

Some results on weaker forms of $star^{n}$ -CCC, weakly Lindelöf and $star^{n}$ -DCCC spaces

Ricardo Cruz-Castillo a ©, Alejandro Ramírez-Páramo b © and Jesús F. Tenorio c ©¹

^a Área Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, C.P. 42184, México (rcruzc@uaeh.edu.mx)

^b Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Ave. San Claudio y Río Verde, Ciudad Universitaria, San Manuel, Puebla, Pue., C.P. 72570, México (alejandro.ramirez@correo.buap.mx)

^c Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Av. Dr. Modesto Seara Vázquez No. 1, Heroica Ciudad de Huajuapan de León, Oaxaca, C.P. 69004, México (jtenorio@mixteco.utm.mx)

Communicated by A. Tamariz-Mascarúa

Abstract

In this paper we provide some general results about topological spaces X satisfying any of the following properties: star^{n} - \mathcal{P} , weakly star^{n} - \mathcal{P} or almost star^{n} - \mathcal{P} , for $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$, where κ is an infinite cardinal number. The particular cases when $\kappa = \omega$, $\mathcal{P} \in \{CCC, \operatorname{weakly Lindelöf, DCCC}\}$ are obtained. Furthermore, for the same classes of spaces defined by such \mathcal{P} , by applying Erdős-Radó's theorem and using the rank *l*-diagonal notion, we establish some cardinal inequalities.

2020 MSC: 54D20, 54A25, 03E75.

KEYWORDS: Cardinality; covering; rank l-diagonal; star- \mathcal{P} spaces; weakly (almost) star-CCC spaces; weakly (almost) star-DCCC spaces; weakly (almost) star-weakly Lindelöf spaces.

¹Supported by the project Estancia Sabática Nacional 2022-1: "Apoyos complementarios para estancias sabáticas vinculadas a la consolidación de grupos de investigación", CONA-CYT. This author thanks Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla for the support given during the research stay October 1, 2022 to September 30, 2023.

1. INTRODUCTION

Let $A \subseteq X$ and \mathcal{U} be a family of subsets of X, the *star of* A with respect to the family \mathcal{U} , is defined by $\operatorname{St}(A,\mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap A \neq \emptyset \}$. Recursively, $\operatorname{St}^{0}(A,\mathcal{U}) = A$ and for each $n \in \omega$, with 0 < n, $\operatorname{St}^{n+1}(A,\mathcal{U}) = \operatorname{St}(\operatorname{St}^{n}(A,\mathcal{U}),\mathcal{U})$. As usual, we write $\operatorname{St}(x,\mathcal{U})$ instead of $\operatorname{St}(\{x\},\mathcal{U})$.

Given a topological space X and a topological property \mathcal{P} , the generic notion of star- \mathcal{P} property was introduced in [15] by van Mill, Tkachuk and Wilson. A space X is called star- \mathcal{P} , if for every open cover \mathcal{U} of X, there exists a subspace Y of X such that Y satisfies the property \mathcal{P} and $St(Y,\mathcal{U}) = X$. Furthermore, some star-type properties have been studied during the last decades (see [7, 13]) and more recently in [2, 24, 26]. Establishing these types of properties generically allows a better understanding of the subject and opens the possibility to consider variants of these notions. For instance, if \mathcal{P} is a topological property, we say that X is weakly star- \mathcal{P} (respectively, almost star- \mathcal{P}) if for every open cover \mathcal{U} of X, there exist a subspace Y of X such that $cl(St(Y,\mathcal{U})) = X$ (respectively, \bigcup { $cl(St(y,\mathcal{U}) : y \in Y$)) = X) (see [17, 18]).

In this paper, following some ideas from [25], in Section 2, we provide some general results about star- \mathcal{P} , weakly star- \mathcal{P} and almost star- \mathcal{P} spaces, for $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$. Furthermore, in Section 3 we obtain some cardinal inequalities, using Erdős-Radó's theorem and the rank *l*-diagonal notion.

2. Some general results

In this section, we obtain some general results about topological spaces X which satisfy any of the properties: $\operatorname{star}^n \mathcal{P}$, weakly $\operatorname{star}^n \mathcal{P}$ or almost $\operatorname{star}^n \mathcal{P}$. Before introducing these notions, we present some basic facts. In what follows, unless otherwise stated, we consider a Hausdorff topological space X and an infinite cardinal number κ . All notations and terminology not explained in this paper can be found in [8, 12]. The next propositions follow immediately from definitions.

Proposition 2.1. Let X be a topological space X and $A \subseteq X$. For every open cover \mathcal{U} of X and $n \in \omega$, we have that $cl(\operatorname{St}^n(A, \mathcal{U})) \subseteq \operatorname{St}^{n+1}(A, \mathcal{U})$.

Proposition 2.2. Let X be a topological space and U an open cover of X. For every $x, y \in X$, with $x \neq y$, and $n \in \omega$, the next conditions are equivalent:

- (1) $y \notin \operatorname{St}^n(x, \mathcal{U});$
- (2) $x \notin \operatorname{St}^n(y, \mathcal{U}),$
- (3) $\operatorname{St}^{i}(x, \mathcal{U}) \cap \operatorname{St}^{j}(y, \mathcal{U}) = \emptyset$, for i + j = n.

Let X be a topological space and $l \in \omega$. A diagonal sequence of rank lon X (see [3]), is a countable family $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X such that $\{x\} = \bigcap \{\operatorname{St}^l(x, \mathcal{U}_n) : n \in \omega\}$, for every $x \in X$. A space X has a rank *l*-diagonal, where $l \in \omega$, if there is a diagonal sequence $\{\mathcal{U}_n : n \in \omega\}$ on X of rank l.

The proof of the next result follows immediately from Erdős-Radó's theorem (see [21, Lemma 3.2]).

Lemma 2.3. Let X be a space with rank l-diagonal and $Y \subseteq X$. If $|Y| > 2^{\kappa}$, then for every diagonal sequence $\{\mathcal{U}_n : n \in \omega\}$ on X of rank l, there are $n_0 \in \omega$ and $S \subseteq Y$, such that:

- (1) $|S| > \kappa$;
- (2) S is closed and discrete;
- (3) For any $x, y \in S$ with $x \neq y, y \notin \operatorname{St}^{l}(x, \mathcal{U}_{n_{0}})$.

