in L, o(a) = O making O = S =
o(a) ∩ (L r F ), which is impossible. Thus c(x) ∩ (L r F ) is (L r F )-nowhere
dense.
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Now, by hypothesis, F∩(Lrc(x) ∩ (Lr F )) 6= O. Since F ⊆ c(x), c(x)∩(Lr
(Lr F ) ∩ c(x)) 6= O which contradicts that c(x) ∩

(
Lr c(x) ∩ (Lr F )

)
= O.

Thus F is maximal nowhere dense in L. �

Remark 2.13. Using the fact that non-empty finite joins of nowhere dense
sublocales are nowhere dense, Proposition 2.12(1) tells us that any finite join
of maximal nowhere dense sublocales is maximal nowhere dense.

As far as maximality of objects with some property P is concerned, one
expects it to refer to an object A with property P in which no other object
with property P, other than A itself, contains A. So, we spare some time to
show that a nowhere dense sublocale with this maximality exists precisely when
a locale has a largest nowhere dense sublocale.

Let us call a nowhere dense sublocale N of a locale L strongly maximal
nowhere dense if, for any nowhere dense sublocale A, N ⊆ A implies A = N .

Proposition 2.14. Let L be a locale. The following statements are equivalent.

(1) L has a strongly maximal nowhere dense sublocale.
(2) Nd(L) is nowhere dense.

If L is non-Boolean, this is further equivalent to:

(3) Nd(L) is maximal nowhere dense.

Proof. (1) =⇒ (2): Let A ∈ S(L) be strongly maximal nowhere dense. We
show that Nd(L) ⊆ A which will make Nd(L) nowhere dense. Choose a nowhere
dense N ∈ S(L). Then N ∨A is nowhere dense in L. But A ⊆ N ∨A and A is
strongly maximal nowhere dense, so A = N ∨ A. Therefore N ⊆ N ∨ A = A.
Since N was arbitrary, Nd(L) =

∨
{S ∈ S(L) : S ∈ ND(L)} ⊆ A. Thus

Nd(L) ⊆ A implying that Nd(L) is nowhere dense.
(2) =⇒ (1): If Nd(L) is nowhere dense, then there is no other nowhere

dense sublocale containing Nd(L) other than itself. Thus Nd(L) is a strongly
maximal nowhere dense sublocale of L.

Assume that L is non-Boolean. The equivalence (2) ⇐⇒ (3) follows since
Nd(L) contains every nowhere dense sublocale of L and Nd(L) 6= O. �

3. Homogeneous maximal nowhere dense sublocales

Related to maximal nowhere dense subsets are homogeneous maximal nowhere
dense subsets which were defined for spaces by Veksler in [14] as closed nowhere
dense subsets F of a Tychonoff space X in which each non-empty F -regular-
closed subset is maximal nowhere dense in X. In this paper, we do not only
focus on Tychonoff spaces, but all topological spaces.

We extend Veksler’s definition of a homogeneous maximal nowhere dense
subset of any topological space to locales as follows.

Definition 3.1. A closed nowhere dense sublocale N of a locale L is homo-
geneous maximal nowhere dense (h.m.n.d) if each non-void N -regular-closed
sublocale is maximal nowhere dense in L.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 341



M. Nxumalo

Without the closedness requirement in Definition 3.1, we shall call F weakly
homogeneous maximal nowhere dense.

Remark 3.2. We note that regular-closed sublocales of a closed nowhere dense
sublocale c(x) of L are of the form c(a → x) for some a ∈ L. Indeed, A is

c(x)-regular-closed if and only if A = o(a) ∩ c(x) ∩ c(x) for some a ∈ L. We
have

o(a) ∩ c(x) ∩ c(x) = c
(∧

(o(a) ∩ c(x))
)
∩ c(x)

= c
(∧(

co(a)(νo(a)(x))
))
∩ c(x)

= c
(
νo(a)(x)

)
∩ c(x)

= c (a→ x) ∩ c(x)

= c (a→ x) since x ≤ a→ x.

In light of Observation 3.2 and the characterizations of maximal nowhere
nowhere dense sublocales given in Proposition 2.5, we get the following char-
acterizations of homogeneous maximal nowhere dense sublocales. The proof is
straight forward and shall be omitted.

Proposition 3.3. Let L be a locale and x ∈ L. The following statements are
equivalent.

(1) c(x) is homogeneous maximal nowhere dense.
(2) For each a ∈ L, c(a→ x) is maximal nowhere dense in L.
(3) For each a ∈ L, there is no dense y ∈ L such that y ≤ a → x and

(a→ x)∗c(y) = y.

In the next result, we show that the definition of a homogeneous maximal
nowhere dense sublocale given in Definition 3.1 is conservative in locales. Prior
to that, we give the following lemmas where the proof for Lemma 3.4(1) is a
straightforward application of Lemma 2.7 and Lemma 2.9, and shall be omitted.
We mentioned in the Preliminaries section that we shall sometimes use the
notation SA instead of Ã for the sublocale of OX induced by the subset A of
a topological space X.

Lemma 3.4. Let X be a TD-space and A,K,F, U ⊆ X be such that F̃ is
complemented in OX. Then:

(1) If U ∩F ⊆ K, then U ∩F is K-nowhere dense iff Ũ ∩ F̃ is K̃-nowhere
dense.

(2) A = F ∩ U ∩ F if and only if Ã = F̃ ∩ Ũ ∩ F̃ .
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Proof. (2) We have that

A = F ∩ U ∩ F ⇐⇒ Ã = SF∩U∩F

⇐⇒ Ã = F̃ ∩ U ∩ F̃ since F̃ is complemented in OX

⇐⇒ Ã = F̃ ∩ U ∩ F̃

⇐⇒ Ã = F̃ ∩ Ũ ∩ F̃ since F̃ is complemented in OX

which proves the result. �

Using Lemma 2.7(2), we get the following result, whose proof shall be omit-
ted.

Corollary 3.5. Let X be a TD-space and F ⊆ X. Then a subset A ⊆ F is

F -regular-closed iff Ã is F̃ -regular-closed.

Proposition 3.6. Let X be TD-space. A closed set F ⊆ X is homogeneous

maximal nowhere dense iff F̃ ⊆ OX is homogeneous maximal nowhere dense.

Proof. Follows from Proposition 2.10, Lemma 3.4(1) and Corollary 3.5. �

The following result tells us that homogeneous maximal nowhere density is
regular-closed hereditary.

Proposition 3.7. Let L be a locale and F be a closed nowhere dense sublocale
of L. If F is homogeneous maximal nowhere dense and A is a non-void F -
regular-closed sublocale, then A is homogeneous maximal nowhere dense.

Proof. Let N be a non-void regular-closed sublocale of A and suppose that
there is B ∈ ND(L) such that N ∈ ND(B). Because A is F -regular-closed

and N is A-regular-closed, A = o(x) ∩ F ∩ F and N = o(y) ∩A ∩ A for some

x, y ∈ L. Since both F and A are closed, A = o(x) ∩ F and N = o(y) ∩A so

that N = o(y) ∩ o(x) ∩ F . Therefore

o(y) ∩ o(x) ∩ F = o(y ∧ x) ∩ F ⊆ N.

