

k-spaces of non-domain-valued geometric points

Amartya Goswami 💿

Department of Mathematics and Applied Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.

National Institute for Theoretical and Computational Sciences (NITheCS), South Africa (agoswami@uj.ac.za)

Communicated by D. N. Georgiou

Abstract

The aim of this paper is to study the topological properties of algebraic sets with zero divisors. We impose a subbasic topology on the set of proper ideals of a k-algebra and this new "k-space" becomes a generalization of the corresponding Zariski space. We prove that a k-space is T_0 , quasi-compact, spectral, and connected. Moreover, we study continuous maps between such k-spaces. We conclude with a question about construction of a sheaf of k-spaces similar to affine schemes.

2020 MSC: 14A20; 14A99; 16D25.

KEYWORDS: geometric point; connectedness; spectral space.

1. INTRODUCTION

In the introduction of [2], Grothendieck described the process of getting the spectrum of prime ideals (also called geometric points) starting from a system of polynomial equations. In brief, it is as follows.

Suppose k is a commutative ring with identity. Let $P_I = k[(x_i)_{i \in I}]$ be a ring of polynomials in the indeterminates x_i with coefficients in k, and I be an index set (not necessarily finite). Let $S = \{p_j\}_{j \in J}$ be a system of polynomials of P_I , where the index set J is also not necessarily finite. An element $a = (a_i)_{i \in I}$ of a k-algebra A is called a *solution* of the system S if $p_j(a) = 0$ for all $j \in J$.

If Alg_k and Sets respectively denote the categories of k-algebras and sets, then a functor

$$\mathcal{V}_S \colon \operatorname{Alg}_k \to \operatorname{Sets}$$

represents the solutions of some system S of polynomial equations with coefficients in k if and only if \mathcal{V}_S is representable, *i.e.*, \mathcal{V}_S is isomorphic to \mathcal{R}_A for some object A in Alg_k . Conversely, for every object A in Alg_k the representable functor \mathcal{R}_A is isomorphic to some \mathcal{V}_S . The functor \mathcal{R}_A is called the *affine algebraic space over* k represented by A. The category Aff_k of affine algebraic spaces has representable functors \mathcal{R}_A (A is an object in Alg_k) as objects and morphisms are defined as natural transformations, *i.e.*, they are the induced maps

$$\mu(f) \colon \operatorname{Hom}_{\operatorname{Alg}_{h}}(A, B) \to \operatorname{Hom}_{\operatorname{Alg}_{h}}(A', B)$$

obtained from morphisms $f: A' \to A$ in Alg_k . An A'-valued point is a k-algebra homomorphism $f: A \to A'$, *i.e.*, f is an element of the set $\operatorname{Hom}_{\operatorname{Alg}_k}(A, A')$. If we restrict A' to be an object of the full subcategory Field_k of Alg_k then the elements of $\operatorname{Hom}_{\operatorname{Alg}_k}(A, A')$ are called *geometric points*.

We define an equivalence relation between geometric points as follows. We say two geometric points $f': A \to A'$ and $f'': A \to A''$ are equivalent if there exists a third geometric point $f: A \to A_1$ and k-algebra morphisms $g': A' \to A_1$ and $g'': A'' \to A_1$ such that

$$f = g'' \circ f'' = g' \circ f' \tag{1.1}$$

i.e., the following diagram commutes:

Since g' and g'' are monomorphisms, we observe that the condition (1.1) is equivalent to ker f' = ker f''. Therefore, the equivalence classes of the above relation are in bijection with the prime ideals of A. Now there is a bijection between geometric points and prime ideals of a k-algebra A. The *loci* of a k-algebra A is the equivalence classes of geometric points.

The spectrum of A (denoted by Spec A) is defined as the set of prime ideals of A, *i.e.*, $X = \text{Spec } A = \{\mathfrak{p} \mid \mathfrak{p} \text{ is a prime ideal of } A\}$. For $S = \{p_j\}_{j \in J}$ be a system of polynomials of P_I , let $\mathcal{V}(S)$ be the subset of Spec A defined by

$$\mathcal{V}(S) = \{ \text{set of loci of } u \in \mathcal{R}_A(A') \mid f_i(u) = 0, \forall_{i \in I} f_i \in S \},\$$

where $f_i(u)$ is defined by $f_i(u) = u(f_i)$. From the above definition of $\mathcal{V}(S)$, we immediately see

$$\mathcal{V}(S) = \{ \mathfrak{p} \in X \mid S \subseteq \mathfrak{p} \}.$$

From the above, we observe that in order to obtain the Spec A, we worked with the full subcategory $\mathbb{F}ield_k$ of Alg_k .