Note that in Lemma 2.3, the third condition means:

- (a) If l is even, the family $\{\operatorname{St}^{j}(s, \mathcal{U}_{n_{0}}) : s \in S\}$ is cellular, where l = 2j.
- (b) If l is odd, the family $\{\operatorname{St}^{j}(s, \mathcal{U}_{n_{0}}) : s \in S\}$ is discrete, where l = 2j + 1.

Recall that for a Hausdorff space X the Hausdorff pseudo-character of X, denoted by $H\psi(X)$, is the smallest infinite cardinal κ such that for every $x \in X$, there is a collection \mathcal{B}_x of open neighbourhoods of x with $|\mathcal{B}_x| \leq \kappa$ such that if $x \neq y$, there exist $U \in \mathcal{B}_x$ and $V \in \mathcal{B}_y$ with $U \cap V = \emptyset$ (see [11]). In addition, d(X) denotes the density of X.

Lemma 2.4. Let X be an infinite topological space, then $|X| \leq d(X)^{H\psi(X)}$.

Proof. Let $\kappa = H\psi(X)$ and for any $x \in X$, let $\{U_{\alpha}^{x} : \alpha \in \kappa\}$ be a family of open neighbourhoods of x, which satisfies the condition of Hausdorff pseudocharacter of X. We put $V_{\alpha,\beta}^{x} = U_{\alpha}^{x} \cap U_{\beta}^{x}$ and consider a dense subset D of Xwith |D| = d(X). Now we define $f : X \to D^{\kappa \times \kappa}$ as follows: for each $x \in X$, let $f(x) = f_x$, where $f_x : \kappa \times \kappa \to D$ is given by $f_x(\alpha,\beta) = d_{\alpha,\beta}^{x}$, where $d_{\alpha,\beta}^{x}$ is an arbitrary point in $D \cap V_{\alpha,\beta}^{x}$. We see that f is injective. Indeed, let $x, y \in X$ with $x \neq y$, then there are U_{α}^{x} and U_{β}^{y} such that $U_{\alpha}^{x} \cap U_{\beta}^{y} = \emptyset$, so, $V_{\alpha,\beta}^{x} \cap V_{\alpha,\beta}^{y} = \emptyset$. Hence, $d_{\alpha,\beta}^{x} \neq d_{\alpha,\beta}^{y}$, which implies that $f_x(\alpha,\beta) \neq f_y(\alpha,\beta)$, thus $f(x) \neq f(y)$.

Corollary 2.5. Let X be an infinite topological space with rank l-diagonal, for $l \ge 2$. Then $|X| \le d(X)^{\omega}$.

In the next definition we present some notions investigated previously; for instance, the star^{*n*}- \mathcal{P} property, with different terminology, was introduced in [14, Definition 20] and the almost and weakly star¹- \mathcal{P} properties were defined in [2].

Definition 2.6. Let \mathcal{P} be a topological property and $n \in \omega$. We say that a topological space X is:

- $star^n \mathcal{P}$ if for any open cover \mathcal{U} of X, there is $Y \subseteq X$ such that Y satisfies \mathcal{P} and $St^n(Y, \mathcal{U}) = X$.
- almost starⁿ- \mathcal{P} if given any open cover \mathcal{U} of X, there is a subspace $Y \subset X$ with property \mathcal{P} and such that $\bigcup \{ cl(St^n(x, \mathcal{U})) : x \in Y \} = X.$
- weakly starⁿ- \mathcal{P} if for every open cover \mathcal{U} of X, there exists $Y \subseteq X$ such that Y satisfies \mathcal{P} and $cl(St^n(Y,\mathcal{U})) = X$.

When n = 1, we write star- \mathcal{P} , almost star- \mathcal{P} and weakly star- \mathcal{P} , respectively.

Clearly star^{*n*}- \mathcal{P} implies almost star^{*n*}- \mathcal{P} and almost star^{*n*}- \mathcal{P} implies weakly star^{*n*}- \mathcal{P} . Furthermore, star^{*n*}- \mathcal{P} , almost star^{*n*}- \mathcal{P} and weakly star^{*n*}- \mathcal{P} are preserved under continuous functions, when \mathcal{P} does it. Even more, all of these notions can be established in terms of basic open covers. Moreover, it is clear that star^{*n*}- \mathcal{P} implies star^{*n*+1}- \mathcal{P} , however the reciprocal does not hold (see Examples 2.10 and 2.11). In addition, we get the following.

Proposition 2.7. Let X be a topological space.

- (1) If X contains a dense subspace which is star^{n} - \mathcal{P} , then X is $\operatorname{star}^{n+1}$ - \mathcal{P} .
- (2) If X contains a dense subspace which is weakly $star^n \mathcal{P}$, then X is weakly $star^n \mathcal{P}$.

Proof. We will prove just (1). Let Y be a dense subset of X which is starⁿ- \mathcal{P} . Let \mathcal{U} be an open cover of X, then there is $Z \subseteq Y$ which satisfies \mathcal{P} and $Y \subseteq \operatorname{St}^n(Z,\mathcal{U})$. Hence, $\operatorname{St}^{n+1}(Z,\mathcal{U}) = X$.

Recall that a space X is Menger if for each countable family $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X, there is a family $\{\mathcal{V}_n : n \in \omega\}$ such that \mathcal{V}_n is a finite subset of \mathcal{U}_n , for each $n \in \omega$, and $\bigcup_{n \in \omega} \mathcal{V}_n$ is an open cover of X. It follows immediately from the definitions that starⁿ-countable implies starⁿ-Menger and starⁿ-Menger implies starⁿ-Lindelöf.

Recall that a *cellular family* is a collection of nonempty pairwise disjoint open sets.

Definition 2.8. A space X satisfies the κ chain condition (denoted by κ CC) if every cellular family in X has cardinality at most κ .

When $\kappa = \omega$, it is said that X satisfies the *countable chain condition* (denoted by CCC) [23, Definition 1.1]. Furthermore, if Y is a dense subset of a space X which satisfies κ CC, then X is κ CC. The proof of the next result follows immediately.