The sublocale o(y) ∩ o(x) ∩ F 6= O, otherwise o(y) ∩ o(x) ∩ F = O making

o(y) ∩ o(x) ∩ F = O which is not possible. Since N is nowhere dense in B, we

get that o(y ∧ x) ∩ F is nowhere dense in B making o(y ∧ x) ∩ F ∩F ∈ ND(B).

This is not possible because o(y ∧ x) ∩ F∩F is non-void and regular-closed in F
which must be maximal nowhere dense in L. Thus A is homogeneous maximal
nowhere dense. �

We close this section by considering a relationship between maximal nowhere
dense sublocales and (strongly) homogeneous maximal nowhere dense sublo-
cales.

Proposition 3.8. Every (strongly) homogeneous maximal nowhere dense sublo-
cale is maximal nowhere dense.

Proof. Follows since every locale is a regular-closed sublocale of itself. �

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 343



M. Nxumalo

4. Maximal nowhere density and Inaccessibility

The aim of this section is to explore a relationship between the variations
of nowhere dense sublocales discussed in the previous two sections (which are
maximal nowhere dense sublocales and homogeneous maximal nowhere dense
sublocales) and sublocales called inaccessible sublocales and almost inaccessible
sublocales.

En route to introducing inaccessible and almost inaccessible sublocales, we
consider Veksler’s notions of an inaccessible point and an almost inaccessible
point of a Tychonoff space which he introduced in [14]. He calls a point x ∈ E ⊆
X, where X is a Tychonoff space, E-inaccessible (resp. almost E-inaccessible)
if x /∈ N (resp. x /∈ intE(N ∩E)) for all (X rE)-closed nowhere dense N . We
shall transfer these notions to locales.

Our journey to introducing localic notions of inaccessible and almost inacces-
sible points will start with inaccessible points and end with almost inaccessible
points.

In a Tychonoff space X, we have that x /∈ N if and only if {x} ∩ N = ∅
if and only if (X r {x}) ∪ (X r N) = X for every x ∈ X, N ⊆ X. So the
definition of an E-inaccessible point x ∈ E ⊆ X is equivalent to:

(Xr{x})∪(XrN) = X for all (XrE)-closed nowhere dense
N .

Recall that XrA = 0Ã for any subset A of a space X. This and the preceding
paragraph motivate the following localic definition of an inaccessible point.

Definition 4.1. A point p of a sublocale S of a completely regular locale L is
S-inaccessible if for each (LrS)-closed nowhere dense sublocale N , 0N ∨p = 1,
where the join is calculated in L.

Recall from [1, Lemma 3.2.1] that for a subset A of a TD-space X,∨
{{X r {x}, X} : x /∈ A} = X̃ rA

is the supplement of Ã, i.e., X̃ rA = X̃ r Ã.
According to [5], a regular locale is T1 in the sense that every point is a

maximal element. Hence a point p of a regular locale L has a property that
a ∨ p = 1 if and only if a � p for every a ∈ L.

In what follows, we show that a point x of a Tychonoff space X is inaccessible
if and only if x̃ is inaccessible. We shall need the following lemma. We shall

make use of the fact that Ã = {int((X r A) ∪G) : G ∈ OX} for every subset
A of a topological space X.

Lemma 4.2. Let X be a topological space, F a closed subset of X and A ⊆ X.

Then
∧

(F̃ ∩ Ã) = int((X rA) ∪ (X r F ))

Proof. We have that X r F ⊆ (X rA) ∪ (X r F ), making

X r F = int(X r F ) ⊆ int((X rA) ∪ (X r F ))
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so that int((X r A) ∪ (X r F )) ∈ F̃ . Also, since X r F is open, int((X r
A) ∪ (X r F )) ∈ Ã. Therefore int((X r A) ∪ (X r F )) ∈ F̃ ∩ Ã, making∧

(F̃ ∩ Ã) ≤ int((X rA) ∪ (X r F )).

On the other hand, let V ∈ F̃∩Ã. Then XrF ⊆ V and V = int((XrA)∪G)
for some G ∈ OX. We get that

int((X rA) ∪ (X r F )) ⊆ int((X rA) ∪ V )

= int ((X rA) ∪ int((X rA) ∪G))

⊆ int((X rA) ∪G)

= V.

Therefore int((XrA)∪ (XrF )) ≤
∧

(F̃ ∩ Ã) and hence
∧

(F̃ ∩ Ã) = int((Xr
A) ∪ (X r F )). �

Proposition 4.3. Let X be a Tychonoff space and x ∈ E ⊆ X. Then x is

E-inaccessible iff x̃ is Ẽ-inaccessible.

Proof. (=⇒) : Let K be an (X̃ r Ẽ)-closed nowhere dense sublocale. Choose

a closed subset F of X such that K = F̃ ∩ (X̃ r Ẽ). Since X̃ r Ẽ = X̃ r E,

K = F̃ ∩ X̃ r E ⊇ S(F∩(XrE)). It follows from Lemma 2.9 that F ∩ (X r E)
is an (X r E)-closed nowhere dense subset. Since x is E-inaccessible,(

X r {x}
)
∪
(
X r F ∩ (X r E)

)
= X.

Because x̃ = X r {x} is a point and every completely regular locale is regular

and hence T1, it follows that XrF ∩ (X r E) � x̃. Since XrF ∩ (X r E) =

int(E ∪ (X r F )) and int(E ∪ (X r F )) =
∧

(F̃ ∩ X̃ r E) by Lemma 4.2,∧
(F̃ ∩ X̃ r E) � x̃ so that∧

(F̃ ∩ X̃ r E) ∨ x̃ = 0K ∨ x̃ = 1OX

because OX is T1. Thus x̃ is a Ẽ-inaccessible point.
(⇐=) : Let C be an (XrE)-closed nowhere dense subset. Set C = F ∩(Xr

E) for some closed F ⊆ X. If follows from Proposition 3.4 that F̃ ∩ X̃ r E is

(X̃ r E)-closed nowhere dense. But X̃ r Ẽ = X̃ r E, so the (X̃ r Ẽ)-closed

sublocale F̃∩(X̃rẼ) is (X̃rẼ)-nowhere dense. By hypothesis, x̃∨0F̃∩(X̃rẼ) =

1OX . But

0F̃∩(X̃rẼ) =
∧(

F̃ ∩ (X̃ r Ẽ)
)

= int(E ∪ (X r F )) = X r F ∩ (X r E)

where the second equality follows from Lemma 4.2. Therefore
(
X r {x}

)
∪(

X r F ∩ (X r E)
)

= X which implies that

∅ = {x} ∩ F ∩ (X r E) = {x} ∩ F ∩ (X r E).

Thus x /∈ F ∩ (X r E) = C, making x E-inaccessible. �
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To transfer almost inaccessibility to locales, we recall that for x ∈ E ⊆ X,

x /∈ intE(N ∩ E) ⇐⇒ x /∈ E ∩
(
X r E ∩ (X rN)

)
⇐⇒ x ∈ E ∩ (X rN).

