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Simple Summary: In meat production, the fat within an animal’s muscles, known as intramuscular fat
(IMF), is key to quality. This study investigated how breeding rabbits for higher or lower IMF levels
affect their gut microorganisms. We focused on a rabbit population that was bred over 10 generations
to achieve either high-IMF or low-IMF levels. Our findings show that genetic selection changes the
gut’s microbial composition, with more noticeable differences at the genus level than at the broader
phylum level. High-IMF rabbits had different abundances of Escherichia, Methanobrevibacter, and
Hungateiclostridium microorganisms compared to low-IMF rabbits, amongst others. We identified
four specific microorganisms that could predict a rabbit’s IMF genetic line with 78% accuracy. This
research highlights the link between muscle fat genetics and gut microorganisms, opening the
possibility of developing microbiome modulation strategies to influence IMF in animals, which could
improve meat quality.

Abstract: Intramuscular fat (IMF) content is important for meat production and human health, where
the host genetics and its microbiome greatly contribute to its variation. The aim of this study is to
describe the consequences of the genetic modification of IMF by selecting the taxonomic composition
of the microbiome, using rabbits from the 10th generation of a divergent selection experiment for IMF
(high (H) and low (L) lines differ by 3.8 standard deviations). The selection altered the composition of
the gut microbiota. Correlated responses were better distinguished at the genus level (51 genera) than
at the phylum level (10 phyla). The H-line was enriched in Hungateiclostridium, Limosilactobacillus, Le-
gionella, Lysinibacillus, Phorphyromonas, Methanosphaera, Desulfovibrio, and Akkermansia, while the L-line
was enriched in Escherichia, Methanobrevibacter, Fonticella, Candidatus Amulumruptor, Methanobrevibac-
ter, Exiguobacterium, Flintibacter, and Coprococcus, among other genera with smaller line differences.
A microbial biomarker generated from the abundance of four of these genera classified the lines
with 78% accuracy in a logit regression. Our results demonstrate different gut microbiome com-
positions in hosts with divergent IMF genotypes. Furthermore, we provide a microbial biomarker
to be used as an indicator of hosts genetically predisposed to accumulate muscle lipids, which
opens up the opportunity for research to develop probiotics or microbiome-based breeding strategies
targeting IMF.

Keywords: genetic selection; intramuscular fat; gut microbiome; correlated responses

1. Introduction

Intramuscular fat (IMF) content is an important trait with a dual perspective. In farm
production, a high-IMF content is a main objective of the meat industry, as it increases the
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quality of meat in terms of sensory attributes such as juiciness, tenderness, and flavor [1]. In
terms of human health, increased deposition of IMF, along with increased lipid deposition
in other fat depots, contributes to obesity [2]. This is a major public health and eco-
nomic concern because obesity prevalence has markedly increased worldwide over the last
40 years, and it is projected to keep increasing in the coming years [3]. Intramuscular fat is a
multifactorial trait to which dietary interventions and host genetic factors are major contrib-
utors, with heritabilities ranging from 0.40 to 0.70 in farm animals [4,5], resembling those
reported for general obesity in humans [6]. In recent decades, attention has also focused on
the microbiota and its role in fat accumulation, as there are a variety of microbial mecha-
nisms that influence host energy management by altering appetite [7], energy production
from food intake [8–14], or inflammatory and immune processes through increased pro-
duction of microbial metabolites [9,12–15]. Dietary interventions and host genetic factors
also influence microbiota composition [8–14,16]. For example, the abundance of microbial
genera Akkermansia, which affects obesity, is associated with a marker near PLD1, a gene
already known to influence body mass index [17]. Since host genetics, the environment,
and the microbiome form a complex biological system that influences lipid metabolism, it
is not easy to disentangle the individual effects of any of these factors on IMF and, more
importantly, to determine a direction of causality [18]. In addition, there are differences
between experiments in terms of design, sample collection and DNA treatment, bioinfor-
matic procedures, statistical methods, data transformations, and/or failure to account for
lifestyle or external factors. As a result, some outcomes remain inconclusive; for example,
although a relationship between the ratio of Firmicutes to Bacteroidetes (FB ratio) and
obesity was originally proposed [19–23], many inconsistencies found later on have yet to
be investigated [24].