O AGT, UPV, 2024

Appl. Gen. Topol. 25, no. 2 376

If we remove this 'restriction' on the k-algebra, what we obtain is a spectrum Idl A of all ideals (instead of prime ideals) of A. This will allow us to study polynomial equations having solutions in any k-algebra (not necessarily a field). Since $A \notin \text{Spec } A$, we also consider the set Spi A of all proper ideals of A as our 'generalized' spectrum on which we endow a topology and call it a k-space. Our choice of the notation Spi A is to have an 'alignment' with the notation Spm A of maximal ideals of A as in Grothendieck [2]. A k-space is a generalization of a Zariski space (*i.e.*, Spec A endowed with a Zariski topology). The purpose of this paper is to study topological properties of k-spaces and simultaneously compare them with Zariski spaces.

2. k-spaces

To construct a k-space, we use two maps defined in Proposition 2.2. Similar maps also appear when we take values of polynomials over an integral domain (to impose a Zariski topology on a Spec A). Before we discuss properties of these maps, let us see an example in our context.

Example 2.1. We consider a k-algebra with zero divisors and its algebraic sets. The polynomials listed in the Table 1 are of minimal degrees.

Subsets	Polynomials	Algebraic	Polynomials
of \mathbb{Z}_4		sets of \mathbb{Z}_4	
Ø	$\mathbb{Z}_4 \setminus \{0\}$	Ø	1
{0}	$\{ax\}$	{0}	x
{1}	$\{ax+b \mid a+b=0\}$	{1}	x + 3
{2}	$\{ax+b \mid 2a+b=0\}$	{2}	(x+2)
{3}	$\{ax+b \mid 3a+b=0\}$	{3}	x + 1
$\{0, 1\}$	$\{ax^2 + bx + c \mid a + b = 0, c = 0\}$	$\{0, 1\}$	x(x+3)
$\{0, 2\}$	$\{ax^2 + bx + c \mid 2b = 0, c = 0\}$	$\{0,2\}$	x(x+2)
$\{0, 3\}$	$\{ax^2 + bx + c \mid a + 3b = 0, c = 0\}$	$\{0,3\}$	x(x+1)
$\{1, 2\}$	$ \{ax^2 + bx + c \mid a - b = 0, 2a + c = 0\} $	$\{1, 2\}$	(x+3)(x+2)
$\{1, 3\}$	$\{ax^2 + bx + c \mid 2b = 0, 2a + 2c = 0\}$	$\{1,3\}$	(x+3)(x+1)
$\{2, 3\}$	$\{ax^2 + bx + c \mid a + b = 0, 2b + c = 0\}$	$\{2,3\}$	(x+2)(x+1)
$\{0, 1, 2\}$	$\{ax^2 + bx + c \mid a + b = 0, 2b = 0\}$	$\{0, 1, 2\}$	x(x+3)(x+2)
$\{0, 1, 3\}$	$\{ax^2 + bx + c \mid a + b = 0, 2b = 0\}$	$\{0, 1, 3\}$	x(x+3)(x+1)
$\{0, 2, 3\}$	$\{ax^2 + bx + c \mid a + b = 0, 2b = 0\}$	$\{0, 2, 3\}$	x(x+2)(x+1)
$\{1, 2, 3\}$	$\{ax^2 + bx + c \mid a + b = 0, 2b = 0\}$	$\{1, 2, 3\}$	(x+3)(x+2)(x+1)
\mathbb{Z}_4	${ax + b \mid a = 0, b = 0}$	\mathbb{Z}_4	x(x+3)(x+2)(x+1)

Table 1: Algebraic sets of \mathbb{Z}_4

Proposition 2.2. Define the maps $\operatorname{Spi} A \xrightarrow{\mathcal{I}} \mathfrak{P}(A)$ as follows: $\mathcal{V}(\{x\}) = \{\mathfrak{a} \in \operatorname{Spi} A \mid x \in \mathfrak{a}\}, \quad \mathcal{I}(S) = \cap\{\mathfrak{s} \mid \mathfrak{s} \in S\},$

Appl. Gen. Topol. 25, no. 2 377

© AGT, UPV, 2024

with $S \subseteq \text{Spi } A$. Here $\mathfrak{P}(A)$ denotes the power set of A. Then \mathcal{V} and \mathcal{I} satisfy the following properties.