The above equivalence motivates the following localic definition of an almost
inaccessible point.

Definition 4.4. A point p of a sublocale S of a completely regular locale L
is almost S- inaccessible if for each (LrS)-closed nowhere dense sublocale N ,
p ∈ clS

(
S ∩

(
LrN

))
.

In what follows we prove that a point x of X is almost inaccessible precisely
when x̃ is almost inaccessible.

Proposition 4.5. Let X be a Tychonoff space. A point x of a subset E of X

is almost E-inaccessible iff x̃ is almost Ẽ-inaccessible.

Proof. (=⇒) : It is clear that x̃ is a point belonging to the closed sublocale

Ẽ = Ẽ. Choose an (X̃ r Ẽ)-closed nowhere dense K. Then K = F̃ ∩ (X̃ r Ẽ)

for some closed F ⊆ X. Since X̃rẼ = X̃ r E, K = F̃ ∩X̃ r E. It follows from
Proposition 3.4 that F ∩ (X rE) is (X rE)-closed nowhere dense. Therefore

x /∈ intE(F ∩ (X r E) ∩ E) which means x ∈ E ∩ (X r F ∩ (X r E)). We

show that x̃ ∈ Ẽ ∩ (X̃ rK). Let U ∈ OX be such that Ẽ ∩ (X̃ rK) ⊆ c(U).

Then Ẽ ∩
(
X̃ r F̃ ∩ (X̃ r Ẽ)

)
⊆ c(U), i.e., Ẽ ∩

(
X̃ r F̃ ∩ X̃ r E

)
⊆ c(U).

We get that

Ẽ ⊆ c(U) ∨ F̃ ∩ X̃ r E

= c(U) ∨ c
(∧(

F̃ ∩ (X̃ r E)
))

= c(U) ∨ c(X r F ∩ (X r E)) since
∧(

F̃ ∩ (X̃ r E)
)

= X r F ∩ (X r E)

= c
(
U ∩ (X r F ∩ (X r E))

)
= S((XrU)∪F∩(XrE)) by [8, Lemma 2.10.].

Therefore E ⊆ (XrU)∪F ∩ (X r E) so that E∩(XrF ∩ (X r E)) ⊆ XrU .

Because U is open, X r U is closed, making x ∈ E ∩ (X r F ∩ (X r E)) ⊆
X r U . Therefore x̃ ∈ X̃ r U = c(U) implying that x̃ ∈ Ẽ ∩ (X̃ rK). Thus

x̃ ∈ Ẽ ∩ (X̃ rK) ∩ Ẽ = clẼ

(
Ẽ ∩ (X̃ rK)

)
which means that x̃ is almost Ẽ-inaccessible.

(⇐=) : Let N be an (X r E)-closed nowhere dense subset and set N =
F ∩ (X r E) for some closed F ⊆ X. It follows from Proposition 3.4 that
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F̃ ∩X̃ r E = F̃ ∩(X̃rẼ) is (X̃ r E = X̃rẼ)-closed nowhere dense. Therefore

x̃ ∈ clẼ

(
Ẽ ∩

(
X̃ r F̃ ∩ (X̃ r Ẽ)

))
.

We show that x ∈ E ∩ (X rN). Let K be a closed set such that E∩(XrN) ⊆
K. Then E ⊆ N ∪K so that

Ẽ ⊆ Ñ ∨ K̃ = Ñ ∨ K̃ = S(F∩(XrE)) ∨ K̃ ⊆ F̃ ∩
(
X̃ r Ẽ

)
∨ K̃.

Therefore

Ẽ ∩
(
X̃ r F̃ ∩

(
X̃ r Ẽ

))
⊆ K̃.

Because K̃ is a closed sublocale,

clẼ

(
Ẽ ∩

(
X̃ r F̃ ∩ (X̃ r Ẽ)

))
= Ẽ ∩

(
Ẽ ∩

(
X̃ r F̃ ∩ (X̃ r Ẽ)

))
⊆ K̃

so that x̃ ∈ K̃. Therefore x ∈ K. Thus x ∈ E ∩ (X rN) which implies
x ∈ clE

(
E ∩ (X rN)

)
. As a result, x /∈ intE

(
E ∩N

)
. Hence x is almost

E-inaccessible. �

In terms of sublocales, we define inaccessibility and almost inaccessibility on
arbitrary locales. We give the following definition.

Definition 4.6. Let S be a sublocale of L. A sublocale T ∈ S(S) is S-
inaccessible (resp. almost S-inaccessible) if for all (LrS)-nowhere dense sublo-
cale N , T ∩N = O (resp. T ⊆ clS

[
S ∩

(
LrN

)]
).

We introduce the following notations for any locale L and S ∈ S(L):

SInac(S) = {A ∈ S(L) : A is S-inaccessible},

and

SAinac(S) = {A ∈ S(L) : A is almost S-inaccessible}.
We shall drop prefix S- if the sublocale is clear from the context.

In what follows, we characterize inaccessible sublocales. The proof is similar
to that of [8, Proposition 3.10.] and shall be omitted.

Proposition 4.7. The following are equivalent for a sublocale of S of L.

(1) T ∈ S(S) is S-inaccessible.
(2) T ∩ c(x) = O for each (Lr S)-dense x.
(3) T ⊆ o(x) for every (Lr S)-dense x.
(4) νT (x) = 1 for each (Lr S)-dense x.

For sublocales F and A of a locale L, we have that

F ⊆ clF (F ∩A) ⇐⇒ F = clF (F ∩A) ⇐⇒ F ∩A is F -dense.

As a result of this, we have the following observation regarding almost inacces-
sible sublocales.
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Remark 4.8. Let F be a sublocale of a locale L. The following statements are
equivalent.

(1) F ∈ SAinac(F ).
(2) F = clF (F ∩ (LrN)) for every (Lr F )-nowhere dense N .
(3) F ∩ (LrN) is F -dense for every (Lr F )-nowhere dense N .

We give the following lemma which we shall use below.

Lemma 4.9. Let L be a locale, N ∈ S(L), S a complemented sublocale of L
and T ∈ S(S). Then T ⊆ clS(S ∩

(
LrN

)
) iff T ∩ intS

(
S ∩N

)
= O.

Proof. We have that

T ⊆ clS(S ∩
(
LrN

)
) ⇐⇒ T ⊆ S ∩

(
LrN

)
⇐⇒ T ∩

(
Lr S ∩ (LrN)

)
= O

⇐⇒ T ∩ S ∩
(
Lr S ∩ (LrN)

)
= O

⇐⇒ T ∩ intS
(
S ∩N

)
= O

which proves the result. �

The preceding lemma leads us to the following characterization of almost
inaccessible sublocales of complemented sublocales. We only prove the equiv-
alences (2)⇐⇒ (3).

Proposition 4.10. The following are equivalent for a complemented sublocale
S of a locale L and T ∈ S(S).

