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Abstract

The aim of this paper is to study the topological properties of algebraic
sets with zero divisors. We impose a subbasic topology on the set of
proper ideals of a k-algebra and this new “k-space” becomes a gener-
alization of the corresponding Zariski space. We prove that a k-space
is T0, quasi-compact, spectral, and connected. Moreover, we study
continuous maps between such k-spaces. We conclude with a question
about construction of a sheaf of k-spaces similar to affine schemes.
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1. Introduction

In the introduction of [2], Grothendieck described the process of getting the
spectrum of prime ideals (also called geometric points) starting from a system
of polynomial equations. In brief, it is as follows.

Suppose k is a commutative ring with identity. Let PI = k[(xi)i∈I ] be a ring
of polynomials in the indeterminates xi with coefficients in k, and I be an index
set (not necessarily finite). Let S = {pj}j∈J be a system of polynomials of PI ,
where the index set J is also not necessarily finite. An element a = (ai)i∈I of
a k-algebra A is called a solution of the system S if pj(a) = 0 for all j ∈ J.
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If Algk and Sets respectively denote the categories of k-algebras and sets,
then a functor

VS : Algk → Sets

represents the solutions of some system S of polynomial equations with coeffi-
cients in k if and only if VS is representable, i.e., VS is isomorphic to RA for
some object A in Algk. Conversely, for every object A in Algk the representable
functor RA is isomorphic to some VS . The functor RA is called the affine al-
gebraic space over k represented by A. The category Affk of affine algebraic
spaces has representable functors RA (A is an object in Algk) as objects and
morphisms are defined as natural transformations, i.e., they are the induced
maps

µ(f) : HomAlgk(A,B)→ HomAlgk(A′, B)

obtained from morphisms f : A′ → A in Algk. An A′-valued point is a k-algebra
homomorphism f : A → A′, i.e., f is an element of the set HomAlgk(A,A′). If
we restrict A′ to be an object of the full subcategory Fieldk of Algk then the
elements of HomAlgk(A,A′) are called geometric points.

We define an equivalence relation between geometric points as follows. We
say two geometric points f ′ : A → A′ and f ′′ : A → A′′ are equivalent if there
exists a third geometric point f : A→ A1 and k-algebra morphisms g′ : A′ → A1

and g′′ : A′′ → A1 such that

f = g′′ ◦ f ′′ = g′ ◦ f ′ (1.1)

i.e., the following diagram commutes:

A
f ′ //

f ′′

��

f

!!

A′

g′

��
A′′

g′′ // A1.

Since g′ and g′′ are monomorphisms, we observe that the condition (1.1) is
equivalent to kerf ′ = kerf ′′. Therefore, the equivalence classes of the above
relation are in bijection with the prime ideals of A. Now there is a bijection
between geometric points and prime ideals of a k-algebra A. The loci of a
k-algebra A is the equivalence classes of geometric points.

The spectrum of A (denoted by SpecA) is defined as the set of prime ideals
of A, i.e., X = SpecA = {p | p is a prime ideal of A}. For S = {pj}j∈J be a
system of polynomials of PI , let V(S) be the subset of SpecA defined by

V(S) = {set of loci of u ∈ RA(A′) | fi(u) = 0,∀i∈I fi ∈ S},

where fi(u) is defined by fi(u) = u(fi). From the above definition of V(S), we
immediately see

V(S) = {p ∈ X | S ⊆ p}.
From the above, we observe that in order to obtain the SpecA, we worked with
the full subcategory Fieldk of Algk.
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If we remove this ‘restriction’ on the k-algebra, what we obtain is a spectrum
IdlA of all ideals (instead of prime ideals) of A. This will allow us to study
polynomial equations having solutions in any k-algebra (not necessarily a field).
Since A /∈ SpecA, we also consider the set SpiA of all proper ideals of A as our
‘generalized’ spectrum on which we endow a topology and call it a k-space. Our
choice of the notation SpiA is to have an ‘alignment’ with the notation SpmA
of maximal ideals of A as in Grothendieck [2]. A k-space is a generalization of
a Zariski space (i.e., SpecA endowed with a Zariski topology). The purpose
of this paper is to study topological properties of k-spaces and simultaneously
compare them with Zariski spaces.