One practical way to respond to these controversies is to isolate individual factors in
order to provide answers to specific questions using appropriate experimental designs. This
is not always possible, especially in humans, where there are many confounding factors, but
it is easier in farm or laboratory animals where controlled conditions are easier to achieve.
At the Universitat Politècnica de València, a 10-generation divergent selection experiment
for IMF in the Longissimus muscle was performed in rabbits [4,25], with a response of
0.49 g/100 g, equivalent to 47% of the mean of the trait or 3.8 standard deviations (SD) at the
end of the experiment [26]. The divergent genetic lines (high-IMF or H-line and low-IMF
or L-line) were raised at the same time, kept in the same environment and with the same
management, and fed the same diet throughout the experiment. The differences observed
in their microbiome can be directly attributed to the genes underlying IMF and genetically
correlated traits, independent of any genetic parameters or models, constituting the main
advantage of our experimental design, compared with other microbiome-genetic studies.
The results of this experiment will have an influence on the production of rabbit meat,
mainly consumed in China, the Democratic People’s Republic of Korea, Egypt, Spain, and
France [27], but they will also serve as a model for other farm species in which IMF is an
important meat quality factor. On the other hand, the results of this experiment can be used
for orientating the studies of lipid metabolism in humans, because a rabbit’s lipoprotein
metabolism, cardiovascular system, and clinical symptoms associated with obesity are
more similar to those in humans than the same systems in mice [28,29]. In previous studies,
we have shown that the selection for IMF in the Longissimus modified the fat content
of various muscles [30] and other body fat depots [4], increased the lipogenic activity
of muscle, fat [31], and liver tissues [32], affected the liver weight [32], and influenced
the adipocyte size [31], with all levels greater in the H-line than in the L-line, impacting
the muscle and liver fatty acid profile [26,33]. With the -omics revolution, these lines
became extremely valuable experimental material to decipher which modifications in -
omics variables are regulated by IMF genetics. In a genomic study, we identified several
genes related to the IMF content and its fatty acid composition, which were modified by
the selection [34,35]. In a plasma metabolomic study, we found an impaired ability of the
L-line for β-oxidation of fatty acids, indicating a limited capacity to obtain energy from
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lipids, as well as alterations in plasma levels of metabolites derived from the microbiome,
including catabolites from branched-chain and aromatic amino acids, and secondary bile
acids [36]. In a functional metagenomics study [37], we observed that microbial biosynthesis
of lipopolysaccharides, peptidoglycans, lipoproteins, mucin components, and bile acids,
among others, are influenced by host genetic determination of lipid accumulation in
muscle, which was consistent with some of the results obtained in the plasma metabolomics
study mentioned above. However, many questions remained regarding the taxonomic
composition of the cecum microbiome. For example, some microbial genes involved in
mucin degradation or methanogenesis were altered by the selection, but it was unclear
whether the selection changed the abundance of the major mucin degrader Akkermansia
or the methane producer Methanobrevibacter. It was also not clear whether the selection
altered the FB ratio, a major indicator of obesity, showing if it has a hereditary component.
The study of the gut taxonomic composition of these lines opens the possibility of defining
microbiome changes driven by host genetics for IMF and to define which are the main
microbial organisms involved in their functional differentiation.

This work aims to investigate the correlated response in gut taxonomic microbiota
composition following a 10-generation divergent selection experiment for IMF in rab-
bits under controlled environmental conditions using whole-metagenome sequencing of
89 cecal content samples. The output of this research will clarify whether specific taxa can
be associated with IMF-divergent genetic lines and will allow the identification of specific
microbial biomarkers indicative of the host genetic predisposition to accumulate lipids
in muscle.

2. Materials and Methods
2.1. Animal Material and Sampling

All experimental procedures involving animals were approved by the Research Ethics
Committee of the Universitat Politècnica de València, according to Council Directives
98/58/EC and 2010/63/EU (reference number 2017/VSC/PEA/00212).

The rabbits used in this experiment belong to two lines divergently selected for IMF
in the Longissimus muscle. The divergent selection experiment was performed at the
Universitat Politècnica de València and is widely explained in works by Zomeño et al.
(2013) [38] and Martínez-Álvaro et al. (2016) [4]. The H-line and L-line were created by
selecting for higher or lower IMF content, respectively. The selection criterion was the
average IMF value measured at nine weeks of age on two full siblings from each doe’s first
parity. Each line was composed of 10 males and 60 females; the lines were contemporarily
reared and selected under the same environmental conditions, including the same amount
and type of commercial diet, to ensure that the same environmental factors affected both
lines. The experiment was successful, yielding a direct response to selection in the 10th
generation of 0.49 g/100 g of muscle [26], equivalent to 47% of the mean and 3.8 SD of
the trait.

This study was performed with 47 rabbits from the H-line (27 males and 20 females)
and 42 from the L-line (22 males and 20 females) from the 10th generation of selection, all
randomly chosen. Animals came from 44 different litters of 44 different does (21 from H and
23 from L) with an average of 2 animals sampled within each litter (SD of 0.9 and range from
1 to 5), a male and a female. The animals were weaned at four weeks of age and were then
reared jointly within litters until slaughter at nine weeks of age. During the fattening period
(from weaning to slaughter), the animals were fed ad libitum with the same commercial
diet, the composition of which is described in Table S1. The animals were deprived of
food four hours before slaughter. The slaughter was performed by exsanguination after
electrical stunning; the gastrointestinal tract was removed from the abdominal cavity, and
the cecum content was collected in 50 mL sterile Falcon tubes, homogenized, and aliquoted
in 2 mL cryogenic tubes. The aliquots were immediately submerged in liquid nitrogen
and then stored at −80 ◦C until analysis. The carcasses were then chilled for 24 h at
4 ◦C, after which the Longissimus muscle was excised, minced, and freeze-dried. The IMF
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content was finally quantified as g/100 g of fresh muscle using near-infrared spectroscopy,
applying the equations developed by Zomeño et al. (2011) [39].