(1) T is almost S-inaccessible.
(2) T ∩ intS(S ∩N) = O for each (Lr S)-nowhere dense sublocale N .

In particular, if S is closed, this is further equivalent to:

3. a→ (
∧
S) ≤

∧
T for every (Lr S)-dense a.

Proof. (2)⇐⇒ (3): Let a be (LrS)-dense. Then c(LrS)(a) is (LrS)-nowhere
dense. By (2),

T ∩ intS(S ∩ c(LrS)(a)) = O ⇐⇒ T ⊆ clS

(
S ∩

(
Lr c(LrS)(a)

))
since S is complemented

⇐⇒ T ⊆ S ∩
(
Lr c(LrS)(a)

)
⇐⇒ T ⊆ S ∩ (Lr c(a)) since c(LrS)(a) = c(a)

⇐⇒ T ⊆ c
(∧

(S ∩ o(a))
)

⇐⇒ T ⊆ c
(
a→

(∧
S
))

since S is closed

⇐⇒ T ⊆ c
(
a→

(∧
S
))

⇐⇒ a→
(∧

S
)
≤
∧
T.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 348



On maximal nowhere dense sublocales

Starting the above argument with an (Lr S)-nowhere dense N and using the
fact that N is (LrS)-nowhere dense if and only if

∧
N is (LrS)-dense, gives

the desired equivalence. �

Next, we collect into one proposition some results about inaccessible sublo-
cales and almost inaccessible sublocales.

Proposition 4.11. Let L be a locale and S ∈ S(L).

(1) Every S-inaccessible sublocale is almost S-inaccessible.
(2) If A ∈ S(L) is S-inaccessible (resp. almost S-inaccessible) and S(L) 3

B ⊆ A, then B is S-inaccessible (resp. almost S-inaccessible).
(3) If S is open in L, then S is S-inaccessible.
(4) L is L-inaccessible and hence by (2) every sublocale of L is L-inaccessible.
(5) If S is complemented, then every sublocale T of LrS which is open in

L is (Lr S)-inaccessible.
(6) A join of S-inaccessible (resp. almost S-inaccessible) sublocales is S-

inaccessible (resp. almost S-inaccessible).

Proof. (1) Let T ∈ S(S) be such that T is S-inaccessible. Then T ∩N = O for
all N ∈ ND(LrS), which implies that T ⊆ LrN . Therefore T ⊆ S∩(LrN) ⊆
clS(S ∩ (LrN)) which proves the result.

(2) Straightforward.
(3) Assume that S is open in L and choose N ∈ ND(LrS). It is clear that

N ⊆ L r S since L r S is closed. Because S is complemented, we have that
S ∩ (Lr S) = O so that S ∩N = O. Thus S ∈ SInac(S).

(4) Because L is open as a sublocale of itself, it follows from (3) that L is
L-inaccessible. Therefore, by (2), every sublocale of L is L-inaccessible.

(5) Let T be a sublocale of L r S which is open in L. We must show that
T ∩N = O for every (Lr (Lr S))-nowhere dense N , i.e., for every S-nowhere
dense N . Since T ⊆ LrS, T ∩S = O because S is complemented. So, for any
S-nowhere dense N , T ∩N = O. But T is open in L so T ∩N = O.

(6) We only verify the case of S-inaccessible. Let Ui ∈ SInac(S) (for i ∈
I) and choose N ∈ ND(L r S). Since N is complemented, N ∩

∨
Ui =∨(

N ∩ Ui

)
=
∨
{O} = O. Thus

∨
Ui ∈ SInac(S). �

Remark 4.12. We note from Proposition 4.11(4) that since every sublocale S of
a locale L is a locale in its own right, it is therefore S-inaccessible as a sublocale
of itself. However, in this paper, the notion S ∈ SInac(S) for S ∈ S(L), read as
S is inaccessible as a sublocale of L with respect to itself, shall mean S∩N = O
for every (LrS)-nowhere dense sublocaleN . This also applies to S ∈ SAinac(S).

We note the following example.

Example 4.13. In a completely regular locale L, a point p of L is c(p)-
inaccessible (resp. almost c(p)-inaccessible) if and only if c(p) is c(p)-inaccessible
(resp. almost c(p)-inaccessible).

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 349



M. Nxumalo

We give the following theorem in which some of its statements prepare us for
a relationship between maximal nowhere density and remoteness in Proposition
5.6.

Theorem 4.14. Let L be a locale and F be a non-void and closed nowhere
dense sublocale of L. Then each of the following statements holds.

(1) If F ∈ SAinac(F ), then F is maximal nowhere dense in L.
(2) If L is compact, then F is maximal nowhere dense in L implies that

there is x ∈ F such that x /∈ intF (N ∩ F ) for every (L r F )-nowhere
dense N .

(3) F is homogeneous maximal nowhere dense implies that every sublocale
of F is almost F -inaccessible.

Proof. (1) Let F = c(b) for some b ∈ L and choose c(c) ∈ ND(L) such that
F ⊆ c(c). We show that F is not nowhere dense in c(c). Observe that c(c) r
c(b) ∈ ND(o(b)). Indeed, if

o(x) ∩ o(b) ⊆ c(c)r c(b)
o(b)

= c(c) ∩ o(b) ∩ o(b) = c(c) ∩ o(b),

then o(x) ∩ o(b) = o(x ∧ b) ⊆ c(c). But c(c) ∈ ND(L), so o(x ∧ b) = O. Thus
c(c)r c(b) ∈ ND(o(b)).

Since c(b) ∈ SAinac(c(b)), we have that

c(b) = clc(b)

(
c(b) ∩

(
Lr (c(c)r c(b))

))
= clc(b)

(
c(b)r (c(c)r c(b))

)
.

Because c(b) is non-void, c(b) r (c(c)r c(b)) 6= O. Since c(b) ⊆ c(c), c(c) r
(c(c)r c(b)) 6= O.

We must have that c(b) /∈ ND(c(c)), otherwise

O = intc(c)

(
c(b)

c(c)
)

= c(c) ∩
(
Lr (c(c) ∩ Lr c(b))

)
= c(c) ∩

(
Lr (c(c)r c(b))

)
= c(c)r (c(c)r c(b))

which is not possible. So there is no closed K ∈ ND(L) such that F ∈ ND(K).
Thus F is maximal nowhere dense in L.

(2) Assume that L is compact, F = c(b) is maximal nowhere dense in L
and suppose that for each x ∈ F , there is an o(b)-nowhere dense Nx such that
x ∈ intc(b)(c(b) ∩Nx). Set intc(b)(c(b) ∩Nx) = o(ax) ∩ c(b). Then

c(b) ⊆
∨

x∈c(b)

(o(ax) ∩ c(b)) ⊆ o

 ∨
x∈c(b)

ax

 .
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Therefore b ∨
(∨

x∈c(b) ax

)
= 1. By compactness of L, there is a finite set

B ⊆ c(b) such that b ∨
(∨

x∈B ax
)

= 1. We get that

c(b) ⊆ c(b) ∩ o

(∨
x∈B

ax

)
= c(b) ∩

∨
x∈B

o(ax)

=
∨
x∈B

(c(b) ∩ o(ax))

=
∨
x∈B

(
intc(b)(c(b) ∩Nx)

)
⊆

∨
x∈B

(
c(b) ∩Nx

)
= c(b) ∩

∨
x∈B

Nx

⊆
∨
x∈B

Nx =
∨
x∈B

Nx.

