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Abstract
This paper introduces a methodology to build mathematical models based on evidence and
data sets, considering data and model uncertainty. We study the evolution of obesity in the
population, being obesity a consequence of the transmission of unhealthy lifestyle habits and
behavioral patterns influenced by social networks (family, friends, peers, etc.). We propose a
three-step methodology. First, we create a synthetic data set based on a previous model with
real data. Then, we search for dynamic models based on difference equations that best fit the
dynamics described by the dataset and their uncertainty (uncertainty-aware). To do this, we
use a dynamic structured grammatical evolution algorithm (an algorithm that builds possible
models) on which we have defined a grammar (set of possible expressions that can be part
of the model). The definition of appropriate grammar is crucial because it allows us to build
models that do not contradict the knowledge of the phenomenon studied. However, the data
may suggest introducing new terms that indicate the influence of unknown factors. Finally,
from among all the models obtained, we will algorithmically search for a selection of them
that best describes the uncertainty of the data. This methodology can be applied to various
scenarios with available datasets and a limited understanding of the phenomenon. It aims to
generate models that not only achieve precision but also incorporate terms that correspond
to identifiable processes, which can be explained within the context of the study problem.
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1 Introduction

Obesity is a health condition linked to various health comorbidities, including diabetes, heart
diseases, certain types of cancers, and more (Centers for Disease Control 2022; WHO Dis-
cussion Paper 2022). Several studies (Hill and Peters 1998; Christakis and Fowler 2007;
Cohen-Cole and Fletcher 2008; Leahey et al. 2011) found that individuals were more likely
to become obese if their friends, siblings, or spouses were obese. This social contagion aspect
implies that obesity could be transmitted through social interactions and influence behavior
patterns, making it a potential target for preventive measures. Therefore, it seems natural
to model obesity as a socially transmitted disease and use the background that provides the
mathematical epidemiology. Following this idea, several epidemiological-type mathemati-
cal models describing the transmission dynamics of obesity have appeared in the literature
(Evangelista et al. 2004;Wadhera et al. 2016; Frerichs et al. 2013; Lozano-Ochoa et al. 2017;
Hill et al. 2010; Santonja et al. 2010; Santonja and Shaikhet 2014).

Real-world data is often characterized by incompleteness, noise, and various sources of
uncertainty, making it crucial to incorporate uncertainty into the modeling process to ensure
robust and reliable predictions. Mathematical models serve as simplifications of real-world
phenomena, with the objective of being able to provide knowledge about the problem under
study. These simplifications may arise from the inability to consider relevant aspects without
sufficient evidence or from disregarding less influential factors related to the phenomenon
under study. These forms of uncertainty are referred to as epistemic or structural uncertainty.
In addition, data itself can be subject to inaccuracies, high variability, and inherent uncertainty,
which is known as aleatoric uncertainty (Smith 2013).

While models should be supported by evidence, there are instances where new terms
may be introduced into the model that are not directly supported by the evidence but do not
contradict it either. These additional terms can enhance the ability of the model to accurately
explain the data and its associated uncertainty. In this way, we include the known and the
unknown in the model. This idea will guide the developed technique in this paper.

However, it is not viable to continuously add or remove terms from the model without
a defined strategy or to rely on trial and error to identify the most suitable options for
explaining the data. It is essential to adopt a systematic approach based on algorithms that
guide us in obtaining models that align with the evidence and effectively explain the data and
its uncertainty.

This paper aims to build upon prior research by developing a mathematical model that
explicitly incorporates uncertainty (uncertainty-aware) and, at the same time, integrates evi-
dence from real-world datasets. To achieve this goal, we employ a three-step methodology:

• Firstly, we create a synthetic dataset derived from a previously established model, which
serves as the basis for our analysis. We take as a base model the one in Santonja et al.
(2012), where an analysis of the effect of public health campaigns on reducing excess
weight using a mathematical model is performed, and data series in the Spanish region
of Valencia are provided.

• Secondly, considering only the built synthetic dataset, multiple difference equation
models are then generated using dynamic structured grammatical evolution (DSGE)
(Lourenço et al. 2017, 2018), a powerful optimization technique that leverages evo-
lutionary algorithms. This approach allows us to explore a broad range of potential
mathematical models and their corresponding solutions by properly limiting the gram-
mar to be compatible with the knowledge of the studied phenomenon.
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• Finally, we employ an algorithm to select the most appropriate models from the diverse
set of candidates that collectively address the uncertainty inherent in obesity dynamics.

The proposed methodology has several potential applications. In this paper, we apply it to
the study of obesity in the region of Valencia, Spain, using available data to inform the model.
Likewise, strategies and campaigns to reduce obesity can be introduced into the model to
simulate their effect over time. However, the approach can be adapted and applied to other
contexts where data are available, but knowledge about the phenomenon to be studied may
be limited or unavailable. The models obtained can be projected to estimate the evolution of
the system into the future.

The rest of the paper is structured as follows. Due to the difficulty of having data related
to the evolution of obesity, in Sect. 2, we make a brief description of an already existing
model (Sect. 2.1), and we use it to the generation of an uncertainty-aware synthetic dataset
(Sect. 2.2). The full methodology is presented in Sect. 3, including the description of DSGE
(Sect. 3.1) and the selection algorithm (Sect. 3.4). The experimental results, shown in Sect.
4, are discussed in Sect. 4.1. Finally, in Sect. 5, we summarise the conclusions of the paper.

2 Model and uncertainty-aware synthetic dataset generation

Unfortunately, getting data on the number of normal-weight, overweight, or obese people is
complicated. In theCommunity ofValencia, Spain, there is a regular health survey fromwhich
this information can be obtained, although it is only every five years. This inconvenience is
extensible to many areas of research.

Thus, to generate a dataset with a sufficient number of data describing the evolution over
short periods of the number of people with normal weight, overweight, and obese, taking into
account the uncertainty of the results obtained by conducting surveys, we will use the model
proposed in Santonja et al. (2012). With it, we will generate an uncertainty-aware complete
dataset.