2.2. Microbial Abundance Measurements

The isolation and quality assessment of bacterial DNA were conducted following the
methods described by Martínez-Álvaro et al. (2021) [37]. Similarly, the sequencing and
library preparation procedures were performed in two different laboratories and were
thoroughly detailed in the same study [37], as they were performed using the same samples.
The raw FASTQ files obtained were initially filtered and trimmed using Trimmomatic
v0.39 [40], to obtain high-quality reads, setting the following parameters: leading: eight
(removal of nucleotides at the 3′ end when quality < eight), trailing: eight (removal of
nucleotides at the 5′ end when quality < eight), slidingwindow: 10:15 (scan the read with a
10-base sliding window, cutting when the average quality drops below 15), and minlen:
50 (discard reads with less than 50 bases). After the quality filter, contaminant reads from
the host were removed by mapping the reads against the reference rabbit genome (OryCun
v2.0.101) using the Bowtie2 software v4.1.2 [41], and removing the mapped reads using the
SAMtools software v1.2.1 [42].

The clean FASTQ files obtained were processed with the SqueezeMeta fully automatic
metagenomics analysis pipeline [43], using the co-assembly mode with default parameters.
Briefly, the pipeline uses Megahit [44] to assemble the reads into contigs, which are then
filtered by length using prinseq [45] (minimum 200 bases long). Gene prediction is then
carried out on the contigs using Prodigal [46], followed by a homology search against the
GenBank nr database using Diamond [47] for their posterior taxonomic assignment. A last
common ancestor (LCA) algorithm, implemented using custom scripts developed by the
authors [43], is used to assign the corresponding taxonomy to the predicted genes and,
finally, to the contigs. To estimate the final abundance dataset, the reads of each sample are
mapped back against the contigs using Bowtie2 [41], and the extraction of the raw number
of reads mapping to each contig is performed using BEDTools [48]. Further details on
the bioinformatics pipeline can be found in the work by Tamames and Puentes-Sánchez
(2019) [43]. The resulting dataset was split into the corresponding taxonomic ranks (phylum,
class, order, family, genus, and species), and only phylum (n = 173) and genus (n = 1229)
were analyzed in this study.

2.3. Effect of Selection on Alpha Diversity

The diversity within samples (i.e., α-diversity) was calculated at the phylum and
genus levels with data in raw counts. The adjusted Shannon index (H′

adj) was used, which
is the Shannon index (H′) expressed as a proportion of the maximum value of H′ that
would be found if all phyla or genera had the same abundance (H′

max) [49]. The Shannon
index is defined as follows:

H′= ∑S
1 −[ρjln

(
ρj
)]

(1)

where S is the total number of phyla or genera found in a sample, and ρj is the j-th phylum
or genus expressed in relative abundance. Then, H′

max is the Shannon index calculated
when ρj = 1/S. Finally, the adjusted Shannon index for each sample was calculated as
follows:

H′
adj=

H′

H′max
(2)

The effect of selection for IMF on the alpha diversity was computed by comparing
the adjusted Shannon index distribution of the lines by fitting a Kruskal–Wallis test, after
correcting the values for a sequencer effect.
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2.4. Effect of Selection on the Microbial Abundance
2.4.1. Microbial Abundances Transformations

Before analyzing the correlated responses to selection on microbiome composition
at the phylum and genus levels, we discarded any phylum or genus that was undetected
in more than 10% of the samples. Doing so resulted in the retention of 63 phyla and
315 genera, accounting for over 99.8% of the original counts. The remaining missing
phyla and genera were imputed using a Bayesian-multiplicative method [50]. For a raw
description of the cecum microbiota composition, the relative abundances of microbial
taxa were computed. For subsequent analyses, we transformed microbial abundances
(in raw counts) using the additive log–ratio (alr) method to address their compositional
nature and prevent misleading conclusions [51]. The reference taxa (phylum or genus)
used as the denominator was selected according to the criteria established by Greenacre
et al. (2021) [52]. Fibrobacteres (for the phylum dataset) and Eubacterium (for the genus
dataset) were the reference taxa finally selected, as discussed later in the Results section.

The possible effect derived from sequencing samples in two different laboratories
was evaluated by a principal component analysis (PCA) of the alr-transformed microbiota
composition (Figure S1). A clear sequencer machine effect was observed, which was
successfully removed after correction for a sequencing effect as follows:

xj = Seqj + e, j = 1, . . . , J (3)

where xj is the alr-transformed abundance of the j-th taxa and Seqj is the sequencer effect
of the j-th taxa. All further analyses were performed with corrected data.

2.4.2. Microbiability of IMF

The proportion of the variance of IMF attributable to microbiota composition variance
(at phylum and genus level) was estimated using a Bayesian analysis [53] on the following
MBLUP model [54]:

IMF = Xb + Wm + e (4)

Data were assumed to be normally distributed as follows:

IMF
∣∣∣b, m, σ2

e ∼ N
(

Xb + Wm, Iσ2
e

)
(5)

where IMF is the vector with the phenotypes of the traits, b is a vector that includes sex
as a fixed effect, m is the random microbiome effect, e is the vector of residuals and X
and W are the known incidence matrices for fixed and microbiome effects. Microbial
random effects were assumed to be normally distributed with mean 0 and variance equal
to Kσ2

m, σ2
m is the microbiome variance, K is the microbiome relationship matrix between

individuals, computed as
(

1
p

)
BBT, B is a matrix containing the additive log-transformed

data (standardized) with dimension n × p, where n is the number of individuals and p is
the number of alr-transformed phyla or alr-transformed genera. Residuals were assumed
to be normally distributed with a mean of 0 and a variance equal to Iσ2

e , where σ2
e is

the residual variance. Microbiome and residuals were assumed to be independent. The
analyses were carried out using BGLR Bayesian software [55]. Bounded flat priors were
used for fixed effects and variances. Marginal posterior distributions of the estimated
parameters were based on Markov chain Monte Carlo (MCMC) methods, consisting of
120,000 iterations, with a burn-in period of 20,000, and only 1 of every 10 samples saved for
inferences. Convergence was tested with R package coda [56] by checking the Z criterion of
Geweke. Microbiability was computed for each MCMC sample as the ratio between σ2

m and
σ2

m + σ2
e , and the median of its marginal posterior distribution, the highest posterior density

interval at 95% probability, and the probability of the microbiability of being greater than
25% was calculated. Additionally, microbiability was computed within the line, fitting the
MBLUP model with animals from the H-line or the L-line.
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2.4.3. Correlated Response to Selection for IMF on the Microbial Abundances

The study of the gut microbial taxa abundances modified after selection was performed
by partial least squares-discriminant analysis (PLS-DA) and linear partial least squares
(PLS). The dependent variable of the PLS-DA was a categorical vector coding the H-
line or L-line, while that of the PLS was a vector containing the IMF content. After
standardization (centering and scaling) of the datasets, all analyses were performed using
the R package mdatools [57]. The adjustment and validation of the multivariate models
were performed using a two-step cross-model validation procedure (CMV). The first step
focused on selecting microbial taxa (genus or phylum) based on whether the confidence
interval of their regression coefficients excluded 0, and on their “variable importance in
the projection” (VIP) value. This was done under an eight cross-validation procedure to
determine the cut-off value for VIP (between 0.8 and 1.1), repeating the process 20 times
and fitting a total of 160 models. The taxa selected in more than 70% of the models were
considered in the second step. The second step aimed to evaluate the performance of a final
model that included the selected taxa. Again, an eight-fold CV strategy repeated 20 times
was used, fitting a total of 160 models. The performance of each of the final models was
evaluated using a misclassification table for the PLS-DA, and the Q2 parameter for the PLS,
and the average and SD were reported. Additionally, a permutation test was performed
within each final model, where the H-line or L-line for the PLS-DA, or IMF content for the
PLS, was permuted. The CMV procedure is described in more detail by Zubiri-Gaitán et al.
(2023) [36].

Microbial taxa that fit both the final PLS-DA and PLS models were considered to
have a correlated response to selection for IMF. The correlated response was quanti-
fied by fitting a linear model per microbial taxa, including its alr-transformed abun-
dance as a dependent variable, and line and sex as fixed effects. Bayesian inference was
used with flat priors for all unknowns. Analyses were run with the R package RabbitR
(https://github.com/marinamartinezalvaro/RabbitR, accessed on 1 April 2024). After
some exploratory analyses, results were based on marginal posterior distributions of
60,000 iterations, with a burn-in period of 10,000, and only one of every 10 samples was
saved for inferences. In all analyses, convergence was tested using the Z criterion of
Geweke. The parameters obtained from the marginal posterior distributions of the differ-
ences between lines were the mean; the highest posterior density region at 95% probability
(HPD95%); and the probability of the difference being greater than 0 when the mean was
positive or lower than 0 when the mean was negative (P0). Differences were expressed as
units of SD of the microbial taxa abundances after pre-correcting them for line and sex.

2.5. Search of Microbial Biomarkers for Prediction of IMF

While the PLS-DA model can identify variables able to classify the lines, it employs
a multivariate approach that includes all microbial variables contributing, even if some
contain redundant information. However, from a practical point of view, it might be
interesting to find a single microbial biomarker that is composed of the smallest number
of microbial taxa and has the highest classification accuracy between lines. To find this
microbial biomarker, a procedure similar to that used in stepwise forward regression was
used, but instead of adding the microbial taxa as simple covariates, they are added as
part of what—in compositional data analysis—is called a balance or a particular isometric
log–ratio, i.e., part of a log contrast in which the numerator and denominator are geometric
means of multiple raw microbial abundances (see Rivera-Pinto et al. (2018) [58] for a full
description of the method). The R package selbal [58] was used to design such a microbial
biomarker using the 51 microbial genera that had a correlated response to selection. The
algorithm takes into account the compositional nature of the microbial data and requires
that the data be entered in relative abundances. In the first step, the number and selection
of variables composing the balance were based on the least classification error using the
function selbal.cv as recommended by Rivera-Pinto et al. (2018) [58], where the k-fold was
equal to eight and the number of iterations was equal to 20. In a second step, the selected

https://github.com/marinamartinezalvaro/RabbitR
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balance was fitted in a logit regression model to test its classification ability between lines,
in a new eight-fold CV, repeated 20 times with the selbal function. The dataset was divided
into eight groups; 7/8 of the datasets were used to fit a logit regression using the balance as
a covariate; and the classification ability of the model was evaluated based on the test group
set aside. The average classification accuracy obtained across all folds and replicates was
reported. In addition, the entire procedure was repeated limiting the number of microbial
genera making up the balance to five.