Observe that Nx ∈ ND(L). This is so because Nx is nowhere dense in
a dense sublocale o(b) of L making it nowhere dense in L. Therefore Nx ∈
ND(L). Since finite joins of closed nowhere dense sublocales are nowhere dense,∨

x∈B Nx =
∨

x∈B Nx is nowhere dense in L. We show that c(b) is nowhere

dense in
∨

x∈B Nx which will contradict that c(b) is maximal nowhere dense in
L.

Set A =
∨

x∈B Nx. Observe that

intA

(
c(b)

A
)

= A ∩
(
Lr (A ∩ Lr c(b))

)
= A ∩

(
Lr (A ∩ o(b)

)
= A ∩

Lr(∨
x∈B

Nx ∩ o(b)

)
⊆ A ∩

Lr((∨
x∈B

Nx

)
∩ o(b)

)
= A ∩

(
Lr

∨
x∈B

Nx

)
since

∨
x∈B

Nx ⊆ o(b)

= O.

Thus c(b) is nowhere dense in A which is a contradiction.
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(3) Suppose that there is B ∈ S(F ) such that B /∈ SAinac(F ). Then, by
Proposition 4.10, B ∩ intF (N ∩ F ) 6= O for some N ∈ ND(L r F ). We get

that intF (N ∩ F ) 6= O. Set A = intF (N ∩ F ). Then A
F

= A is a non-void
F -regular-closed sublocale. Since F is homogeneous maximal nowhere dense,
A is maximal nowhere dense in L. We show that A is nowhere dense in N
which will contradict that it is a maximal nowhere dense sublocale. It is clear
that A ⊆ N . Furthermore, observe that

intN

(
A

N
)

= intN (A)

= N ∩
(
LrN ∩ LrA

)
⊆ N ∩

(
LrN ∩ Lr F

)
since A ⊆ F

⊆ N ∩
(
LrN ∩ Lr F

)
= N ∩

(
LrN

)
since N ⊆ Lr F

= O.

Thus A is nowhere dense in N which is not possible. Hence every sublocale of
F belongs to SInac(F ). �

If we consider F -clopen sublocales, we get the following result.

Proposition 4.15. Let F be a non-void nowhere dense sublocale of L. If F is
homogeneous maximal nowhere dense, then each F -clopen sublocale is almost
inaccessible as a sublocale of L with respect to itself.

Proof. Let A be an F -clopen sublocale and assume that A ∩ intA(N ∩A) 6= O

for some N ∈ ND(LrA). Then intA(N ∩A) is F -open so that intA(N ∩A)∩
F = intA(N) is a non-void regular-closed sublocale of F . By hypothesis,

intA(N ∩A) is maximal nowhere dense. Following the argument used in last
part of the proof of Theorem 4.14(3) and using the fact that A is F -closed, we

get that intA(N ∩A) is nowhere dense in N which is not possible. �

We note the following example.

Example 4.16. (1) If X is a Hausdorff space with no isolated point, then
every one-point sublocale of OX which is almost inaccessible as a sublocale of
OX with respect to itself is maximal nowhere dense. To see this, it suffices
to show that such sublocales are non-void closed nowhere dense in OX. Since
every Hausdorff space is sober, each point p of OX is of the form p = X r {x}
for some x ∈ X. Applying Hausdorffness again gives p = X r {x} which
is open and dense in X, making {x} closed nowhere dense in X. It follows

from [8, Lemma 2.11.] that {̃x} is closed and nowhere dense in OX. But

{̃x} = {X r {x}, 1OX} = {p, 1OX}, so the one-point sublocale {p, 1OX} is
non-void closed nowhere dense. Now, if such a one-point sublocale {p, 1OX}
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is an almost inaccessible sublocale of L with respect to itself, it follows from
Proposition 4.14(1) that {p, 1OX} is maximal nowhere dense.

(2) The sublocales described in (1) are homogeneous maximal nowhere dense.
This is so because for any point p ∈ OX, {p, 1OX} is the only non-void sublocale
contained in {p, 1OX}. Therefore all non-void {p, 1OX}-regular-closed sublo-
cales are maximal nowhere dense in OX.

We include the following result where we make use of Theorem 4.14(3) to
show that a homogeneous maximal nowhere dense sublocale is regular-closed
in every complemented nowhere dense sublocale containing it.

Proposition 4.17. Let L be a locale and F a non-void closed nowhere dense
sublocale of L. If F is homogeneous maximal nowhere dense and F ⊆ A, where
A is a complemented nowhere dense sublocale of L, then F is an A-regular-
closed sublocale.

Proof. Assume that F 6= intA(F ). Because it is always true that intA(F ) ⊆
F , this assumption says that F * intA(F ). Therefore the F -open sublocale

F r intA(F ) = F ∩
(
Lr intA(F )

)
is non-void. Also, F r intA(F ) ⊆ Ar F .

Indeed,

F r intA(F ) ⊆ F ∩ (Lr intA(F ))

= F ∩
(
Lr

(
A ∩ (LrA ∩ (Lr F ))

))
= F ∩

(
(LrA) ∨ (Lr (LrA ∩ (Lr F )))

)
= F ∩

(
(LrA) ∨A ∩ (Lr F )

)
= (F ∩ (LrA)) ∨ (F ∩A ∩ (Lr F ))

= O ∨ (F ∩A ∩ (Lr F )) since A is complemented and F ⊆ A

= F ∩A ∩ (Lr F )

⊆ A ∩ (Lr F ) = Ar F .

This makes
(
F r intA(F )

)
∩ intF (F ∩ Ar F ) 6= O. Observe that A r F ∈

ND(L r F ). To see this, let U be an open sublocale of L r F contained

in Ar F (LrF )
= Ar F ∩ (L r F ). Then U ⊆ A. But A ∈ ND(L) and

an open sublocale of L r F is open in L, so we have that U = O. Thus
A r F ∈ ND(L r F ). We have found a sublocale F r intA(F ) of F and

Ar F ∈ ND(Lr F ) such that
(
F r intA(F )

)
∩ intF

(
F ∩Ar F

)
6= O, i.e, a

sublocale of F which is not almost F -inaccessible. By Theorem 4.14(3), F is
not homogeneous maximal nowhere dense, which is a contradiction. �

In what follows, we characterize locales in which every non-void nowhere
dense sublocale is maximal nowhere dense. Recall from [4] that the boundary
of a sublocale S of a locale L is given by bd(S) = S r int(S).
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Theorem 4.18. Let L be a locale. The following statements are equivalent.