- (1) $\mathcal{V}(S) = \mathcal{V}(\langle S \rangle)$, where $\langle S \rangle$ is the ideal of A generated by the subset S.
- (2) The map \mathcal{V} is order reversing and surjective.
- (3) If \mathfrak{a} is a non-radical ideal of A, then $\mathcal{V}(\mathfrak{a}) \subseteq \mathcal{V}(\sqrt{\mathfrak{a}})$ if and only if A has non-zero zero divisors.
- (4) For any two ideals \mathfrak{a} , \mathfrak{b} of A, we have

$$\mathcal{V}(\mathfrak{a}) \cup \mathcal{V}(\mathfrak{b}) \subseteq \mathcal{V}(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathcal{V}(\mathfrak{a}\mathfrak{b}).$$

- (5) For a family of sets $\{\mathcal{V}(\mathfrak{a}_{\alpha})\}_{\alpha\in\Gamma}$, we have $\bigcap_{\alpha\in\Gamma}\mathcal{V}(\mathfrak{a}_{\alpha}) = \mathcal{V}\left(\sum_{\alpha\in\Gamma}\mathfrak{a}_{\alpha}\right)$.
- (6) $\mathcal{V}(\mathfrak{a}) = \operatorname{Spi} A$ if and only if $\mathfrak{a} = \mathfrak{o}$, where \mathfrak{o} is the zero ideal of A. If $\mathcal{V}(\mathfrak{a}) = \emptyset$, then $\mathfrak{a} = A$.
- (7) For any two ideals \mathfrak{a} , \mathfrak{b} of A and $\mathfrak{b} \subseteq \sqrt{\mathfrak{a}}$ implies $\mathcal{V}(\sqrt{\mathfrak{a}}) \subseteq \mathcal{V}(\mathfrak{b})$.
- (8) The map \mathcal{I} is order reversing and surjective.
- (9) $\mathcal{I}(\emptyset) = A \text{ and } \mathcal{I}\left(\bigcup_{\lambda \in \Lambda} T_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} \mathcal{I}\left(T_{\lambda}\right).$ (10) If T is a subset of Spi A and \mathfrak{a} is an ideal of A, then $\mathcal{IV}(\mathfrak{a}) \supseteq \mathfrak{a}$, and $\mathcal{VI}(T) = T.$
- (11) the collections $\mathcal{C}_{\mathcal{V}} = \{\mathcal{V}(\mathfrak{a}) \mid \mathfrak{a} \in \mathrm{Idl}(A)\}$ and $\mathcal{C}_{\mathcal{VI}} = \{\mathcal{VI}(S) \mid S \in$ $\mathcal{P}(\operatorname{Spi} A)$ of sets are identical, where Idl A denotes the poset (under inclusion) of all ideals of A.

Remark 2.3. Notice that for Spec A and for any ideal \mathfrak{a} of A, we always have equalities in (3) and (4). Note that for Spec A, we always have: $\mathcal{IV}(\mathfrak{a}) = \sqrt{\mathfrak{a}}$, the radical of \mathfrak{a} (*cf.* Proposition 2.2 (10))

2.1. k-topologies. In case of Spec A, the sets $\{\mathcal{V}(\mathfrak{a})\}_{\mathfrak{a}\in \mathrm{Idl}\,A}$ are closed under finite unions and we obtain the usual Zariski topology on Spec A. But that closure property fails to hold for Spi A (see Theorem 2.2(4)). However, as a sub-base, $C_{\mathcal{V}}$ or equivalently by $C_{\mathcal{VI}}$ (see Proposition 2.2 (11)) induces a unique topology on Spi A, which we call the *k*-topology. We denote the corresponding topological space by (Spi $A, C_{\mathcal{V}}$), and in short, call it a *k*-space. With the abuse of notation we shall also denote the space by Spi A. A k-topology coincides with the Zariski topology whenever we restrict $\operatorname{Spi} A$ to $\operatorname{Spec} A$. Note that a study of a similar topology on various classes of ideals of a ring has been done in Dube and Goswami [1].