3. Results
3.1. Cecum Microbiome Composition in Rabbits

The cecal microbiome was mainly composed of Firmicutes (83.12% of the total abun-
dance) and Bacteroidetes (13.45%) phyla, and other subdominant phyla such as Verru-
comicrobia (1.19%), Proteobacteria (0.76%), Actinobacteria (0.76%), and Tenericutes (0.1%).
Other bacterial phyla such as Fibrobacteres, Chloroflexi, Armatimonadetes, and Elusimicro-
bia were less represented with relative abundances ≤ 0.01%. Methanogenic archaea from
the phylum Euryarchaeota had a relative abundance of 0.04%, while the fungal phylum
Ascomycota accounted for 0.12%, Chytridiomycota for 0.002%, and Basidiomycota for
0.0001%. At the genera level, Ruminoccocus was the most abundant identified genus (21.7%),
followed by Alistipes (19.6%), Bacteroides (5.43%), Clostridium (5.16%), Faecalibaculum (4.45%),
and Akkermansia (3.54%). The most abundant methanogenic archaea was Methanobrevibacter
with 0.52% abundance (see Figure S2 and Table S2).

Because microbiome data are compositional, log–ratio transformation is strongly
recommended to avoid spurious results when comparing groups or calculating microbiome-
microbiome or microbiome-trait associations [51]. Recently, we proposed analyzing –omics
data using an additive log–ratio transformation in which the denominator is a variable
with low variance between samples and high Procrustes correlation with the standard
pairwise log–ratio system [52], so it does not bias the true distances between samples. In
the taxonomic composition of the cecal microbiome, phylum Fibrobacteres, and genus
Eubacterium were the best candidates for use as denominators in the transformation because
they preserved the Euclidean distances between individuals calculated based on all the
pairwise log–ratios standard (Procrustes correlations of 0.992 for phylum and 0.998 for the
genus, see Table S3 and Figure S3). The variances of their natural logarithms were very
small (0.0165 for phylum and 0.0442 for genus), which attributes most of the variation in
the additive log–ratio to the numerator, simplifying its interpretation.

3.2. Microbiability of IMF

The microbiability of IMF was 44.5% [15.4%, 74.8%] when computed based on micro-
bial genera, with a probability greater than 25% of 0.86. When computed based on phyla
abundances, it was lower, 23.7% [7.4%, 43.8%], with a probability of being greater than 25%
of 0.38. We also computed microbiability based on genera calculated separately for each
line, and it was still considerable, 38.8% [12.9%, 70.9%] in the H-line (probability of being
greater than 25% was 0.81) and 43.2% [13.5%, 76.2%] in the L-line (probability of being
greater than 25% was 0.83).

3.3. Divergences between IMF Lines in the Gut Microbiome as a Response to Selection

Alpha diversity was not associated with host IMF genes, as the H-line and L-line had
similar microbial diversity, measured as an adjusted alpha diversity index at either the
phylum (H′

adj = 0.13 with s.e. of 0.02 for the H-line, and H′
adj = 0.12 with s.e. of 0.02 for

the L-line, a p-value of the Kruskal–Wallis test was 0.29) or genus level (H′
adj = 0.51 with

s.e. of 0.04 for the H-line, and H′
adj = 0.51 with s.e. of 0.037 for the L-line, p-value = 0.85).

However, selection altered specific microbiome abundances in the cecum at both
the phylum and genus levels, with the effects being more pronounced at the lower tax-
onomic resolution. Based on 14 alr-transformed phyla and 66 alr-transformed genera,
PLS-DA models presented a cross-validation classification accuracy between lines of 71.0%
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(phyla) and 94.3% (genera), which decreased to 51.8% (phyla) and 48.9% (genera) when
permuting the labels of the samples (Tables S4 and S5). In addition, 17 alr-transformed
phyla and 74 alr-transformed genera identified predicted IMF variation with a Q2 accu-
racy of 11.8% (phyla) and 65.7% (genera), in cross-validation (Tables S6 and S7), which
decreased to −14% (phyla) and −31% (genera), when IMF values were permuted. More-
over, 10 alr-transformed phyla and 51 alr-transformed genera overlapped in both PLS-DA
and PLS models and were assumed to show a correlated response to selection for IMF
(Figures S4a,b and 1a,b).
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Figure 1. Correlated responses in microbiome composition after 10 generations of selection for
intramuscular fat (IMF). (a). Score plot with the first two components of the partial least squares-
discriminant analysis (PLS-DA) model, with 94.3% cross-validation accuracy, and of the partial least
squares (PLS) model, with 65.7% cross-validation prediction accuracy. (b). Venn diagram shows
51 additive log-transformed (alr) genera overlapping in PLS-DA and PLS. (c). Differences between
lines in the abundance of some of the 51 genera (means and highest posterior density intervals at 95%
probability).

Correlated responses to selection on the 10 and 51 alr-transformed microbial phyla and
genera abundances were quantified as the differences between lines (in units of SD, also
known as effect size) by fitting a linear model that included the sex effect (Figures 1c and S4c
and Table S8). At the phyla level, the two lines were dominated by either Verrucomicrobia
and Chloroflexi phyla in the H-line (+0.63 SD and +0.42 SD greater abundance, respectively,
with a probability of this difference being greater than 0 (P0) ≥ 0.97), or Armatimonadetes
and Euryarchaeota in the L-line (−0.46 and −0.43 SD, respectively, P0 ≥ 0.98). In addition,
the H-line was enriched in Proteobacteria (+0.34, P0 =0.94), Candidatus Saccharibacteria
(+0.33 SD, P0 = 0.93), and Elusimicrobia (+0.31 SD, P0 = 0.92) bacterial phyla. Interestingly,
the two fungal phyla Chytridiomycota and the much less abundant Basidiomycota were
also enriched in the H-line (+0.34 SD, P0 = 0.94); however, the L-line was enriched in
Ascomycota (−0.45 SD, P0 = 0.98).

