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Abstract

Given a metric continuum X, we consider the collection of all regular
subcontinua of X and the collection of all meager subcontinua of X,
these hyperspaces are denoted by D(X) and M(X), respectively. It
is known that D(X) is compact if and only if D(X) is finite. In this
way, we find some conditions related about the cardinality of D(X) and
we reduce the fact to count the elements of D(X) to a Graph Theory
problem, as an application of this, we prove in particular that |D(X)| 6∈
{2, 3, 4, 5, 8, 9} for any continuum X. Also, we prove that D(X) is never
homeomorphic to N. On the other hand, given a point p ∈ X, we
consider the meager composant and the filament composant of p in X,
denoted by MX

p and FcsX(p), respectively, and we study some relations

between MX
p and FcsX(p) such as the equality of them as a subset of

X. Also, we construct examples showing that the collection Fcs(X) =
{FcsX(p) : p ∈ X} can be homeomorphic to: any finite discrete space,
the harmonic sequence, the closure of the harmonic sequence and the
Cantor set. Finally, we study the contractibility of M(X); we prove the
arc of pseudo-arcs, which is a no contractible continuum, satisfies that
its hyperspace of meager subcontinua is contractible, given a solution
to Problem 3 of [10]. Most of the results shown in this paper are focus
to answer problems and questions posed in [6], [9] and [10]. Also, we
rise open problems.
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1. Introduction

A continuum is a nonempty compact connected metric space. A closed
subset A of a continuum X is said to be regular provided that the closure of its
interior is equal to A, and A is said to be meager if the interior of A is empty.
Given a continuum X, by a hyperspace of X we mean a specified collection of
subsets of X endowed with the Hausdorff metric (see Section 2 of [3]). Two
of the most studied and useful hyperspaces for a continuum X are 2X the
hyperspace of all nonempty closed subsets of X and C(X) the hyperspace of
all connected elements of 2X . The reader interested in hyperspaces can consult
[3], [5] and [8].

Recently, in the literature have been appeared new hyperspaces, such as
the hyperspace of regular subcontinua defined as the collection of all regular
subcontinua of X and the hyperspace of meager subcontinua defined as the
collection of all meager subcontinua of X. These hyperspaces are denoted by
D(X) and M(X), respectively. The hyperespace D(X) was defined in [9] and it
is known that D(X) is not always connected [9, Example 1]; and if X is a locally
connected continuum, then D(X) is dense, contractible and arcwise connected
as a subset of C(X) [9, Theorem 3.6]. Related to the compactness of D(X), it
is know that D(X) is compact if and only if D(X) is finite [9, Corollary 4.13].
The hyperspace M(X) was introduced in [10] and it was proved that M(X) is
always connected [10, Theorem 4] but not necessarily compact [10, Theorems 7
and 8] and, if X is a locally connected continuum, then M(X) is a continuum
if and only if the union of all free arcs is dense in X [10, Corollary 3]. Also, it is
known that if X is a smooth dendroid, then M(X) is contractible [10, Theorem
17]. Readers interested in these hyperspaces can also see [11]. On the other
hand, using the structure of M(X), if p is a point of X, the meager composant
of p in X is defined as MX

p =
⋃
{A ∈ M(X) : p ∈ A}. This concept was first

described by David Bellamy in [1] and after studied in [6]. We know that if
X is either locally connected, hereditarily arcwise connected or irreducible of
type λ, then MX

p is closed for every p ∈ X and the collection {MX
p : p ∈ X} is

an usc decomposition [6, Corollary 8.2].
The purpose of this paper is to extend the study of the hyperspaces D(X)

and M(X); since D(X) is compact if and only if D(X) is finite [9, Corol-
lary 4.13], we are interested in the cardinality of the hyperspace D(X) (see
[9, Problem 4.14]) and we look for metrics spaces Y , for which there exists a
continuum X such that D(X) is homeomorphic to Y . We study the concept of
filament composant of a point p (see Definition 4.4, this concept was introduced
in [13] by J. R. Prajs and K. Whittington) and its relations with the concept
of a meager composant of the point p. Finally, we study the contractibility
of M(X). In order to do this, after Preliminaries, this paper is organized as
follows:

• Section 3 is related about the cardinality of D(X). We prove some
results (Theorems 3.2 and 3.3) that we believe can be used to prove
Problem 5.9 of [9]. Also, we reduce the fact to obtain the elements of
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D(X) of a Graph Theory problem (see Theorem 3.16 and comments
after its proof) and we prove that if X is a continuum, then |D(X)| 6∈
{2, 3, 4, 5, 8, 9}. Also, we show in Theorem 3.25 that D(X) cannot be
homeomophic to the natural numbers N.
• In Section 4, we recall the concept of filament composant and we prove

that there exists a hereditarily decomposable and irreducible contin-
uum X such that MX

x = FcsX(x) for each x ∈ X (Proposition 4.9)
and we show that if X is arcwise connected continuum, then there ex-
ists p ∈ X such that FcsX(p) 6= MX

p (Theorem 4.12). Also interesting
examples are given.
• In Section 5, we study the contractibility of M(X). We prove that the

hyperspace M(X) of both the cylinder of a contractible continuum and
the cone of every compactum space are contractible (Theorems 5.3 and
5.4). Also in Theorem 5.5 we give a solution to [10, Problem 3].

2. Preliminaries

Given a metric space X and A ⊆ X, we denote by cl(A), int(A), bd(A) and
diam(A) the closure, interior, boundary and diameter of A, respectively. A
map will be a continuous function. Given a continuum X, by a subcontinuum
of X, we mean an element of C(X). An arc is a continuum homeomorphic
to [0, 1]. If X is an arc and h : [0, 1] → X is a homeomorphism, then h(0)
and h(1) are the end points of X. A continuum is arcwise connected provided
that for every pair of their points there exists an arc containing them. Given
a continuum X and an arc α ⊆ X with end points a and b, we say that α is a
free arc if α \ {a, b} is an open subset of X. A continuum X is decomposable
if there exist two proper subcontinua A and B of X such that X = A ∪ B.
A continuum is indecomposable provided that it is not decomposable. Also, a
continuum is called hereditarily decomposable (hereditarily indecomposable) if
every nondegenerate subcontinuum is decomposable (indecomposable, respec-
tively). A triod is a continuum X where there exists a proper subcontinuum
Y of X such that X \ Y has at least three components. Furthermore, X is
atriodic provided that it does not contain any triod. A continuum X is irre-
ducible between a finite number of points if there exists a finite set F ⊆ X such
that there is not a proper subcontinuum containing F . If F has two points,
we say that X is irreducible. Particularly, if F = {p, q}, we will say that X is
irreducible between p and q. An irreducible continuum such that every inde-
composable subcontinuum has empty interior is called continuum of type λ. In
[14, Theorem 10], it is proved the following theorem:

Theorem 2.1. Let X be an irreducible continuum. Then, X is of type λ if
and only if there exists a monotone map f : X → [0, 1] such that f−1(t) has
empty interior for each t ∈ [0, 1].