2.1 Short description of themodel describing the obesity dynamics

When classifying people according to weight, it is common to use the Body Mass Index
(BMI) as metric, which is defined by BMI = weight/height2. It is considered all people
with a BMI lower than 25 are of normal weight (N), those in the 25 to 30 range are considered
overweight (S), and finally, those with a value higher than 30 are categorized as obese (O).
The model works with the population of the Community of Valencia, Spain, between 24 and
65 years of age at a specific time instant t , so we consider the different subpopulations as
N (t), S(t) and O(t), representing the percentage that they constitute of the total popula-
tion. As it was mentioned, based on Hill and Peters (1998), Christakis and Fowler (2007),
Cohen-Cole and Fletcher (2008), and Leahey et al. (2011), it is possible to transmit among
people both poor eating habits and sedentary lifestyles leading to weight gain, which we
summarize as unhealthy habits. Furthermore, assuming the classical hypothesis that popula-
tions are homogeneously mixed, the following rules to describe the transmission dynamics
of unhealthy habits leading to weight gain are proposed:

• We distribute the individuals who enter the system at age 24 among the populations
according to the distribution at age 23, which we denote by N0, S0, and O0.

123



  420 Page 4 of 21 D. Parra et al.

• An individual from subpopulation N transits to S due to the transmission of unhealthy
habits from individuals belonging to S or O through social contact, leading to the indi-
vidual gaining weight and moving to O .

• In the event that an individual of S persists in having unhealthy habits, over time, may
become part of the population O .

• By changing habits to healthier ones, such as dieting and physical exercise, it is possible
for an individual to reduce weight and move from O to S or from S to N .

Then, the obesity dynamics is described by the following system of difference equations1

(t , time in weeks, t = 0 corresponds to the last week of year 2000),

N (t + 1) − N (t) = μN0 − μN (t) − βN (t)(S(t) + O(t)) + ρS(t), (1)

S(t + 1) − S(t) = μS0 − μS(t) + βN (t)(S(t) + O(t)) − (γ + ρ)S(t)

+εO(t), (2)

O(t + 1) − O(t) = μO0 − μO(t) + γ S(t) − εO(t). (3)

The variables used in the model are:

• 1/μ denotes the time from when an individual turns 24 and enters the system until turns
65 and leaves it, measured in weeks.

• β is the transmission rate of unhealthy lifestyles.
• 1/γ is the average time it takes for an overweight person with unhealthy habits to become

obese.
• 1/ρ, represents the average time required to reach a normal weight, having previously

been overweight and having changed to healthier habits.
• 1/ε represents the average time at which an individual from O transits to S, that is, the

rate at which obese individuals become overweight.

The initial conditions, the results of model calibration, and the estimation of the model
parameters variability are gathered in Table 1. More details about how the model parameters
are calibrated and how the parameter distributions are assigned can be found in Santonja
et al. (2012).

Note that the sum of the three subpopulations, by definition, satisfies the following con-
dition of constant population:

N (t) + S(t) + O(t) = 1. (4)

The graph flow representing this system of equations can be seen in Fig. 1.

2.2 Generation of the synthetic datasets using the obesity model

Here, we use the model in Sect. 2.1 to generate a set of uncertainty-aware synthetic datasets.
Figure 2 summarizes the process of obtaining it. We start taking a high number of samples
(500 in this case) for each of the model parameters following the uniform distributions in
column 3 of Table 1, except for O0 and O(t = 0), which are calculated using (4). We

1 The original model in Santonja et al. (2012) is a system of differential equations. However, we consider
here a system of difference equations for better computational implementation and treatment. The model
parameters are the same for both the differential equation model and its discretization.
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Table 1 Calibrated model parameters and model parameter distributions. t = 0 corresponds to the last week
of year 2000. N0, S0 and O0 are the distribution of individuals at t = 0 at age 23 (just before enter into the
system)

Parameter Deterministic value Interval Distribution

μ 1
2184 = 0.0004578 – –

β 0.001121 [0.0008970, 0.001345] Uniform

γ 0.0003226 [0.0002581, 0.0003871] Uniform

ε 0.0000137143 [0.00000433, 0.00003248] Uniform

ρ 0.00012 [0.00006, 0.0002256] Uniform

N0 0.704 [0.69, 0.71] Uniform

S0 0.25 [0.23, 0.26] Uniform

O0 0.046 [0.039, 0.052] Uniform

N (t = 0) 0.522 [0.507, 0.536] Uniform

S(t = 0) 0.362 [0.347, 0.376] Uniform

O(t = 0) 0.116 [0.106, 0.125] Uniform

Fig. 1 Representation of the flow of individuals between subpopulations modeled in (1)–(3)

substitute each one of the 500 samples into the model (1)–(3) and run 500 simulations to
obtain, for each one, the weekly evolution of the three subpopulations between the last week
of 2000 and the last week of 2014, a total of 730 weeks.

The choice of 500 samples/model outputs is made with the idea that they are more than
enough to capture all possible variations (uncertainty) that may occur in the model. However,
in order to facilitate data handling and further work, it is desirable to reduce the number of
samples/model outputs while still describing the uncertainty accurately.