We did not find differences between lines in the FB ratio, which was 7.51 (SD = 0.55)
in the H-line and 7.16 (SD = 0.59) in the L-line, and there was low statistical evidence
of a greater ratio in the H-line (H-L = 0.38 and SD 0.79, P0 = 0.68). However, out of the
51 genera distinguishing the lines, 31 belonged to Firmicutes and five to Bacteroidetes,
with enrichment either in the H-line (16 Firmicutes and three Bacteroidetes) or in the L-
line (15 Firmicutes and two Bacteroidetes). Among those genera enriched in the H-line,
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Hungateiclostridium, Limosilactobacillus, Lysinibacillus, Porphyromonas, Erysipelatoclostridium,
and Gemminger showed the largest effect sizes from +0.45 SD to +0.67 SD (P0 ≥ 0.98). Among
those, Firmicutes and Bacteroidetes genera enriched in the L-line, Fonticella, Megasphaera,
Exiguobacterium, Flintibacter, Coprococcus, Candidatus Amulumruptor and Odoribacter showed
the largest effect sizes from −0.33 SD to −0.61 SD (P0 ≥ 0.93). The genera Ruminococcus
(21.7% of total relative abundance), Lactobacillus, and Turicibacter were also enriched in
the L-line, with effect sizes of −0.39, −0.38, and −0.35 SD, respectively (P0 ≥ 0.95), and
VIP ≥ 0.86.

Several Proteobacteria genera also played an important role in differentiating the
two lines. The H-line was enriched in Oxalobacter, Desulfovibrio, Bartonella, Legionella,
and Sutterella with effect sizes ranging from +0.37 to +0.57 SD, and P0 ≥ 0.96; and the
L-line was enriched in Escherichia with an effect size of −0.69 SD (P0 = 1.00) (Figure 1c).
Other interesting results included the enrichment of the abundant genus Akkermansia (3.53%
relative abundance) in the H-line (+0.31 SD, P0 = 0.93), and the enrichment of the ubiquitous
methanogenic archaea Methanobrevibacter (0.52% relative abundance) in the L-line, with
−0.51 SD, P0 = 0.99.

3.4. Microbial Biomarkers to Predict Host IMF Genetic Background

Finding a simple microbial biomarker that can be used to classify new animals into
the two lines could be an attractive outcome to apply in the health or meat quality industry.
To this aim, we identified a microbial balance formed by 13 microbial genera abundances,
selected amongst the 51 genera having a response to selection. It contained the geomet-
ric mean of Escherichia, Megasphaera, Lactobacillus, Massilistercora, and Robinsoniella in the
numerator; and Legionella, Lysinbacillus, Hungateiclostridium, Methanosphaera, Moorella, Fae-
calitalea, Phocaeicola, and Sutterella in the denominator (Figure 2a). When this balance was
fitted in a logit regression for classification between lines, cross-validated classification
accuracy was 91.1% (SD of 1.01%). A less complex balance was additionally obtained
by limiting the number of genera comprising the balance to a maximum of five. In this
case, a balance formed by four genera composed of the geometric mean of Escherichia
and Massilistercora in the numerator and Legionella and Lysinbacillus in the denominator
(Figure 2b) was selected. This balance was able to classify the lines with an accuracy of
78.2% (SD = 0.4%).
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fat (IMF) lines (a). Balance with 13 genera (geometric mean of Escherichia, Megasphaera, Lactobacillus,
Massilistercora, and Robinsoniella in the numerator; and Legionella, Lysinbacillus, Hungateiclostridium,
Methanosphaera, Moorella, Faecalitalea, Phocaeicola, and Sutterella in the denominator) (b). An alter-
native balance was built on a reduced set of four genera (using the geometric mean of Escherichia
and Massilistercora in the numerator and the geometric mean of Legionella and Lysinbacillus in the
denominator).



Animals 2024, 14, 2078 10 of 16

4. Discussion

In this study, we first estimated IMF microbiability (first used by Difford et al. (2016) [59]),
which quantifies the percentage of IMF phenotypic variation between individuals due to
the variation in their microbiome composition, independent of whether these microbial
abundances are influenced by host genetics. IMF microbiability at the genera level was
around 45% greater than the estimate at the phyla level. The better fitness observed at
lower taxonomic resolution can be explained by the fact that clustering the counts at
higher taxonomic ranks could hide the variation among individuals that arises from genera
with versatile functions for lipid metabolism. The greater explanatory power at lower
taxonomic levels was also observed for resilience traits in rabbits [60]. Although there
are no previous records of IMF microbiability in rabbits, other studies performed in pigs
provided lower values ranging from 6% [61] to 26% [62,63]. Our higher microbiability could
not be attributed to the process of divergent selection since the median of the microbiability
distribution estimated using genera calculated separately for each line was still considerable
(39% in H and 43% in L). Instead, the differences with other results may be attributed to
additional random effects in the models of these experiments, or different methods used to
calculate metagenomic distances between individuals [63].