Given an irreducible continuum X and a upper semicontinuous decomposi-
tion D of X, we say that D is admissible if D is a continuum for each D ∈ D,
and D is an arc. Furthermore, D is admissible minimal if int(D) = ∅ for every
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D ∈ D. Note that by Theorem 2.1, X is of type λ if and only if there exists
a minimal admissible decomposition of X. A pseudo-arc is a chainable and
hereditarily indecomposable continuum [2, Theorem 1] (see [4] for additional
information about the pseudo-arc). The arc of pseudo-arcs is a continuum of
type λ, X, such that if f : X → [0, 1] is the monotone map given in Theorem
2.1, f−1(t) is a pseudo-arc for every t ∈ [0, 1] and the admissible decomposition
{f−1(t) : t ∈ [0, 1]} is continuous.

Given continua X and Y , a map f : X → Y , and ε > 0, we say that f is
an ε-map provided that diam(f−1(y)) < ε for each y ∈ Y . A continuum X is
said to be arc-like (circle-like) provided for any ε > 0 there exists an ε-map
f : X → [0, 1] (f : X → S1 where S1 = {z ∈ C : |z| = 1}, respectively).

3. The hyperspace of regular continua

In this section we study some properties related to the cardinality of the
hyperspace of regular subcontinua D(X); for instance, our main result is The-
orem 3.25 where we show that it is not possible to find a continuum X such
that D(X) is homeomorphic to N. We divide this section in three: in the first
one, we study conditions on X to have that D(X) has more than one point; in
the second, we show in Theorem 3.16 an interesting condition to have that the
hyperspace D(X) is finite; and in the third subsection, we present necessary
and sufficient conditions in order to have that D(X) is discrete.

3.1. D(X) is not degenerated. It is well know that a continuum is indecom-
posable if and only if every proper subcontinuum has empty interior. Thus,
D(X) = {X} whenever X is an indecomposable continuum. Theorem 5.8 of [9]
presents an example of a decomposable continuum X such that D(X) = {X}.
The following is Problem 5.9 of [9].

Question 3.1. Does there exist a hereditarily decomposable continuum X for
which D(X) = {X}?

Question 3.1 is still open. The following theorem characterizes when the
hyperspace D(X) is degenerated and could be useful to solve Question 3.1.

Theorem 3.2. Let X be a continuum. Then, D(X) = {X} if, and only if, for
each K ∈ C(X) \ {X}, it satisfies some of the following conditions:

(1) int(K) = ∅; or
(2) There exist two nonempty open subsets U and V of X such that int(K) =

U ∪ V and cl(U) ∩ cl(V ) = ∅.

Proof. Suppose that D(X) = {X}. Let K ∈ C(X)\{X} such that int(K) 6= ∅.
Note that if cl(int(K)) is connected, then cl(int(K)) ∈ D(X) and cl(int(K)) 6=
X. This contradicts that D(X) = {X}. Thus, there exist two nonempty closed
subsets A and B of X such that cl(int(K)) = A ∪B. Let U = int(K) ∩A and
V = int(K)∩B. It is clear that cl(U)∩ cl(V ) = ∅. Furthermore, observe that
U = int(K)∩ (X \B) and V = int(K)∩ (X \A). Therefore, both U and V are
open subsets of X.
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Conversely, note that cl(int(K)) is not connected, for every K ∈ C(X)\{X}
such that int(K) 6= ∅. Thus, D(X) = {X}. �

Proposition 4.15 of [9] shows that if X = A1 ∪ A2, where A1 and A2 are
indecomposable continua such that |A1 ∩ A2| = 1, then X is a decomposable
and irreducible continuum such that |D(X)| = 3. Next result presents families
of decomposable continua where D(X) is nondegenerate.

Theorem 3.3. Let X be a decomposable continuum. If X satisfies some of
the following conditions, then |D(X)| ≥ 2.

(1) X is atriodic;
(2) X is irreducible between a finite number of points;
(3) X has a cut point;

Proof. Let A and B be proper subcontinua of X such that X = A ∪B.
We suppose that X is atriodic. Note X \ A has at most two components.

Hence, the closure of any component of X \ A belongs to D(X). Therefore,
|D(X)| ≥ 2.

We assume 2. Let {p1, . . . , pn} ⊆ X be such that X is irreducible between
{p1, . . . , pn}. Suppose that {pn1

, . . . , pnk
} = {p1, . . . , pn} ∩X \A. Let

J = {J component of X \A : J ∩ {pn1
, . . . , pnk

} 6= ∅}.
By [7, Theorem 5.4], cl(J) ∩ A 6= ∅ for each J ∈ J . Thus, {p1, . . . , pn} ⊆
A∪(

⋃
J∈J J) and A∪(

⋃
J∈J J) is a subcontinuum of X. Since X is irreducible

between {p1, . . . , pn}, X = A ∪ (
⋃
J∈J J). Thus, X \ A has a finite number

of components and each component is open. Therefore, the closure of any
component of X \A is regular and |D(X)| ≥ 2.

To prove the theorem using 3, we suppose that X \ {p} is not connected for
some p ∈ X. Let U and V be open subsets of X such that X\{p} = U∪V . Note
that cl(U) = U ∪ {p} and cl(V ) = V ∪ {p}. Furthermore, U ∪ {p} and V ∪ {p}
are continua, by [7, Proposition 6.3]. Thus, {U ∪{p}, V ∪{p}, X} ⊆ D(X) and
|D(X)| ≥ 3. �

Note that if X is either an arc-like continuum or a circle-like continuum,
then X is atriodic (see [5, Corollaries 2.1.43 and 2.1.46]). Hence, next result
follows from Theorem 3.3.

Corollary 3.4. Let X be a decomposable continuum. If X is either arc-like
or circle-like, then |D(X)| ≥ 2.

3.2. D(X) is finite. In [9, Corollary 4.13], it is proved that D(X) is compact
if and only if D(X) is finite. The following is Problem 4.14 of [9].

Question 3.5. For which n ∈ N, does there exist a continuum X such that
D(X) has exactly n elements?

Proposition 4.5 of [9] gives examples of positive integers n for which there
is a continuum X where |D(X)| = n. In Proposition 3.18, we summarize the
results of this section showing that |D(X)| /∈ {2, 4, 5, 8, 9} for every continuum
X.
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Proposition 3.6. Let X be a continuum and let K ∈ D(X) \ {X}. Then,

(1) if X \K is connected, then |D(X)| ≥ 3;
(2) if X \K is not connected, then |D(X)| ≥ 4.

Proof. Suppose first that X \ K is connected. Hence, cl(X \ K) is regular.
Thus, we have that {K, cl(X \K), X} ⊆ D(X) and |D(X)| ≥ 3.

Now, suppose that there exist two open subsets U and V of X such that
X \ K = U ∪ V . By [7, Proposition 6.3], U ∪ K and V ∪ K are proper
subcontinua of X. We show that both U ∪ K and V ∪ K are regular. Note
that U ∪ int(K) ⊆ int(U ∪K). Hence, cl(U ∪ int(K)) ⊆ cl(int(U ∪K)). Since
cl(U ∪ int(K)) = cl(U) ∪ cl(int(K)) = cl(U) ∪K = U ∪K,

U ∪K ⊆ cl(int(U ∪K)) ⊆ U ∪K.

Thus, cl(int(U ∪K)) = U ∪K and U ∪K is regular. Similarly, we show that
V ∪K is regular. Therefore, {K,K∪U,K∪V,X} ⊆ D(X) and |D(X)| ≥ 4. �

The next result follows from Proposition 3.6.

Corollary 3.7. There is not a continuum X such that |D(X)| = 2.