It is well-known that a Zariski space is quasi-compact. The same holds for a k-space. In the proof we shall use the Alexander Subbase Theorem.

Proposition 2.4. A k-space is quasi-compact.

Proof. Let $\{K_{\alpha}\}_{\alpha \in \Lambda}$ be a family of subbasic closed sets of an k-space SpiA such that $\bigcap_{\alpha \in \Lambda} K_{\alpha} = \emptyset$. Let $\{\mathfrak{s}_{\alpha}\}_{\alpha \in \Lambda}$ be a family of ideals of A such that $\forall \alpha \in \Lambda, K_{\alpha} = \mathcal{V}(\mathfrak{s}_{\alpha}).$ Since

$$\bigcap_{\alpha \in \Lambda} \mathcal{V}(\mathfrak{s}_{\alpha}) = \mathcal{V}\left(\sum_{\alpha \in \Lambda} \mathfrak{s}_{\alpha}\right),$$

(c) AGT, UPV, 2024

Appl. Gen. Topol. 25, no. 2 378

we get $\mathcal{V}\left(\sum_{\alpha\in\Lambda}\mathfrak{s}_{\alpha}\right)=\varnothing$, and that by Proposition 2.2 (6) implies $\sum_{\alpha\in\Lambda}\mathfrak{s}_{\alpha}=A$. Then, in particular, we obtain $1=\sum_{\alpha_i\in\Lambda}s_{\alpha_i}$, where $s_{\alpha_i}\in\mathfrak{s}_{\alpha_i}$ and $s_{\alpha_i}\neq 0$ for $i=1,\ldots,n$. This implies $A=\sum_{i=1}^n\mathfrak{s}_{\alpha_i}$. Therefore, $\bigcap_{i=1}^n K_{\alpha_i}=\varnothing$, and hence by Alexander subbase theorem, Spi A is quasi-compact.

Since $\mathcal{V}(\mathfrak{a}) \neq \mathcal{V}(\mathfrak{a}')$ for any two distinct elements \mathfrak{a} and \mathfrak{a}' of Idl A, we immediately have

Proposition 2.5. Every k-space is T_0 .

It is known that $\{\mathcal{V}(\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Spec} A\}$ are exactly the irreducible closed subsets of a Zariski space. For a k-space, the situation is more intriguing.

Theorem 2.6. Every non-empty subbasic closed subset of a k-space is irreducible.

Proof. Since for every non-empty subbasic closed subset $\mathcal{V}(\mathfrak{a})$ of a k-space Spi A, the ideal \mathfrak{a} is also in Spi A, it is sufficient to show that $\mathcal{V}(\mathfrak{a}) = \mathcal{C}\ell(\mathfrak{a})$ for every $\mathfrak{a} \in \text{Spi } A$. Observe that $\mathcal{C}\ell(\mathfrak{a})$ is the smallest closed set containing \mathfrak{a} and $\mathcal{V}(\mathfrak{a})$ is a closed set such that $\mathfrak{a} \in \text{Spi } A$. Therefore, $\mathcal{C}\ell(\mathfrak{a}) \subseteq \mathcal{V}(\mathfrak{a})$. To obtain the reverse inclusion, first consider the case: $\mathcal{C}\ell(\mathfrak{a}) = \text{Spi } A$. Since

$$\operatorname{Spi} A = \mathcal{C}\ell(\mathfrak{a}) \subseteq \mathcal{V}(\mathfrak{a}) \subseteq \operatorname{Spi} A,$$

we obtain $\mathcal{V}(\mathfrak{a}) = \mathcal{C}(\mathfrak{a})$. Now, let $\mathcal{C}(\mathfrak{a}) \neq \operatorname{Spi} A$. For $\mathcal{C}(\mathfrak{a})$, there exists an index set, Ω , such that for each $\alpha \in \Omega$, there is a positive integer n_{α} and $\mathfrak{a}_{\alpha 1}, \ldots, \mathfrak{a}_{\alpha n_{\alpha}} \in \operatorname{Idl} A$ such that

$$\mathcal{C}\!\ell(\mathfrak{a}) = \bigcap_{\alpha \in \Omega} \left(\bigcup_{i=1}^{n_{\alpha}} \mathcal{V}(\mathfrak{a}_{\alpha i}) \right).$$