Thus, to reduce the final number of samples, we take a set of n, n = 10, 20, . . . , 500model
outputs, we calculate the mean and the 2.5 and 97.5 percentiles for each week, and we obtain
the corresponding vectors with 730 elements, mn(N ), pn2.5(N ), Pn

97.5(N ) for normal-weight
N , mn(S), pn2.5(S), Pn

97.5(S) for overweight S and mn(O), pn2.5(O), Pn
97.5(O) for obese O

subpopulations, respectively.
Now, we calculate the following composite error, n = 10, 20, . . . , 490,
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Fig. 2 Diagram of synthetic datasets generation. The stages represented are obtaining initial data by parameter
sampling, using the three-equation obesity model to obtain the datasets, and selecting uncertainty-aware
datasets

error(n, n + 10) =RMSE(mn(N ) − mn+10(N ) + RMSE(pn2.5(N ) − pn+10
2.5 (N )

+ RMSE(Pn
97.5(N ) − Pn+10

97.5 (N )

+ RMSE(mn(S) − mn+10(S) + RMSE(pn2.5(S) − pn+10
2.5 (S)

+ RMSE(Pn
97.5(S) − Pn+10

97.5 (S)

+ RMSE(mn(O) − mn+10(O) + RMSE(pn2.5(O) − pn+10
2.5 (O)

+ RMSE(Pn
97.5(O) − Pn+10

97.5 (O),

where RMSE denotes the root mean square error given by

RMSE((u1, . . . , u p), (v1, . . . , vp)) = 1

p

√
√
√
√

p
∑

i=1

(ui − vi )2.

The more model outputs are included, the more the composite error is reduced.
We repeat the above process 30 times, randomly reordering each time the model outputs.

Then, we will have 30 error(n, n + 10) for each n = 10, . . . , 490. For each group of 30
errors, we calculate the mean and 95% confidence interval. The idea of performing these 30
repetitions is to ensure that the selection we will make of the model output is independent of
the randomness of the process and the order in which they have been generated.
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Fig. 3 Evolution of the mean and confidence interval of the composite error for the 30 runs. In order to find an
equilibrium between future computational costs and low error, we take 250 simulations (black vertical line)

Figure 3 shows the evolution of the mean and confidence interval of the composite error
for the 30 runs as a function of the number of model outputs used. In addition, three hor-
izontal lines with values 0.01, 0.005, and 0.0025 have also been included to facilitate data
visualization. To maintain a low error and also minimize the number of model outputs so as
not to incur a high computational cost when performing the experiments, we have chosen to
take a total of 250 model outputs to find an equilibrium between future computational costs
and low error, represented in Fig. 3 by the vertical black line. Each of the 250 model outputs,
each one with the 730 weekly values for normal weight, overweight, and obese populations,
corresponds to a dataset we will work with next.

For later use, we establish the notation that we will use for these 250 datasets. Each dataset
contains a time series of 730 elements for normal weight, overweight, and obese, and we
denote them, for i = 1, 2, . . . , 250, as

normal weight Ni
1, N

i
2, . . . , N

i
730,

overweight Si1, S
i
2, . . . , S

i
730,

obese Oi
1, O

i
2, . . . , O

i
730.

(5)

Thisway,wehave the 250uncertainty-aware synthetic datasetswewillworkwith.The suc-
cessive differences of elements in the above time series in (5), is denoted, for t = 1, 2, . . . , 729
and i = 1, 2, . . . , 250, as

�Ni
t = Ni

t+1 − Ni
t , �Sit = Sit+1 − Sit , �Oi

t = Oi
t+1 − Oi

t . (6)

In Fig. 4, we can see the 95% confidence band generated by the 250 time series in (5). The
mean and the 2.5 and 97.5 percentiles that determine the 95% confidence interval (CI95%)
are calculated as follows: for t = 1, 2, . . . , 730,

• take the 250 values N 1
t , . . . , N 250

t and calculate their mean mN
t , their percentile 2.5 pNt

and their percentile 97.5 PN
t ,

• take the 250 values S1t , . . . , S
250
t and calculate their mean mS

t , their percentile 2.5 pSt
and their percentile 97.5 PS

t ,
• take the 250 values O1

t , . . . , O
250
t and calculate their mean mO

t , their percentile 2.5 pOt
and their percentile 97.5 PO

t .
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Fig. 4 The mean time series (red line) and the 95% confidence band (pink area) calculated in (7) from the 250
datasets time series in (5) for normal weight N (t) (a), overweight, S(t) (b), and obese O(t) (c) subpopulations.
These are the uncertainty-aware synthetic datasets we will work with (color figure online)

This way, the 250 uncertainty-aware synthetic datasets provide a mean and a 95% con-
fidence interval time series, drawn in Fig. 4, and denoted for each week t = 1, 2, . . . , 730,
as

mean mt = (mN
t ,mS

t ,m
O
t )T ,

percentile 2.5 pt = (pNt , pSt , pOt )T ,

percentile 97.5 Pt = (PN
t , PS

t , PO
t )T ,

(7)

where vT denotes the transpose of vector v.

3 Methods

In the previous section, we obtained uncertainty-aware datasets of 250 model outputs from
model (1)–(3). Now we forget all about this model and focus only on datasets to build a
model.

This is the paper’s main idea: to build a model based on known evidence but consider-
ing possible terms that may describe unknown features of the phenomenon, using only the
datasets.

For this, we employ Dynamic Structured Grammar Evolution (DSGE) (Lourenço et al.
2018), designing a custom grammar that respects the known properties of the phenomenon
under study and allows the inclusion of terms that are not contradictory to known properties.
Although we have data for the three subpopulations, N , S, and O , we know that O =
1− N − S. Also, since the individuals in N only enter because they enter the system, and if
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Fig. 5 In this figure, we show the workflow representation describing the obtention of the uncertainty-aware
models. First, we apply DSGE 30 times to each dataset of overweight population S, taking the best-obtained
model among the 30. As we can see in the bottom central image, the uncertainty described by these 250models
is far frommatching the one shown in Fig. 4. To improve this matching, we use an uncertainty-aware selection
algorithm to take a subset of models (ensemble model) that better describe the uncertainty drawn in Fig. 4 for
the three populations, S, N , and O , using RMSE as the fitness function

they leave, or leave the system or move to S, once the expression of S is determined, that of
N can be determined very simply.