Proposition 2.9. If X is a CCC space, then X is $star^2$ -countable.

Example 2.10. There exists a star²-countable space which is not star-countable. Indeed, in [18, Example 2.2], it was shown that the space $X = (\beta D \times (\omega_1 + 1)) \setminus ((\beta D \setminus D) \times \{\omega_1\})$, as a subspace of the product of $\beta D \times (\omega_1 + 1)$, where D is a discrete space of cardinality ω_1 and βD denote the Čech-Stone compactification of D, is a Tychonoff almost star-countable space X which is not star-countable. On the other hand, given that $\beta D \times \omega_1$ is dense in X and countably compact, X is star²-countable.

Example 2.11. Assuming CH, there exists a star²-Menger space which is not star-Menger. Indeed, let $\mathcal{K}[\mathbb{P}]$ be the space of all compact nowhere dense subsets of \mathbb{P} endowed with the Pixley-Roy topology, where \mathbb{P} is the subspace of irrational numbers. In [6, Example 2.5], it was shown that $\mathcal{K}[\mathbb{P}]$ is a CCC space but is not star-Menger. Note that, by Proposition 2.9, $\mathcal{K}[\mathbb{P}]$ is star²-Menger.

Question 2.12. Is there an almost starⁿ- \mathcal{P} (weakly starⁿ- \mathcal{P}) space which is not almost star- \mathcal{P} (weakly star- \mathcal{P}), for some $n \geq 2$ and some property \mathcal{P} ?

A collection \mathcal{U} of subsets of X is *discrete* if every point of X has an open neighbourhood which intersects at most one element of \mathcal{U} . The next notion can be found in [9, Definition 2.3].

Definition 2.13. Let X be a topological space. We say that X satisfies the *discrete* κ *chain condition* (denoted by D κ CC) if every discrete family of nonempty open subsets of X has cardinality at most κ .

If $\kappa = \omega$ in the previous definition, we obtain the known property *discrete* countable chain condition (denoted by DCCC) [21, Definition 2.1]. Note that κ CC implies D κ CC.

Recall that a space X is weakly Lindelöf if every open cover \mathcal{U} of X contains a countable subfamily $\mathcal{V} \subseteq \mathcal{U}$ such that $\operatorname{cl}(\bigcup \mathcal{V}) = X$.

Definition 2.14. We say that a space X is weakly κ -Lindelöf (denoted by $W\kappa L$) if every open cover \mathcal{U} of X contains a subfamily $\mathcal{V} \subseteq \mathcal{U}$ such that $|\mathcal{V}| \leq \kappa$ and $cl(\bigcup \mathcal{V}) = X$.

Note that a space X is weakly κ -Lindelöf if and only if its weakly Lindelöf number $wL(X) \leq \kappa$ (see [4]). It is not difficult to show that, if X is a topological space with $d(X) \leq \kappa$, then X is weakly star- \mathcal{P} , for each $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$. Furthermore, from definitions, we immediately obtain that the properties $\kappa CC, W\kappa L, D\kappa CC$ are closed under unions of at most κ many subspaces. It is not difficult to show the next result.

Proposition 2.15. The following hold:

- (1) A weakly star- κ CC space is weakly star-weakly κ -Lindelöf.
- (2) A weakly star-weakly κ -Lindelöf space is weakly star-D κ CC.
- (3) A star²-weakly κ -Lindelöf space is star²-D κ CC.

The authors do not know if the reciprocal implications of Proposition 2.15 hold.

Remark 2.16. The space X in Example 2.10 satisfies the properties weakly star-CCC and weakly star-weakly Lindelöf, however X is not star-CCC nor starweakly Lindelöf. Indeed, it can been shown, by using the same ideas as in [19, Example 3.1, for the space S_2], that X is not a star-weakly Lindelöf space. Furthermore, given that every CCC space is weakly Lindelöf, the space X can not be star-CCC. Moreover, given that $\beta D \times \omega_1$ is a dense countably compact subspace of X, we have that $\beta D \times \omega_1$ is star-finite (see [7, Theorem 2.1.4], where the star-finite property is called strongly 1-starcompact). Hence, X is weakly star-finite. Thus, X is weakly star-CCC and so, it is weakly star-weakly Lindelöf.

Lemma 2.17. Let X and Y be spaces such that $d(X) \leq \kappa$. If Y satisfies the property \mathcal{P} , then $X \times Y$ satisfies the property \mathcal{P} , for $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$.

Proof. When $\mathcal{P} \in \{\kappa CC, D\kappa CC\}$, the proof follows the same ideas as [20, Theorem 3.3]. Now suppose that $\mathcal{P} = W\kappa L$. Take a dense subset $D = \{d_{\delta} : \delta < \kappa\}$ of X. Each $\{d_{\delta}\} \times Y$ is $W\kappa L$. Then, $D \times Y = \bigcup_{\delta < \kappa} \{d_{\delta}\} \times Y$ is $W\kappa L$. Now, $D \times Y$ is a dense subset of $X \times Y$. It follows that $X \times Y$ is $W\kappa L$. \Box

Theorem 2.18. Let X and Y be spaces such that $d(X) \leq \kappa$. If Y satisfies the property weakly star- \mathcal{P} , then $X \times Y$ satisfies the property weakly star- \mathcal{P} , for $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$.

Proof. Let $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$ and suppose that \mathcal{U} is an open cover of basic open sets of $X \times Y$. So, $\{V : U \times V \in \mathcal{U}\}$ is an open cover of Y. Hence, there is $Z \subseteq Y$ which witnesses that Y is weakly star- \mathcal{P} . From Lemma 2.17, $X \times Z$ satisfies the property \mathcal{P} . Furthermore, $St(X \times Z, \mathcal{U})$ is dense in $X \times Y$ and the proof is complete. \Box

Theorem 2.19. Let X and Y be spaces such that $d(X) \leq \kappa$. If Y satisfies the property almost star- \mathcal{P} , then $X \times Y$ satisfies the property star²- \mathcal{P} , for $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$.