Since by hypothesis, $\mathcal{C}(\mathfrak{a}) \neq \operatorname{Spi} A$, without loss of generality, assume that $\bigcup_{i=1}^{n_{\alpha}} \mathcal{V}(\mathfrak{a}_{\alpha i}) \neq \emptyset$, for each α . Therefore, $\mathfrak{a} \in \bigcup_{i=1}^{n_{\alpha}} \mathcal{V}(\mathfrak{a}_{\alpha i})$, for each α , and from that we have

$$\mathcal{V}(\mathfrak{a}) \subseteq \bigcup_{i=1}^{n_{lpha}} \mathcal{V}(\mathfrak{a}_{lpha i})$$

i.e., $\mathcal{V}(\mathfrak{a}) \subseteq \mathcal{C}(\mathfrak{a})$, and this completes the proof.

A Zariski space Spec A is connected if and only if the k-algebra A does not have any non-trivial idempotent elements. For a k-space the situation is much simpler.

Theorem 2.7. Every k-space Spi A is connected.

Proof. Since by Proposition 2.2 (6), Spi $A = \mathcal{V}(\mathfrak{o})$ and since irreducibility implies connectedness, the desired claim immediately follows from Theorem 2.6.

It is known that every Noetherian space can be represented as a finite union of non-empty irreducible closed subsets. For a k-space Spi A, this representation

is always possible irrespective of A being Noetherian and hence $\operatorname{Spi} A$ being Noetherian. This follows from the fact that $\mathcal{V}(\mathfrak{o})$ is irreducible in $\operatorname{Spi} A$.

Next, we wish to prove that every non-empty irreducible closed subset of a k-space has a unique generic point. To this end, notice that if K is an irreducible closed subset of a topological space X and S is a closed subbase of X, then it is known (see Harris [3, §7.2]) that K is the intersection of members of S. For a k-space we get more. In other words, the converse of Theorem 2.6 is also true.

Lemma 2.8. If K is a non-empty irreducible closed subset of a k-space Spi A, then $K = \mathcal{V}(\mathfrak{a})$ for some $\mathfrak{a} \in \text{Spi } A$.

Proposition 2.9. Every k-space is sober.

Proof. It follows from Lemma 2.8 that every non-empty irreducible closed subset of Spi A is of the form $\mathcal{V}(\mathfrak{a})$, where $\mathfrak{a} \in \text{Spi } A$. Let $\mathcal{V}(\mathfrak{a})$ be a non-empty irreducible closed subset of Spi A. Since $\mathfrak{a} \in \mathcal{V}(\mathfrak{a})$, we have $\mathcal{C}\ell(\mathfrak{a}) \subseteq \mathcal{V}(\mathfrak{a})$. Therefore, to show $\mathcal{V}(\mathfrak{a})$ has a generic point, it is now sufficient to show that $\mathcal{C}\ell(\mathfrak{a}) \supseteq \mathcal{V}(\mathfrak{a})$. Since $\mathcal{C}_{\mathcal{V}}$ is a closed subbase of Spi A, the required containment follows from Lemma 2.6. Moreover, by Proposition 2.5, every k-space is T_0 . So, we have the uniqueness of a generic point.

According to Hochster [4], a topological space is called *spectral* if it is quasicompact, sober, admitting a basis of quasi-compact open subspaces that is closed under finite intersections. It has also been shown in [4] that a Zariski space is spectral. We wish to show that a k-space is also spectral and our proof is constructible topology-independent and avoids the checking of the existence of a basis of quasi-compact open subspaces that is closed under finite intersections. The key to our proof is the following

Lemma 2.10. A quasi-compact, sober, open subspace of a spectral space is spectral.