Then, DSGE will be run 30 times to obtain 30 models for subpopulation S that accurately
describe each one of the 250 datasets. We take the best of these 30 models. In the end, we
will have 250 best models, one for each dataset. The selected fitness function measures the
RMSE between the dataset values of subpopulation S and the predictions generated by the
equations of DSGE. Finally, among these 250, we apply a ad-hoc uncertainty-aware selection
algorithm to find out among the 250 models for subpopulation S which ones allow, not only
to subpopulation S but also for populations N and O , to capture the data uncertainty drawn
in Fig. 4 (ensemble model). Figure 5 outlines the methodology of the study.

3.1 Dynamic structured grammatical evolution

To generate the mathematical expressions for our obesity model, we employed a method
called dynamic structured grammatical evolution (DSGE) (Lourenço et al. 2018). This
approach is an improved version of the concept of Grammatical Evolution (GE).

DSGE is an evolutionary population-based algorithm, i.e. works with a set of represen-
tations of solutions (population) that iterates (evolves) over generations guided by a fitness
function. The representations of the solutions are a list of integers that are decoded using
a grammar to construct mathematical expressions. The algorithm has as inputs the dataset
used for evaluation (6), the grammar, and the parameters of the algorithm. The output will
be the mathematical expressions that best represent the data. The evolutionary process works
as follows:

• Initialization (Step 0): A random population of lists of integer values is generated accord-
ing to the parameters of the DSGE configuration.
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• Decoding phase (Step 1): This step involves decoding the genetic representation, i.e., the
list of integers, of each solution (individual) using the provided grammar and generating
the necessary mathematical expressions

• Fitness computation (Step 2): when the solutions are decoded, we have expressions
representing the successive differences in subpopulations N and O , that is, �N (t) =
N (t+1)−N (t) and�O(t) = O(t+1)−O(t). Using them, we simulate the evolution of
the groups in the population during the 730 weeks and compare the results with the input
data. As the objective is to reproduce the dynamics of the problems as close as possible
to the actual value, we measure the Root Mean Squared Error (RMSE) between the
simulated data and the input data. The simulation is performed using Iterative numerical
evaluation (INE), i.e., we iterative generate the 730 values of data using the one in the
previous simulation step.

• Selection (Step 3): This phase determines which individuals from the population will
form the parent set for producing the next generation. It uses a selection mechanism that
favors individuals with lower error values, promoting the retention of more promising
solutions.

• Crossover (Step4): In the crossover phase, geneticmaterial is exchangedbetween selected
parent individuals, leading to the creation of new offspring. This process mimics the
biological concept of genetic recombination and promotes the exploration of different
solution combinations.

• Mutation (Step 5): Themutation phase introduces specific changes to individual solutions
by altering their genetic representation. This process helps maintain genetic diversity
within the population and enables the exploration of potentially novel solutions.

This iterative process is repeated until the specified number of generations is reached,
allowing the population to evolve and improve solutions over time. The complete evolutionary
process enables the discovery and refinement of expressions that capture the dynamics of
obesity-related subpopulations.

3.2 Introducing knowledge through grammars

One of the advantages of using DSGE is the use of grammars to generate the solutions. In
the context of Grammatical Evolution (GE), a grammar is a crucial component that defines
the rules and structures for generating solutions to problems. With it, we can introduce
restrictions or expert knowledge in the search. Figure 6 shows the grammar used in this paper,
represented in Backus-Naur Form (BNF). Before explaining the particularities associated
with the problem, let us introduce briefly the semantics of it. BNF is a notation technique
used to express the grammar of a language in a formal way. It is commonly used in computer
science for defining the syntax of programming languages, protocols, and data formats.
Understanding the components and structure of a BNF grammar is essential for parsing and
generating strings within a language. The building blocks of BNF grammars are:

• Symbols: There are two types, non-terminal and terminal symbols. Non-terminals are
abstract symbols that can be expanded into sequences of other non-terminal or termi-
nal symbols. They are represented by names enclosed in angle brackets <expression>.
Terminals are the actual tokens of the language. They are the basic, indivisible elements
that appear in the strings generated by the grammar. In other terms, the variables and
operators that express the equations.

• Production Rules: They define how a non-terminal symbol can be replaced (or expanded)
into a sequence of terminal and/or non-terminal symbols.
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• Choices: A non-terminal symbol can often be expanded in more than one way. This is
represented by listing multiple options, separated by a vertical bar (|), indicating a choice.

• The <Start Symbol> is a special non-terminal symbol designated as the initial symbol.
This symbol represents the whole language or the main structure being defined. All
strings in the language are derived by starting with this symbol and applying production
rules.

As the grammar defines the structure of the equations the algorithm will obtain, we can
also incorporate information into the grammar to favor some types of equations. In order
to maintain the total proportion of the population, �S has been calculated as a function of
�N (t) and �O(t). DSGE will use �S(t) as the objective to be adjusted; that is, we will try
to calibrate the variation of the subpopulation S. This decision was made on the basis that
this subpopulation is the center of the system under study. An individual moves to S, leaves
S, or leaves the system. So the value of �S(t) will be the sum of the changes perceived in
the other two subpopulations with opposite signs; this statement can be expressed as:

�S = −(�N + �O) (8)

This information is incorporated in the grammar of Figure 6 in the Start Symbol:

<func>::= ΔS(<ΔN>,<ΔO)>,k)

We will also search for expressions that take into account some terms of the equations
obtained in Sect. 2, and Eqs. (1)–(3). If we translate the equations to the symbolic regression
(SR) problem, we obtain the form of Eqs. (9)–(11):

�NSGE (t) = μN0 + �N (t) − μN (t) (9)

�SSGE (t) = μS0 + �S(t) − μS(t) (10)

�OSGE (t) = μO0 + �O (t) − μO(t) (11)

where �N (t), �S(t), and �O (t) were the expressions obtained by DSGE (SR of the data).
This is incorporated in the grammar in the non terminal lines:

<ΔN>::= <mu>* <N0> + <expr2N> + <expr2N>+ <expr2N> -<mu>* N
<ΔO>::= <mu>* <O0> + <expr2O> + <expr2O>+ <expr2O> -<mu>* O
<mu>::= 0.0004578
<N0>::= N0
<O0>::= O0

The intentional repetition of the terms < expr2N > and < expr2O > in the initial lines
of the grammar reflects a deliberate design strategy informed by our experience with GE. Its
inclusion empowers the algorithm to navigate the fitness landscape effectively, circumventing
local minima and improving overall solution quality.