Definition 3.8. Let X be a continuum. A point A of D(X) is said to be
maximal provided that if B ∈ D(X) and A ( B, then B = X. Similarly, we
say that A is minimal if whenever B ∈ D(X) and B ⊆ A, we have that B = A.

Lemma 3.9. Let X be a continuum and let K ∈ D(X)\{X}. If K is maximal,
then cl(X \K) is minimal of D(X).

Proof. We show that X \K is connected. Suppose that X \K = U∪V where U
and V are disjoint nonempty open subsets of X. Note that K ∪ U is a regular
continuum (see proof of Proposition 3.6) and K ( K ∪ U . This contradicts
that K is maximal. Therefore, X \K is connected and cl(X \K) ∈ D(X).

Now, we prove that cl(X \ K) is minimal. Let B ∈ D(X) be such that
B ( cl(X \K). We consider two cases:

1. B ∩ bd(K) = ∅. Hence, B ⊆ X \K. Observe that if X \B is connected,
then K ( cl(X \ B) and cl(X \ B) ∈ D(X). A contradiction. Thus, X \ B =
U∪V where U and V are disjoint nonempty open subsets ofX. SinceK ⊆ U∪V
and K is connected, we have that either K ⊆ U or K ⊆ V . Suppose that
K ⊆ U . Therefore, K ( U ∪B and U ∪B ∈ D(X) \ {X}. A contradiction.

2. B ∩ bd(K) 6= ∅. Thus, B ∩K 6= ∅. Since B ( cl(X \K), B ∪K 6= X.
Furthermore, B ∪K ∈ D(X); contradicting that K is maximal.

Therefore, cl(X \K) is minimal of D(X). �

Proposition 3.10. Let X be a continuum. If M1 and M2 are different maximal
points of D(X), then X = M1 ∪M2.

Proof. Observe that if M1 is maximal, then cl(X \M1) belongs to D(X), by
Lemma 3.9. Since M2 \M1 6= ∅, we have that M2 ∪ cl(X \M1) ∈ D(X) \ {X}.
Since M2 is maximal, cl(X \M1) ⊆M2. Therefore, X = M1 ∪M2. �
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Theorem 3.11. Let X be a continuum and let (Kn)n∈N be a sequence in D(X)
such that limn→∞Kn = K, for some K ∈ C(X). If Kn ⊆ K for each n ∈ N,
then K ∈ D(X).

Proof. We will see that cl(int(K)) = K. It is clear that cl(int(K)) ⊆ K. We
will show that K ⊆ cl(int(K)). Let x ∈ K. Let U be an open subset of X such
that x ∈ U . Since limn→∞Kn = K, there exists j0 ∈ N such that Kj0 ∩U 6= ∅.
Since Kj0 is regular, int(Kj0)∩U 6= ∅. Furthermore, int(Kj0)∩U ⊆ int(K)∩U .
Thus, U ∩ int(K) 6= ∅ and x ∈ cl(int(K)). Therefore, K ⊆ cl(int(K)) and
K ∈ D(X). �

Corollary 3.12. Let X be a continuum and let (Kn)n∈N be a sequence in
D(X). If Kn ⊆ Kn+1 for each n ∈ N, then limn→∞Kn belongs to D(X).

Proof. Note that limn→∞Kn = cl(
⋃
n∈NKn) (see [3, 4.16, p.27]). Thus, our

result follows from Theorem 3.11. �

Corollary 3.13. Let X be a continuum. If D(X) is discrete and A ∈ D(X),
then there exists a maximal set K ∈ D(X) such that A ⊆ K.

Proof. Let L = {M ∈ D(X) : A ⊆M}. Since D(X) is discrete, there is not an
increasing chain in L, by Corollary 3.12. Thus, there exists a maximal point
K ∈ D(X) such that A ⊆ K. �

Proposition 3.14. Let X be a continuum such that D(X) is discrete. If N1

and N2 are different minimal points of D(X), then Ni ∩ int(Nj) = ∅ where
{i, j} = {1, 2}.

Proof. Suppose that N1∩int(N2) 6= ∅. Since N1 is regular, int(N1)∩int(N2) 6=
∅. Let Y = N1 ∪ N2. Observe that Y ∈ D(X). Since D(X) is discrete,
D(Y ) is discrete and there exists a maximal M of D(Y ) such that N1 ⊆ M ,
by Corollary 3.13. Thus, N = cl(Y \M) is minimal, by Lemma 3.9. Since
int(N1) ∩ int(N2) 6= ∅ and N1 ⊆ M , we have that N ( N2. This contradicts
the fact that N2 is minimal. Therefore, N1 ∩ int(N2) = ∅. Similarly we show
that N2 ∩ int(N1) = ∅. �

Proposition 3.15. Let X be a continuum such that D(X) is discrete. If N is
minimal of D(X) and A ∈ D(X) is such that A ∩ int(N) 6= ∅, then N ⊆ A.

Proof. Suppose that there exists A ∈ D(X) such that A ∩ int(N) 6= ∅ and
N \ A 6= ∅. Note that A ∪ N ∈ D(X). Since D(X) is discrete, D(A ∪ N)
is discrete. Thus, there exists a maximal M of D(A ∪ N) such that A ⊆ M ,
by Corollary 3.13. Furthermore, by Lemma 3.9, cl((A∪N) \M) is minimal of
D(A∪N). Since A∩int(N) 6= ∅ and A ⊆M , we have that cl((A∪N)\M) ⊆ N
and cl((A ∪ N) \ M) 6= N . A contradiction. Therefore, N ⊆ A for every
A ∈ D(X) such that A ∩ int(N) 6= ∅. �

Theorem 3.16. Let X be a continuum such that D(X) is discrete. Then,
D(X) is finite if and only if there exist minimal sets N1, . . . , Nn in D(X) such
that int(Ni) ∩ int(Nj) = ∅ whenever i 6= j, and X =

⋃n
i=1Ni.
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Proof. Suppose that D(X) is finite. If D(X) = {X}, then X is minimal.
Hence, suppose that there exists K1 in D(X) \ {X}. By Corollary 3.13, we
may suppose that K1 is maximal. Note that N1 = cl(X \ K1) is minimal in
D(X), by Lemma 3.9. If K1 is minimal, we have that X = K1 ∪ N1 where
int(K1) ∩ int(N1) = ∅. Thus, suppose that K1 is not minimal. Let K2 be
maximal in D(K1) and let N2 = cl(K1 \K2). By Lemma 3.9, N2 is minimal in
D(K1) and hence, minimal in D(X). It is clear that X = N1 ∪N2 ∪K2, where
int(N1), int(N2) and int(K2) are pairwise disjoint. If K2 is minimal, then we
finish the proof. Thus, since D(X) is finite, there exists Kn−1 such that Kn−1

is both maximal and minimal in D(Kn−2) where X = N1 ∪ · · · ∪Nn−1 ∪Kn−1

and the interiors of N1, . . . , Nn−1 and Kn−1 are pairwise disjoint subsets of X.
Therefore, if Nn = Kn−1, then there exist minimal sets N1, . . . , Nn in D(X)
such that int(Ni) ∩ int(Nj) = ∅ whenever i 6= j, and X =

⋃n
i=1Ni.