Proof. Suppose S is a quasi-compact, sober, open subspace of a spectral space X. Since S is quasi-compact and sober, it is sufficient to prove that the set \mathcal{O}_S of compact open subsets of S forms a basis of a topology that is closed under finite intersections. It is obvious that a subset T of S is open in S if and only if T is open in X, and hence a subset T of S belongs to \mathcal{O}_S if and only if T belongs to \mathcal{O}_X . Now using these facts, we argue as follows.

Let U be an open subset of S. Since U is also open in X, we have $U = \bigcup \mathcal{U}$, for some subset \mathcal{U} of \mathcal{O}_X . But each element of \mathcal{U} being a subset of U is a subset of S, and it belongs to \mathcal{O}_S . Therefore, every open subset of S can be presented as a union of compact open subsets of S. Now it remains to prove that \mathcal{O}_S is closed under finite intersections, but this immediately follows from the fact that \mathcal{O}_X is closed under finite intersections.

Theorem 2.11. Every k-space is spectral.

Proof. It is well known (see Priestley [5, Theorem 4.2]) that the set Idl A endowed with a k-topology is spectral. Now, if we extend the domain of \mathcal{V} to

Idl A, then it is easy to see that with some routine changes of notation in the proof, Theorem 2.6 still holds. Moreover, we have $\{A\} = \mathcal{V}(A) = \mathcal{C}\ell(A)$, and therefore Idl A\Spi A is closed, and that implies Spi A is open. The desired claim now follows from Lemma 2.10, Proposition 2.4, and Proposition 2.9.

Once we have k-spaces, it is natural to consider the continuous maps between such spaces. Using subbasic-closed-set formulation of continuity, we obtain the following properties.

Proposition 2.12. Let $\phi: A \to A'$ be a k-algebra homomorphism and $\mathfrak{b} \in$ Spi A'. Then

- (1) the map $\phi^* \colon \operatorname{Spi} A' \to \operatorname{Spi} A$ defined by $\phi^*(\mathfrak{b}) = f^{-1}(\mathfrak{b})$ is continuous;
- (2) if φ is surjective, then the k-space Spi A' is homeomorphic to the closed subspace V(ker φ) of the k-space Spi A;
- (3) the image $\phi^*(\operatorname{Spi} A')$ is dense in $\operatorname{Spi} A$ if and only if

$$\ker \phi \subseteq \bigcap_{\mathfrak{s} \in \operatorname{Spi} A} \mathfrak{s};$$

(4) if A_S is the localization of a k-algebra A at a multiplicative closed subset S, then there is a closed, continuous, and injective map from the k-space $\operatorname{Spi}(R_S)$ to the k-space

$$(\operatorname{Spi} A)_S := \{ \mathfrak{s} \in \operatorname{Spi} A \mid \mathfrak{s} \cap S = \emptyset \}.$$

Proof. To show (1), let $\mathcal{V}(\mathfrak{a})$ be a subbasic closed set of the ideal space Spi A. Observe that

$$(\phi^*)^{-1}(\mathcal{V}(\mathfrak{a})) = \{\mathfrak{b} \in \operatorname{Spi} A' \mid \phi(\mathfrak{a}) \subseteq \mathfrak{b}\} = \mathcal{V}(\langle \phi(\mathfrak{a}) \rangle),$$

and hence the map ϕ^* continuous. For the homeomorphism in (2), observe that ker $\phi \subseteq \phi^{-1}(\mathfrak{b})$, in other words, $\phi^*(\mathfrak{b}) \in \mathcal{V}(\ker \phi)$. This implies that $\operatorname{im} \phi^* = \mathcal{V}(\ker \phi)$. Since for all $\mathfrak{b} \in \operatorname{Spi} A'$,

$$\phi(\phi^*(\mathfrak{b})) = \mathfrak{b} \cap \operatorname{im} \phi = \mathfrak{b},$$

the map ϕ^* is injective. To show that ϕ^* is a closed map, first we observe that for any subbasic closed subset $\mathcal{V}(\mathfrak{a})$ of Spi A', we have

$$\phi^*(\mathcal{V}(\mathfrak{a})) = \phi^{-1}\{\mathfrak{i}' \in \operatorname{Spi} A' \mid \mathfrak{a} \subseteq \mathfrak{i}'\} = \mathcal{V}(\phi^{-1}(\mathfrak{a})).$$