Proof. Let $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$ and suppose that \mathcal{U} is an open cover of basic open sets of $X \times Y$ and $D = \{d_{\alpha} : \alpha \in \kappa\}$ is a dense subset of X. Then $\mathcal{V}_{\alpha} = \{\{d_{\alpha}\} \times V : d_{\alpha} \in U, U \times V \in \mathcal{U}\}$ is an open cover of $\{d_{\alpha}\} \times Y$. Hence, there is $\{d_{\alpha}\} \times W_{\alpha} \subseteq \{d_{\alpha}\} \times Y$ which witnesses that $\{d_{\alpha}\} \times Y$ is almost star- \mathcal{P} . Let $Z_{\alpha} = X \times W_{\alpha}$. By Lemma 2.17, Z_{α} satisfies \mathcal{P} . So, $Z = \bigcup \{Z_{\alpha} : \alpha \in \kappa\}$ satisfies \mathcal{P} . We claim that $\operatorname{St}^{2}(Z,\mathcal{U}) = X \times Y$. Indeed, let $(a,b) \in X \times Y$ and consider $U \times V \in \mathcal{U}$ with $(a,b) \in U \times V$. Fix $\alpha \in \kappa$ such that $d_{\alpha} \in U$. Then $(d_{\alpha},b) \in \operatorname{cl}_{\{d_{\alpha}\} \times Y}(\operatorname{St}((d_{\alpha},y),\mathcal{V}_{\alpha})))$, for some $(d_{\alpha},y) \in Z_{\alpha}$. Hence, there is $\{d_{\alpha}\} \times B \in \mathcal{V}_{\alpha}$ such that $y \in B$ and $(\{d_{\alpha}\} \times V) \cap (\{d_{\alpha}\} \times B) \neq \emptyset$. Furthermore, there is $A \subseteq X$ with $A \times B \in \mathcal{U}$ and $d_{\alpha} \in A$. We have that $(A \times B) \cap (U \times V) \neq \emptyset$. Thus, $(a,b) \in \operatorname{St}^{2}((d_{\alpha},y),\mathcal{U})$ and the proof is complete.

Question 2.20. Let X and Y be spaces such that $d(X) \leq \kappa$ and suppose that Y satisfies the property almost star- \mathcal{P} . Is it true that $X \times Y$ satisfies the property almost star- \mathcal{P} , for $\mathcal{P} \in \{\kappa CC, W\kappa L, D\kappa CC\}$?

The next result generalizes [25, Theorem 3.1] (see Corollary 2.22 below). Recall that a topological space X is quasi-regular ([16, p. 2]) if for every nonempty open set U, there is a nonempty open set V such that $cl(V) \subseteq U$.

Theorem 2.21. Let X be a quasi-regular topological space. Then X is weakly star-DKCC if and only if X is DKCC.

Proof. Suppose that X is not D κ CC and let $\mathcal{W} = \{W_{\alpha} : \alpha \in \kappa^+\}$ be a discrete family of nonempty open sets in X. Given that X is quasi-regular, we have that for each $\alpha \in \kappa^+$, there is an open subset $V_{\alpha} \neq \emptyset$ which satisfies $cl(V_{\alpha}) \subseteq W_{\alpha}$.

Let $\mathcal{U} = \mathcal{W} \cup \{X \setminus \operatorname{cl}(\bigcup \{V_{\alpha} : \alpha \in \kappa^+\})\}$. Since the family $\{V_{\alpha} : \alpha \in \kappa^+\}$ is discrete, we have that $\bigcup \{\operatorname{cl}(V_{\alpha}) : \alpha \in \kappa^+\} = \operatorname{cl}(\bigcup \{V_{\alpha} : \alpha \in \kappa^+\})$. So, \mathcal{U} is an open cover of X. Then, there exists $Y \subseteq X$ such that Y is $\mathsf{D}\kappa\mathsf{C}\mathsf{C}$ and $\operatorname{cl}(\operatorname{St}(Y,\mathcal{U})) = X$.

We claim that for each $\alpha \in \kappa^+$, $W_{\alpha} \cap Y \neq \emptyset$. Indeed, fix $\alpha \in \kappa^+$. Given that $\operatorname{cl}(\operatorname{St}(Y,\mathcal{U})) = X$, we have that $V_{\alpha} \cap \operatorname{St}(Y,\mathcal{U}) \neq \emptyset$; so, there exist $z \in V_{\alpha}$, $y_z \in Y$ and $W \in \mathcal{U}$ such that $\{z, y_z\} \subseteq W$. We assert that $W = W_{\beta}$, for some $\beta \in \kappa^+$. In fact, the case $W = X \setminus \operatorname{cl}(\bigcup\{V_{\gamma} : \gamma \in \kappa^+\})$ is not possible,

otherwise, $z \in V_{\alpha} \cap (X \setminus \operatorname{cl}(\bigcup\{V_{\gamma} : \gamma \in \kappa^{+}\})) \subseteq V_{\alpha} \cap (X \setminus \bigcup\{V_{\gamma} : \gamma \in \kappa^{+}\})$, but $V_{\alpha} \cap (X \setminus \bigcup\{V_{\gamma} : \gamma \in \kappa^{+}\}) = \emptyset$. As \mathcal{U} is a discrete family, necessarily we have $\alpha = \beta$; hence, $y_{z} \in W_{\alpha} \cap Y$.

From the claim above, we have that $\{W_{\alpha} \cap Y : \alpha \in \kappa^+\}$ is a discrete family of nonempty open subsets in Y, which contradicts that Y is D κ CC, and the proof is complete.

Recall that a *neighbourhood assignment* for a topological space (X, τ) is a function $\varphi: X \to \tau$ with $x \in \varphi(x)$, for every $x \in X$. The space X is *weakly dually* DCCC [1] if for any neighbourhood assignment φ on X, there exists a subspace DCCC $Y \subseteq X$ such that $\bigcup \{\varphi(y) : y \in Y\}$ is dense in X.

Corollary 2.22. Let X be a quasi-regular topological space. The following are equivalent:

- (1) X is DCCC;
- (2) X is weakly dually DCCC;
- (3) X is weakly star-DCCC.

Proof. $(1) \Rightarrow (2)$: Follows from definitions.