(1) Every non-void nowhere dense sublocale of L is maximal nowhere dense.
(2) Every non-void closed nowhere dense sublocale is maximal nowhere

dense.
(3) Every non-void open sublocale induced by a non-complemented element

of L has a maximal nowhere dense boundary.
(4) Every non-void closed nowhere dense sublocale of L is homogeneous

maximal nowhere dense.
(5) Every non-void closed nowhere dense sublocale is almost inaccessible as

a sublocale of L with respect to itself.
(6) Every non-void closed nowhere dense sublocale is inaccessible as a sublo-

cale of L with respect to itself.

Proof. (1)⇐⇒ (2): Follows from Proposition 2.5.
(2) =⇒ (3): Let o(x) ∈ S(L) be non-void with x non-complemented. Then

x ∨ x∗ 6= 1 making bd(o(x)) = c(x ∨ x∗) a non-void closed nowhere dense
sublocale. It follows from (2) that bd(o(x)) is maximal nowhere dense.

(3) =⇒ (4): Let c(x) be a non-void nowhere dense sublocale of L and choose

y ∈ L such that o(y) ∩ c(x) ∩ c(x) 6= O. Then

o(y) ∩ c(x) ∩ c(x) = o(y) ∩ c(x) = c(y → x) 6= O

implying that y → x 6= 1. But c(y → x) ⊆ c(x) ∈ ND(L), so c(y → x) ∈
ND(L) making o(y → x) non-void, open and

(y → x) ∨ (y → x)∗ = (y → x) ∨ 0 = y → x 6= 1.

It follows from (3) that

bd(o(y → x)) = c((y → x) ∨ (y → x)∗) = c(y → x) = o(y) ∩ c(x)

is maximal nowhere dense. Thus c(x) is homogeneous maximal nowhere dense.
(4) =⇒ (5): Follows from Theorem 4.14(3).
(5) =⇒ (6): Let c(x) be a non-void nowhere dense sublocale and assume

that N ∩ c(x) 6= O for some N ∈ ND((Lr c(x)) = o(x)). Since o(x) is dense in
L, N is nowhere dense in L so that the non-void sublocale N ∩ c(x) is closed
nowhere dense in L. It follows from (5) that N ∩ c(x) is almost

(
N ∩ c(x)

)
-

inaccessible. Observe that N ∈ ND(L r (N ∩ c(x))). To see this, let a ∈ L
be such that o(a) ∩

(
Lr (N ∩ c(x))

)
⊆ N ∩

(
Lr (N ∩ c(x))

)
. Then o(a) ∩(

Lr (N ∩ c(x))
)
⊆ N . Because N ∈ ND(L) and o(a) ∩

(
Lr (N ∩ c(x))

)
is

open, o(a)∩
(
Lr (N ∩ c(x))

)
= O. Therefore o(a) ⊆ N ∩c(x) making o(a) = O

since N∩c(x) = N ∩ c(x) is nowhere dense in L. Thus N ∈ ND(Lr(N∩c(x))).

Therefore N ∩ c(x) ⊆
(
N ∩ c(x)

)
∩
(
LrN

)
= O = O which is not possible.

Thus c(x) ∩N = O making c(x) ∈ SInac(c(x)).
(6) =⇒ (2): Let F be a non-void closed nowhere dense sublocale of L.

It follows from (6) that F ∈ SInac(F ). Because SInac(F ) ⊆ SAinac(F ) by
Proposition 4.11(1), it follows from Theorem 4.14(1) that F is maximal nowhere
dense. �
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In the following example we show that there is a locale having the properties
described in Theorem 4.18.

Example 4.19. Consider the three-element chain 3 = {1, 0, a}. Clearly, 3 is
non-Boolean and the only non-void closed nowhere dense sublocale of 3 is c(a)
which is maximal nowhere dense because it is not nowhere dense as a sublocale
of itself.

5. Maximal nowhere density and Remoteness

In this section, we consider a connection between remoteness and maximal
nowhere density. Inaccessibility will be useful here.

We recall the following notations from [8, 9]. Let L be a locale, S a dense
sublocale of L and T ∈ S(L). Then

(1) T is a remote sublocale of L in case T ∩N = O for every nowhere dense
N ∈ S(L).

(2) Srem(L) denotes the collection of all remote sublocales of L.
(3) T is remote from S, denoted T ∈ Srem(L n S), if T ∩N = O for each

S-nowhere dense N .
(4) T is ∗remote from S, denoted T ∈∗ Srem(L n S), provided that T ∈
Srem(Ln S) and T ⊆ Lr S.

Remark 5.1. A simple case where inaccessibility differs from remoteness is
that of Proposition 4.11(4). Recall from [8] that a necessary and sufficient
condition for a locale L to be remote as a sublocale of itself is that it must be
Boolean. Yet, by Proposition 4.11(4), every locale L (not necessarily Boolean)
is L-inaccessible as a sublocale of itself.

Observe that for each dense and complemented S ∈ S(L), T ∈ S(L r S) is
(L r S)-inaccessible if and only if T ∩ N = O for all (L r (L r S))-nowhere
dense sublocale N , i.e., for all S-nowhere dense sublocale N . This shows that
sublocales of LrS which are ∗remote from a dense and complemented sublocale
S of L are precisely the (L r S)-inaccessible sublocales. We formalise this in
the following proposition.

Proposition 5.2. A sublocale T ∈ S(L r S) where S is dense and comple-
mented in a locale L, is (Lr S)-inaccessible iff it is ∗remote from S.

In the following result, we codify the variants of remoteness and inaccessi-
bility for dense and complemented sublocales.

Proposition 5.3. Let L be a locale, S a dense and complemented sublocale of
L and T ∈ S(Lr S). Consider the following statements:

(1) T ∈ Srem(L).
(2) T ∈ Srem(Ln S).
(3) T ∈ ∗Srem(Ln S).
(4) T ∈ SInac(Lr S).
(5) T ∈ SAinac(Lr S).
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Then (1) =⇒ (2)⇐⇒ (3)⇐⇒ (4) =⇒ (5).

Proof. (1) =⇒ (2): Follows from [8, Proposition 3.5.(4).]
(2)⇐⇒ (3): This is a combination of [8, Proposition 3.2.] and the fact that

T ⊆ Lr S.
(3)⇐⇒ (4): Follows from Proposition 5.2.
(4) =⇒ (5): Follows from Proposition 4.11(1). �

Example 5.4 ([13]). In Top, we have that a point p ∈ βX rX is remote if
and only if p is (βX rX)-inaccessible.

We also include the following result which shows inaccessibility of the least
dense sublocale.

Proposition 5.5. Let L be a locale and S ∈ S(L). If S is open, then S∩Rs(Ln
S) is S-inaccessible, where Rs(L n S) =

∨
{A ∈ S(L) : A is remote from S}.

Moreover, if S is dense and open, then BL is S-inaccessible.

Proof. The first part follows from Proposition 4.11(3) and (2).
Since, according to Observation [8, Observation 3.1.], BL = T ∩ Rs(Ln T )

for any dense T ∈ S(L), we have that BL = S ∩ Rs(L n S) is S-inaccessible
for dense and open S. �

Using Proposition 5.3 and the fact if S ∈ S(L) is open and dense, then
S# = L r S is nowhere dense, we get the following result about remoteness
and maximal nowhere density.