2. k-spaces

To construct a k-space, we use two maps defined in Proposition 2.2. Similar
maps also appear when we take values of polynomials over an integral domain
(to impose a Zariski topology on a SpecA). Before we discuss properties of
these maps, let us see an example in our context.

Example 2.1. We consider a k-algebra with zero divisors and its algebraic
sets. The polynomials listed in the Table 1 are of minimal degrees.

Subsets Polynomials Algebraic Polynomials

of Z4 sets of Z4

∅ Z4\{0} ∅ 1

{0} {ax} {0} x

{1} {ax + b | a + b = 0} {1} x + 3

{2} {ax + b | 2a + b = 0} {2} (x + 2)

{3} {ax + b | 3a + b = 0} {3} x + 1

{0, 1} {ax2 + bx + c | a + b = 0, c = 0} {0, 1} x(x + 3)

{0, 2} {ax2 + bx + c | 2b = 0, c = 0} {0, 2} x(x + 2)

{0, 3} {ax2 + bx + c | a + 3b = 0, c = 0} {0, 3} x(x + 1)

{1, 2} {ax2 + bx + c | a− b = 0, 2a + c = 0} {1, 2} (x + 3)(x + 2)

{1, 3} {ax2 + bx + c | 2b = 0, 2a + 2c = 0} {1, 3} (x + 3)(x + 1)

{2, 3} {ax2 + bx + c | a + b = 0, 2b + c = 0} {2, 3} (x + 2)(x + 1)

{0, 1, 2} {ax2 + bx + c | a + b = 0, 2b = 0} {0, 1, 2} x(x + 3)(x + 2)

{0, 1, 3} {ax2 + bx + c | a + b = 0, 2b = 0} {0, 1, 3} x(x + 3)(x + 1)

{0, 2, 3} {ax2 + bx + c | a + b = 0, 2b = 0} {0, 2, 3} x(x + 2)(x + 1)

{1, 2, 3} {ax2 + bx + c | a + b = 0, 2b = 0} {1, 2, 3} (x + 3)(x + 2)(x + 1)

Z4 {ax + b | a = 0, b = 0} Z4 x(x + 3)(x + 2)(x + 1)

Table 1: Algebraic sets of Z4

Proposition 2.2. Define the maps SpiA
I //

P(A)
V

oo as follows:

V({x}) = {a ∈ SpiA | x ∈ a}, I(S) = ∩{s | s ∈ S},
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with S ⊆ SpiA. Here P(A) denotes the power set of A. Then V and I satisfy
the following properties.

(1) V(S) = V(〈S〉), where 〈S〉 is the ideal of A generated by the subset S.
(2) The map V is order reversing and surjective.
(3) If a is a non-radical ideal of A, then V(a) ( V(

√
a) if and only if A has

non-zero zero divisors.
(4) For any two ideals a, b of A, we have

V(a) ∪ V(b) ⊆ V(a ∩ b) ⊆ V(ab).

(5) For a family of sets {V(aα)}α∈Γ, we have
⋂
α∈Γ V(aα) = V

(∑
α∈Γ aα

)
.

(6) V(a) = SpiA if and only if a = o, where o is the zero ideal of A. If
V(a) = ∅, then a = A.

(7) For any two ideals a, b of A and b ⊆
√
a implies V(

√
a) ⊆ V(b).

(8) The map I is order reversing and surjective.
(9) I(∅) = A and I

(⋃
λ∈Λ Tλ

)
=
⋂
λ∈Λ I (Tλ) .

(10) If T is a subset of SpiA and a is an ideal of A, then IV(a) ⊇ a, and
VI(T ) = T.

(11) the collections CV = {V(a) | a ∈ Idl(A)} and CVI = {VI(S) | S ∈
P(SpiA)} of sets are identical, where IdlA denotes the poset (under
inclusion) of all ideals of A.

Remark 2.3. Notice that for SpecA and for any ideal a of A, we always have
equalities in (3) and (4). Note that for SpecA, we always have: IV(a) =

√
a,

the radical of a (cf. Proposition 2.2 (10))

2.1. k-topologies. In case of SpecA, the sets {V(a)}a∈IdlA are closed under
finite unions and we obtain the usual Zariski topology on SpecA. But that
closure property fails to hold for SpiA (see Theorem 2.2(4)). However, as a
sub-base, CV or equivalently by CVI (see Proposition 2.2 (11)) induces a unique
topology on SpiA, which we call the k-topology. We denote the corresponding
topological space by (SpiA, CV), and in short, call it a k-space. With the abuse
of notation we shall also denote the space by SpiA. A k-topology coincides
with the Zariski topology whenever we restrict SpiA to SpecA. Note that a
study of a similar topology on various classes of ideals of a ring has been done
in Dube and Goswami [1].