Due to our divergent selection experimental design, we can go a step further and
disentangle which of the microbial features related to IMF are influenced by host genetics
by studying the differences between the microbiomes of the IMF lines. While vertical
transmission of microbes unaffected by host genetics may occur from the selected mother
to the kit (for example via the birth canal, lactation, and/or coprophagy of the mother’s
soft feces in the nest [64]), the stability of such microbial populations in the digestive tract
of the rabbit under standardized environmental conditions remains unclear [65–68]. In
addition, the microbial abundances influencing IMF and only related to the environment
should be randomly distributed among the animals of both lines, as the animals were
randomly selected for this microbiome study. Considering these factors, we expect that the
differences in microbiome features between the IMF lines are primarily due to divergence
in host genetics. In addition to genetic changes due to selection, our finite rabbit population
is also subjected to random genetic changes due to genetic drift that could also affect the
microbiome. This possible genetic drift was alleviated by focusing on the microbial taxa
that differed between lines (PLS-DA) and was also linearly associated with IMF (PLS), as
first proposed in Martínez-Álvaro et al. (2021) [37].

Selection for IMF presented a correlated response in the microbiome composition.
Although we did not observe a correlated response to selection for IMF on FB ratio, we
observed a correlated response to selection on the abundance of specific genera belonging
to these phyla. For example, Gemminger and Erysipelatoclostridium genera classified within
Firmicutes and Porphyromonas classified within Bacteroidetes were enriched in the H-line.
In the literature, Gemminger was found to be more abundant in obese children than in
normal-weight individuals [69]; Erysipelatoclostridium, was linked to diet-induced obesity
in gnotobiotic mice [70]; and periodontal infection with Porphyromonas induced obesity,
glucose tolerance, hepatic steatosis, and altered endocrine function in mice [71,72]. In this
study, we suggest these associations have a host-genetic component.

Another advantage of this experimental material is that its genomic, metabolomic,
and cecum functional profile has been described in detail in previous studies [34–37], so
that the results of this study can be integrated with other -omics. For example, the L-line
presented a greater abundance of Flintibacter, linked to bile acid metabolism [73], and of
Escherichia and Lactobacillus, capable of metabolizing secondary bile acids in the gut [74,75],
which have a regulatory function on inflammatory pathways in the liver, colon, or white
adipose tissue [76–78]. Our previous research noted correlated responses to selection in
microbial genes involved in bile acid transport [37]; and greater plasma secondary bile acid
metabolites in the L-line [36], along with more cholesterol [32], possibly linked to the greater
abundance of these genera in the cecum. Also, the enrichment of Coprococcus, Megasphaera,
and Ruminoccocus in the cecum of the L-line could relate to greater microbial propionate
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production [75] in line with the greater abundance of propionyl-CoA carboxylase pccA
observed in this line [37]. Propionate inhibits de novo liver lipogenesis [79], with enzymatic
activity found to be lower in the L-line [32]. It also promotes leanness by stimulating
anorexigenic satiety hormones via G-protein coupled receptors, thereby inhibiting food
intake, which was also lower in the L-line [80]. The L-line was also enriched in Odoribacter, a
succinate-consuming bacteria that can prevent obesity by lowering succinate levels, known
to have adipose-tissue inflammation properties [81,82]. A lower abundance of sucC, which
catalyzes the synthesis of succinyl-CoA from succinate, was observed in the L-line in our
functional metagenomics study [37]. Another interesting result was the enrichment of the
ubiquitous methanogenic archaea Methanobrevibacter (0.52% relative abundance) in the
L-line as a consequence of selection, consistent with the greater abundance of hdr involved
in methane metabolism [37]. Obesity has been associated with increased H2 transfer
between bacterial fermenters and H2-using species like methanogens [13,20,83]. Zhang et al.
(2009) [84] suggested that this mechanism, which releases intraluminal pressure, promotes
the fermentation of non-digestible carbohydrates and thus short-chain fatty acid production
and energy intake. However, it remains unclear how increased energy production can
occur while carbon is lost through methane release [85]. Moreover, acetogenesis and sulfate
reduction are considered thermodynamically more favorable pathways for H2 depletion in
monogastric animals (e.g., rabbits [86] and humans [87]) than methanogenesis. More likely,
the greater methanogen abundance observed in the L-line results in increased carbon loss
from the use of H2, reducing energy uptake, as hypothesized in pigs and humans [88–90].
Finally, the H-line was enriched in genera Akkermansia. This genus carries microbial genes
involved in the biosynthesis of lipopolysaccharides, peptidoglycans, and other microbial
endotoxins in its genome, which were also more abundant in the H-line [37] and are
known to contribute to the development of fat mass [9,13]. Our results are contrary to
expectations based on studies associating this mucin degrader with alleviating metabolic
syndrome [91,92]; however, these studies primarily explored dietary interventions, not
the genetic background of IMF. One hypothesis to explain our results is Akkermansia’s
involvement in acetate production [75], which is more obesogenic than propionate. Acetate
constitutes the main substrate for de novo lipogenesis in the liver of rabbits [93,94] and
it also influences appetite and fat storage by promoting the secretion of insulin by the
pancreas and ghrelin by the gastric mucosa [95].