The next section of the grammar to highlight are the variables, differentiated according to
the subpopulation and biased according to the knowledge about the system. Thus, the signs
are prefixed depending on whether the variable or the product of the variable is considered
incoming or outgoing from the subpopulation, as stated in the model in Sect. 2.1. In addition,
we incorporate the following information through the grammar:

• The contagion of unhealthy lifestyles takes place through encounters of overweight (S) or
obese (O) people with people of normal weight (N ). Therefore, terms containing N × S
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and N × O can be generated by the grammar to permit the transition of individuals from
N to S.

• Any individual can transit from S to O by increasing his or her unhealthy habits. And
also the opposite if the individual turns to healthy habits. S can transit to N by changing
the habits to healthier ones, such as going on a diet or doing exercise. Furthermore, terms
describing the people entering or leaving the system to/from any subpopulations should
also be contemplated.

• Terms with a higher degree, for instance, S × O2, are not allowed because there is no
natural interpretation in the context of the problem. However, some freedom in the terms
generation should be allowed because they may not be contradictory with the behavior
of the problem.

• Also, the people in N who leave N , move to S to keep the total population constant.
Thus, the terms that add in S, except those corresponding to individuals who enter or
leave the system, are those that subtract in N . In this way, the equation generated by the
algorithm for the subpopulation S allows us to obtain the corresponding equation in N ,
and from both, the one for O is obtained as 1− N − S. Then with the equation of S, the
remainder are determined.

All this information is incorporated in the grammar in the lines

<expr2N>::= (<exprN> + <exprN>) | (<cte> * <varN>)
<exprN>::= <varN> | (<cte> * <varN>)|<expr2N>
<expr2O>::= (<exprO> + <exprO>) | (<cte> * <varO>)
<exprO>::= <varO> | (<cte> * <varO>)|<expr2O>
<varN>::= -(N)|-(N*S)|-(N*O)|(S)|(S*N)
<varO>::= S|S*O|-(O)|-(S*O)|-(N*O)

The rest of the grammar is devoted to the generation of constants.

3.3 Evaluation of the tentative models

Figure 6 presents an example of a representation of our context-free grammar used for defining
the syntax of coupled equations in the context of obesity modeling based on the genotype
of each individual. The genotype comprises a sequence of numbers (alleles in this context),
with each number serving as a basis for generating a sequence of terminals and non-terminals
derived from the grammar file. The process starts with the non-terminal symbol < f unc >,
which is replaced by the expression �S(< �N >,< �O >), k). In Fig. 7, we can see the
steps to develop �N as an example. The green boxes denote the grammar rules. The blue
squares show the intermediate expressions. The process commences by applying the initial
grammar rule alongside the first number within our genotype. Subsequently, the progression
involves decoding the generated non-terminals sequentially using the correspondinggenotype
numbers (orange ellipses) until a collection of terminals forms the phenotype (the final
expression).

Applying analogous procedures, the algorithm proceeds to compute �O , culminating in
the assembly of �S in a coupled format, illustrated in Fig. 8. Subsequently, the model’s out-
comes are compared against the dataset values, and the model’s error is quantified, defining
the fitness of the individual. This fitness metric is the criterion enabling the evolutionary algo-
rithm to discern and select the most optimal models (individuals) for generating subsequent
generations.
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Fig. 6 Grammar applied in our work for decoding the individuals

3.4 Construction of the uncertainty-aware ensemblemodel (UAEM) using a
selection algorithm

The objective now is to propose an algorithm to select, among the obtained models, a subset
that will make up the uncertainty-aware ensemble model that will capture as accurately as
possible the data uncertainty, that is, when the mean and the 95% confidence interval of the
models will be as close as possible to the mean and the 95% confidence interval of the data.

At this point, we have 250 models Mi (t), i = 1, . . . , 250 obtained using DSGE, where

Mi (t) = (Ni (t), Si (t), Oi (t))
T ,

is a vector with three components, the percentage of normal weight, overweight, and obese.
With these models, we can evaluate their corresponding model outputs Mi (1), . . . , Mi (730),
at the weeks t = 1, 2, . . . , 730, that is:

Index Models Output

1 M1(t) �(1) = (M1(1), . . . , M1(730)),
2 M2(t) �(2) = (M2(1), . . . , M2(730)),
...

...
...

250 M250(t) �(250) = (M250(1), . . . , M250(730)).

(12)
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Fig. 7 Flowchart for a hypothetical example of the decoding process of �N

Fig. 8 Flow diagram of the decoding and evaluation process
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If we consider Ih ⊆ I = {1, . . . , 250} a subset of indexes of I , taking the rows �(i),
i ∈ Ih , for each of the three elements in each column we can calculate the corresponding
percentiles 2.5, 97.5 and the mean, and denote them, for t = 1, 2, . . . , 730, as

mean m(t)Ih = (mIh
N (t),mIh

S (t),mIh
O (t))T ,

percentile 2.5 p(t)Ih = (pIhN (t), pIhS (t), pIhO (t))T ,

percentile 97.5 P(t)Ih = (P Ih
N (t), P Ih

S (t), P Ih
O (t))T .

(13)

Now, taking into account the mean and confidence intervals of the datasets defined in (7),
we define here explicitly the error function as:

F(Ih) = ∑730
t=1 RMSE(m(t)Ih − mt )

+RMSE(p(t)Ih − pt )
+RMSE(P(t)Ih − Pt ).