It is well-known that a Zariski space is quasi-compact. The same holds for
a k-space. In the proof we shall use the Alexander Subbase Theorem.

Proposition 2.4. A k-space is quasi-compact.

Proof. Let {Kα}α∈Λ be a family of subbasic closed sets of an k-space SpiA
such that

⋂
α∈ΛKα = ∅. Let {sα}α∈Λ be a family of ideals of A such that

∀α ∈ Λ, Kα = V(sα). Since

⋂
α∈Λ

V(sα) = V

(∑
α∈Λ

sα

)
,
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we get V
(∑

α∈Λ sα
)

= ∅, and that by Proposition 2.2 (6) implies
∑
α∈Λ sα =

A. Then, in particular, we obtain 1 =
∑
αi∈Λ sαi , where sαi ∈ sαi and sαi 6= 0

for i = 1, . . . , n. This implies A =
∑n
i=1 sαi . Therefore,

⋂n
i=1Kαi = ∅, and

hence by Alexander subbase theorem, SpiA is quasi-compact. �

Since V(a) 6= V(a′) for any two distinct elements a and a′ of IdlA, we
immediately have

Proposition 2.5. Every k-space is T0.

It is known that {V(p) | p ∈ SpecA} are exactly the irreducible closed
subsets of a Zariski space. For a k-space, the situation is more intriguing.

Theorem 2.6. Every non-empty subbasic closed subset of a k-space is irre-
ducible.

Proof. Since for every non-empty subbasic closed subset V(a) of a k-space SpiA,
the ideal a is also in SpiA, it is sufficient to show that V(a) = C̀ (a) for every
a ∈ SpiA. Observe that C̀ (a) is the smallest closed set containing a and V(a) is
a closed set such that a ∈ SpiA.Therefore, C̀ (a) ⊆ V(a).To obtain the reverse
inclusion, first consider the case: C̀ (a) = SpiA. Since

SpiA = C̀ (a) ⊆ V(a) ⊆ SpiA,

we obtain V(a) = C̀ (a). Now, let C̀ (a) 6= SpiA. For C̀ (a), there exists an
index set, Ω, such that for each α ∈ Ω, there is a positive integer nα and
aα1, . . . , aαnα ∈ IdlA such that

C̀ (a) =
⋂
α∈Ω

(
nα⋃
i=1

V(aαi)

)
.

Since by hypothesis, C̀ (a) 6= SpiA, without loss of generality, assume that⋃nα
i=1V(aαi) 6= ∅, for each α. Therefore, a ∈

⋃nα
i=1V(aαi), for each α, and from

that we have

V(a) ⊆
nα⋃
i=1

V(aαi),

i.e., V(a) ⊆ C̀ (a), and this completes the proof. �

A Zariski space SpecA is connected if and only if the k-algebra A does not
have any non-trivial idempotent elements. For a k-space the situation is much
simpler.

Theorem 2.7. Every k-space SpiA is connected.

Proof. Since by Proposition 2.2 (6), SpiA = V(o) and since irreducibility
implies connectedness, the desired claim immediately follows from Theorem
2.6. �

It is known that every Noetherian space can be represented as a finite union
of non-empty irreducible closed subsets. For a k-space SpiA, this representation
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is always possible irrespective of A being Noetherian and hence SpiA being
Noetherian. This follows from the fact that V(o) is irreducible in SpiA.

Next, we wish to prove that every non-empty irreducible closed subset of a k-
space has a unique generic point. To this end, notice that if K is an irreducible
closed subset of a topological space X and S is a closed subbase of X, then it
is known (see Harris [3, §7.2]) that K is the intersection of members of S. For a
k-space we get more. In other words, the converse of Theorem 2.6 is also true.

Lemma 2.8. If K is a non-empty irreducible closed subset of a k-space SpiA,
then K = V(a) for some a ∈ SpiA.

Proposition 2.9. Every k-space is sober.