Conversely, suppose that X =
⋃n
i=1Ni where N1, . . . , Nn are minimal of

D(X) such that int(Ni) ∩ int(Nj) = ∅ whenever that i 6= j. Let K ∈ D(X).
Observe that by Proposition 3.15,

K =
⋃
{Ni : int(Ni) ∩K 6= ∅}. (3.1)

Therefore, D(X) is finite. �

Let X be a continuum such that D(X) is finite, and let N1, . . . , Nk be the

minimal subsets of X such that X =
⋃k
i=1Ni and int(Ni) ∩ int(Nj) = ∅

whenever i 6= j. By (3.1), |D(X)| = |L(X)| where

L(X) =

{⋃
i∈F

Ni :
⋃
i∈F

Ni ∈ C(X) and F ⊆ {1, . . . , k}

}
.

We illustrate X by a finite graph where each vertex vi represents the con-
tinuum Ni, and two vertices vi and vj have an edge between them whenever
Ni ∩Nj 6= ∅. For instance, if n ∈ {2, 3}, then

N1 N2 v1 v2

Figure 1. X = N1 ∪N2
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N1 N2 N3 v1 v2 v3

Figure 2. X = N1 ∪N2 ∪N3

N1 N2

N3

v1 v2

v3

Thus, if X = N1 ∪ N2, then D(X) = {N1, N2, X}; and if X = N1 ∪
N2 ∪ N3, then either D(X) = {N1, N2, N3, N1 ∪ N2N2 ∪ N3, X} or D(X) =
{N1, N2, N3, N1 ∪ N2, N2 ∪ N3, N1 ∪ N3, X}. Therefore, if n ∈ {1, 2, 3}, then
|D(X)| ∈ {1, 3, 6, 7}.

The following result is not difficult to prove.

Proposition 3.17. Let X be a continuum such that D(X) is discrete. Then,
the following are equivalent:

(1) There exists A ∈ D(X) such that A is both maximal and minimal;
(2) There exists exactly two minimal sets in D(X);
(3) |D(X)| = 3.

Now, we analyze the case n = 4. Let X =
⋃4
i=1Ni. The continuum X can

be as we show in the Figure 3, up to homeomorphisms.
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Figure 3. X =
⋃4
i=1Ni

Then, observe that:

L(X1) = { , , , , , , , , , }.

Thus, respectively with each graph of L(X1), we have that

D(X1) = {N1, N2, N3, N4, N1∪N2, N2∪N3, N3∪N4, N1∪N2∪N3, N2∪N3∪N4, X}.

Therefore, D(X1) has exactly 10 points. In a similar way, it is not difficult
to see that |D(X2)| = 11, |D(X3)| = 12, |D(X4)| = 13, |D(X5)| = 14 and
|D(X6)| = 15. Note that if n ≥ 5, then |D(X)| ≥ 15. Hence, we have the
following proposition:

Proposition 3.18. Let X be a continuum. Then, |D(X)| /∈ {2, 4, 5, 8, 9}.

Furthermore, similarly to [9, Proposition 4.15], we have the following result.

Proposition 3.19. Let X be a continuum such that D(X) is finite and let
N1, . . . , Nn be the minimal sets where X =

⋃n
i=1Ni. Then,

(1) |D(X)| = n(n+1)
2 whenever, Ni ∩Nj 6= ∅ if and only of |i− j| ≤ 1;

(2) |D(X)| = n(n−1) + 1 whenever, Ni∩Nj 6= ∅ if and only of |i− j| ≤ 1
or |i− j| = n− 1;

(3) |D(X)| = 2n − 1 whenever Ni ∩Nj 6= ∅ for every i, j ∈ {1, . . . , n}.
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Remark 3.20. Given X = N1 ∪ · · · ∪ Nn, find the cardinality of L(X) is a
problem of Theory of Graphs that can be solved partially with a simple program
in Python as we show:

n=input()

m=set()

for g in graphs.nauty_geng(str(n)):

if g.is_connected():

d=[]

for k in g.connected_subgraph_iterator():

d=d+[k]

for i in range(len(d)):

for j in range(i+1,len(d)):

if d[i].vertex_iterator==d[j].vertex_iterator:

del d[j]

j=j-1

m=m.union({len(d)})

print(m)

Where m is the set of all possible values of the cardinality of L(X). Thus,
running the program for n ∈ {2, 3, 4, 5, 6, 7, 8}, we conclude that it is not
possible to have a continuum X such that |D(X)| = 16. Furthermore, if
k ∈ {17, . . . , 255}, then there exists a continuum X such that |D(X)| = k.

We finish this section with a natural question.

Question 3.21. If k ≥ 256, then does there exist a continuum X such that
|D(X)| = k?

3.3. D(X) is discrete. If X is a simple closed curve (X is homeomorphic to
S1), then it is not difficult to see that D(X) = C(X) \ F1(X). Thus, D(X) is
homeomorphic to {z ∈ C : |z| < 1} (see [3, Example 5.2]). As we showed in
Section 3.2, some finite sets can be represented as D(X) for some continuum
X. We are interested in giving an answer of the following problem.

Problem 3.22. Characterize the family of metric spaces S for which there
exists a continuum X such that D(X) ∼= S.

In order to give partial answers to Problem 3.22, in this section we study
when D(X) is discrete.

Theorem 3.23. Let X be a continuum. If D(X) has infinitely many maximal
points, then X is not an isolated point of D(X).

Proof. Let (Mn)n∈N be a sequence of different maximal points of D(X). Since
C(X) is compact and D(X) ⊆ C(X), we have that there exists a subsequence
(Mni

)i∈N of (Mn)n∈N such that limi→∞Mni
= M , for some M ∈ C(X).

We see that M = X. Suppose that X \M 6= ∅. Let U be an open subset
of X such that cl(U) ∩M = ∅. It is clear that M ∈ 〈X \ cl(U)〉. Thus, there
exists k ∈ N such that Mni ∈ 〈X \ cl(U)〉 for each i ≥ k. Hence, U ⊆ X \Mni

for each i ≥ k. This contradicts Proposition 3.10. Therefore, M = X. �

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 395



J. Camargo, N. Ordoñez and D. Ramı́rez

Theorem 3.24. Let X be a continuum. If D(X) is a discrete infinite set, then
D(X) has infinitely many maximal points.

Proof. Let K0 = X. By Corollary 3.13, we can choose K1 a maximal point of
D(K0). Since D(K1) ⊆ D(K0), D(K1) is discrete. Let N1 = cl(K0 −K1). By
Lemma 3.9, N1 is minimal in D(K0) and hence, N1 is minimal in D(K0).

Claim I. There exists a subcontinuum K2 of X, such that:

(1) K2 ( K1 and D(K2) is discrete;
(2) K2 maximal in D(K1);
(3) N2 = cl(K1 \K2) is minimal in D(K1) ;
(4) int(N1) ∩ int(N2) = ∅.

In order to proof (1) and (2), suppose that D(K1) = {K1}. Then K1 is
minimal in D(K0). By Lemma 3.9, D(K0) = {K1, cl(X \ K1),K0}, which is
a contradiction. Hence, by Corollary 3.13, there exists K2 ( K1 maximal in
D(K1). Since D(K2) ⊆ D(K1), D(K2) is discrete. On the other hand, by
Lemma 3.9, N1 = cl(K0−K1) is minimal in D(K1), which proves (3). Finally,
since Kj−1 ( Ki−1, we have that Nj ⊆ Kj−1. Hence, int(Ni) ∩ int(Nj) = ∅.
This proves (4).