In an attempt to transport our results into practical implementation, we identified
a microbial indicator based on the abundance of four genera (Escherichia, Massilistercora,
Legionella, and Lysinbacillus) that could be implemented (after an external validation) in the
field of meat quality assessment to classify new animals based on their genetic background
for IMF with acceptable accuracy (78%). A more sophisticated biomarker, encompassing
13 microbial genera, could increase the classification accuracy to 91%. The microbial
biomarkers were built using the selbal algorithm [58], which identifies the smallest number
of microbial genera that, when combined in a single microbial balance or isometric log-
contrast have the highest classification accuracy. This approach differs from PLS-DA, which
aims to identify all microbial variables with discriminatory ability between lines without
necessarily avoiding redundancy. PLS-DA is used to comprehensively search all microbial
genera that show a correlated response to selection for IMF.

5. Conclusions

This study highlights the impact of 10 generations of genetic selection for intramus-
cular fat (IMF) on the cecum microbiota of two rabbit lines maintained under identical
environmental conditions but differing in genetic makeup for IMF. We identified specific
microbial abundances linked to host genes responsible for lipid deposition, characterizing
two divergent IMF lines. The selection exhibited a pronounced effect on microbiota compo-
sition at the genera level, with lesser effects observed at higher taxonomic ranks (phyla).
The H-line was enriched in Hungateiclostridium, Limosilactobacillus, Lysinibacillus, Gemminger,
and Porphyromonas whilst the L-line was enriched in Megasphaera, Exiguobacterium, Flintibac-
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ter, Coprococcus, Ruminoccocus, and Odoribacter. Also, the lean L-line presented a greater
abundance of Escherichia, Lactobacillus, and Methanobrevibacter, whilst the H-line had a
greater abundance of Oxalobacter, Desulfovibrio, Bartonella, Legionella, and Akkermansia. We
designed a microbial biomarker composed of four genera abundances, which can be used
to distinguish between individuals with divergent genetic backgrounds for IMF accumula-
tion with an accuracy of up to 78% in cross-validation. These findings not only enhance
our understanding of the genetic influence on microbiota composition and its role in
lipid accumulation but also suggest the potential for microbiome modulation strategies
to enhance IMF. This approach could open the way for future research into probiotics or
microbiome-based selection aimed at optimizing meat quality.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ani14142078/s1, Figure S1: The first two components of a principal
component (PC) analysis of the composition of the cecal microbiome after additive log–ratio transfor-
mation at phylum (a) and genus (b) levels show the sequencer effect (FISABIO or Sist. Genómicos
Laboratories) before and after correction.; Figure S2: Composition of the cecal microbiome at genus
levels in rabbit lines selected for high (H) and low (L) intramuscular fat, expressed as relative abun-
dances, after correction for the sequencer and sex effects. Figure S3: Selection of a. Eubacterium (at
the genus level) and b. Fibrobacteres (at the phylum level) as denominators (in red) for additive
log–ratio (alr) transformation, chosen because they result in the transformed system that best pre-
serves the isometry between the samples. The x-axis (CorrPro) represents the Prorcrustes correlation
between microbiome composition expressed in all pairwise log–ratios (standard) and after, and
alr transformation using each taxon as a denominator. The y-axis (Var) represents the variance of
the log of each taxa abundance. The coordinates were (0.998, 0.0442) for Eubacterium and (0.992,
0.0165) for Fibrobacteres. Figure S4: Correlated responses on the gut microbiome composition at
the phyla level after ten generations of selection for intramuscular fat (IMF). a. Score plot with
first two components of the partial least square-discriminant analysis (PLS-DA) model, with 71.0%
cross-validation accuracy; and of the partial least square (PLS) model, with 11.8% cross-validation
prediction accuracy b. Venn diagram showing 10 additive log-transformed (alr) phyla overlapping in
PLS-DA and PLS. c. Differences between lines in the abundance of the 10 phyla (mean and highest
posterior density intervals at 95% probability). Table S1: Composition of diet consumed from four
to nine weeks of age. Table S2: Cecum microbiome composition (relative abundances %) in the
two rabbit lines divergently selected for intramuscular fat. Table S3: Log variance of each microbial
taxa abundance and Procrustes correlation between the additive log–ratio system using each micro-
bial taxon as a reference, in comparison to the pairwise log–ratio standard. Table S4: Results from the
discriminant partial least squares analysis in two steps to identify the additive log–ratio-transformed
phyla abundances with discrimination ability between the high and low intramuscular fat lines.
Table S5: Results from the discriminant partial least squares analysis in two steps to identify the
additive log–ratio-transformed genera abundances with discrimination ability between the high and
low intramuscular fat lines. Table S6: Results from the regression partial least squares analysis in
two steps to identify the additive log–ratio-transformed Phyla abundances with intramuscular fat
explanation ability. Table S7: Results from the regression partial least squares analysis in two steps
to identify the additive log–ratio-transformed genera abundances with intramuscular fat explana-
tion ability. Table S8: Differences between genetic IMF lines in the additive log–ratio-transformed
abundance of selected Phyla or genera, presenting a correlated response to selection.
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