(14)

Thus, the goal consists of finding a subset Ih∗ ⊆ I (ensemble model) such that the F(Ih∗)
will be as small as possible (uncertainty aware).

To achieve that, we use the UAEM selection algorithm based on the PSO (Marini and
Walczak 2015), which is explained as follows.

1. Parameters of the algorithm.

• n, the number of particles.
• I T MAX , the maximum number of iterations.

2. Initialization.

• Let I1, . . . , In ⊂ {1, . . . , 250} be the sets of indexes (particles), where |I1|, . . . , |In | <

250. Note that the number of elements of each Ii , i = 1, . . . , n may be different.
• Calculate the particles fitnesses F(Ii ), i = 1, . . . , n, F defined in (14).
• We define the local best of each particle as I localbesti = Ii , i = 1, . . . , n.

• We define the global best I globalbest as the best (lowest value of F) of all the local
best.

3. STEP 1 (particle update). For i = 1 to n, we have two possible options to update the
particle:

• With 10% probability, we generate randomly a new particle Ii with a random size in
{1, . . . , 250}.

• Otherwise, we define the auxiliary set S as the union of the elements of the Ii , the
elements of I localbesti , the elements of I globalbest and a random amount of random
numbers between 1 and 250. Then, we remove the repeated elements. The updated
Ii will be made up of a random number of elements of S chosen at random.

4. STEP 2 (particle fitness calculation). For i = 1 to n, calculate the error F(Ii ) of the
updated Ii .

5. STEP 3 (updating the local best and the global best) For i = 1 to n.

• The local best of I localbesti is updated if the new Ii has a fitness F(Ii ) less than
F(I localbesti ).

• In the same way, if the local best has been updated, we check if I globalbest can be
updated if Ii has a fitness F(Ii ) less than F(I globalbesti ).
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6. STEP 4 (end criterion) The process finishes when ITMAX iterations have been reached,
and the algorithm returns I globalbest . Otherwise, go to STEP 1.

The I globalbest returned by the algorithm will be a subset of {1, . . . , 250} whose fitness
error, F(I globalbest ) will be the smallest found.

4 Experimental results

This study encompasses two distinct phases of results. Initially, the application of DSGE
focused primarily on subpopulation S to evaluate the performance of candidate solutions.
Subsequently, a second phase involved the utilization of the UAEM selection algorithm,
which considered the performance of the selected solution set in predicting the evolution of
all three subpopulations. The left column of Fig. 9 illustrates the outcomes: the pink region
represents the corresponding interval obtained from the real data that is also drawn in Fig. 4,
while the blue region represents the confidence interval between the upper and lower bounds
of the data generated using the 250models obtained using DSGE. Although the data obtained
from the 250models cover the uncertainty-aware datasets, they do not adequately fit the cases
of N and O . We can see a progressive discrepancy between the two averages that increases
as the prediction time horizon increases.

This discrepancy arises because the model was based only on values from the subpop-
ulation S for fitting, and more guidance is necessary for the other two objectives. Since
the obtained solutions do cover the desired space, the subsequent step involves the selec-
tion of expressions that faithfully represent the data. To achieve this, we employed the
UAEM selection algorithm to minimize the difference between the mean and confidence
intervals of the simulations generated by a subset of the 250 models and the actual data.
We run the UAEM selection algorithm 30 times for n = 40, 60, 80, 120, 140 particles and
ITMAX= 20,000, 30,000 iterations. This process yields a set of expressions that collectively
fit the original dataset. We run the algorithm with all this variety of options with the aim at
covering many possibilities of execution of the algorithm to finally select the best solution.
We do it this way because the computational cost of the algorithm is not high, and does not
justify a study of the performance of the algorithm, which is outside the scope of this study.
Among all of these experiments, the best result Ih∗ = {11, 14, 41, 70, 78, 98, 119, 132} was
obtained with n = 140 particles, ITMAX= 30,000 iterations, and a fitness error 0.0293171.
These 8 models constitute the uncertainty-aware ensemble model, as can be seen in the right
column of Fig. 9. This column is similar to the left column, but instead of employing the 250
obtained models, we utilize the 8 returned by the UAEM selection algorithm. As depicted,
both the mean and the 95% confidence intervals of the data and the ensemble model align
much better for subpopulations N and O than in the left column. The results obtained from
the coupled equations closely approximate the values of the dataset, indicating the efficacy
of our approach in addressing such problems.

4.1 Discussion

After applyingUAEMselection algorithm (Sect. 3.4) to curate a subset of solutions capable of
efficiently covering the uncertainties inherent in the original 250 uncertainty-aware synthetic
datasets, we obtained 8 solutions listed in Table 2. This table shows each solution identified by
an ID and differentiates between the expression for�N = N (t+1)−N (t) and�O = O(t+
1)− O(t). We can use those expressions to extract �S = S(t + 1)− S(t) = −(�N +�O),
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Fig. 9 Comparison of the mean and confidence intervals of the 250 datasets, as shown in Fig. 4 (pink), with:
(left column) the mean and confidence intervals of the 250 models obtained from the DSGE (blue); (right
column) the ensemble model (8 out of the 250 original models) obtained after applying the UAEM selection
algorithm (color figure online)

as indicated in Eq. (8). According to Sect. 3.2, certain elements have been prefixed using
grammatical rules, like the terms accompanied by μ = 0.0004578.

Now, we analyze the results in Table 2, comparing them with the original model (1)–(3)
proposed in Santonja et al. (2012) and recalling the hypothesis used to build this model.
Specifically, we are going to look at the terms that the grammar has constructed but do not
appear in the original model (1)–(3). Our task here will be to justify the appearance of these
terms, either because they do not contradict the hypotheses or complement them.