Continuing with these arguments, inductively, we can construct a sequence
(Kn)n∈N in D(X) and a sequence (Nn)n∈N where Nn+1 = cl(Kn \Kn+1) such
that:

(1) Kn+1 ( Kn and D(Kn+1) is discrete for each n ∈ N;
(2) Kn+1 is maximal of D(Kn) for each n ∈ N.
(3) Nn+1 is minimal in D(Kn) and hence, Nn+1 is minimal in D(X) for

each n ∈ N;
(4) int(Ni) ∩ int(Nj) = ∅ for each i 6= j.

Let N = {Nn : n ∈ N} and let

M =
{⋃
S : S ⊆ N is finite and

⋃
S is connected

}
.

Note that M ⊆ D(X). Since D(X) is discrete, by Corollary 3.12, for each
S ∈M there exists M ∈M maximal in M such that S ⊆M . Let

M′ = {S ∈M : S is maximal in M}.

It is clear that
⋃
M′ =

⋃
N , which implies thatM′ is a partition of

⋃
N . Since

N is countable infinite and every element ofM′ is a finite union of elements of
N , we have that M′ is also a countable infinite set. Let M′ = {Sn : n ∈ N}.

Claim II. For each n ∈ N, Ln = cl(X \ Sn) ∈ D(X).

Let n ∈ N and let Ni1 , . . . , Nim be in N such that Sn =
⋃m
j=1Nij . We may

assume that i1 < · · · < im. It is clear that X = Kim ∪ (
⋃im
j=1Nj). Hence, Ln =

Kim ∪ (
⋃
{Nj : j ∈ {1, . . . , im} \ {i1, . . . , im}}). Since Sn belongs to M′ and

int(Ni)∩int(Nj) = ∅ for each i ∈ {i1, . . . , im} and j ∈ {1, . . . , im}\{i1, . . . , im},
we conclude that Ln is a subcontinuum of X which belongs to Ln ∈ D(X).
This proves Claim II.
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By Corollary 3.13, for each n ∈ N, there exists a maximal element Mn

in D(X) such that Ln ⊆ Mn. Since X \Mi ⊆ Si and S1, S2, . . . are pairwise
disjoint, we have that Mi 6= Mj whenever i 6= j. Therefore, D(X) has infinitely
many maximal sets. �

The following theorem follows from Theorems 3.23 and 3.24.

Theorem 3.25. There is not a continuum X such that D(X) is homeomorphic
to N.

Question 3.26. Does there exist a continuum X such that D(X) is homeo-
morphic to either Q or I?

4. Meager composants and filament composants

In this section, we study some problems related to the hyperspace of meager
subcontinua. We use the following notation: Given a point p of a continuum
X, the meager composant of p is defined by: MX

p =
⋃
Mp(X), where Mp(X) =

{A ∈M(X) : p ∈ A}. The following is [6, Proposition 2.5].

Proposition 4.1. If X is a continuum, then MX = {MX
p : p ∈ X} is a

partition of X.

In this section we propose several open questions. Some of these were raised
by Professor David Bellamy in a workshop held in the city of Puebla, Mexico,
on July 2002. The authors have not found any published manuscript with
them.

Question 4.2. Does there exist a continuum X and two points p, q ∈ X such
that MX

p is dense and MX
q is nowhere dense in X?

Question 4.3. For every continuum X, is MX
p a Fσ-set for each p ∈ X?

Is it possible that MX = {MX
p : p ∈ X} is either finite non-degenerate or a

countable set?

Question 4.4. If X is a continuum such that MX
p is closed for every p ∈ X,

then is MX = {MX
p : p ∈ X} an upper semicontinuous decomposition of X?

The following concepts were introduced in [13] by J. R. Prajs and K. Whit-
tington.

Definition 4.5. Let X be a continuum and let K be a subcontinuum of X.
We say that K is a filament provided that there exists a neighborhood N of
K in X such that the component of K in N has empty interior. Given p ∈ X,
the filament composant of p in X is defined as:

FcsX(p) =
⋃
{A ∈ C(X) : A is a filament and p ∈ A}.

Next result follows from definition.

Proposition 4.6. Let X be a continuum. Then A ∈M(X) for every filament
A of X. Hence, FcsX(p) ⊆MX

p for each p ∈ X.
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We have the following remark from definitions.

Remark 4.7. Let X be a continuum and let p ∈ X. Then:

(1) If X is locally connected at p, then FcsX(p) = ∅.
(2) If X is an indecomposable continuum, the MX

p = FcsX(p).
(3) If FcsX(p) is nonempty, then FcsX(p) has uncountable many points.

It is natural to rise the following problem:

Problem 4.8. Characterize continua X for which MX
p = FcsX(p) for every

p ∈ X (for some p ∈ X, respectively).

In the next result, we show a continuum X such that MX
p = FcsX(p) for

every p ∈ X and X is not indecomposable (see (2) of Remark 4.7).
We denote by C to the Cantor set in [0, 1] constructed under the classical

way; that is C =
⋂
n∈NAn where A1 = [0, 1] \ ( 1

3 ,
2
3 ), A2 = A1 \ (( 1

9 ,
2
9 )∪ ( 7

9 ,
8
9 ))

and in general, having An−1, An is obtained by removing the open middle
thirds form each of the 2n−1 closed intervals that make up An−1.

Proposition 4.9. There exists a hereditarily decomposable and irreducible con-
tinuum X such that MX

x = FcsX(x) for each x ∈ X.

Proof. Let T be the simple triod T = ([−1, 1] × {0}) ∪ ({0} × [0, 1]) and let
Y = T × C. Let a = (1, 0), b = (−1, 0) and c = (0, 1) be the end points of T .

We define the following equivalence relation on Y . Given (x, t), (x′, s) ∈ Y ,
we say that (x, t) ∼ (x′, s) if and only if:

• x = x′ = a and |t− s| = 1/33i+1, i ∈ N;
• x = x′ = b and |t− s| = 1/33i+2, i ∈ N; or
• x = x′ = c and |t− s| = 1/33i+3, i ∈ N.

Observe that ∼ is an upper semicontinuous decomposition and hence, X =
Y/ ∼ is a continuum. Note that:

(1) X is hereditarily decomposable and irreducible. Thus by definition, X
is a continuum of type λ.

(2) If f : X → [0, 1] is the monotone map such that f−1(t) has empty
interior for each t ∈ [0, 1] (see Theorem 2.1), then f−1(t) is either a
simple triod or the union of two simple triods, which are attached by
one of their end points. Therefore, MX

x = f−1(f(x)) for every x ∈ X.

By Proposition 4.6, FcsX(x) ⊆ f−1(f(x)) for each x ∈ X. In order to
prove that f−1(f(x)) ⊆ FcsX(x), observe that every arc is a filament. Since
f−1(f(x)) is a finite union of arcs, f−1(f(x)) ⊆ FcsX(x). Therefore, MX

x =
FcsX(x) for each x ∈ X. �

In Theorem 4.12, we show that ifX is a continuum such thatMX
x = FcsX(x)

for each x ∈ X, then X cannot be arcwise connected.