(2) \Rightarrow (3): Let \mathcal{U} be an open cover of X. Clearly we can choose a neighbourhood assignment φ such that $\varphi(x) \in \mathcal{U}$, for each $x \in X$. Hence, there exists $Y \subseteq X$ such that Y is DCCC and $\bigcup \{\varphi(y) : y \in Y\}$ is dense in X. Note that for any $y \in Y$, $\varphi(y) \subseteq \operatorname{St}(Y, \mathcal{U})$. Thus, $X = \operatorname{cl}(\bigcup \{\phi(y) : y \in Y\}) \subseteq \operatorname{cl}(\operatorname{St}(Y, \mathcal{U}))$. (3) \Rightarrow (1): Follows from Theorem 2.21.

Question 2.23. Is there a Hausdorff star²-DCCC space which is not DCCC?

We finish this section with the next result (compare with [25, Theorem 3.2]), before we recall that a space X is *developable* [24, Definition 2.7] if there is a collection of open covers $\{\mathcal{U}_n : n \in \omega\}$ of X such that for every $x \in X$, the family $\{\operatorname{St}(x,\mathcal{U}_n) : n \in \omega\}$ is a local base at x. Moreover, a topological space X is *Baire*, if the countable intersection of open dense sets is dense.

Theorem 2.24. Let X be a topological space and let \mathcal{P} be a topological property such that the following conditions hold:

- (i) \mathcal{P} is closed under countable unions;
- (ii) If $Y \in \mathcal{P}$ and Y is a dense subset in X, then $X \in \mathcal{P}$.

Then, when X is Baire and a developable space, the properties weakly star- \mathcal{P} and \mathcal{P} coincide.

Proof. Let X be a weakly star- \mathcal{P} space. In order to prove that X satisfies \mathcal{P} , we show that X has a dense subset which satisfies \mathcal{P} . Consider a collection $\{\mathcal{U}_n : n \in \omega\}$ of open covers which witnesses that X is developable. Now, given that for each $n \in \omega$, \mathcal{U}_n is an open cover of X, there exists $Y_n \subseteq X$ such that Y_n satisfies \mathcal{P} and $cl(St(Y_n, \mathcal{U}_n)) = X$. Let $Y = \bigcup \{Y_n : n \in \omega\}$. From (i), we obtain that Y satisfies \mathcal{P} .

We claim that Y is dense in X. Indeed, let $D = \bigcap_{n \in \omega} \operatorname{St}(Y_n, \mathcal{U}_n)$. As X is a Baire space, we have that D is dense in X. Hence, for each nonempty

R. Cruz-Castillo, A. Ramírez-Páramo and J. F. Tenorio

open set W, there is $d \in D \cap W$. Thus, from the fact that X is developable, we get $n_d \in \omega$, such that $d \in \operatorname{St}(d, \mathcal{U}_{n_d}) \subseteq W$. Given that $D \subseteq \operatorname{St}(Y_{n_d}, \mathcal{U}_{n_d})$, there are $y_d \in Y_{n_d}$ and $V \in \mathcal{U}_{n_d}$ which satisfy $d, y_d \in V$; this implies that $y_d \in \operatorname{St}(d, \mathcal{U}_{n_d}) \subseteq W$. So, $y_d \in W \cap Y$. We conclude that Y is dense in X and by (ii), X satisfies \mathcal{P} .

We say that a topological space X is κ -separable if its density $d(X) \leq \kappa$.

Corollary 2.25. Consider $\mathcal{P} \in \{ weakly \ \kappa-Lindelöf, \kappa CC, \kappa-separable \}$. In the class of Baire and developable spaces, the property weakly star- \mathcal{P} coincides with the property \mathcal{P} .

3. Some cardinal inequalities

In this section we show some cardinal inequalities for topological spaces with rank *l*-diagonal which satisfies star^{*n*}- \mathcal{P} , weakly star^{*n*}- \mathcal{P} or almost star^{*n*}- \mathcal{P} , for $\mathcal{P} \in {\kappa CC, D\kappa CC}$ and some $l, n \in \omega$. The proofs of Theorems 3.1, 3.3 and 3.6 generalize and follow, respectively, the same structure as [25, Theorems 3.8, 3.9 and 3.10].

Theorem 3.1. Let X be a weakly starⁿ- κ CC and Baire topological space with rank 2n-diagonal for some $n \in \omega$. Then $|X| \leq 2^{\kappa}$.

Proof. Given that X has rank 2n-diagonal, there is a countable family $\{\mathcal{U}_l : l \in \omega\}$ of open covers of X such that for each $x \in X$, $\{x\} = \bigcap \{\operatorname{St}^{2n}(x, \mathcal{U}_l) : l \in \omega\}$. Hence, if $x, y \in X$ with $x \neq y$, then there exists $l \in \omega$, such that $y \notin \operatorname{St}^{2n}(x, \mathcal{U}_l)$.

Note that for any $l \in \omega$, there is $Y_l \subseteq X$ such that Y_l satisfies κCC and $\operatorname{cl}(\operatorname{St}^n(Y_l, \mathcal{U}_l)) = X$. Let $D = \bigcap_{l \in \omega} \operatorname{St}^n(Y_l, \mathcal{U}_l)$. As X is a Baire space, we have that D is dense in X.

We claim that $|D| \leq 2^{\kappa}$. Indeed, suppose that $|D| > 2^{\kappa}$. Then, by Lemma 2.3, there exist $m \in \omega$ and $S \subseteq D$, such that: $|S| > \kappa$, S is closed and discrete and for any $x, y \in S$, with $x \neq y, y \notin \operatorname{St}^{2n}(x, \mathcal{U}_m)$. Let $s \in S$, since $S \subseteq D \subseteq \operatorname{St}^n(Y_m, \mathcal{U}_m)$, there is $y_s \in Y_m$ such that $s \in \operatorname{St}^n(y_s, \mathcal{U}_m)$, so $y_s \in \operatorname{St}^n(s, \mathcal{U}_m)$. That is, for any $s \in S$, $\operatorname{St}^n(s, \mathcal{U}_m) \cap Y_m \neq \emptyset$. Hence, $\{\operatorname{St}^n(x, \mathcal{U}_m) \cap Y_m : x \in S\}$ is a cellular family in Y_m with $|\{\operatorname{St}^n(x, \mathcal{U}_m) \cap Y_m : x \in S\}| > \kappa$, which contradicts that Y_m is κ CC. So, the claim holds.