Proof. It follows from Lemma 2.8 that every non-empty irreducible closed sub-
set of SpiA is of the form V(a), where a ∈ SpiA. Let V(a) be a non-empty irre-
ducible closed subset of SpiA. Since a ∈ V(a), we have C̀ (a) ⊆ V(a). Therefore,
to show V(a) has a generic point, it is now sufficient to show that C̀ (a) ⊇ V(a).
Since CV is a closed subbase of SpiA, the required containment follows from
Lemma 2.6. Moreover, by Proposition 2.5, every k-space is T0. So, we have the
uniqueness of a generic point. �

According to Hochster [4], a topological space is called spectral if it is quasi-
compact, sober, admitting a basis of quasi-compact open subspaces that is
closed under finite intersections. It has also been shown in [4] that a Zariski
space is spectral. We wish to show that a k-space is also spectral and our
proof is constructible topology-independent and avoids the checking of the ex-
istence of a basis of quasi-compact open subspaces that is closed under finite
intersections. The key to our proof is the following

Lemma 2.10. A quasi-compact, sober, open subspace of a spectral space is
spectral.

Proof. Suppose S is a quasi-compact, sober, open subspace of a spectral space
X. Since S is quasi-compact and sober, it is sufficient to prove that the set OS
of compact open subsets of S forms a basis of a topology that is closed under
finite intersections. It is obvious that a subset T of S is open in S if and only
if T is open in X, and hence a subset T of S belongs to OS if and only if T
belongs to OX . Now using these facts, we argue as follows.

Let U be an open subset of S. Since U is also open in X, we have U = ∪U ,
for some subset U of OX . But each element of U being a subset of U is a subset
of S, and it belongs to OS. Therefore, every open subset of S can be presented
as a union of compact open subsets of S. Now it remains to prove that OS
is closed under finite intersections, but this immediately follows from the fact
that OX is closed under finite intersections. �

Theorem 2.11. Every k-space is spectral.

Proof. It is well known (see Priestley [5, Theorem 4.2]) that the set IdlA en-
dowed with a k-topology is spectral. Now, if we extend the domain of V to
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IdlA, then it is easy to see that with some routine changes of notation in the
proof, Theorem 2.6 still holds. Moreover, we have {A} = V(A) = C̀ (A), and
therefore IdlA\SpiA is closed, and that implies SpiA is open. The desired
claim now follows from Lemma 2.10, Proposition 2.4, and Proposition 2.9. �

Once we have k-spaces, it is natural to consider the continuous maps between
such spaces. Using subbasic-closed-set formulation of continuity, we obtain the
following properties.

Proposition 2.12. Let φ : A → A′ be a k-algebra homomorphism and b ∈
SpiA′. Then

(1) the map φ∗ : SpiA′ → SpiA defined by φ∗(b) = f−1(b) is continuous;
(2) if φ is surjective, then the k-space SpiA′ is homeomorphic to the closed

subspace V(kerφ) of the k-space SpiA;
(3) the image φ∗(SpiA′) is dense in SpiA if and only if

kerφ ⊆
⋂

s∈SpiA

s;

(4) if AS is the localization of a k-algebra A at a multiplicative closed subset
S, then there is a closed, continuous, and injective map from the k-
space Spi(RS) to the k-space

(SpiA)S := {s ∈ SpiA | s ∩ S = ∅}.

Proof. To show (1), let V(a) be a subbasic closed set of the ideal space SpiA.
Observe that

(φ∗)−1(V(a)) = {b ∈ SpiA′ | φ(a) ⊆ b} = V(〈φ(a)〉),
and hence the map φ∗ continuous. For the homeomorphism in (2), observe
that kerφ ⊆ φ−1(b), in other words, φ∗(b) ∈ V(kerφ). This implies that
imφ∗ = V(kerφ). Since for all b ∈ SpiA′,

φ(φ∗(b)) = b ∩ imφ = b,

the map φ∗ is injective. To show that φ∗ is a closed map, first we observe that
for any subbasic closed subset V(a) of SpiA′, we have

φ∗(V(a)) = φ−1{i′ ∈ SpiA′ | a ⊆ i′} = V(φ−1(a)).