Lemma 4.10. Let X be a continuum. If p ∈ X, then FcsX(p) has empty
interior.
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Proof. By [13, Proposition 1.8], FcsX(p) is a countable union of filament sub-
continua of X. By Theorem 4.6, every filament has empty interior. Therefore,
by Baire’s Theorem, FcsX(p) has empty interior. �

Proposition 4.11. Let X be a continuum. If there exists p ∈ X such that
MX
p has nonempty interior, then FcsX(p) 6= MX

p .

Proof. Consider p ∈ X such that MX
p has nonempty interior. Thus, FcsX(p) 6=

MX
p , by Lemma 4.10. �

Theorem 4.12. If X is an arcwise connected continuum, then there exists
p ∈ X such that FcsX(p) 6= MX

p .

Proof. Let X be an arcwise connected continuum. Observe that if there is a
free arc L contained in X with end points a and b, then for any p ∈ L \ {a, b},
we have {p} = MX

p and FcsX(p) = ∅. Hence, we may assume that X does

not contain free arcs. In this case, we obtain that MX
p = X for every p ∈ X

and by Lemma 4.10, we conclude that MX
p 6= FcsX(p) for every p ∈ X. �

Question 4.13. Does there exist an arcwise connected continuum X and p ∈ X
such that MX

p = FcsX(p)?

Given a continuum X, let Fcs(X) = {FcsX(x) : x ∈ X}. Note that if X
is locally connected at some p ∈ X, then there is not a filament K of X such
that p ∈ K; i.e., FcsX(p) = ∅. Thus, Fcs(X) is not in general a partition of
X. The following definition was taken from [12].

Definition 4.14. A continuum X is filament additive provided that for each
two filament subcontinua K and L with nonempty intersection, the union K∪L
is filament.

Observe that if X = clR2{(x, sin( 1
x )) : 0 < x ≤ 1}, then {0} × [0, 1] and

{0}× [−1, 0] are filament subcontinua of X, but {0}× [−1, 1] is not a filament.
Thus, X is not filament additive.

Theorem 4.15. Let X be a continuum. If X is filament additive and FcsX(x) 6=
∅ for each x ∈ X, then Fcs(X) is a partition.

Proof. Since FcsX(x) 6= ∅, x ∈ FcsX(x) for each x ∈ X and hence,
⋃
Fcs(X) =

X. Let p, q ∈ X such that FcsX(p) ∩ FcsX(q) 6= ∅. We will see that
FcsX(p) = FcsX(q). Let z ∈ FcsX(p). Then there exists a filament L such
that p, z ∈ L. Since FcsX(p)∩FcsX(q) 6= ∅, there is w ∈ FcsX(p)∩FcsX(q).
Let M,N be filaments such that w, p ∈ M and w, q ∈ N . Since X is filament
additive, K = L ∪M ∪N is a filament such that z, q ∈ K. Thus, z ∈ FcsX(q)
and FcsX(p) ⊆ FcsX(q). A similar argument shows that FcsX(q) ⊆ FcsX(p).
Therefore, FcsX(p) = FcsX(q) and Fcs(X) is a partition. �

Note that the continuum X defined in Proposition 4.9 is such that Fcs(X)
is a partition, but X is not filament additive. Also, observe that if Fcs(X) is
a partition, then Fcs(X) is not trivial, by Lemma 4.10.
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Problem 4.16. Characterize continua X such that Fcs(X) is a partition of
X.

The following result shows a continuum X such that Fcs(X) is a partition,
but FcsX(x) 6= MX

x for any x ∈ X.

Proposition 4.17. There exists a continuum X such that it satisfies the fol-
lowing conditions:

(1) X is homogeneouos;
(2) Fcs(X) is a partition of X;
(3) X is filament additive;
(4) {MX

x : x ∈ X} is a continuous decomposition of X;
(5) FcsX(x) (MX

x for each x ∈ X.

Proof. Let X be the circle of pseudo-arcs and let f : X → S1 be the monotone
open map such that f−1(t) is a pseudo-arc with empty interior. It is well known
that X is homogemeouos and {f−1(z) : z ∈ S1} is a continuous decomposition
of X. By [6, Lemma 3.2], we have that A ∈ M(X) if and only if A ⊆ f−1(z)
for some z ∈ S1. Hence, {MX

x : x ∈ X} = {f−1(z) : z ∈ S1}. Finally, observe
that FcsX(x) is the composant of the pseudo-arc f−1(z) where x ∈ f−1(z);
i.e., FcsX(x) (MX

x for each x ∈ X. Thus, X is filament additive and Fcs(X)
is a partition, by Theorem 4.15. Therefore, the circle of pseudo-arcs satisfies
all the conditions of the proposition. �

Recall that a subcontinuum A of a continuum X is called terminal provided
that for any subcontinuum B of X such that A∩B 6= ∅, then A ⊂ B or B ⊂ A.

Theorem 4.18. Let X be a continuum and let Y be a terminal subcontinuum
of X. Then, Y is decomposable if and only if there exists p ∈ Y such that
FcsX(p) = Y .

Proof. Let M and N be proper subcontinua of Y such that Y = M ∪N . Let
p ∈M ∩N and let x ∈ Y \{p}. Suppose that x ∈M . Let U be a neighborhood
of M in X such that Y \ cl(U) 6= ∅. Since Y is terminal, if C is the component
of U such that M ⊆ C, then C has empty interior. Thus, x ∈ FcsX(p). This
shows that Y = FcsX(p).

Conversely, suppose that Y is indecomposable. It is not difficult to show
that FcsX(x) = κY (x) for each x ∈ Y , where κY (x) is the composant of Y
containing x. Therefore, FcsX(x) 6= Y for any x ∈ Y . �

Theorem 4.19. Let X be a continuum and let Y be a terminal subcontinuum
of X. If Y is non irreducible, then Y = FcsX(p) for each p ∈ Y .

Proof. Suppose that Y is non irreducible. Let p ∈ Y and let x ∈ Y \{p}. Since
Y is non irreducible, there exists a proper subcontinuum A of Y such that
p, x ∈ A. Let U be a neighborhood of A in X such that Y \ cl(U). It is clear
that the component of A in U has empty interior and hence, x ∈ FcsX(p).
This shows that Y = Fcs(p). �

Next corollaries follows from Theorems 4.18 and 4.19.
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Corollary 4.20. Let X be a compactification of the ray with remainder Y .
Then, Y is decomposable if and only if there exists p ∈ Y such that FcsX(p) =
Y .

Corollary 4.21. Let X be a compactification of the ray with remainder Y . If
Y is non irreducible, then Y = FcsX(p) for each p ∈ Y .

Now, we present some examples giving partial answers to the following ques-
tion.

Question 4.22. Given a metric space Y , does there exist a continuum X such
that Fcs(X) is homeomorphic to Y ?

Example 4.23. Note that the continuum X presented in Proposition 4.9 sat-
isfies that Fcs(X) is homeomorphic to [0, 1]. Furthermore, if Z is the quotient
space of the continuum X, where the only nondegenerate element is by identi-
fying the point (a, 0) with the point (a, 1), then Fcs(Z) ∼= S1.

Example 4.24. In the Euclidean space R3 consider S′ = {(x, y, 0) : x2 + y2 =
1} and S′′ = {(x, y, 1) : x2 + y2 = 1}. Let

X0 = S′∪
{

(cos( 1
t ), sin( 1

t ), t) : t ∈ (0, 1
2 ]} ∪ {(cos( 1

1−t ), sin( 1
1−t ), t) : t ∈ [ 1

2 , 1)
}
∪S′′.