Now if K is a closed subset of $\operatorname{Spi} A'$ and if

$$K = \bigcap_{\alpha \in \Omega} \left(\bigcup_{i=1}^{n_{\alpha}} \mathcal{V}(\mathfrak{a}_{i\alpha}) \right),$$

then

$$\phi^*(K) = \phi^{-1}\left(\bigcap_{\alpha \in \Omega} \left(\bigcup_{i=1}^{n_\alpha} \mathcal{V}(\mathfrak{a}_{i\alpha})\right)\right) = \bigcap_{\alpha \in \Omega} \bigcup_{i=1}^{n_\alpha} \mathcal{V}(\phi^{-1}(\mathfrak{a}_{i\alpha}))$$

a closed subset of Spi A. Since ϕ^* is continuous, we have the proof. To prove (3), we first show that $\mathcal{C}\ell(\phi^*(\mathcal{V}(\mathfrak{b}))) = \mathcal{V}(\phi^{-1}(\mathfrak{b}))$, for all ideals $\mathfrak{b} \in R'$. To this end, let $\mathfrak{s} \in \phi^*(\mathcal{V}(\mathfrak{b}))$. This implies $\phi(\mathfrak{s}) \in \mathcal{V}(\mathfrak{b})$, which means $\mathfrak{b} \subseteq \phi(\mathfrak{s})$.

Appl. Gen. Topol. 25, no. 2 381

© AGT, UPV, 2024

In other words, $\mathfrak{s} \in \mathcal{V}(\phi^{-1}(\mathfrak{b}))$. The other inclusion follows from the fact that $\phi^{-1}(\mathcal{V}(\mathfrak{b})) = \mathcal{V}(\phi^{-1}(\mathfrak{b}))$. Since

$$\mathcal{C}\ell(\phi^*(\operatorname{Spi} A')) = \mathcal{V}(\phi^{-1}(\mathfrak{o})) = \mathcal{V}(\ker \phi),$$

the closed subspace $\mathcal{V}(\ker \phi)$ is equal to Spi A if and only if $\ker \phi \subseteq \bigcap_{\mathfrak{s} \in \text{Spi} A}\mathfrak{s}$. Finally, to have (4), it is easy to see that the ring homomorphism $\phi \colon A \to A_S$ defined by $\phi(r) = r/1$ induces a map $\phi^* \colon \text{Spi} A_S \to \text{Spi} A$ defined by $\phi^*(\mathfrak{a}) = \phi^{-1}(\mathfrak{a})$. We claim that $\phi^*(\mathfrak{a}) \cap S = \emptyset$. If not, let $s \in \phi^*(\mathfrak{a}) \cap S$. Then

$$\phi(s) \in \phi(\phi^{-1}(\mathfrak{a}) \cap S) = \phi(\phi^{-1}(\mathfrak{a})) \cap \phi(S) = \mathfrak{a} \cap \phi(S),$$

and hence $\phi(s) \in \mathfrak{a}$. Since $\phi(s)$ is a unit in A_S , this implies $\mathfrak{a} = A_S$, a contradiction. Therefore, ϕ^* is indeed a map from Spi A_S to $(\text{Spi } A)_S$. If $\phi^*(\mathfrak{a}) = \phi^*(\mathfrak{b})$ for some $\mathfrak{a}, \mathfrak{b} \in \text{Spi } A_S$, then

$$\mathfrak{a} = \phi(\phi^{-1}(\mathfrak{a})) = \phi(\phi^{-1}(\mathfrak{b})) = \mathfrak{b}$$

shows that ϕ^* is injective. The map $\phi^* \colon \operatorname{Spi} A_S \to \operatorname{Spi} A \setminus S$ is continuous follows from (1). Since $\phi^*(\mathcal{V}(\mathfrak{a})) = \mathcal{V}(\phi^{-1}(\mathfrak{a}))$, the map ϕ^* is also closed. Therefore, ϕ^* has the desired properties.

Corollary 2.13. The k-space $\text{Spi}(A/\mathfrak{a})$ is homeomorphic to the closed subspace $\mathcal{V}(\mathfrak{a})$ of Spi A.