Proposition 5.6. Let S 6= L be an open dense sublocale of L.

(1) If S# ∈ ∗Srem(Ln S), then S# is maximal nowhere dense in L.
(2) If S# is homogeneous maximal nowhere dense, then every S#-remote

sublocale is ∗remote from S.

Proof. (1) If S# ∈ ∗Srem(Ln S), then, by Proposition 5.3, S# ∈ SAinac(S
#).

It follows from Theorem 4.14(1) that S# is maximal nowhere dense in L.
(2) Let A ∈ Srem(S#) and choose an S-nowhere dense N . Since, by Theo-

rem 4.14(3), sublocales of homogeneous maximal nowhere dense sublocales are
almost inaccessible as sublocales of L with respect to themselves, S# is almost

S#-inaccessible, i.e., intS#(S# ∩N) = O. Since S# ∩N = S# ∩N
S#

, we get
that S# ∩N is S#-nowhere dense. Because A ∈ Srem(S#),

O = A ∩ S# ∩N = A ∩N.

Thus A ∈ Srem(Ln S) making A ∈ ∗Srem(Ln S) since A ⊆ S#. �

6. Preservation of maximal nowhere density

We end this paper with a discussion of localic maps that send maximal
nowhere density back and forth. We shall also include results about inaccessi-
bility.
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Proposition 6.1. Let f : L → M be a localic map such that both f and f∗

send dense elements to dense elements. Then f−1 preserves maximal nowhere
dense sublocales.

Proof. Let N ∈ S(M) be maximal nowhere dense in M . Then N is maximal
nowhere dense in L. Since f∗ is weakly open, it follows from [8, theorem 2.29]
that f−1 preserves closed nowhere dense sublocales so that f−1[N ] (which is
equal to c(f∗(

∧
N))) is nowhere dense in L. It is left to show that it is maximal

nowhere dense. Suppose not, that is, there exists a nowhere dense sublocale c(b)
of L such that f−1[N ] is nowhere dense in c(b). Since f sends dense elements
to dense elements, f(b) is dense in M making c(f(b)) nowhere dense in M . The
sublocale N is nowhere dense in the nowhere dense sublocale c(f(b)). Indeed, if

o(x)∩c(f(b)) ⊆ N c(f(b))
= N∩c(f(b)) for some x ∈M , then o(x)∩c(f(b)) ⊆ N

so that

o(f∗(x)) ∩ c(b) ⊆ o(f∗(x)) ∩ c(f∗(f(b))) = f−1[o(x) ∩ c(f(b))] ⊆ f−1[N ].

Therefore o(f∗(x)) ∩ c(b) ⊆ f−1[N ] ∩ c(b). Since f−1[N ] ∈ ND(c(b)) and
o(f∗(x)) ∩ c(b) is open in c(b), o(f∗(x)) ∩ c(b) = O which implies that c(b) ⊆
c(f∗(x)) = f−1[c(x)]. Therefore f [c(b)] ⊆ f [f−1[c(x)]] ⊆ c(x) implying that

c(f(b)) = f [c(b)] ⊆ c(x) = c(x). This makes c(f(b))∩ o(x) = O. Therefore N is
nowhere dense in c(f(b)) which contradicts that N is maximal nowhere dense
in M . Therefore f−1[N ] is maximal nowhere dense in L. �

In the next result, we discuss localic maps that preserve maximal nowhere
dense sublocales.

Recall that a frame homomorphism h : M → L is open if it has a left adjoint
h! satisfying the Frobenius identity:

h!(h(a) ∧ b) = h!(a) ∧ b

for every a ∈ M and b ∈ L. This is equivalent to saying that h∗ is an open
localic map. Because, by [3], every open frame homomorphism is weakly open,
it follows that for each open localic map f , f∗ is weakly open.

Remark 6.2. Not every open localic map sends dense elements to dense ele-
ments. Consider the localic map f : L → 2 where L is non-Boolean and 2 is
the two-element locale. Since 2 is Boolean, every sublocale of 2 is open making
the localic image of each open sublocale of L to be open in 2. Hence f is open.
However, f does not send all dense elements to dense elements since the only
(dense) element of L that is mapped to 12 (the only dense element of 2) is 1.
But 1 is not the only dense element of L otherwise L is Boolean.

We recall from [11] that if a localic map f : L→M is open, then f−1[A] =

f−1[A] for each A ∈ S(M).

Proposition 6.3. Let f : L→M be an open localic map that sends dense ele-
ments to dense elements. Then f preserves maximal nowhere dense sublocales.
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Proof. Let N be a maximal nowhere dense sublocale of L. We show that
f [N ] is maximal nowhere dense in M . By [8, Lemma 2.33], f [N ] is nowhere

dense in M so that f [N ] = c (f(
∧
N)) is nowhere dense in M . Suppose that

c (f(
∧
N)) ∈ ND(c(y)) for some c(y) ∈ ND(M). By Observation 2.11, c(y) ⊆

c(y) ∩ o (f(
∧
N)). Therefore f−1[c(y)] = c(f∗(y)) ⊆ f−1

[
c(y) ∩ o (f(

∧
N))

]
.

Openness of f gives f−1

[
c(y) ∩ o (f(

∧
N))

]
= f−1[c(y) ∩ o (f(

∧
N))], so that

c(f∗(y)) ⊆ f−1

[
c(y) ∩ o

(
f(
∧
N)
)]

= c(f∗(y)) ∩ o
(
f∗
(
f
(∧

N
)))

⊆ c(f∗(y)) ∩ o
(∧

N
)

= c(f∗(y)) ∩
(
LrN

)
.

Therefore c(f∗(y))∩
(
Lr c(f∗(y)) ∩

(
LrN

))
= O. This makesN ∈ ND(c(f∗(y))),

where c(f∗(y)) ∈ ND(L), contradicting that N is maximal nowhere dense in

L. Therefore f [N ] is maximal nowhere dense so that by Proposition 2.5, f [N ]
is maximal nowhere dense sublocales. �

Since in Proposition 6.1 we only needed a condition that both f and f∗ send
dense elements to dense elements and because the left adjoint of an open localic
map is weakly open, we have the following result.

Corollary 6.4. Every open localic map that sends dense elements to dense
elements preserves and reflects maximal nowhere dense sublocales.

In the next result, we discuss preservation and reflection of strongly homo-
geneous maximal nowhere dense sublocales by localic maps.

Proposition 6.5. Let f : L → M be an open localic map that sends dense
elements to dense elements.

(1) Then f preserves weakly homogeneous maximal nowhere dense sublo-
cales.

(2) If f is injective, then it reflects (strongly) homogeneous maximal nowhere
dense sublocales.