Observe that X0 is a compactification of the real line R, contained in the
cylinder L = {(x, y, z) ∈ R3 : x2 + y2 = 1} with S′ ∪ S′′ as a remainder. It is
easy to verify that Fcs(p) = S′ for every p ∈ S′, Fcs(p) = S′′ for every p ∈ S′′
and Fcs(p) = ∅ in other case. This implies that:

Fcs(X) = {Fcs(p) : p ∈ X0} = {S′, S′′}.
To the next example consider the following.
Given a, b ∈ [0, 1] such that a < b, let

X[a,b] = {(x, y, (b− a)z + a) : (x, y, z) ∈ X0}
and for each d ∈ [0, 1] let

Sd = {(x, y, d) : x2 + y2 = 1}.
Observe that S0 = S′ and S1 = S′′, also note that X[a,b] is a copy of X0

contained in the cylinder L between the planes z = a and z = b. Also, note that
Sa = {(x, y, (b−a)z+a) : (x, y, z) ∈ S′} and Sb = {(x, y, (b−a)z+a) : (x, y, z) ∈
S′′} are just a translation of S′ and S′′, respectively; and Sa∪Sb is the remainder
of X[a,b]. Finally, it follows from construction that, if 0 ≤ a < b < c ≤ 1, then
X[a,b] ∩ X[b,c] = Sb.

Example 4.25. Given n ≥ 1, for each k ∈ {0, . . . , n}. Consider the continuum
in R3 defined by:

Xn =

n⋃
k=1

X[ k−1
n , kn ].
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It is clear that Fcs(Xn) = {S0, S 1
n
, . . . , S1} which has exactly n+1 elements.

Example 4.26. In the euclidean space, let Y =
⋃
n∈N X[ 1

n+1 ,
1
n ] and consider:

X∞ = {(zx, zy, z) : (x, y, z) ∈ Y } ∪ {(0, 0, 0)}.

Since X∞ is locally connected at (0, 0, 0), it is easy to verify that Fcs(X∞) =
{Bn : n ∈ N} where Bn = {(zx, zy, z) ∈ R3 : (x, y, z) ∈ S 1

n
} for each n ∈ N;

which is homeomorphic to the harmonic sequence.

Example 4.27. In the euclidean space, let

X∞ = [
⋃
n∈N
X[ 1

n+1 ,
1
n ]] ∪ S0.

It is easy to verify that Fcs(X∞) = {S 1
n

: n ∈ N} ∪ {S0} which is homeo-

morphic to closure of the harmonic sequence.

Example 4.28. Let C be the middle third Cantor set contained in [0, 1]. Let

XC = {Sc : c ∈ C} ∪ {X[a,b] : a, b ∈ C and [a, b] ∩ C = {a, b}}
Observe that Fcs(XC) = {Sc : c ∈ C} which is homeomorphic to the Cantor

set.

From the ideas used to construct Examples 4.23 - 4.28, we can conclude
that for every compact countable metric space Y , it is possible to construct a
continuum X such that Y ∼= Fcs(X).

To end this part, observe that there exist continua X for which MX
x = {x}

for each x ∈ X, such as finite graphs. Hence, given a continuum X, we define

FX = {p ∈ X : Mp = {p}}.
The following example shows that for every compact K in [0, 1], there exists

a continuum X such that FX ∼= K.

Example 4.29. Let T be the arc of pseudo-arcs and let f : T → [0, 1] be the
monotone map such that D = {f−1(t) : t ∈ [0, 1]} is the continuous decompo-
sition of T such that f−1(t) is a pseudo-arc, for each t ∈ [0, 1]. Let K ∈ 2[0,1]

and let

D′ = {{x} ⊆ T : f(x) ∈ [0, 1] \K} ∪ {f−1(t) ⊆ T : t ∈ K}.

Notice that (D′, τD′) is an upper semicontinuous decomposition of T and FD′ =
{f−1(x) : x ∈ K}; i.e., FD′ ∼= K.

Problem 4.30. Given a metric space Y , does there exist a continuum X such
that FX is homeomorphic to Y ?

Question 4.31. Is the set FX always a Fσ-set of X?
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5. Contractibility of M(X)

In this section, we study the contractibility of the hyperspace M(X). In
[10], it is raised the following questions:

Question 5.1. Let X be a continuum. If M(X) is contractible, then does it
follow that X is contractible?

Question 5.2. Let X be a continuum. If X is contractible, then does it follow
that M(X) is contractible?

In this section, Theorem 5.5 shows that if X is the arc of pseudoarcs, then
M(X) is contractible, giving a negative answer to Question 5.1. Furthermore,
we provide partial answers to Question 5.2.

Given a map between continua f : X → Y , in the proof of the follow-
ing result, we denote by C(f) : C(X) → C(Y ) the induced map defined by
C(f)(A) = f(A) for each A ∈ C(X) [3, 77.1].

Theorem 5.3. Let X be a continuum. If X is contractible, then M(X× [0, 1])
is contractible.

Proof. Since X is contractible, there exist p ∈ X and g : X × [0, 1]→ X a map
such that g(x, 0) = x and g(x, 1) = p for each x ∈ X. Let h : X × [0, 1] ×
[0, 1/2]→ X × [0, 1] be defined for each (x, s, t) ∈ X × [0, 1]× [0, 1/2] by:

h(x, s, t) = (x, s− 2ts).

Let f : X × {0} × [1/2, 1]→ X × {0} be defined for each (x, 0, t) ∈ X × {0} ×
[1/2, 1] by:

f(x, 0, t) = (g(x, 2t− 1), 0).

Notice that f(x, 0, 1/2) = (x, 0) and f(x, 0, 1) = (p, 0) for each (x, 0) ∈ X×{0}.
Let π0 : X × [0, 1] → X × {0} be the projection defined by π0(x, t) = (x, 0)

for each (x, t) ∈ X × [0, 1].
Let H1 : M(X × [0, 1])× [0, 1/2]→M(X × [0, 1]) be defined by:

H1(A, t) = C(h)(A× {t}) for each (A, t) ∈M(X × [0, 1])× [0, 1/2].

We will show that H1 is well defined. Let (A, t) ∈ M(X × [0, 1]) × [0, 1/2].
We show that H1(A, t) ∈M(X × [0, 1]). Notice that H1(A, t) ∈ C(X × [0, 1]).
We see that int(H1(A, t)) = ∅. Observe that H1(A, 1

2 ) ⊆ X × {0} and hence,

int(H1(A, 1
2 )) = ∅. Suppose that t 6= 1/2. Let (x, r) ∈ H1(A, t). Then

there exists (y, s) ∈ A such that (x, r) = h(y, s, t) = (y, s − 2ts). Since A ∈
M(X× [0, 1]), there exists a sequence ((yn, sn))n∈N in (X× [0, 1])\A such that
limn→∞(yn, sn) = (y, s). Let ((yn, sn − 2tsn))n∈N be a sequence in X × [0, 1].
We need to show that (yn, sn − 2tsn) /∈ H1(A, t). If (yn, sn − 2tsn) ∈ H1(A, t)
for some n, then there exists (x′, s′) ∈ A, such that h(x′, s′, t) = (yn, sn−2tsn).
Thus (x′, s′−2ts′) = (yn, sn−2tsn) and we have that both x′ = yn and s′ = sn.
This contradicts the fact that (yn, sn) /∈ A. Therefore, (yn, sn−2tsn) /∈ H1(A, t)
for each n ∈ N. Furthermore, limn→∞(yn, sn − 2tsn) = (x, r). Thus, (x, r) /∈
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int(H1(A, t)) and H1(A, t) ∈M(X × [0, 1]). Therefore, H1 is well defined. It is
clear that H1 is a map.