From Corollary 2.5, $|X| \leq |D|^{\omega} \leq 2^{\kappa}$ and the proof is complete.

Corollary 3.2. Let X be a weakly star- κ CC and Baire topological space with rank 2-diagonal. Then $|X| \leq 2^{\kappa}$.

Theorem 3.3. Let X be a star²- κ CC topological space with rank 4-diagonal. Then $|X| \leq 2^{\kappa}$.

Proof. Suppose that $|X| > 2^{\kappa}$. Since X has rank 4-diagonal, there is a countable family $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X such that for each $x \in X$, $\{x\} = \bigcap \{\operatorname{St}^4(x, \mathcal{U}_n) : n \in \omega\}$. Then, by Lemma 2.3, there exist $m \in \omega$ and $S \subseteq X$, such that: $|S| > \kappa$, S is closed and discrete and for any $x, y \in S$, with

 $x \neq y, y \notin \text{St}^4(x, \mathcal{U}_m)$. That is, the collection $\{\text{St}^2(s, \mathcal{U}_m) : s \in S\}$ is a cellular family.

We claim that the collection {St(s, \mathcal{U}_m) : $s \in S$ } is discrete. Otherwise, there exist $x_0 \in X$ and $U \in \mathcal{U}_m$ such that $x_0 \in U$ and $|\{s \in S : \operatorname{St}(s, \mathcal{U}_m) \cap U \neq \emptyset\}| > 1$. Let $s_1, s_2 \in S$, with $s_1 \neq s_2$ such that $U \cap \operatorname{St}(s_i, \mathcal{U}_m) \neq \emptyset$, for $i \in \{1, 2\}$. Thus $U \subseteq \operatorname{St}^2(s_1, \mathcal{U}_m)$, hence $\operatorname{St}^2(s_1, \mathcal{U}_m) \cap \operatorname{St}(s_2, \mathcal{U}_m) \neq \emptyset$. So, $s_2 \in \operatorname{St}^3(s_1, \mathcal{U}_m)$, which is a contradiction.

From the previous claim, $\bigcup \{ cl(St(s, \mathcal{U}_m)) : s \in S \} = cl(\bigcup \{ St(s, \mathcal{U}_m) : s \in S \}) = cl(St(S, \mathcal{U}_m))$. For any $x \in cl(St(S, \mathcal{U}_m))$, there is $s_x \in S$ such that $x \in cl(St(s_x, \mathcal{U}_m)) \subseteq St^2(s_x, \mathcal{U}_m)$ (see Proposition 2.1). Let $U_x \in \mathcal{U}_m$ such that $x \in U_x$ and $U_x \cap St(s_x, \mathcal{U}_m) \neq \emptyset$. We define $\mathcal{U} = \{U_x : x \in cl(St(S, \mathcal{U}_m))\} \cup \{X \setminus cl(St(S, \mathcal{U}_m))\}$. As \mathcal{U} is an open cover of X, there exists $Y \subseteq X$ such that $St^2(Y, \mathcal{U}) = X$ and Y is κcc .

We assert that for every $s \in S$, it holds that $\operatorname{St}^2(s, \mathcal{U}_m) \cap Y \neq \emptyset$. Indeed, let $s \in S$. Given that $s \in \operatorname{St}^2(Y, \mathcal{U})$, there are $U, V \in \mathcal{U}$ and $y \in Y$ such that $y \in V$, $s \in U$ and $U \cap V \neq \emptyset$. As $s \in U$, $U \subseteq \operatorname{St}(S, \mathcal{U}_m)$. Hence, $V \neq X \setminus \operatorname{cl}(\operatorname{St}(S, \mathcal{U}_m))$. Then, $V = U_z$, for some $z \in \operatorname{cl}(\operatorname{St}(S, \mathcal{U}_m))$. From which, $V \subseteq \operatorname{St}^2(s, \mathcal{U}_m)$ and thus, $\operatorname{St}^2(s, \mathcal{U}_m) \cap Y \neq \emptyset$. Finally, we conclude that the collection { $\operatorname{St}^2(s, \mathcal{U}_m) \cap Y : s \in S$ } is a cellular family in Y with cardinality > κ , which is a contradiction.

Corollary 3.4. Let X be a star²-CCC topological space with rank 4-diagonal. Then $|X| \leq 2^{\omega}$.

Question 3.5. Suppose that X is a starⁿ- κ CC topological space with rank 2ndiagonal, for n > 2. Does $|X| \le 2^{\kappa}$ hold?

Theorem 3.6. Let X be a weakly starⁿ-DKCC Baire topological space with rank (2n + 1)-diagonal for some $n \in \omega$. Then $|X| \leq 2^{\kappa}$.

Proof. Let $\{\mathcal{U}_l : l \in \omega\}$ be a countable family of open covers which witnesses that X has rank (2n + 1)-diagonal. Now, for any $l \in \omega$, there is $Y_l \subseteq X$ such that Y_l satisfies $D\kappa CC$ and $cl(\operatorname{St}^n(Y_l, \mathcal{U}_l)) = X$. Let $D = \bigcap_{l \in \omega} \operatorname{St}^n(Y_l, \mathcal{U}_l)$. As X is a Baire space, we have that D is dense in X.

We claim that $|D| \leq 2^{\kappa}$. Indeed, suppose that $|D| > 2^{\kappa}$. Then, by Lemma 2.3, there exist $m \in \omega$ and $S \subseteq D$, such that: $|S| > \kappa$, S is closed and discrete and for any $x, y \in S$, with $x \neq y, y \notin \operatorname{St}^{2n+1}(x, \mathcal{U}_m)$. Note that the collection $\{\operatorname{St}^n(s, \mathcal{U}_m) : s \in S\}$ is discrete. Otherwise, there exists $x_0 \in X$ such that for any open set V with $x_0 \in V$, $|\{s \in S : V \cap \operatorname{St}^n(s, \mathcal{U}_m) \neq \emptyset\}| > 1$. Let $U \in \mathcal{U}_m$ such that $x_0 \in U$. By assumption, there exist $s_1, s_2 \in S$, with $s_1 \neq s_2$ such that $U \cap \operatorname{St}^n(s_1, \mathcal{U}_m) \neq \emptyset$ and $U \cap \operatorname{St}^n(s_2, \mathcal{U}_m) \neq \emptyset$. This implies that $s_1 \in \operatorname{St}^{2n+1}(s_2, \mathcal{U}_m)$, which contradicts the property of S. Given that $S \subseteq D \subseteq \operatorname{St}^n(Y_m, \mathcal{U}_m)$, for any $s \in S$, there is $y_s \in Y_m$ such that $s \in \operatorname{St}^n(s, \mathcal{U}_m) \cap Y_m : s \in S\}$ is a discrete family of open sets in Y_m with cardinality greater than κ , which contradicts that Y_m is $D\kappaCC$. Therefore, $|D| \leq 2^{\kappa}$. From Corollary 2.5, $|X| \leq |D|^{\omega} \leq 2^{\kappa}$ and the proof is complete. \Box