First, we look at the expressions of �N :

1. The first equation (1) in the original model contains a non linear term involving SN and
SO . Only solution IDs 1 and 2 contain both terms. The remainder contain only one of
both. The differences among the expressions of the solutions may show the variability in
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Table 2 Expressions obtained after the UAEM selection algorithm. �S can be obtained as −(�N + �O),
see Eq. (8)

ID Expresiones

1 �N = μN0 − μN − 0.00000179NO − 0.00091NS

�O = μO0 − μO + 0.00186OS − 0.00029099O

2 �N = μN0 − μN − 0.004000015NO + 0.000199NS

�O = μO0 − μO + 2.62OS − 1.00027O + 0.029S

3 �N = μN0 − μN − 0.002706NS + 0.00088S

�O = μO0 − μO + 0.000782909OS + 0.000000004S

4 �N = μN0 − μN − 0.00163NS + 0.0000029S

�O = μO0 − μO − 0.00032NO − 0.00051097OS − 0.00000295O + 0.00049049S

5 �N = μN0 − μN − 0.0034NO − 0.00048N + 0.00042S

�O = μO0 − μO − 0.00037NO − 0.00002968OS − 0.00019978O + 0.00043214S

6 �N = μN0 − μN − 0.00131NS − 0.00000399N

�O = μO0 − μO − 0.00000045NO + 0.000052OS + 0.00025071S

7 �N = μN0 − μN − 0.0072NO − 0.00018N + 0.00062S

�O = μO0 − μO − 0.000163NO + 0.002799OS

8 �N = μN0 − μN − 0.001NS + 0.00000098S

�O = μO0 − μO − 0.00078NO + 0.000430973S

the influence of the populations of S or O on the decision of the people in N to change
their habits.

2. Solution IDs 5, 6, and 7 have a negative term in N . This term is missing in the Eq. (1). It
may indicate that there are individuals who autonomously acquire unhealthy habits and,
as a consequence, gain weight and become S. Although the general hypothesis is that the
transition from N to S is due to transmission of unhealthy habits, it seems complementary
the possibility that some individuals do it voluntarily, even more so if we realize that the
coefficients of these terms are of a significantly smallermagnitude than the corresponding
to the nonlinear terms.

Now, looking at the expressions of �O , all the solutions contain a non linear term when
non linear terms are missing in Eq. (3) of the original model.

1. Solution IDs 4, 5, 6, 7, and 8 have a negative term in NO . This termmay show that people
in N are able to transmit healthier habits leading people to move from O to S. Although
the original model assumes that weight loss due to changing habits for healthier ones is
a personal decision (linear term), the constructed model indicates that it may also occur
in some cases due to the transmission of habits.

2. Now, we deal with the term OS appearing in all the solutions except the ID 8.

• In solution IDs 1, 2, 3, 6, and 7, this term is positive. It shows the possibility that
people in S move to O because people in O transmit more unhealthy habits leading
people in S to gain weight.

• However, in solutions 4 and 5, this term is negative, showing that people in S may
transmit to people in O healthier habits than the usual for people in O and move to
S.
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As mentioned before, the original model assumes linear terms for these transitions, how-
ever, the model our algorithms built shows that these transitions may also occur in some
cases due to the transmission of habits.

Summarizing, the solutions in Table 2 are in agreement with the known hypothesis and do
not contradict them. Also, the new terms suggest that it may be interesting to study possible
causes of transitions between populations, extending the transmission of habits also to lose
weight, as well as the autonomous decision to gain/lose weight.

5 Conclusion

In this work, we develop a process such that, from datasets of the evolution of a phenomenon
with uncertainty and having limited knowledge of this phenomenon,we build a set of dynamic
models based on a systemof difference equations describing the datasets and their uncertainty.
Furthermore, these models are explainable and non-contradictory to the existing knowledge
of the problem.

The primary technique employed is DSGE. When DSGE calculates the models, we apply
a selection algorithm to reduce the number of models while improving the fit to the datasets.

Here are the key findings from our study:

• DSGEproved to be a valuable tool as it allowed us to incorporate the knowledge about the
system into our models. This meant we could adjust our models based on prior evidence,
making them more accurate.

• The use of sparse identification simplifies the problem. This technique focuses on the
idea that in real-world systems, only a few factors play a crucial role in explaining how
things work.

• Our models are not just accurate; they are also explainable. This means that they are easy
for humans, especially experts in the area, to understand. The terms in themodels respond
to identifiable processes that can be described in the context of the studied phenomenon.
Rather than having a black box model where you can only see the output, our models
allow experts to identify the elements governing the system.

• The terms in the model not supported by evidence but non-contradictory with them may
suggest new lines of research, as it happens in other areas.

In this study, we applied our methodology to a synthetic dataset that we created to account
for a wide range of uncertainties. However, the real promise of our approach lies in its ability
to derive equations that describe the dynamics of a real-world system. We envision a future
wherewe can create interpretablemodels from a limited dataset andminimal prior knowledge
of the underlying laws of the system.

It should be noted that we have been able to simplify a system of three equations into
a single equation using the population conservation principle and individuals’ structured
movement between subpopulations. In more complex models where this kind of simplifi-
cation cannot be done, it would be interesting to face this problem with a multiobjective
approach, developing a model that simultaneously adjusts the coupled equations to capture
the evolution of all the populations. Such a proposal would definitely increase the computa-
tional complexity and require optimization techniques oriented explicitly to multiobjective
problems.

In essence, our work aims tomake complex systemsmore transparent and understandable,
offering a valuable tool for experts and decision-makers in various fields, particularly in the
medical domain.

123



  420 Page 20 of 21 D. Parra et al.

Acknowledgements Thisworkhas been supportedby thegrantsPID2020-115270GB-I00, PDC2022-133429-
I00 and PID2021-125549OB-I00 funded by MCIN / AEI/ 10.13039 / 501100011033 and by European Union
Next GenerationEU / PRTR.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability All the necessary data are included in the paper.