Let H2 : M(X × [0, 1])× [1/2, 1]→M(X × [0, 1]) be defined by:

H2(A, t) = C(f)(C(π0)(A)× {t}), for each (A, t) ∈M(X × [0, 1])× [1/2, 1].

We see that H2 is well defined. Let (A, t) ∈M(X× [0, 1])× [1/2, 1]. Notice that
H2(A, t) ⊆ X × {0}. Thus, int(H2(A, t)) = ∅ and H2(A, t) ∈ M(X × [0, 1]).
Observe that H2 is a map.

Finally, let H : M(X × [0, 1]) × [0, 1] → M(X × [0, 1]) be defined for each
(A, t) ∈M(X × [0, 1]) by:

H(A, t) =

{
H1(A, t), if t ∈ [0, 1/2];

H2(A, t), if t ∈ [1/2, 1].

Note that if A ∈ M(X × [0, 1]), then H1(A, 1/2) = h(A × {1/2}) = π0(A) =
f(π0(A)×{1/2}) = H2(A, 1/2). Thus, H is a map. Furthermore, H(A, 0) = A
y H(A, 1) = X × {0} for each A ∈ M(X × [0, 1]). Therefore, M(X × [0, 1]) is
contractible. �

Given a topological space Y , recall that the cone over Y , which is denoted
by Cone(Y ), is the quotient space obtained from Y × [0, 1] by shrinking Y ×{1}
to a point. Note that Cone(Y ) is contractible, for every compactum Y . Hence,
the following result gives a partial answer to Question 5.2.

Theorem 5.4. Let Y be a compactum. Then, M(Cone(Y )) is contractible.

Proof. Let q : Y × [0, 1] → Cone(Y ) be the quotient map, where Cone(Y ) =
(Y × [0, 1])/(Y × {0}). We denote vY = Y × {0}. Let g : Cone(Y ) × [0, 1] →
Cone(Y ) be defined by:

g(χ, t) =

{
vY , if either χ = vY or t = 1;

q(x, s− ts), if χ = q(x, s), s 6= 0 and t 6= 1.

We see that g is a map and that g(χ, t) = vY if, and only if, χ = vY or t = 1.
LetH : M(Cone(Y ))×[0, 1]→M(Cone(Y )) be defined byH(A, t) = C(g)(A×

{t}). We will show that H is well defined. Let (A, t) ∈ M(Cone(Y )) × [0, 1].
Notice that H(A, t) ∈ C(Cone(Y )). Hence, we have to prove that H(A, t) ∈
M(Cone(Y )). If t = 1, then H(A, 1) = {vY }. Hence, H(A, 1) ∈ M(Cone(Y )).
Assume that t ∈ [0, 1). Let χ ∈ H(A, t). There exists γ ∈ A, such that
g(γ, t) = χ. Since A ∈ M(Cone(Y )), there exists a sequence (γn)n∈N in
Cone(Y )\A such that limn→∞(γn) = γ. We can suppose that γn 6= vY , for all n.
Thus, there exists (yn, sn) ∈ A×(0, 1] such that γn = q(yn, sn) = {(yn, sn)} for
every n. We have that limn→∞ g(γn, t) = χ. If we show that g(γn, t) /∈ H(A, t)
for all n, then χ /∈ int(H(A, t)). Thus, H(A, t) ∈ M(Cone(Y )). Indeed, if
g(γn, t) ∈ H(A, t) for some n, then q(yn, sn − tsn) ∈ H(A, t). Hence, there
exists γ′ ∈ A, such that q(yn, sn − tsn) = g(γ′, t). Notice that γ′ 6= vY . Then
γ′ = q(y′, s′), for some (y′, s′) ∈ X×(0, 1]. Hence, q(yn, sn−tsn) = q(y′, s′−ts′).
Then, {(yn, sn − tsn)} = {(y′, s′ − ts′)}. Thus, yn = y′ and sn − tsn = s′ − ts′.
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Hence, yn = y′ and sn = s′. For that, γn = γ. Then, γn ∈ A, a contradiction.
Thus, g(γn, t) /∈ H(A, t) for all n. Thus, we have the result. �

Example 5.5. There exists a continuum X such that M(X) is contractible,
but X is not contractible.

Proof. Let X be the arc of pseudo-arcs. Note that X is not arcwise connected
and hence, X is not contractible.

We show that M(X) is contractible. Let f : X → [0, 1] be the monotone map
such that D = {f−1(t) : t ∈ [0, 1]} is the minimal admissible decomposition of
X. We know that D is a continuous decomposition where f−1(t) is a pseudo-arc
for every t ∈ [0, 1]. Furthermore, it is not difficult to see that:

Claim. If A ∈ M(X), then f(A) = {sA} for some sA ∈ [0, 1]; i.e., A ⊆
f−1(s) for some s ∈ [0, 1].

Let w : C(X) → [0, 1] be a Whitney map such that w(f−1(t)) = 1
2 for each

t ∈ [0, 1] (see [3, Theorem 23.3]). Let h : X × [0, 1]→ C(X) be defined for each
(x, t) ∈ X × [0, 1] by h(x, t) = u(Fw(x, t)), where u : C(C(X)) → C(X) is the
union map, and Fw(x, t) = {A ∈ C(X) : x ∈ A,w(A) = t}. Since X has the
property of Kelley, Fw is a map by [3, Proposition 20.11]. Thus, h is a map.
Let H1 : M(X) × [0, 1/2] → M(X) be defined for each (A, t) ∈ M(X) × [0, 1

2 ]
as follow:

H1(A, t) = u(C(h)(A× {t})).
Observe that H1(A, t) ∈ C(X). Since t ≤ 1

2 and f−1(t) is terminal, K ⊆ f−1(t)

for each K ∈ Fw(A, t). Thus, H1(A, t) ⊆ f−1(t) and int(H1(A, t)) = ∅. This
shows that H1 is well defined. It is clear that H1 is a map.

Let H2 : M(X)× [ 1
2 , 1]→M(X) be defined for all (A, t) ∈M(X)× [ 1

2 , 1] by:

H2(A, t) = f−1((2− 2t)sA), where f(A) = {sA}.
Since D is a continuous decomposition, the function φ : [0, 1] → D defined
by φ(t) = f−1(t) is a homeomorphism. Hence, H2 is a map. Finally, let
H : M(X)× [0, 1]→M(X) be defined for each (A, t) ∈M(X)× [0, 1] by:

H(A, t) =

{
H1(A, t), if t ∈ [0, 1

2 ];

H2(A, t), if t ∈ [ 1
2 , 1].

Observe that H1(A, 1
2 ) = H2(A, 1

2 ) for each A ∈ M(X). Thus, H is a map.

Furthermore, H(A, 0) = H1(A, 0) = A and H(A, 1) = H2(A, 1) = f−1(0) for
every A ∈M(X). Therefore, M(X) is contractible. �
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