Corollary 3.7. Let X be a weakly star-DKCC, Baire topological space with rank 3-diagonal. Then $|X| \leq 2^{\kappa}$.

Corollary 3.8. Let X be a weakly star-weakly κ -Lindelöf and Baire topological space and suppose that it has rank 3-diagonal. Then $|X| \leq 2^{\kappa}$. In particular, when X is a weakly Lindelöf and Baire space, $|X| \leq 2^{\omega}$.

Question 3.9. Let X be a weakly star-DKCC (or weakly star-weakly κ -Lindelöf), Baire topological space and suppose that it has rank 2-diagonal. Can it be proven that $|X| \leq 2^{\kappa}$?

Remark 3.10. The results 2.15–2.22, 2.24, 2.25, 3.1, 3.2, 3.6–3.8 hold when we put almost star \mathcal{P} , instead of weakly star \mathcal{P} .

Theorem 3.11. If X is a starⁿ-DKCC topological space with rank (2n + 1)-diagonal. Then $|X| \leq 2^{\kappa}$.

Proof. Suppose that $|X| > 2^{\kappa}$. Consider a countable family $\{\mathcal{U}_m : m \in \omega\}$ of open covers of X such that for every $x \in X$, $\{x\} = \bigcap \{\operatorname{St}^{2n+1}(x,\mathcal{U}_m) : m \in \omega\}$. By Lemma 2.3, there exist $S \subseteq X$ and $m_0 \in \omega$, which satisfy $|S| > \kappa$, S is closed and discrete and for any $x, y \in S$, with $x \neq y, y \notin \operatorname{St}^{2n+1}(x,\mathcal{U}_{m_0})$. Note that $\mathcal{U} = \{\operatorname{St}^n(s,\mathcal{U}_{m_0}) : s \in S\}$ is a discrete family in X, as proven in Theorem 3.6.

Since \mathcal{U}_{m_0} is an open cover of X, by hypothesis, there exists $Y \subseteq X$ such that Y is D κ CC and $\operatorname{St}^n(Y, \mathcal{U}_{m_0}) = X$. We claim that for every $s \in S$, $Y \cap$ $\operatorname{St}^n(s, \mathcal{U}_{m_0}) \neq \emptyset$. Indeed, let $s_0 \in S$. Given that $\operatorname{St}^n(Y, \mathcal{U}_{m_0}) = X$, there is $U_i \in \mathcal{U}_{m_0}$ such that $s_0 \in U_1$, $U_i \cap U_{i+1} \neq \emptyset$ and $U_n \cap Y \neq \emptyset$. So, $Y \cap$ $\operatorname{St}^n(s_0, \mathcal{U}_{m_0}) \neq \emptyset$. Hence, we conclude that $\{Y \cap \operatorname{St}^n(s, \mathcal{U}_{m_0}) : s \in S\}$ is a discrete family in Y with cardinality greater than κ , which contradicts that Yis $\operatorname{D}\kappa$ CC. So $|X| \leq 2^{\kappa}$.

Corollary 3.12. If X is a star-DCCC topological space with rank 3-diagonal. Then $|X| \leq 2^{\omega}$.

Corollary 3.13. Let X be a star²-DCCC topological space and suppose that it has rank 5-diagonal. Then $|X| \leq 2^{\omega}$.

From Proposition 2.15, we obtain the following.

Corollary 3.14. Let X be a star²-weakly κ -Lindelöf topological space and suppose that it has rank 5-diagonal. Then $|X| \leq 2^{\kappa}$. In particular, when X is weakly Lindelöf with rank 5-diagonal, $|X| \leq 2^{\omega}$.

Question 3.15. Let X be a weakly star-DKCC (or weakly star-weakly κ -Lindelöf) topological space. Can it be proven that $|X| \leq 2^{\kappa}$, if X has rank l-diagonal, for some l < 5?

The next result was proved in [5] for $\kappa = \omega$ and its proof follows the same ideas. Furthermore, from Theorem 2.21 it follows that, in the class of normal spaces, the properties star-DCCC and DCCC are equivalent. Hence, Theorem 3.16 coincides with [21, Theorem 3.4].

Theorem 3.16. If X is a star-DKCC and normal space with rank 2-diagonal. Then $|X| \leq 2^{\kappa}$.

Question 3.17. Suppose that X is a starⁿ-DKCC and normal space with rank 2n-diagonal, for n > 1. Does $|X| \le 2^{\kappa}$ hold?

We finish this paper with the next result (compare with [22, Theorem 5.4]). Recall that the *extent* of a space X is defined by $e(X) = \sup\{|A| : A \text{ is a closed subset of } X \text{ and } A = A \setminus A^d\} + \omega$, where A^d denotes the set of all limit points of A. Moreover, if X is a space and $A \subseteq X$, a family \mathcal{U} is an *open expansion of* A if $\mathcal{U} = \{U_a : a \in A\}$ and U_a is an open neighbourhood of a for any $a \in A$.

Theorem 3.18. If X is a star-DCCC and normal space with $H\psi(X) = \omega$. Then $e(X) \leq 2^{\omega}$.