Proof. (1) Let F be a weakly homogeneous maximal nowhere dense sublocale

of L and choose a non-void sublocale o(y) ∩ f [F ] ∩ f [F ] where y ∈M . Such a

sublocale is f [F ]-regular-closed. The F -regular-closed sublocale o(f∗(y)) ∩ F ∩
F is non-void otherwise, o(f∗(y)) ∩ F = O so that f [F ] ⊆ f [c(f∗(y))] =
f [f−1[c(y)]] ⊆ c(y). Therefore f [F ] ∩ o(y) = O which is not possible. Since

F is strongly h.m.n.d, o(f∗(y)) ∩ F ∩ F is m.n.d. Because open localic maps
that send dense elements to dense elements preserve maximal nowhere dense
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sublocales (by Proposition 6.3), f
[
o(f∗(y)) ∩ F ∩ F

]
is m.n.d in M . Since

f
[
o(f∗(y)) ∩ F ∩ F

]
⊆ f

[
o(f∗(y)) ∩ F

]
∩ f [F ]

⊆ f [o(f∗(y)) ∩ F ] ∩ f [F ]

⊆ f [o(f∗(y))] ∩ f [F ] ∩ f [F ]

⊆ o(y) ∩ f [F ] ∩ f [F ]

and because o(y) ∩ f [F ]∩ f [F ] is nowhere dense in M , it follows from Proposi-

tion 2.12(2) that o(y) ∩ f [F ]∩f [F ] is m.n.d. Thus f [F ] is weakly homogeneous
maximal nowhere dense in M .

(2) We only prove reflection of weakly homogeneous maximal nowhere dense
sublocales. That of homogeneous maximal nowhere dense sublocales follows
the same sketch. Let K be a weakly homogeneous maximal nowhere dense
sublocale of M and consider a non-void sublocale o(x) ∩ f−1[K]∩f−1[K] where
x ∈ L. We must show that this f−1[K]-regular-closed sublocale is m.n.d. We

have that o(f(x)) ∩K ∩ K is a non-void K-regular-closed sublocale. To see

that is it non-void, observe that having o(f(x)) ∩K ∩ K = O implies that
o(f(x)) ∩K = O so that

O = f−1[o(f(x))] ∩ f−1[K] = o(f∗(f(x))) ∩ f−1[K] = o(x) ∩ f−1[K]

where the latter equality follows from injectivity of f . This cannot be true, so
o(f(x)) ∩K∩K is non-void. Since K is weakly homogeneous maximal nowhere

dense, o(f(x)) ∩K ∩K is m.n.d in M . Because open localic maps are weakly
open and f sends dense elements to dense elements, it follows from Proposition
6.1 that f−1[o(f(x)) ∩K ∩K] is m.n.d. Observe that

f−1[o(f(x)) ∩K∩K] = f−1[o(f(x)) ∩K]∩f−1[K] = f−1[o(f(x))] ∩ f−1[K]∩f−1[K]

where the latter equality follows from openness of f . By injectivity of f ,

f−1[o(f(x)) ∩K ∩K] = o(x) ∩ f−1[K] ∩ f−1[K]

making o(x) ∩ f−1[K] ∩ f−1[K] m.n.d. in L. Thus f−1[K] is weakly homoge-
neous maximal nowhere dense in L. �

Remark 6.6. For the preservation of homogeneous maximal nowhere dense
sublocales, the localic map f in Proposition 6.5 must also preserve closed sublo-
cales. That is, it must also be closed which is a rather too stringent condition.

Open localic maps also allow us to study, under certain conditions, preser-
vation and reflection of inaccessible and almost inaccessible sublocales as pre-
sented below.

Proposition 6.7. Let f : L→M be an open and injective localic map. Then
for all open S ∈ S(L),

(1) f [SInac(S)] ⊆ SInac(f [S]), and
(2) f [SAinac(S)] ⊆ SAinac(f [S]).
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Proof. Follows from Proposition 4.11(3), (2) and (1). �

Proposition 6.8. Let f : L→M be localic map such that both f and f∗ send
dense elements to dense elements and let T ∈ S(M) be closed nowhere dense.
Then

(1) f−1[SInac(T )] ⊆ SInac(f−1[T ]), and
(2) If f is open, then f−1[SAinac(T )] ⊆ SInac(f−1[T ]).

Proof. (1) Let T ∈ S(M) be closed and nowhere dense and choose A ∈
SInac(T ). Then f−1[A] ⊆ f−1[T ]. Let N ∈ ND(Lrf−1[T ]). Since, by [6, (5.1)],
Prg−1[C] ⊆ g−1[RrC] for every localic map g : P → R with C ∈ S(R), we get
that N ⊆ Lrf−1[T ] ⊆ f−1[MrT ]. Therefore f [N ] ⊆ f [f−1[MrT ]] ⊆MrT .
We show that f [N ] ∈ ND(M r T ). Because f∗ is weakly open, it follows from
[8, Theorem 2.29.] that f−1[−] : S(M)→ S(L) preserves closed nowhere dense
sublocales so that f−1[T ] is closed nowhere dense in L. Therefore L r f−1[T ]
is open and dense. Now, N being nowhere dense in L r f−1[T ] implies N is
nowhere dense in L. Since f sends dense elements to dense elements, it follows
from [8, Lemma 2.33.] that f [−] preserves nowhere dense sublocales so that
f [N ] is nowhere dense in M . Observe that f [N ] is nowhere dense in M r T .

To see this, let y ∈ M be such that o(y) ∩ (M r T ) ⊆ f [N ] ∩ (M r T ). Then

o(y)∩ (M r T ) ⊆ f [N ]. Because M r T is open in M and f [N ] ∈ ND(M), we
have that o(y) ∩ (M r T ) = O making o(y) ⊆ T . But T is nowhere dense in
M , so o(y) = O implying that

f [N ] ∈ ND(M r T ). (6.1)

S-inaccessibility of A implies A ∩ f [N ] = O. Therefore

O = f−1

[
A ∩ f [N ]

]
= f−1[A]∩f−1

[
f [N ]

]
= f−1[A]∩c

(
h
(
f
(∧

N
)))

⊇ f−1[A]∩N.

Thus f−1[A] ∈ SInac(f−1[T ]).
(2) Assume that f is open. Set T = c(b) for some b ∈ M and choose

A ∈ SAinac(T ). (6.1) still holds, so

A ⊆ c(b) ∩ c(b) ∩
(
M r f [N ]

)
= c(b) ∩ c(b) ∩ o

(∧
f [N ]

)
.

Therefore

f−1[A] ⊆ c(f∗(b)) ∩ f−1
[
c(b) ∩ o

(∧
f [N ]

)]
= c(f∗(b)) ∩ f−1

[
c(b) ∩ o

(∧
f [N ]

)]
since f is open

= c(f∗(b)) ∩ c(f∗(b)) ∩ o
(
h
(
f
(∧

N
)))

⊆ c(f∗(b)) ∩ c(f∗(b)) ∩ o
(∧

N
)

= f−1[T ] ∩ f−1[T ] ∩
(
LrN

)
= clf−1[T ]

(
f−1[T ] ∩

(
LrN

))
.
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Thus f−1[A] ∈ SAinac(f−1[T ]). �
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