Remark 2.14. From Proposition 2.12, we get the well-known result that the Zariski spaces Spec A and Spec $(A/\sqrt{\mathfrak{o}})$ are canonically homeomorphic, and $\phi^*(\operatorname{Spec} A')$ is dense in Spec A if and only if ker $\phi \subseteq \mathcal{V}(\mathfrak{o})$.

3. CONCLUSION

The generalizations like schemes, algebraic spaces of algebraic varieties still do not answer how to do algebraic geometry when polynomial equations have solutions over a k-algebra which is not an integral domain. Inclusion of zero divisors immediately brings the following two problems in Grothendieck's scheme theory:

(1) the algebraic sets $\{\mathcal{V}(\mathfrak{a})\}_{\mathfrak{a}\in \mathrm{Idl}\,A}$ no longer form a Zariski topology; and

(2) we do not get a sheaf of local rings.

The alternative topology (k-topology) proposed here handles the problem (1). But we do not know how to resolve problem (2). Considering Spi A is not good enough to obtain a sheaf of local rings. For, if $S = A \$ s, for some $\mathfrak{s} \in \operatorname{Spec} A$, then S is a multiplicatively closed set and hence we can have a local algebra A_S at S. But if $\mathfrak{s} \in \operatorname{Spi} A$, then the set S is no longer necessarily multiplicatively closed. Therefore, inclusion of zero divisors in varieties might require a completely different treatment to study local properties of geometric objects.

Table 2 summarizes major results in this paper and compared them with Zariski spaces.

k-spaces of non-domain-valued geometric points

EGA I	Proposed idea	
Field-valued polynomial equations	k-algebra-valued polynomial equations	
The set $\operatorname{Spec} A$ of prime ideals of A	The set $\operatorname{Spi} A$ of proper ideals of A	
$\mathcal{V}(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{a} \subseteq \mathfrak{p}\}$	$\mathcal{V}(\mathfrak{a}) = \{\mathfrak{s} \in \operatorname{Spi} A \mid \mathfrak{a} \subseteq \mathfrak{s}\}$	
$\mathcal{V}(\mathfrak{a})\cup\mathcal{V}(\mathfrak{b})=\mathcal{V}(\mathfrak{a}\cap\mathfrak{b})=\mathcal{V}(\mathfrak{a}\mathfrak{b}).$	$\mathcal{V}(\mathfrak{a})\cup\mathcal{V}(\mathfrak{b})\subseteq\mathcal{V}(\mathfrak{a}\cap\mathfrak{b})\subseteq\mathcal{V}(\mathfrak{a}\mathfrak{b}).$	
$\mathcal{V}(\mathfrak{a}) = \mathcal{V}(\sqrt{\mathfrak{a}})$	$\mathcal{V}(\mathfrak{a}) \supseteq \mathcal{V}(\sqrt{\mathfrak{a}})$	
$\mathcal{IV}(\mathfrak{a})=\sqrt{\mathfrak{a}}$	$\mathcal{IV}(\mathfrak{a})\supseteq\mathfrak{a},$	
Zariski topology	k-topology	
Compact and T_0	Compact and T_0	
$\{\mathcal{V}(\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Spec} A\}$ are irreducible	Non-empty subbasic closed sets are irreducible	
Sober	Sober	
Spectral	Spectral	
Spec A is connected iff A does not	$\operatorname{Spi} A$ is always connected	
have any non-trivial idempotent elements		

Table 2: Zariski spaces vs. k-spaces

ACKNOWLEDGEMENTS. The author wishes to extend heartfelt gratitude to the anonymous referee for their thorough review and invaluable feedback, which greatly enhanced the paper's presentation.

References

- T. Dube and A. Goswami, Ideal spaces: an extension of structure spaces of a ring, J. Algebra Appl. 22, no. 11 (2023), Paper No. 2350245, 18 pp.
- [2] A. Grothendieck, Éléments de géométrie algébrique I, Springer-Verlag, Berlin, 1971.
- [3] D. Harris, Universal quasi-compact T_1 spaces, General Topology and Appl. 3 (1973), 291–318.
- [4] M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142 (1969), 43–60.
- [5] H. A. Priestley, Intrinsic spectral topologies, in: Papers on general topology and applications (Flushing, NY, 1992), 728, 78–95, New York Acad. Sci., New York, 1994.