Now if K is a closed subset of SpiA′ and if

K =
⋂
α∈Ω

(
nα⋃
i=1

V(aiα)

)
,

then

φ∗(K) = φ−1

(⋂
α∈Ω

(
nα⋃
i=1

V(aiα)

))
=
⋂
α∈Ω

nα⋃
i=1

V(φ−1(aiα)),

a closed subset of SpiA. Since φ∗ is continuous, we have the proof. To prove
(3), we first show that C̀ (φ∗(V(b))) = V(φ−1(b)), for all ideals b ∈ R′. To
this end, let s ∈ φ∗(V(b)). This implies φ(s) ∈ V(b), which means b ⊆ φ(s).

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 381



A. Goswami

In other words, s ∈ V(φ−1(b)). The other inclusion follows from the fact that
φ−1(V(b)) = V(φ−1(b)). Since

C̀ (φ∗(SpiA′)) = V(φ−1(o)) = V(kerφ),

the closed subspace V(kerφ) is equal to SpiA if and only if kerφ ⊆ ∩s∈SpiAs.
Finally, to have (4), it is easy to see that the ring homomorphism φ : A→ AS
defined by φ(r) = r/1 induces a map φ∗ : SpiAS → SpiA defined by φ∗(a) =
φ−1(a). We claim that φ∗(a) ∩ S = ∅. If not, let s ∈ φ∗(a) ∩ S. Then

φ(s) ∈ φ(φ−1(a) ∩ S) = φ(φ−1(a)) ∩ φ(S) = a ∩ φ(S),

and hence φ(s) ∈ a. Since φ(s) is a unit in AS , this implies a = AS , a contradic-
tion. Therefore, φ∗ is indeed a map from SpiAS to (SpiA)S . If φ∗(a) = φ∗(b)
for some a, b ∈ SpiAS , then

a = φ(φ−1(a)) = φ(φ−1(b)) = b

shows that φ∗ is injective. The map φ∗ : SpiAS → SpiA\S is continuous follows
from (1). Since φ∗(V(a)) = V(φ−1(a)), the map φ∗ is also closed. Therefore,
φ∗ has the desired properties. �

Corollary 2.13. The k-space Spi (A/a) is homeomorphic to the closed subspace
V(a) of SpiA.

Remark 2.14. From Proposition 2.12, we get the well-known result that the
Zariski spaces SpecA and Spec(A/

√
o) are canonically homeomorphic, and

φ∗(SpecA′) is dense in SpecA if and only if kerφ ⊆ V(o).

3. Conclusion

The generalizations like schemes, algebraic spaces of algebraic varieties still
do not answer how to do algebraic geometry when polynomial equations have
solutions over a k-algebra which is not an integral domain. Inclusion of zero di-
visors immediately brings the following two problems in Grothendieck’s scheme
theory:

(1) the algebraic sets {V(a)}a∈IdlA no longer form a Zariski topology; and
(2) we do not get a sheaf of local rings.

The alternative topology (k-topology) proposed here handles the problem
(1). But we do not know how to resolve problem (2). Considering SpiA is
not good enough to obtain a sheaf of local rings. For, if S = A\s, for some
s ∈ SpecA, then S is a multiplicatively closed set and hence we can have a
local algebra AS at S. But if s ∈ SpiA, then the set S is no longer necessarily
multiplicatively closed. Therefore, inclusion of zero divisors in varieties might
require a completely different treatment to study local properties of geometric
objects.

Table 2 summarizes major results in this paper and compared them with
Zariski spaces.
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EGA I Proposed idea

Field-valued polynomial equations k-algebra-valued polynomial equations

The set SpecA of prime ideals of A The set SpiA of proper ideals of A

V(a) = {p ∈ SpecA | a ⊆ p} V(a) = {s ∈ SpiA | a ⊆ s}
V(a) ∪ V(b) = V(a ∩ b) = V(ab). V(a) ∪ V(b) ⊆ V(a ∩ b) ⊆ V(ab).

V(a) = V(
√
a) V(a) ⊇ V(

√
a)

IV(a) =
√
a IV(a) ⊇ a,

Zariski topology k-topology

Compact and T0 Compact and T0

{V(p) | p ∈ SpecA} are irreducible Non-empty subbasic closed sets are irreducible

Sober Sober

Spectral Spectral

SpecA is connected iff A does not SpiA is always connected

have any non-trivial idempotent elements

Table 2: Zariski spaces vs. k-spaces
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