Proof. Suppose that $e(X) > 2^{\omega}$. That is, there exists a closed and discrete subset E of X such that $|E| > 2^{\omega}$. We take, for every $x \in X$, the collection $\mathcal{B}_x = \{B_m^x : m \in \omega\}$ of open neighbourhoods of x satisfying the condition for Hausdorff pseudo-character. Suppose that for each $m \in \omega$, $B_{m+1}^x \subseteq B_m^x$. Denote by $\mathcal{P}_m = \{\{x, y\} \in [E]^2 : B_m^x \cap B_m^y = \emptyset\}$, for every $m \in \omega$. It can be shown that $[E]^2 = \bigcup \{\mathcal{P}_m : m \in \omega\}$. So, by Erdős-Radó's theorem (see [10, Theorem 2.3]), there exist $m_0 \in \omega$ and a subset S of E, with $|S| > \omega$ such that $[S]^2 \subseteq \mathcal{P}_{m_0}$. Note that S is a closed and discrete subset of X. Even more, $\{B_{m_0}^s : s \in S\}$ is a disjoint open expansion of S. By [21, Lemma 3.3], there exists a discrete open expansion $\mathcal{V} = \{V_s : s \in S\}$ of S such that $s \in V_s \subseteq B_{m_0}^s$, for each $s \in S$.

Now, we consider the open cover of $X, \mathcal{U} = \{U_x : x \in X\}$, where $U_x = V_x$, if $x \in S$ and when $x \notin S, U_x$ is an open neighbourhood of x which witnesses that \mathcal{V} is a discrete family and $U_x \cap S = \emptyset$. Hence, there exists $Y \subseteq X$ such that Y is DCCC and $\operatorname{St}(Y, \mathcal{U}) = X$. We claim that for every $s \in S, V_s \cap Y \neq \emptyset$. Indeed, let $s \in S$. Since $\operatorname{St}(Y, \mathcal{U}) = X$, there is $U \in \mathcal{U}$ such that $s \in U$ and $U \cap Y \neq \emptyset$. Note that $U = V_s$ and the claim follows. Thus, $\{V_s \cap Y : s \in S\}$ is a discrete family in Y, which is a contradiction. Therefore, $e(X) \leq 2^{\omega}$. \Box

Question 3.19. Suppose that X is a starⁿ-DKCC and normal space such that $H\psi(X) = \kappa$, for n > 1 and $\kappa > \omega$. Does $e(X) \le 2^{\kappa}$ hold?

ACKNOWLEDGEMENTS. The authors are thankful to the referee for his/her careful reading of the manuscript and for providing constructive suggestions which helped to improve the quality of this paper.

References

- O. T. Alas, V. V. Tkachuk, R. G. Wilson, Covering properties and neighbourhood assignments, Topol. Proc. 30, no. 1 (2006), 25–38.
- [2] O. T. Alas, R. G. Wilson, Properties related to star countability and star finiteness, Topol. Appl. 221 (2017), 432–439.
- [3] A. V. Arhangel'skii, R. Z. Buzyakova, The rank of the diagonal and submetrizability, Commentat. Math. Univ. Caro. 47 (2006), 585–597.
- [4] M. Bell, J. Ginsburg, G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978), 37–45.
- [5] A. Bella, N. Carlson, I. Gotchev, More on cardinality bounds involving the weak Lindelöf degree, Quaest. Math. 46, no. 4 (2023), 745–760.
- [6] J. Casas-de la Rosa, Á. Tamariz Mascarúa, On spaces with star kernel Menger, Acta Math. Hungar. 170 (2023), 379–404.
- [7] E. van Douwen, G. M. Reed, A. W. Roscoe, I. J. Tree, Star covering properties, Topol. Appl. 39 (1991), 79–103.
- [8] R. Engelking, General topology, revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [9] Y. Gao, H. Qu, S. Wang, Discrete chain conditions and the B-property, Topol. Proc. 17 (1992), 97–110.
- [10] R. Hodel, Cardinal functions I. Handbook of Set-Theoretic Topology (K.Kunen et al., eds.). North-Holland, Amsterdam (1984), 1–61.
- [11] R. Hodel, Combinatorial set theory and cardinal function inequalities, Proc. Amer. Math. Soc. 111 (1991), 567–575.
- [12] K. Hrbacek, T. Jech, Introduction to Set Theory, Marcel Dakker, Inc., Second Edition 1978.
- [13] S. Ikenaga, A class of spaces which contains Lindelöf spaces, separable spaces and countably compact spaces, Mem. Numazu Coll. Technol. 18 (1983), 105–108.
- [14] M. Matveev, A survey of star covering properties, Topology Atlas preprint, April 15, 1998.
- [15] J. van Mill, V. V. Tkachuk, R. G. Wilson, Classes defined by stars and neighbourhood assignments, Topol. Appl. 154 (2007), 2127–2134.
- [16] J. C. Oxtoby, Spaces that admit a category measure, J. Reine. Angew. Math. 205 (1960), 156–170.
- [17] Y. K. Song, Remarks on weakly star countable spaces, Mat. Vesnik 70, 3 no. 1 (2018), 250–256.
- [18] Y. K. Song, Some remarks on almost star countable spaces, Studia Sci. Math. Hungar. 52, no. 1 (2015), 12–20.
- [19] Y. K. Song, W. F. Xuan, Remarks on star weakly Lindelöf spaces, Quaest. Math. 46, no. 1 (2023), 73–83.
- [20] M. R. Wiscamb, The discrete countable chain condition, Proc. Amer. Math. Soc. 23 (1969), 608–612.
- [21] W. F. Xuan, W. X. Shi, Cardinalities of DCCC normal spaces with a rank 2-diagonal, Math. Bohem. 141 (2016), 457–461.
- [22] W. F. Xuan, Y. K. Song, A study of cellular-Lindelöf spaces, Topol. Appl. 251 (2019), 1–9.
- [23] W. F. Xuan, Y. K. Song, Cardinal invariants of dually CCC spaces, Topol. Appl. 296 (2021), 107683.
- [24] W. F. Xuan, Y. K. Song, On properties related to star countability, Topol. Appl. 247 (2018), 20–28.
- [25] W. F. Xuan, Y. K. Song, Weak duals and neighbourhood assignments, Topol. Appl. 255 (2019), 141–147.
- [26] W. F. Xuan, Y. K. Song, W. X. Shi, Chain conditions and star covering properties, Topol. Appl. 255 (2019), 148–156.