Declaration

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Centers for Disease Control and Prevention (CDC) (2022) CDC’s Division of Nutrition, Physical Activity, and
Obesity (DNPAO), “About overweight & obesity,” https://www.cdc.gov/obesity/about-obesity/index.
html. Accessed 12 May 2022

Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. New Engl J
Med 357(4):370–379

Cohen-Cole E, Fletcher JM (2008) Is obesity contagious? Social networks vs. environmental factors in the
obesity epidemic. J Health Econ 27(5):1382–1387

Evangelista AM, Ortiz AR, Ríos-Soto KR, Urdapilleta A (2004) USA the fast food nation: Obesity as an
epidemic. T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, NM 87545. https://
mcmsc.asu.edusites/default/files/2024-08/MTBI%202004%20Obesity%20Epidemic%20Report.pdf

Frerichs LM, Araz OM, Huang TT-K (2013) Modeling social transmission dynamics of unhealthy behaviors
for evaluating prevention and treatment interventions on childhood obesity. PLoS ONE 8(12):e82887.
https://doi.org/10.1371/journal.pone.0082887

Hill JO, Peters JC (1998) Environmental contributions to the obesity epidemic. Science 280(5368):1371–1374
Hill AL, Rand DG, Nowak MA, Christakis NA (2010) Infectious disease modeling of social contagion in

networks. PLoS Comput Biol 6(11):1–15. https://doi.org/10.1371/journal.pcbi.1000968
Leahey TM, LaRose JG, Fava JL, Wing RR (2011) Social influences are associated with bmi and weight loss

intentions in young adults. Obesity 19(6):1157–1162
Lourenço N, Ferrer J, Pereira FB, Costa E (2017) A comparative study of different grammar-based genetic

programming approaches. In: McDermott J, Castelli M, Sekanina L, Haasdijk E, García-Sánchez P (eds)
Genetic programming. Springer International Publishing, Cham, pp 311–325

LourençoN,Assunção F, Pereira FB, Costa E,Machado P (2018) Structured grammatical evolution: a dynamic
approach. In: Ryan C, O’Neill M, Collins J (eds) Handbook of grammatical evolution. Springer Interna-
tional Publishing, Cham, pp 137–161

Lozano-Ochoa E, Camacho JF, Vargas-De-León C (2017) Qualitative stability analysis of an obesity epidemic
model with social contagion. Discrete Dyn Nat Soc 2017:1–12. https://doi.org/10.1155/2017/1084769

Marini F, Walczak B (2015) Particle swarm optimization (PSO). A tutorial. Chemom Intell Lab Syst 149:153–
165

Santonja F, Shaikhet L (2014) Probabilistic stability analysis of social obesity epidemic by a delayed stochastic
model. Nonlinear Anal Real World Appl 17:114–125

Santonja F-J, Villanueva R-J, Jódar L, Gonzalez-Parra G (2010) Mathematical modelling of social obesity
epidemic in the region of Valencia, Spain. Math Comput Modell Dyn Syst 16(1):23–34. https://doi.org/
10.1080/13873951003590149

123

http://creativecommons.org/licenses/by/4.0/
https://www.cdc.gov/obesity/about-obesity/index.html
https://www.cdc.gov/obesity/about-obesity/index.html
https://mcmsc.asu.edusites/default/files/2024-08/MTBI%202004%20Obesity%20Epidemic%20Report.pdf
https://mcmsc.asu.edusites/default/files/2024-08/MTBI%202004%20Obesity%20Epidemic%20Report.pdf
https://doi.org/10.1371/journal.pone.0082887
https://doi.org/10.1371/journal.pcbi.1000968
https://doi.org/10.1155/2017/1084769
https://doi.org/10.1080/13873951003590149
https://doi.org/10.1080/13873951003590149


Building uncertainty-aware mathematical models... Page 21 of 21   420 

Santonja F-J, Morales A, Villanueva R-J, Cortés J-C (2012) Analysing the effect of public health campaigns on
reducing excess weight: A modelling approach for the Spanish Autonomous Region of the Community
of Valencia. Eval Progr Plan 35(1):34–39. https://doi.org/10.1016/j.evalprogplan.2011.06.004

Smith RC (2013) Uncertainty quantification: theory, implementation, and applications. SIAM, Cambridge
Wadhera D, Phillips EDC, Castillo-Chavez C, Safan M, Murillo AL (2016) Modeling eating behaviors: the

role of environment and positive food association learning via a Ratatouille effect. Math Biosci Eng
13(4):841–855. https://doi.org/10.3934/mbe.2016020

WHO Discussion Paper: Draft recommendations for the prevention and management of obesity over the life
course, including potential targets (2021) https://www.who.int/publications/m/item/who-discussion-
paper-draft-recommendations-for-the-prevention-and-management-of-obesity-over-the-life-course-
including-potential-targets. Accessed 12 May 2022

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.evalprogplan.2011.06.004
https://doi.org/10.3934/mbe.2016020
https://www.who.int/publications/m/item/who-discussion-paper-draft-recommendations-for-the-prevention-and-management-of-obesity-over-the-life-course-including-potential-targets
https://www.who.int/publications/m/item/who-discussion-paper-draft-recommendations-for-the-prevention-and-management-of-obesity-over-the-life-course-including-potential-targets
https://www.who.int/publications/m/item/who-discussion-paper-draft-recommendations-for-the-prevention-and-management-of-obesity-over-the-life-course-including-potential-targets

	Building uncertainty-aware mathematical models based on evidence from datasets using grammatical evolution optimization techniques: the case of the obesity dynamics
	Abstract
	1 Introduction
	2 Model and uncertainty-aware synthetic dataset generation
	2.1 Short description of the model describing the obesity dynamics
	2.2 Generation of the synthetic datasets using the obesity model

	3 Methods
	3.1 Dynamic structured grammatical evolution
	3.2 Introducing knowledge through grammars
	3.3 Evaluation of the tentative models
	3.4 Construction of the uncertainty-aware ensemble model (UAEM) using a selection algorithm

	4 Experimental results
	4.1 Discussion

	5 Conclusion
	Acknowledgements
	References


